Exercise Sheet 1

Regularization by projection

Let X and Y be Hilbert spaces and $T \in L(X, Y)$ compact with $\mathcal{N}(T)=\{0\}$ and $\overline{\mathcal{R}(T)}=Y$.
Consider a sequence $Y_{0} \subset Y_{1} \subset \ldots$ of finite dimensional subspaces of Y with orthogonal projections $Q_{n}: Y \rightarrow Y_{n}$, such that $\overline{\bigcup_{n \in \mathbb{N}} Y_{n}}=Y$, hence $\lim _{n \rightarrow \infty} Q_{n} y=y$ for all $y \in Y$.
The operator equation $T x=y$ with $y \in R(T)$ is approximated by

$$
\begin{equation*}
Q_{n} T x_{n}=Q_{n} y \tag{1}
\end{equation*}
$$

We abbreviate $T_{n}:=Q_{n} T$ and $X_{n}:=T^{*} Y_{n}$ and define an approximation x_{n}^{δ} of x^{\dagger} by the best approximate solution

$$
x_{n}^{\delta}:=T_{n}^{\dagger} Q_{n} y^{\delta} \in \mathcal{N}\left(T_{n}\right)^{\perp}=X_{n}
$$

of (1).

1. Prove that: In case $\delta=0, y \in \mathcal{D}\left(T^{\dagger}\right)$, the approximation $x_{n}:=T_{n}^{\dagger} Q_{n} y$ is the orthogonal projection of x^{\dagger} onto X_{n}. Moreover, $x_{n} \rightarrow x^{\dagger}=T^{\dagger} y$ as $n \rightarrow \infty$.
2. Prove that: The family $\left\{T_{n}^{\dagger} Q_{n}\right\}$ with an a prior parameter choice strategy $\bar{n}(\delta)$ is a regularization method iff

$$
\bar{n}(\delta) \rightarrow \infty \text { and } \frac{\delta}{\rho_{\bar{n}(\delta)}} \rightarrow 0 \text { as } \delta \rightarrow 0,
$$

where ρ_{n} is the smallest nonzero singular value of T_{n}, i.e., the smallest singular value of $\left.T_{n}\right|_{X_{n}}$.
3. Let $\operatorname{dim} Y_{n}=n$. Prove that

$$
\rho_{n} \leq \sigma_{n}, \quad n \in \mathbb{N} .
$$

and equality holds iff $Y_{n}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$, where $\left\{\left(\sigma_{j} ; u_{j}, v_{j}\right)\right\}_{j \in \mathbb{N}}$ is a singular system of T.
(Hint: The smallest eigenvalue of a positive definite selfadjoint operator $A \in L(Z, Z)$ can be characterized as $\lambda_{\min }(A)=\min _{z \in Z \backslash\{0\}} \frac{\langle A z, z\rangle}{\|z\|^{2}}$. How are the singular values of T_{n} related to the eigenvalues of $T_{n}^{*} T_{n}$?)
In this case the method described above coincides with truncated singular value decomposition

$$
R_{n} y=\sum_{j=1}^{n} \frac{1}{\sigma_{j}}\left\langle y, v_{j}\right\rangle u_{j}
$$

or alternatively, in terms of a threshold value α

$$
\begin{equation*}
R_{\alpha} y=\sum_{\sigma_{j}^{2} \geq \alpha} \frac{1}{\sigma_{j}}\left\langle y, v_{j}\right\rangle u_{j} \tag{2}
\end{equation*}
$$

4. Derive the functions q_{α} and r_{α} for TSVD in the formulation (2) and verify conditions (11), (12), (13), and (18) (with $\mu_{0}=\infty$)

Remark

Alternatively to projecting onto finite dimensional subspaces in image space Y, one could consider a sequence of finite dimensional subspaces X_{n} of X and define x_{n} as the bestapproximate solution in X_{n} of $T x=y$, i.e., with noisy data

$$
x_{n}^{\delta} \in \operatorname{argmin}\left\{\left\|\tilde{x}_{n}\right\|: \tilde{x}_{n} \in \operatorname{argmin}\left\{\left\|T \hat{x}-y^{\delta}\right\|: \hat{x} \in X_{n}\right\}\right\}
$$

(i.e., $T \tilde{x}_{n} \in Y_{n}:=T X_{n}$ is the metric projection of y^{δ} onto Y_{n}). However, this method converges only under certain conditions; see e.g., [Engl, Hanke, Neubauer 1996], [Kirsch, 1996] for further details on regularization by projection.

