Methods for inverse problems: V. Kaczmarz and Expectation Maximization methods

Barbara Kaltenbacher, University of Klagenfurt, Austria

overview

- 1 Problem setting: System of nonlinear operator equations
- 2 Gradient type Kaczmarz methods
- Newton type Kaczmarz methods
 - Levenberg-Marquardt type Kaczmarz methods
 - IRGNM type Kaczmarz methods
- 4 EM algorithms

System of nonlinear operator equations

Instead of $\mathbf{F}(x) = \mathbf{y}$ consider systems of operator equations

$$F_0(x) = y_0$$

 $F_1(x) = y_1$
 $F_2(x) = y_2$
:
:
:
:
:
:

Example: EIT

$$\begin{cases} \nabla \cdot (\sigma \nabla u_i) = 0 & \text{in } \Omega \\ \nu \cdot (\sigma \nabla u_i) = j_i, & u_i = v_i & \text{on } \partial \Omega \end{cases} \qquad i = 0, \dots, N-1$$

System of nonlinear operator equations

Instead of $\mathbf{F}(x) = \mathbf{y}$ consider systems of operator equations

$$F_0(x) = y_0$$

 $F_1(x) = y_1$
 $F_2(x) = y_2$
:
:
:
:
:
:
:

Example: EIT

$$\begin{cases} \nabla \cdot (\sigma \nabla u_i) = 0 & \text{in } \Omega \\ \nu \cdot (\sigma \nabla u_i) = j_i, & u_i = v_i & \text{on } \partial \Omega \end{cases} \qquad i = 0, \dots, N-1$$

$$F_i(x) = y_i, \quad i = 0, \dots, N-1,$$

noisy data

$$||y_i^{\delta}-y_i||\leq \delta\,,\quad i=0,\ldots,N-1\,,$$

e.g. x... coefficient in a PDE, $\mathbf{F}(x) = (F_0(x), \dots, F_{N-1}(x))$... discr. Dirichlet-to Neumann map Kaczmarz methods (algebraic reconstruction technique): cyclic iteration over subproblems [Kaczmarz'93], [Natterer'97]

$$F_i(x) = y_i, \quad i = 0, \dots, N-1,$$

noisy data

$$||y_i^{\delta}-y_i||\leq \delta\,,\quad i=0,\ldots,N-1\,,$$

e.g. x... coefficient in a PDE, $\mathbf{F}(x) = (F_0(x), \dots, F_{N-1}(x))$... discr. Dirichlet-to Neumann map Kaczmarz methods (algebraic reconstruction technique): cyclic iteration over subproblems [Kaczmarz'93], [Natterer '97]

+ perform iterations for several smaller subproblems $F_i(x) = y_i$ instead of one large problem $\mathbf{F}(x) = \mathbf{y}$

$$F_i(x) = y_i, \quad i = 0, \dots, N-1,$$

noisy data

$$||y_i^{\delta}-y_i||\leq \delta\,,\quad i=0,\ldots,N-1\,,$$

e.g. x... coefficient in a PDE, $\mathbf{F}(x) = (F_0(x), \dots, F_{N-1}(x))$... discr. Dirichlet-to Neumann map Kaczmarz methods (algebraic reconstruction technique): cyclic iteration over subproblems [Kaczmarz'93], [Natterer '97]

- + perform iterations for several smaller subproblems $F_i(x) = y_i$ instead of one large problem $\mathbf{F}(x) = \mathbf{y}$
- + easy to implement especially if F_i are similar

$$F_i(x) = y_i, \quad i = 0, \dots, N-1,$$

noisy data

$$||y_i^{\delta}-y_i||\leq \delta\,,\quad i=0,\ldots,N-1\,,$$

e.g. x... coefficient in a PDE, $\mathbf{F}(x) = (F_0(x), \dots, F_{N-1}(x))$... discr. Dirichlet-to Neumann map Kaczmarz methods (algebraic reconstruction technique): cyclic iteration over subproblems [Kaczmarz'93], [Natterer '97]

- + perform iterations for several smaller subproblems $F_i(x) = y_i$ instead of one large problem $\mathbf{F}(x) = \mathbf{y}$
- + easy to implement especially if F_i are similar

Gradient type Kaczmarz methods

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \leq au\delta \leadsto k_* \sim \delta^{-1}$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results:

$$x_{k+1}^\delta = x_k^\delta - \mathbf{F}'(x_k^\delta)^*(\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta)$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \leq au\delta \leadsto k_* \sim \delta^{-1}$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results:

• monotonicity of the error and ² summability of the residuals: $||x_{k+1}^{\delta} - x^*||^2 < ||x_k^{\delta} - x^*||^2 - c||\mathbf{F}(x_k^{\delta}) - \mathbf{v}^{\delta}||^2$

$$x_{k+1}^\delta = x_k^\delta - \mathbf{F}'(x_k^\delta)^*(\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta)$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \leq au\delta \leadsto k_* \sim \delta^{-1}$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results:

• monotonicity of the error and ² summability of the residuals: $\|x_{\nu+1}^{\delta} - x^*\|^2 \le \|x_{\nu}^{\delta} - x^*\|^2 - c\|\mathbf{F}(x_{\nu}^{\delta}) - \mathbf{y}^{\delta}\|^2$

convergence with exact data

$$x_{k+1}^\delta = x_k^\delta - \mathbf{F}'(x_k^\delta)^*(\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta)$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \leq au\delta \leadsto k_* \sim \delta^{-1}$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results:

• monotonicity of the error and ² summability of the residuals: $||x_{k+1}^{\delta} - x^*||^2 \le ||x_k^{\delta} - x^*||^2 - c||\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}||^2$

- convergence with exact data
- convergence with noisy data

$$x_{k+1}^\delta = x_k^\delta - \mathbf{F}'(x_k^\delta)^*(\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta)$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \leq au\delta \leadsto k_* \sim \delta^{-1}$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results:

- monotonicity of the error and ² summability of the residuals: $||x_{k+1}^{\delta} x^*||^2 \le ||x_k^{\delta} x^*||^2 c||\mathbf{F}(x_k^{\delta}) \mathbf{y}^{\delta}||^2$
- convergence with exact data
- convergence with noisy data
- convergence rates (nonlin. cond. $\mathbf{F}'(\tilde{x}) = R_{\tilde{x}}^{x}\mathbf{F}'(x)$)

$$x_{k+1}^\delta = x_k^\delta - \mathbf{F}'(x_k^\delta)^*(\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta)$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \leq au\delta \leadsto k_* \sim \delta^{-1}$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results:

• monotonicity of the error and ² summability of the residuals: $||x_{k+1}^{\delta} - x^*||^2 \le ||x_k^{\delta} - x^*||^2 - c||\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}||^2$

- convergence with exact data
- convergence with noisy data
- convergence rates (nonlin. cond. $\mathbf{F}'(\tilde{x}) = R_{\tilde{x}}^{\mathbf{x}}\mathbf{F}'(x)$)

[Hanke Neubauer Scherzer '94

$$x_{k+1}^\delta = x_k^\delta - \mathbf{F}'(x_k^\delta)^*(\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta)$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \leq au\delta \leadsto k_* \sim \delta^{-1}$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results:

• monotonicity of the error and ² summability of the residuals: $||x_{k+1}^{\delta} - x^*||^2 \le ||x_k^{\delta} - x^*||^2 - c||\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}||^2$

- convergence with exact data
- convergence with noisy data
- convergence rates (nonlin. cond. $\mathbf{F}'(\tilde{x}) = R_{\tilde{x}}^{\mathbf{x}} \mathbf{F}'(x)$)
 [Hanke Neubauer Scherzer '94]

Landweber Kaczmarz iteration

$$x_{k+1}^{\delta} = x_k^{\delta} - F'_{[k]}(x_k^{\delta})^* (F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta})$$

 $[k] = k \mod N$

Discrepancy principle:

stop the iteration as soon as $\|F_{[k]}(x_k^\delta) - y_{[k]}^\delta\| \leq au \delta$

Nonlinearity condition:

$$||F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)|| \le \eta ||F_i(\tilde{x}) - F_i(x)|| \quad \forall i$$

Landweber Kaczmarz iteration

$$x_{k+1}^{\delta} = x_k^{\delta} - F'_{[k]}(x_k^{\delta})^* (F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta})$$

 $[k] = k \mod N$

Discrepancy principle:

stop the iteration as soon as $\|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \leq \tau \delta$

Nonlinearity condition:

$$\|F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)\| \le \eta \|F_i(\tilde{x}) - F_i(x)\| \quad \forall i$$

Convergence Results:

- monotonicity of the error and ² summability of the residuals
- convergence with exact data
- convergence with noisy data
 [Kowar Scherzer '04]

Landweber Kaczmarz iteration

$$x_{k+1}^{\delta} = x_k^{\delta} - F'_{[k]}(x_k^{\delta})^* (F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta})$$

 $[k] = k \mod N$

Discrepancy principle:

stop the iteration as soon as $\|F_{[k]}(x_k^\delta) - y_{[k]}^\delta\| \le au \delta$

Nonlinearity condition:

$$||F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)|| \le \eta ||F_i(\tilde{x}) - F_i(x)|| \quad \forall i$$

- Convergence Results:
- monotonicity of the error and ² summability of the residuals
- convergence with exact data
- convergence with noisy data
 [Kowar Scherzer '04]

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} - \omega_k F_{[k]}'(x_k^{\delta})^* (F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}) \\ \omega_k &:= \begin{cases} 1 & \text{if } \|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \ge \tau \delta \\ 0 & \text{otherwise} \end{cases}. \end{aligned}$$

Discrepancy principle:

stop the iteration as soon as
$$\|F_i(x_k^\delta) - y_i^\delta\| \le \tau \delta \ \forall i$$
 i.e., $k_*^\delta := \min\{jN \in \mathbb{N} : x_{jN}^\delta = x_{jN+1}^\delta = \dots = x_{jN+N}^\delta\}$

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} - \omega_k F_{[k]}'(x_k^{\delta})^* (F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}) \\ \omega_k &:= \begin{cases} 1 & \text{if } \|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \ge \tau \delta \\ 0 & \text{otherwise} \end{cases}. \end{aligned}$$

Discrepancy principle:

stop the iteration as soon as $||F_i(x_k^{\delta}) - y_i^{\delta}|| \le \tau \delta \quad \forall i$ i.e., $k_*^{\delta} := \min\{jN \in \mathbb{N} : x_{jN}^{\delta} = x_{jN+1}^{\delta} = \dots = x_{jN+N}^{\delta}\}$

$$\|F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)\| \le \eta \|F_i(\tilde{x}) - F_i(x)\| \quad \forall i$$

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} - \omega_k F_{[k]}'(x_k^{\delta})^* (F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}) \\ \omega_k &:= \begin{cases} 1 & \text{if } \|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \ge \tau \delta \\ 0 & \text{otherwise} \end{cases}. \end{aligned}$$

Discrepancy principle:

stop the iteration as soon as
$$||F_i(x_k^\delta) - y_i^\delta|| \le \tau \delta \quad \forall i$$
 i.e., $k_*^\delta := \min\{jN \in \mathbb{N} : x_{jN}^\delta = x_{jN+1}^\delta = \cdots = x_{jN+N}^\delta\}$ Nonlinearity condition:

$$||F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)|| \le \eta ||F_i(\tilde{x}) - F_i(x)|| \quad \forall i$$

Convergence Results:

- monotonicity of the error and ² summability of the residuals
- convergence with exact/noisy data
 [Haltmeier Leitao Scherzer'07], [De Cesaro Haltmeier Leitao Scherzer'08], [Haltmeier'09]

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} - \omega_k F_{[k]}'(x_k^{\delta})^* (F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}) \\ \omega_k &:= \begin{cases} 1 & \text{if } \|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \ge \tau \delta \\ 0 & \text{otherwise} \end{cases}. \end{aligned}$$

Discrepancy principle:

stop the iteration as soon as
$$\|F_i(x_k^\delta) - y_i^\delta\| \le \tau \delta \quad \forall i$$
 i.e., $k_*^\delta := \min\{jN \in \mathbb{N} : x_{jN}^\delta = x_{jN+1}^\delta = \cdots = x_{jN+N}^\delta\}$ Nonlinearity condition: $\|F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)\| \le \eta \|F_i(\tilde{x}) - F_i(x)\| \quad \forall i$

- Convergence Results:
- monotonicity of the error and ² summability of the residuals
- convergence with exact/noisy data
 [Haltmeier Leitao Scherzer'07], [De Cesaro Haltmeier Leitao Scherzer'08], [Haltmeier'09]

Newton type Kaczmarz methods

$$x_{k+1}^{\delta} = x_k^{\delta} - (\mathbf{F}'(x_k^{\delta})^* \mathbf{F}'(x_k^{\delta}) + \alpha_k I)^{-1} \mathbf{F}'(x_k^{\delta})^* (\mathbf{F}(x_k^{\delta}) - y^{\delta})$$

Choice of
$$\alpha_k$$
: (inexact Newton) $\rho \in (0,1)$ $\|\mathbf{F}'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha) - x_k^{\delta}) + \mathbf{F}(x_k^{\delta}) - y^{\delta}\| = \rho \|\mathbf{F}(x_k^{\delta}) - y^{\delta}\|$

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \leq \tau \delta \leadsto k_* \sim |\log \delta|$

$$x_{k+1}^{\delta} = x_k^{\delta} - (\mathbf{F}'(x_k^{\delta})^* \mathbf{F}'(x_k^{\delta}) + \alpha_k I)^{-1} \mathbf{F}'(x_k^{\delta})^* (\mathbf{F}(x_k^{\delta}) - y^{\delta})$$

Choice of
$$\alpha_k$$
: (inexact Newton) $\rho \in (0,1)$ $\|\mathbf{F}'(x_k^\delta)(x_{k+1}^\delta(\alpha) - x_k^\delta) + \mathbf{F}(x_k^\delta) - y^\delta\| = \rho \|\mathbf{F}(x_k^\delta) - y^\delta\|$ Discrepancy principle: stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \le \tau \delta \leadsto k_* \sim |\log \delta|$

$$x_{k+1}^{\delta} = x_k^{\delta} - (\mathbf{F}'(x_k^{\delta})^* \mathbf{F}'(x_k^{\delta}) + \alpha_k I)^{-1} \mathbf{F}'(x_k^{\delta})^* (\mathbf{F}(x_k^{\delta}) - y^{\delta})$$

Choice of
$$\alpha_k$$
: (inexact Newton) $\rho \in (0,1)$ $\|\mathbf{F}'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha) - x_k^{\delta}) + \mathbf{F}(x_k^{\delta}) - y^{\delta}\| = \rho \|\mathbf{F}(x_k^{\delta}) - y^{\delta}\|$ Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(\mathbf{x}_k^\delta) - \mathbf{y}^\delta\| \leq \tau \delta \leadsto \mathbf{k}_* \sim |\log \delta|$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \underbrace{C_R \|\tilde{x} - x\|}_{\le \eta} \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

$$x_{k+1}^{\delta} = x_k^{\delta} - (\mathbf{F}'(x_k^{\delta})^* \mathbf{F}'(x_k^{\delta}) + \alpha_k I)^{-1} \mathbf{F}'(x_k^{\delta})^* (\mathbf{F}(x_k^{\delta}) - y^{\delta})$$

Choice of
$$\alpha_k$$
: (inexact Newton) $\rho \in (0,1)$ $\|\mathbf{F}'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha) - x_k^{\delta}) + \mathbf{F}(x_k^{\delta}) - y^{\delta}\| = \rho \|\mathbf{F}(x_k^{\delta}) - y^{\delta}\|$ Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(\mathbf{x}_k^\delta) - \mathbf{y}^\delta\| \le \tau \delta \leadsto k_* \sim |\log \delta|$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \underbrace{C_R \|\tilde{x} - x\|}_{\leq \eta} \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results

- monotonicity of the error and ² summability of the residuals
- convergence with exact/noisy data [Hanke'96], [Rieder'99]
- convergence rates [Hanke'09] (optimal)

$$x_{k+1}^{\delta} = x_k^{\delta} - (\mathbf{F}'(x_k^{\delta})^*\mathbf{F}'(x_k^{\delta}) + \alpha_k I)^{-1}\mathbf{F}'(x_k^{\delta})^*(\mathbf{F}(x_k^{\delta}) - y^{\delta})$$

Choice of
$$\alpha_k$$
: (inexact Newton) $\rho \in (0,1)$ $\|\mathbf{F}'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha) - x_k^{\delta}) + \mathbf{F}(x_k^{\delta}) - y^{\delta}\| = \rho \|\mathbf{F}(x_k^{\delta}) - y^{\delta}\|$ Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(\mathbf{x}_{\iota}^{\delta}) - \mathbf{y}^{\delta}\| \le \tau \delta \leadsto k_{*} \sim |\log \delta|$

Nonlinearity condition:

$$\|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \le \underbrace{C_R \|\tilde{x} - x\|}_{\le \eta} \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\|$$

Convergence Results:

- monotonicity of the error and ² summability of the residuals
- convergence with exact/noisy data [Hanke'96], [Rieder'99]
- convergence rates [Hanke'09] (optimal)

Levenberg-Marquardt Kaczmarz iteration

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'_{[k]}(x_k^{\delta})^* F'_{[k]}(x_k^{\delta}) + \alpha_k I)^{-1} F'_{[k]}(x_k^{\delta})^* (y_{[k]}^{\delta} - F_{[k]}(x_k^{\delta}))$$

Choice of
$$\alpha_k$$
: (inexact Newton) $\rho \in (0,1)$ $\|F'_{[k]}(x_k^\delta)(x_{k+1}^\delta(\alpha) - x_k^\delta) + F_{[k]}(x_k^\delta) - y_{[k]}^\delta\| = \rho \|F_{[k]}(x_k^\delta) - y_{[k]}^\delta\|$ Discrepancy principle: stop the iteration as soon as $\|F_{[k]}(x_k^\delta) - y_{[k]}^\delta\| \le \tau \delta$ Nonlinearity condition: $\|F_i(\tilde{x}) - F_i(x) - F_i(x)(\tilde{x} - x)\| \le \eta \|F_i(\tilde{x}) - F_i(x)\| \ \forall i$

Levenberg-Marquardt Kaczmarz iteration

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'_{[k]}(x_k^{\delta})^* F'_{[k]}(x_k^{\delta}) + \alpha_k I)^{-1} F'_{[k]}(x_k^{\delta})^* (y_{[k]}^{\delta} - F_{[k]}(x_k^{\delta}))$$

Choice of
$$\alpha_k$$
: (inexact Newton) $\rho \in (0,1)$ $\|F'_{[k]}(x_k^\delta)(x_{k+1}^\delta(\alpha) - x_k^\delta) + F_{[k]}(x_k^\delta) - y_{[k]}^\delta\| = \rho \|F_{[k]}(x_k^\delta) - y_{[k]}^\delta\|$ Discrepancy principle: stop the iteration as soon as $\|F_{[k]}(x_k^\delta) - y_{[k]}^\delta\| \le \tau \delta$ Nonlinearity condition: $\|F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)\| \le \eta \|F_i(\tilde{x}) - F_i(x)\| \ \forall i$

- monotonicity of the error and ² summability of the residuals
- ullet convergence with exact data and $lpha_k \equiv lpha$ [Burger BK'04], [Baumeister BK Leitão'09]

Levenberg-Marquardt Kaczmarz iteration

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'_{[k]}(x_k^{\delta})^* F'_{[k]}(x_k^{\delta}) + \alpha_k I)^{-1} F'_{[k]}(x_k^{\delta})^* (y_{[k]}^{\delta} - F_{[k]}(x_k^{\delta}))$$

Choice of
$$\alpha_k$$
: (inexact Newton) $\rho \in (0,1)$ $\|F'_{[k]}(x_k^\delta)(x_{k+1}^\delta(\alpha) - x_k^\delta) + F_{[k]}(x_k^\delta) - y_{[k]}^\delta\| = \rho \|F_{[k]}(x_k^\delta) - y_{[k]}^\delta\|$ Discrepancy principle: stop the iteration as soon as $\|F_{[k]}(x_k^\delta) - y_{[k]}^\delta\| \le \tau \delta$ Nonlinearity condition: $\|F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)\| \le \eta \|F_i(\tilde{x}) - F_i(x)\| \quad \forall i$ Convergence Results:

- monotonicity of the error and ² summability of the residuals
- convergence with exact data and $\alpha_k \equiv \alpha$ [Burger BK'04], [Baumeister BK Leitão'09]

Example 1

Reconstruction from Dirichlet-Neumann Map:

Estimate space-dependent coefficient $q \geq 0$

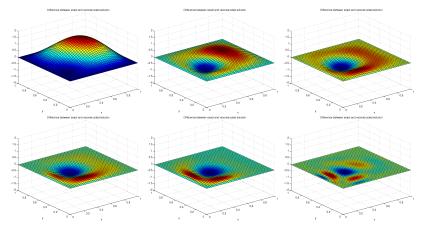
$$-\Delta u + qu = 0, \quad \text{in } \Omega,$$

$$u = f \quad \text{on } \partial \Omega,$$

from *N* Dirirchlet-Neumann pairs $(f_i, \frac{\partial u_i}{\partial \nu}|_{\partial \Omega})$.

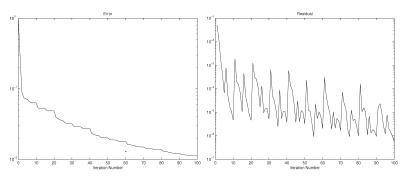
$$\Omega = (0,1)^2$$
 $f_i \approx \delta(\cdot - x^i)$, x^i uniformly spaced on $\partial\Omega$
 $N = 20$
 $q^* = 3 + 5\sin(\pi x)\sin(\pi y)$
 $q_0 \equiv 3$

Results with Levenberg-Marquardt-Kaczmarz



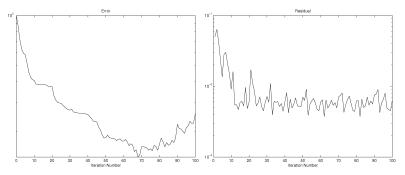
Difference $q^* - q_k$ at iterates 1, 2, 3, 5, 10, and 100.

Convergence with exact data



Semi-logarithmic plot of error (left) and residual (right) vs. iteration number

Semiconvergence with noisy data



Semi-logarithmic plot of error (left) and residual (right) vs. iteration number, $\delta=1\%$

$$\begin{split} x_{k+1}^{\delta} \; &= \; x_k^{\delta} + \omega_k (F_{[k]}'(x_k^{\delta})^* F_{[k]}'(x_k^{\delta}) + \alpha I)^{-1} F_{[k]}'(x_k^{\delta})^* (y_{[k]}^{\delta} - F_{[k]}(x_k^{\delta})) \\ \omega_k \; &:= \; \begin{cases} 1 & \text{if } \|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \geq \tau \delta \\ 0 & \text{otherwise} \end{cases} \,. \end{split}$$

stop the iteration as soon as
$$\|F_i(x_k^\delta) - y_i^\delta\| \le \tau \delta \ \forall i$$
 i.e., $k_*^\delta := \min\{jN \in \mathbb{N} : x_{jN}^\delta = x_{jN+1}^\delta = \cdots = x_{jN+N}^\delta\}$

$$\begin{split} x_{k+1}^{\delta} \; &= \; x_k^{\delta} + \omega_k (F_{[k]}'(x_k^{\delta})^* F_{[k]}'(x_k^{\delta}) + \alpha I)^{-1} F_{[k]}'(x_k^{\delta})^* (y_{[k]}^{\delta} - F_{[k]}(x_k^{\delta})) \\ \omega_k \; &:= \; \begin{cases} 1 & \text{if } \|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \geq \tau \delta \\ 0 & \text{otherwise} \end{cases} \,. \end{split}$$

stop the iteration as soon as
$$||F_i(x_k^{\delta}) - y_i^{\delta}|| \le \tau \delta \quad \forall i$$
 i.e., $k_*^{\delta} := \min\{jN \in \mathbb{N} : x_{jN}^{\delta} = x_{jN+1}^{\delta} = \dots = x_{jN+N}^{\delta}\}$

$$||F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)|| \le \eta ||F_i(\tilde{x}) - F_i(x)|| \quad \forall i$$

$$\begin{split} x_{k+1}^{\delta} \; &= \; x_k^{\delta} + \omega_k (F_{[k]}'(x_k^{\delta})^* F_{[k]}'(x_k^{\delta}) + \alpha I)^{-1} F_{[k]}'(x_k^{\delta})^* (y_{[k]}^{\delta} - F_{[k]}(x_k^{\delta})) \\ \omega_k \; &:= \; \begin{cases} 1 & \text{if } \|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \geq \tau \delta \\ 0 & \text{otherwise} \end{cases} \,. \end{split}$$

stop the iteration as soon as
$$||F_i(x_k^\delta) - y_i^\delta|| \le \tau \delta \quad \forall i$$
 i.e., $k_*^\delta := \min\{jN \in \mathbb{N} : x_{jN}^\delta = x_{jN+1}^\delta = \cdots = x_{jN+N}^\delta\}$ Nonlinearity condition: $||F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)|| \le \eta ||F_i(\tilde{x}) - F_i(x)|| \quad \forall i$ Convergence Results:

- monotonicity of the error and ² summability of the residuals
- convergence with exact/noisy data
 [Baumeister BK Leitão'09]

$$\begin{split} x_{k+1}^{\delta} \; &= \; x_k^{\delta} + \omega_k (F_{[k]}'(x_k^{\delta})^* F_{[k]}'(x_k^{\delta}) + \alpha I)^{-1} F_{[k]}'(x_k^{\delta})^* (y_{[k]}^{\delta} - F_{[k]}(x_k^{\delta})) \\ \omega_k \; &:= \; \begin{cases} 1 & \text{if } \|F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta}\| \geq \tau \delta \\ 0 & \text{otherwise} \end{cases} \, . \end{split}$$

stop the iteration as soon as
$$||F_i(x_k^\delta) - y_i^\delta|| \le \tau \delta \quad \forall i$$
 i.e., $k_*^\delta := \min\{jN \in \mathbb{N} : x_{jN}^\delta = x_{jN+1}^\delta = \cdots = x_{jN+N}^\delta\}$ Nonlinearity condition: $||F_i(\tilde{x}) - F_i(x) - F_i'(x)(\tilde{x} - x)|| \le \eta ||F_i(\tilde{x}) - F_i(x)|| \quad \forall i$ Convergence Results:

- monotonicity of the error and ² summability of the residuals
- convergence with exact/noisy data
 [Baumeister BK Leitão'09]

Inverse doping problem for semiconductor devices

(drift-diffusion equations, equilibrium at vanishing applied potential U) Reconstruct $\gamma=e^{V_0}$ ($V_0...$ potential) in

from *N* Dirirchlet-Neumann pairs $(U_i, \Lambda(U_i))$ where

$$\Lambda(U) = \int_{\Gamma_1} (\mu_n \gamma \hat{u}_{\nu} - \mu_p \gamma^{-1} \hat{v}_{\nu}) ds$$

 \hat{u} , \hat{v} concentrations of electrons and holes, U ... applied potential, μ_n , μ_p ... (known) electron and hole mobilities.

The doping profile C can then be determined from $C(x) = \gamma(x) - \gamma^{-1}(x) - \lambda^2 \Delta(\ln \gamma(x)), x \in \Omega$.

Inverse doping problem for semiconductor devices

(drift-diffusion equations, equilibrium at vanishing applied potential U) Reconstruct $\gamma=e^{V_0}$ ($V_0...$ potential) in

from *N* Dirirchlet-Neumann pairs $(U_i, \Lambda(U_i))$ where

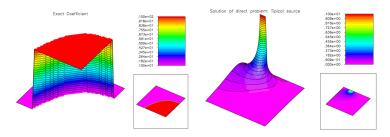
$$\Lambda(U) = \int_{\Gamma_1} (\mu_n \gamma \hat{u}_{\nu} - \mu_p \gamma^{-1} \hat{v}_{\nu}) ds$$

 \hat{u} , \hat{v} concentrations of electrons and holes, U ... applied potential, μ_n , μ_p ... (known) electron and hole mobilities.

The doping profile C can then be determined from $C(x) = \gamma(x) - \gamma^{-1}(x) - \lambda^2 \Delta(\ln \gamma(x)), x \in \Omega$.

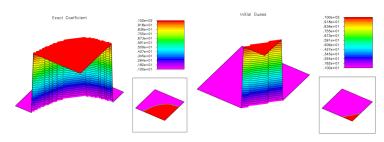
Exact coefficient and PDE solution for one voltage source

$$\begin{split} &\Omega = (0,1)^2, \qquad N = 9 \\ &\Gamma_1 := \{(x,1); \ x \in (0,1)\}, \ \Gamma_0 := \{(x,0); \ x \in (0,1)\}, \\ &\partial \Omega_N := \{(0,y); \ y \in (0,1)\} \cup \{(1,y); \ y \in (0,1)\}, \\ &U_i(x) := \left\{ \begin{array}{ll} 1, & |x-x_i| \leq 2^{-4} \\ 0, & \text{else} \end{array} \right., \ x_i = \frac{2i+1}{2M} \ i = 0, \dots, M-1. \end{split}$$



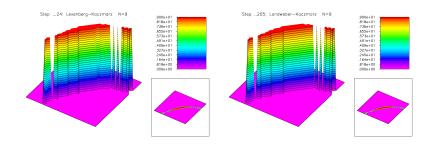
exact coefficient γ to be identified (left); typical voltage source U_i and corresponding solution \hat{u} (right)

Exact coefficient and initial guess



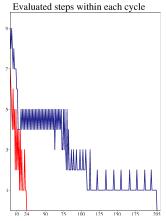
exact coefficient γ to be identified (left); initial guess (right)

Comparison of loping Levenberg-Marquardt-Kaczmarz with Landweber-Kaczmarz



Numerical experiment with noisy data (5%): error obtained with L-LMK after 24 cycles (left); error obtained with L-LWK after 205 cycles (right)

Comparison of loping Levenberg-Marquardt-Kaczmarz with Landweber-Kaczmarz



Numerical experiment with noisy data (5 per cent): number of non-loped inner steps in each cycle for $\rm L\text{-}LMK$ (solid red) and $\rm L\text{-}LWK$ (dashed blue), respectively.

$$\begin{aligned} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ \text{Choice of } \alpha_k &: \quad \alpha_k = \alpha_0 q^k \\ \text{Discrepancy principle:} \end{aligned}$$

stop the iteration as soon as $\|\mathbf{F}(x_k^\delta) - \mathbf{y}^\delta\| \le au\delta \leadsto k_* \sim |\log \delta|$

$$\begin{split} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ \text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ \text{Discrepancy principle:} \\ \text{stop the iteration as soon as} \quad \|\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}\| \leq \tau \delta \leadsto k_* \sim |\log \delta| \\ \text{Nonlinearity condition:} \\ \mathbf{F}'(\tilde{x}) &= \mathbf{R}_{\tilde{x}}^{\times} \mathbf{F}'(x) \,, \quad \|\mathbf{R}_{\tilde{x}}^{\times} - I\| \leq C_R \|\tilde{x} - x\| \end{split}$$

$$\begin{aligned} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ \text{Choice of } \alpha_k &: \quad \alpha_k = \alpha_0 q^k \end{aligned}$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}\| \le \tau \delta \leadsto k_* \sim |\log \delta|$

Nonlinearity condition:

$$\mathbf{F}'(\tilde{x}) = \mathbf{R}_{\tilde{x}}^{\mathsf{x}} \mathbf{F}'(x)$$
, $\|\mathbf{R}_{\tilde{x}}^{\mathsf{x}} - I\| \le C_R \|\tilde{x} - x\|$

Convergence Results:

- convergence with exact/noisy data
- convergence rates
 [Bakushinski'92], [BK Neubauer Scherzer'94], [Hohage'99]

$$\begin{aligned} & x_{k+1}^{\delta} = x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } & G_{\alpha}(K) = (K^*K + \alpha I)^{-1} \\ & \text{Choice of } & \alpha_k : & \alpha_k = \alpha_0 \mathbf{g}^k \end{aligned}$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}\| \le \tau \delta \leadsto k_* \sim |\log \delta|$

Nonlinearity condition:

$$\mathbf{F}'(\tilde{x}) = \mathbf{R}_{\tilde{x}}^{x} \mathbf{F}'(x)$$
, $\|\mathbf{R}_{\tilde{x}}^{x} - I\| \le C_{R} \|\tilde{x} - x\|$

Convergence Results:

- convergence with exact/noisy data
- convergence rates

[Bakushinski'92], [BK Neubauer Scherzer'94], [Hohage'99]

$$\begin{aligned} & x_{k+1}^{\delta} = x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } & G_{\alpha}(K) = (K^*K + \alpha I)^{-1} \\ & \text{Choice of } & \alpha_k : & \alpha_k = \alpha_0 \mathbf{g}^k \end{aligned}$$

Discrepancy principle:

stop the iteration as soon as $\|\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}\| \le \tau \delta \leadsto k_* \sim |\log \delta|$

Nonlinearity condition:

$$\mathbf{F}'(\tilde{x}) = \mathbf{R}_{\tilde{x}}^{x} \mathbf{F}'(x)$$
, $\|\mathbf{R}_{\tilde{x}}^{x} - I\| \le C_{R} \|\tilde{x} - x\|$

Convergence Results:

- convergence with exact/noisy data
- convergence rates

[Bakushinski'92], [BK Neubauer Scherzer'94], [Hohage'99]

$$\begin{aligned} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ &\quad \text{Choice of } \alpha_k \text{: (inexact Newton) } \rho \in (0,1) \\ &\quad \|\mathbf{F}'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha) - x_k^{\delta}) + \mathbf{F}(x_k^{\delta}) - y^{\delta}\| = \rho \|\mathbf{F}(x_k^{\delta}) - y^{\delta}\| \\ &\quad \text{Discrepancy principle:} \\ &\quad \text{stop the iteration as soon as} \quad \|\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}\| \leq \tau \delta \end{aligned}$$

$$\begin{split} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ &\quad \text{Choice of } \alpha_k \text{: (inexact Newton) } \rho \in (0,1) \\ &\quad \|\mathbf{F}'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha) - x_k^{\delta}) + \mathbf{F}(x_k^{\delta}) - y^{\delta}\| = \rho \|\mathbf{F}(x_k^{\delta}) - y^{\delta}\| \\ &\quad \text{Discrepancy principle:} \\ &\quad \text{stop the iteration as soon as} \quad \|\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}\| \leq \tau \delta \\ &\quad \text{Nonlinearity condition:} \\ &\quad \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \leq \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\| \end{split}$$

$$\begin{aligned} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ &\quad \text{Choice of } \alpha_k \text{: (inexact Newton) } \rho \in (0,1) \\ &\quad \|\mathbf{F}'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha) - x_k^{\delta}) + \mathbf{F}(x_k^{\delta}) - y^{\delta}\| = \rho \|\mathbf{F}(x_k^{\delta}) - y^{\delta}\| \\ &\quad \text{Discrepancy principle:} \\ &\quad \text{stop the iteration as soon as} \quad \|\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}\| \leq \tau \delta \\ &\quad \text{Nonlinearity condition:} \\ &\quad \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \leq \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\| \\ &\quad \text{Convergence Results:} \\ &\quad \bullet \text{ convergence} + \text{ rates in Banach space} \end{aligned}$$

$$\begin{aligned} & x_{k+1}^{\delta} = x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } & G_{\alpha}(K) = (K^*K + \alpha I)^{-1} \\ & \text{Choice of } \alpha_k \colon \text{(inexact Newton)} \ \rho \in (0,1) \\ & \|\mathbf{F}'(x_k^{\delta})(x_{k+1}^{\delta}(\alpha) - x_k^{\delta}) + \mathbf{F}(x_k^{\delta}) - y^{\delta}\| = \rho \|\mathbf{F}(x_k^{\delta}) - y^{\delta}\| \\ & \text{Discrepancy principle:} \\ & \text{stop the iteration as soon as} \quad \|\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta}\| \leq \tau \delta \\ & \text{Nonlinearity condition:} \\ & \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x) - \mathbf{F}'(x)(\tilde{x} - x)\| \leq \eta \|\mathbf{F}(\tilde{x}) - \mathbf{F}(x)\| \\ & \text{Convergence Results:} \end{aligned}$$

convergence + rates in Banach space
 [BK Schöpfer Schuster'09], [BK Hofmann'09]

$$\begin{aligned} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ \text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ \text{a priori stopping rule} \end{aligned}$$

$$\begin{aligned} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ \text{Choice of } \alpha_k \colon & \alpha_k = \alpha_0 q^k \\ \text{a priori stopping rule} &\leadsto k_* \sim |\log \delta| \end{aligned}$$

$$\begin{split} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ \text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ \text{a priori stopping rule} &\leadsto k_* \sim |\log \delta| \\ \text{Nonlinearity condition:} \\ \mathbf{F}'(\tilde{x}) &= \mathbf{F}'(x)\mathbf{R}_{\tilde{x}}^{\times} \,, \quad \|\mathbf{R}_{\tilde{x}}^{\times} - I\| \leq C_R \|\tilde{x} - x\| \end{split}$$

$$\begin{split} x_{k+1}^{\delta} &= x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ \text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ \text{a priori stopping rule} \leadsto k_* \sim |\log \delta| \\ \text{Nonlinearity condition:} \\ \mathbf{F}'(\tilde{x}) &= \mathbf{F}'(x)\mathbf{R}_{\tilde{x}}^{\times}, \quad \|\mathbf{R}_{\tilde{x}}^{\times} - I\| \leq C_R \|\tilde{x} - x\| \\ \text{Convergence Results:} \end{split}$$

- convergence with exact/noisy data
- convergence rates[BK '97]

$$\begin{split} & x_{k+1}^{\delta} = x_0 - G_{\alpha_k}(\mathbf{F}'(x_k^{\delta}))(\mathbf{F}(x_k^{\delta}) - \mathbf{y}^{\delta} - \mathbf{F}'(x_k^{\delta})(x_k^{\delta} - x_0)) \\ \text{e.g., } & G_{\alpha}(K) = (K^*K + \alpha I)^{-1} \\ & \text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ & \text{a priori stopping rule} \leadsto k_* \sim |\log \delta| \\ & \text{Nonlinearity condition:} \\ & \mathbf{F}'(\tilde{x}) = \mathbf{F}'(x)\mathbf{R}_{\tilde{x}}^{\times}, \quad \|\mathbf{R}_{\tilde{x}}^{\times} - I\| \leq C_R \|\tilde{x} - x\| \\ & \text{Convergence Results:} \end{split}$$

- convergence with exact/noisy data
- convergence rates[BK '97]

$$\begin{aligned} \mathbf{x}_{k+1}^{\delta} &= \mathbf{x}_{0,[k]} - \mathbf{G}_{\alpha_k}(F_{[k]}'(\mathbf{x}_k^{\delta}))(F_{[k]}(\mathbf{x}_k^{\delta}) - \mathbf{y}_{[k]}^{\delta} - F_{[k]}'(\mathbf{x}_k^{\delta})(\mathbf{x}_k^{\delta} - \mathbf{x}_{0,[k]})) \\ \text{e.g., } & \mathbf{G}_{\alpha}(K) = (K^*K + \alpha I)^{-1} \\ & \text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ \text{a priori stopping rule} \end{aligned}$$

$$\begin{aligned} &x_{k+1}^{\delta} = x_{0,[k]} - G_{\alpha_k}(F'_{[k]}(x_k^{\delta}))(F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta} - F'_{[k]}(x_k^{\delta})(x_k^{\delta} - x_{0,[k]})) \\ &\text{e.g., } G_{\alpha}(K) = (K^*K + \alpha I)^{-1} \\ &\text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ &\text{a priori stopping rule} \\ &\text{Nonlinearity condition:} \\ &F'_i(\tilde{x}) = F'_i(x)R_i^{i,\tilde{x}}, \quad \|R_i^{i,\tilde{x}} - I\| \leq C_R \|\tilde{x} - x\| \quad \forall i \end{aligned}$$

$$\begin{split} &x_{k+1}^{\delta} = x_{0,[k]} - G_{\alpha_k}(F'_{[k]}(x_k^{\delta}))(F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta} - F'_{[k]}(x_k^{\delta})(x_k^{\delta} - x_{0,[k]})) \\ &\text{e.g., } G_{\alpha}(K) = (K^*K + \alpha I)^{-1} \\ &\text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ &\text{a priori stopping rule} \\ &\text{Nonlinearity condition:} \\ &F'_i(\tilde{x}) = F'_i(x)R_{i\tilde{x}}^x, \quad \|R_{i\tilde{x}}^x - I\| \leq C_R \|\tilde{x} - x\| \quad \forall i \\ &\text{Condition on a priori guess} \\ &x_{0,i} - x^* \in \mathcal{N}(F'_i(x^*))^{\perp} \quad \forall i \end{split}$$

$$\begin{split} &x_{k+1}^{\delta} = x_{0,[k]} - G_{\alpha_k}(F'_{[k]}(x_k^{\delta}))(F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta} - F'_{[k]}(x_k^{\delta})(x_k^{\delta} - x_{0,[k]})) \\ &\text{e.g., } G_{\alpha}(K) = (K^*K + \alpha I)^{-1} \\ &\text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ &\text{a priori stopping rule} \\ &\text{Nonlinearity condition:} \\ &F'_i(\tilde{x}) = F'_i(x)R_{i\tilde{x}}^x \,, \quad \|R_{i\tilde{x}}^x - I\| \leq C_R \|\tilde{x} - x\| \quad \forall i \\ &\text{Condition on a priori guess} \\ &x_{0,i} - x^* \in \mathcal{N}(F'_i(x^*))^{\perp} \quad \forall i \\ &\text{Convergence Results:} \end{split}$$

convergence with exact/noisy data [Burger BK '06]

$$\begin{split} x_{k+1}^{\delta} &= x_{0,[k]} - G_{\alpha_k}(F_{[k]}'(x_k^{\delta}))(F_{[k]}(x_k^{\delta}) - y_{[k]}^{\delta} - F_{[k]}'(x_k^{\delta})(x_k^{\delta} - x_{0,[k]})) \\ \text{e.g., } G_{\alpha}(K) &= (K^*K + \alpha I)^{-1} \\ \text{Choice of } \alpha_k \colon \ \alpha_k = \alpha_0 q^k \\ \text{a priori stopping rule} \\ \text{Nonlinearity condition:} \\ F_i'(\tilde{x}) &= F_i'(x)R_{i\tilde{x}}^x \,, \quad \|R_{i\tilde{x}}^x - I\| \leq C_R \|\tilde{x} - x\| \quad \forall i \\ \text{Condition on a priori guess} \\ x_{0,i} - x^* \in \mathcal{N}(F_i'(x^*))^{\perp} \quad \forall i \\ \text{Convergence Results:} \end{split}$$

convergence with exact/noisy data [Burger BK '06]

Nonlinearity conditions

$$\mathbf{F}'(\tilde{x}) = \mathbf{F}'(x)\mathbf{R}_{\tilde{x}}^{\times}, \quad \|\mathbf{R}_{\tilde{x}}^{\times} - I\| \leq C_{R}\|\tilde{x} - x\|, \quad \tilde{x}, x \in \mathcal{B}_{\rho}(x^{*})$$

$$\Longrightarrow (\text{ with } R_{i\tilde{x}}^{\times} := \mathbf{R}_{\tilde{x}}^{\times})$$

$$F'_{i}(\tilde{x}) = F'_{i}(x)R_{i\tilde{x}}^{\times}, \quad \|R_{i\tilde{x}}^{\times} - I\| \leq C_{R}\|\tilde{x} - x\|, \quad \tilde{x}, x \in \mathcal{B}_{\rho}(x^{*}) \quad (*) \text{ for all } i$$

i.e., range invariance of all individual F_i is a weaker condition than range invariance of collection ${\bf F}$

Lemma

Let X, Y, Z be Hilbert spaces, and let $L_i \in \mathcal{L}(Z_i, Y_i)$. Moreover, let $H_i: X_i \to Z_i$, $i = 0, \dots, p-1$ be continuously Fréchet differentiable. Then,

$$\forall i : H_i \text{ satisfies } (*) \Rightarrow \forall i : F_i = L_i \circ H_i \text{ satisfies } (*)$$

Moreover,

$$\exists C_i, (\forall x \in \mathcal{B}_{\rho}(x^*), : ||H'_i(x)^{-1}|| \leq C_i)$$
 and H'_i Lipschitz $\Rightarrow H_i$ satisfies $(*)$

Nonlinearity conditions

$$\mathbf{F}'(\tilde{x}) = \mathbf{F}'(x)\mathbf{R}_{\tilde{x}}^{\times}, \quad \|\mathbf{R}_{\tilde{x}}^{\times} - I\| \leq C_{R}\|\tilde{x} - x\|, \quad \tilde{x}, x \in \mathcal{B}_{\rho}(x^{*})$$

$$\Longrightarrow (\text{ with } R_{i\tilde{x}}^{\times} := \mathbf{R}_{\tilde{x}}^{\times})$$

$$F'_{i}(\tilde{x}) = F'_{i}(x)R_{i\tilde{x}}^{\times}, \quad \|R_{i\tilde{x}}^{\times} - I\| \leq C_{R}\|\tilde{x} - x\|, \quad \tilde{x}, x \in \mathcal{B}_{\rho}(x^{*}) \quad (*) \text{ for all } i$$

i.e., range invariance of all individual F_i is a weaker condition than range invariance of collection ${\bf F}$

Lemma

Let X, Y, Z be Hilbert spaces, and let $L_i \in \mathcal{L}(Z_i, Y_i)$. Moreover, let $H_i: X_i \to Z_i$, $i = 0, \dots, p-1$ be continuously Fréchet differentiable. Then,

$$\forall i : H_i \text{ satisfies } (*) \Rightarrow \forall i : F_i = L_i \circ H_i \text{ satisfies } (*)$$

Moreover,

$$\exists C_i, (\forall x \in \mathcal{B}_{\rho}(x^*), : \|H'_i(x)^{-1}\| \leq C_i)$$
 and H'_i Lipschitz $\Rightarrow H_i$ satisfies $(*)$

Example 1

Reconstruction from Dirichlet-Neumann Map:

Estimate space-dependent coefficient $q \geq 0$

$$-\Delta u + qu = 0, \quad \text{in } \Omega,$$

$$u = f \quad \text{on } \partial\Omega,$$

from *N* Dirichlet-Neumann pairs $(f_i, \frac{\partial u_i}{\partial \nu}|_{\partial \Omega})$.

 $L: u \mapsto \frac{\partial u}{\partial \nu}|_{\partial \Omega}$... trace operator

 $H_i:q\mapsto u_i$... parameter-to-solution map for PDE with Dirichlet data f_i

Example 2

Reconstruction from multiple sources:

Estimate space-dependent coefficient $q \ge 0$

$$\begin{array}{rcl} -\Delta u + qu & = & h, & \quad \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} & = & 0 & \quad \text{on } \partial \Omega, \end{array}$$

from N source-Dirichlet pairs (h_i, u_i) .

 $L: u \mapsto u|_{\partial\Omega}$...trace operator

 $H_i: q \mapsto u_i \dots$ parameter-to-solution map for PDE with source h_i ,

SPECT: Reconstruct source f and coefficient $a \ge 0$ in

$$\theta_i \cdot \nabla u_i + au_i = f$$
 in $\Omega \subset \mathbb{R}^d$,

from N pairs $(\theta_i, u_i|_{\Gamma_i^+})$ where $\theta_i \in S(0, 1)$, $\Gamma_i^+ := \{x \in \partial\Omega : \nu(x) \cdot \theta_i \geq 0\}$, and $u_i|_{\partial\Omega \setminus \Gamma_i^+} = 0$.

Ultrasound tomography: Reconstruct f in

$$\Delta v_i + k^2 (1 - f) v_i = k^2 f e^{ikx \cdot \theta_i}$$
 in Ω ,
 $\frac{\partial v_i}{\partial \nu} = B v_i$ on $\partial \Omega$,

from N pairs $(\theta_i, u_i|_{\partial\Omega})$ where $\theta_i \in S(0, 1)$, $u_i = e^{ikx \cdot \theta_i} + v_i$

SPECT: Reconstruct source f and coefficient $a \ge 0$ in

$$\theta_i \cdot \nabla u_i + au_i = f$$
 in $\Omega \subset \mathbb{R}^d$,

from N pairs $(\theta_i, u_i|_{\Gamma_i^+})$ where $\theta_i \in S(0,1)$, $\Gamma_i^+ := \{x \in \partial\Omega : \nu(x) \cdot \theta_i \geq 0\}$, and $u_i|_{\partial\Omega \setminus \Gamma_i^+} = 0$.

Ultrasound tomography: Reconstruct f in

$$\Delta v_i + k^2 (1 - f) v_i = k^2 f e^{\mathbf{i} k \mathbf{x} \cdot \theta_i} \quad \text{in } \Omega,$$

$$\frac{\partial v_i}{\partial \nu} = B v_i \quad \text{on } \partial \Omega,$$

from N pairs $(\theta_i, u_i|_{\partial\Omega})$ where $\theta_i \in S(0, 1), \ u_i = e^{\mathbf{i}k\mathbf{x}\cdot\theta_i} + v_i$

. .

SPECT: Reconstruct source f and coefficient $a \ge 0$ in

$$\theta_i \cdot \nabla u_i + au_i = f$$
 in $\Omega \subset \mathbb{R}^d$,

from N pairs $(\theta_i, u_i|_{\Gamma_i^+})$ where $\theta_i \in S(0, 1)$, $\Gamma_i^+ := \{x \in \partial\Omega : \nu(x) \cdot \theta_i \geq 0\}$, and $u_i|_{\partial\Omega \setminus \Gamma_i^+} = 0$.

Ultrasound tomography: Reconstruct f in

$$\Delta v_i + k^2 (1 - f) v_i = k^2 f e^{\mathbf{i} k \mathbf{x} \cdot \theta_i} \quad \text{in } \Omega,$$

$$\frac{\partial v_i}{\partial \nu} = B v_i \quad \text{on } \partial \Omega,$$

from N pairs $(\theta_i, u_i|_{\partial\Omega})$ where $\theta_i \in S(0, 1)$, $u_i = e^{\mathbf{i}k\mathbf{x}\cdot\theta_i} + v_i$

. . .

(see [Natterer'96], [Burger BK'06])

SPECT: Reconstruct source f and coefficient $a \ge 0$ in

$$\theta_i \cdot \nabla u_i + au_i = f$$
 in $\Omega \subset \mathbb{R}^d$,

from N pairs $(\theta_i, u_i|_{\Gamma_i^+})$ where $\theta_i \in S(0, 1)$, $\Gamma_i^+ := \{x \in \partial\Omega : \nu(x) \cdot \theta_i \geq 0\}$, and $u_i|_{\partial\Omega \setminus \Gamma_i^+} = 0$.

Ultrasound tomography: Reconstruct f in

$$\Delta v_i + k^2 (1 - f) v_i = k^2 f e^{\mathbf{i} k \mathbf{x} \cdot \theta_i} \quad \text{in } \Omega,$$

$$\frac{\partial v_i}{\partial \nu} = B v_i \quad \text{on } \partial \Omega,$$

from N pairs $(\theta_i, u_i|_{\partial\Omega})$ where $\theta_i \in S(0, 1)$, $u_i = e^{\mathbf{i}k\mathbf{x}\cdot\theta_i} + v_i$

. . .

(see [Natterer'96], [Burger BK'06])

Example 2

Reconstruction from multiple sources:

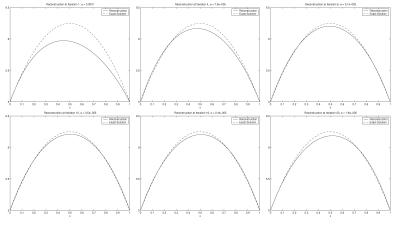
Estimate space-dependent coefficient $q \geq 0$

$$\begin{array}{rcl} -\Delta u + qu & = & h, & \quad \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} & = & 0 & \quad \text{on } \partial \Omega, \end{array}$$

from N source-Dirichlet pairs (h_i, u_i) .

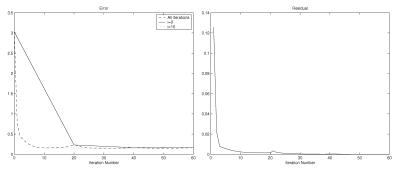
$$\Omega = (0,1)$$
 $h_i \approx \delta(\cdot - x^i)$, x^i uniformly spaced in Ω
 $N = 20$
 $q^* = 5 + 5x(1-x)$
 $q_0 \equiv 5$

Results with IRGNM-Kaczmarz (exact data)



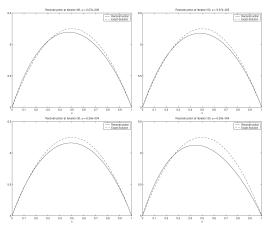
Reconstructions q_k at iterates 1, 4, 8, 12, 16, and 20.

Convergence of IRGNM-Kaczmarz (exact data)



Plot of error (left) and residual (right) vs. iteration number

Results with IRGNM-Kaczmarz (noisy data)



Reconstructions q_k for noise levels $\delta=0.5\%$ (top left), $\delta=1\%$ (top right), $\delta=3\%$ (bottom left), $\delta=5\%$ (bottom right).

Expectation Maximization (EM) algorithms

EM (Richardson-Lucy) algorithm for linear problems

for image reconstruction with nonnegativity constraints:

[Bertero 1998], [Natterer&Wuebbeling 2001], [Dempster&Laird&Rubin 1977]

 $F: L^1(\Omega) \to L^1(\Sigma)$ linear operator

$$x_{k+1}^{\delta} = x_k^{\delta} F^* \left(\frac{y^{\delta}}{F x_k^{\delta}} \right). \tag{1}$$

→ multiplicative fixed-point scheme.

well-suited for multiplicative noise models (e.g. Poisson models)

 $F,\ F^*$ positivity preserving, $x_0^\delta \geq 0,\ y^\delta \geq 0 \ \Rightarrow \ \forall k \in \mathbb{N}:\ x_k^\delta \geq 0$

EM (Richardson-Lucy) algorithm for linear problems

for image reconstruction with nonnegativity constraints:

[Bertero 1998], [Natterer&Wuebbeling 2001], [Dempster&Laird&Rubin 1977]

 $F:L^1(\Omega) o L^1(\Sigma)$ linear operator

$$x_{k+1}^{\delta} = x_k^{\delta} F^* \left(\frac{y^{\delta}}{F x_k^{\delta}} \right). \tag{1}$$

→ multiplicative fixed-point scheme.

well-suited for multiplicative noise models (e.g. Poisson models)

 $F,\ F^*$ positivity preserving, $x_0^\delta \geq 0,\ y^\delta \geq 0 \ \Rightarrow \ \forall k \in \mathbb{N}:\ x_k^\delta \geq 0$

Derivation

$$x_{k+1}^{\delta} = x_k^{\delta} F^* \left(\frac{y^{\delta}}{F x_k^{\delta}} \right). \tag{2}$$

is descent method for the functional

$$J(x) := \int_{\Sigma} \left[y^{\delta} \log \left(\frac{y^{\delta}}{Fx} \right) - y^{\delta} + Fx \right] d\sigma,$$

Kullback-Leibler divergence (relative entropy) between Fx and y^{δ} . optimality condition

$$x\left(-F^*\left(\frac{y^\delta}{Fx}\right)+F^*1\right)=0.$$

with operator scaling $F^*1 = 1 \iff (2)$

Idea of convergence proof

[Mülthei&Schorr89], [Natterer&Wuebbeling 2001], [Resmerita&Engl&Iusem 2007], [Bissantz&Mair&Munk]

similar to Landweber with $\|\cdot\|^2 \leftrightarrow \text{Kullback-Leibler divergence}$

$$KL(x, \tilde{x}) = \int_{\Omega} \left[x \log \frac{x}{\tilde{x}} - x + \tilde{x} \right],$$

For x^{\dagger} with $Fx^{\dagger} = y$ by convexity

$$KL(x^{\dagger}, x_{k+1}) + J(x_k) \leq KL(x^{\dagger}, x_k)$$
.

 \Rightarrow

$$\mathit{KL}(x^{\dagger}, x_k) + \sum_{j=0}^{k-1} J(x_j) \leq \mathit{KL}(x^{\dagger}, x_0),$$

 \Rightarrow boundedness of $KL(x^{\dagger}, x_k)$ and summability of $J(x_j)$.

EM algorithm for nonlinear problems

nonlinear operator $F: L^1(\Omega) \to L^1(\Sigma)$, no scaling \leadsto fixed-point equation

$$xF'(x)^*1 = xF'(x)^*\left(\frac{y^{\delta}}{Fx}\right).$$

nonlinear EM algorithm

$$x_{k+1}^{\delta} = \frac{x_k^{\delta}}{F'(x_k^{\delta})^* 1} F'(x_k^{\delta})^* \left(\frac{y^{\delta}}{F(x_k^{\delta})}\right).$$

[Haltmeier&Leitao&Resmerita 2009]