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overview

@ Problem setting: System of nonlinear operator equations
© Gradient type Kaczmarz methods

© Newton type Kaczmarz methods
@ Levenberg-Marquardt type Kaczmarz methods
@ IRGNM type Kaczmarz methods

@ EM algorithms
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Example: EIT
V'(O’VU,’):P in Q =0, N1
v-(oVu)=ji, ui=v; ondQ
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Problem setting: System of nonlinear operator equations

F,-(x):y,-, i=0,...7N—1,
noisy data
Iy —yil <6, i=0,...,N—1,

e.g. x...coefficient in a PDE,

F(x) = (Fo(x), ..., Fn—1(x))...discr. Dirichlet-to Neumann map
Kaczmarz methods (algebraic reconstruction technique):

cyclic iteration over subproblems [Kaczmarz'93], [Natterer '97]

+ perform iterations for several smaller subproblems Fi(x) = y;
instead of one large problem F(x) =y

+ easy to implement especially if F; are similar



Gradient type Kaczmarz methods
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Landweber iteration for a single operator equation
X/§+1 = Xk Fl(Xk) (F (Xg) - yé)

Discrepancy principle:
stop the iteration as soon as ||F(x)) — yo| <76 ~ ke~ 671
Nonlinearity condition:
IF(X) = F(x) = F(x)(% = x)I| < nllF(%) = F(x)]|
Convergence Results:

@ monotonicity of the error and 2 summability of the residuals:
gy = x* 17 < [Ixg = x*[I* = clIF () — y°I1?

convergence with exact data

convergence with noisy data
convergence rates (nonlin. cond. F'(X) = R{F/(x))
[Hanke Neubauer Scherzer '94]
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Landweber Kaczmarz iteration

Xer1 = X0 = FlgOR) (Fra () — vig)
[K] = k mod N

Discrepancy principle:
stop the iteration as soon as || Fx(x}) — y[‘i(]“ <76

Nonlinearity condition:
IFi(X) = Fi(x) = F{(x)(* =)l < nllFi(%) = Fi(x)[| Vi
Convergence Results:
@ monotonicity of the error and 2 summability of the residuals
@ convergence with exact data
@ convergence with noisy data
[Kowar Scherzer '04]



Loping Landweber Kaczmarz

le+1 =g — ka[/k](le)*(F[k](le) - y[‘i])
1 i |[Fg(x)) — yiqll > 76
oy { i |1Fg () = gl = 70

0 otherwise

Discrepancy principle:
stop the iteration as soon as  ||Fi(x)) — y?|| < 7 Vi



Loping Landweber Kaczmarz

Xer1 = Xk — Wk Flg () (Fra () = ¥ig)

Wi = 1 if HF[k](le) - y[k]H > 7o
' 0 otherwise

Discrepancy principle:
stop the iteration as soon as ||F-(x,‘f) — Y2 <76 Vi
H 6 . 6 _ 0



Loping Landweber Kaczmarz

Xer1 = Xk — Wk Flg () (Fra () = ¥ig)
o = L 1Fig O02) = vy ll = 70
' 0 otherwise

Discrepancy principle:
stop the iteration as soon as [Fi(x0) — yP|| <76 Vi
ie., kX := min{jN € N: XJN J%+1:-":)S%+N}
Nonlinearity condition:
IFi(%) = Fi(x) = F{(x)(* = x)|| < nllFi(%) = Fi()| Vi



Loping Landweber Kaczmarz

Xer1 = Xk — Wk Flg () (Fra () = ¥ig)

o = J0 1Fig O02) = vy ll = 70
' 0 otherwise

Discrepancy principle:
stop the iteration as soon as [Fi(x0) — yP|| <76 Vi
ie., kX := min{jN € N: XJN ﬁ\,H:---:XﬂVJFN}
Nonlinearity condition:
IFi(%) = Fi(x) = F{(x)(& =)l < nllFi(%) = Fi(x)[| Vi
Convergence Results:
@ monotonicity of the error and 2 summability of the residuals
@ convergence with exact/noisy data

[Haltmeier Leitao Scherzer'07], [De Cesaro Haltmeier Leitao
Scherzer'08], [Haltmeier'09]



Newton type Kaczmarz methods
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X = X — (FOR)F () + o) I () (FOR) — ¥°)
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Levenberg-Marquardt for a single operator equation
X = Xk — (FOQ)F () + o) 'F () (FOR) — ¥°)

Choice of ay: (inexact Newton) p € (0,1)
IF' () (1 (@) = x@) + FOR) = v Il = pllF() = |l
Discrepancy principle:
stop the iteration as soon as ||F(x)) — y°|| < 76 ~~ ki ~ | log d]
Nonlinearity condition:
IF(%X) — F(x) = F'(x)(% = x)|| < CrlIX — x|| [IF(%) — F(x]]]
—_——
<n
Convergence Results:
@ monotonicity of the error and 2 summability of the residuals
@ convergence with exact/noisy data [Hanke'96], [Rieder'99]
@ convergence rates [Hanke'09] (optimal)
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Levenberg-Marquardt Kaczmarz iteration

Xer = X+ (Flg()* Fig () + )~ g O)* g — Frag (@)

Choice of ay: (inexact Newton) p € (0,1)
| [k](Xk)(XkJrl(a) xp) + F[k](X/f) —y[i]H = P||F[k](X£) —y[i]H
Discrepancy principle:
stop the iteration as soon as HF[k](x,f) — y[‘i(]H <76
Nonlinearity condition:
IFi(%) = Fi(x) = F{(x)(& = )| < nl[Fi(%) = Fi(x)]| Vi
Convergence Results:
@ monotonicity of the error and 2 summability of the residuals
@ convergence with exact data and ay =«
[Burger BK'04], [Baumeister BK Leit30'09]



Example 1

Reconstruction from Dirichlet-Neumann Map:
Estimate space-dependent coefficient ¢ > 0

—Au+qu = 0, in Q,
u = f on 09,

from N Dirirchlet-Neumann pairs (f;, 8u o)

Q= (Oa 1)2

fi =~ 0(- — x"), x' uniformly spaced on 9Q
N =20

q* = 3+ 5sin(mx)sin(my)

G =3



Results with Levenberg-Marquardt-Kaczmarz

Difference g* — gy at iterates 1, 2, 3, 5, 10, and 100.



Convergence with exact data

Error Residual
10 10
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teration Number Hteration Number

Semi-logarithmic plot of error (left) and residual (right) vs.
iteration number



Semiconvergence with noisy data

Semi-logarithmic plot of error (left) and residual (right) vs.
iteration number, § = 1%



Loping Levenberg-Marquardt Kaczmarz iteration
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0 otherwise

Discrepancy principle:
stop the iteration as soon as  ||Fi(x)) — y?|| < 73 Vi
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Loping Levenberg-Marquardt Kaczmarz iteration

X1 = X wr(FlgOR) Flig () + o) T g ()" (v —

1 if 0) — 0 |l >
Wi = 1 HF[k](Xk) y[k]H _7'5'
0 otherwise

Discrepancy principle:

Fiig(x2))

stop the iteration as soon as  ||Fi(x}) — yl || <70 Vi
e, k) = min{jN e N: xjy = xjy,; = =x, n}

Nonlinearity condition:

IFi(%) = Fi(x) = F{(x)(%X = )| < nllFi(%) = Fi()| Vi



Loping Levenberg-Marquardt Kaczmarz iteration

X1 = X+ wr(FlgO) i) + ) T g () (Vg — Fra ()

o o [T IR — vyl 2 7
' 0 otherwise '

Discrepancy principle:
stop the iteration as soon as  ||Fi(x}) — y, || <71 Vi
ie., k¥ := min{jN € N: Xﬂv = ﬁ\l+1 . JN+N}
Nonlinearity condition:
IFi(X) = Fi(x) = F{(x)(x =)l < nllFi(%) = Fi(x)[l Vi
Convergence Results:
@ monotonicity of the error and 2 summability of the residuals
@ convergence with exact/noisy data
[Baumeister BK Leitd0'09]



Inverse doping problem for semiconductor devices

(drift-diffusion equations, equilibrium at vanishing applied potential U)
Reconstruct 7 = e" (V. .. potential) in

div (unyVi) =0 in Q div (upy~1V0) =0 in Q
i = —U(x) on 0Qp v = U(x) on 0Qp
Vi-v=20 on Iy Vv-v=20 on Iy

from N Dirirchlet-Neumann pairs (U;, A(U;))
where

A(V) =/r (1nY0y — ppy ™1 0,) ds
1

i, v ...concentrations of electrons and holes,

U ... applied potential,
Kn, Hp - .. (known) electron and hole mobilities.

The doping profile C can then be determined from
C(x) = (%) =771 (x) = NA(In(x)), x € Q.



Inverse doping problem for semiconductor devices

(drift-diffusion equations, equilibrium at vanishing applied potential U)
Reconstruct 7 = e" (V. .. potential) in

div (unyVi) =0 in Q div (upy~1V0) =0 in Q
i = —U(x) on 0Qp v = U(x) on 0Qp
Vi-v=20 on Iy Vv-v=20 on Iy

from N Dirirchlet-Neumann pairs (U;, A(U;))
where

A(V) =/r (1nY0y — ppy ™1 0,) ds
1

i, v ...concentrations of electrons and holes,

U ... applied potential,
Kn, Hp - .. (known) electron and hole mobilities.

The doping profile C can then be determined from
C(x) = (%) =771 (x) = NA(In(x)), x € Q.



Exact coefficient and PDE solution for one voltage source

Q=(0,1)?, N=9

Moo= {(61): xe(0,1)}, To = {(x,0): x& (0,1)},
U = {(0,y); yewlngﬂlw y €(0,1)},
Ui(x) = {(1) =

exact coefficient «y to be identified (left);
typical voltage source U; and corresponding solution & (right)



Exact coefficient and initial guess

exact coefficient v to be identified (left);
initial guess (right)



Comparison of loping Levenberg-Marquardt-Kaczmarz with
Landweber-Kaczmarz

Step ..205: Londweber—Koczmorz  N=9

Numerical experiment with noisy data (5%):
error obtained with L-LMK after 24 cycles (left);
error obtained with L-LWK after 205 cycles (right)



Comparison of loping Levenberg-Marquardt-Kaczmarz with
Landweber-Kaczmarz

Evaluated steps within each cycle

Numerical experiment with noisy data (5 per cent):
number of non-loped inner steps in each cycle for L-LMK (solid
red) and L-LWK (dashed blue), respectively.
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The IRGNM for single operator equations
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Choice of ay: (inexact Newton) p € (0,1)
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The IRGNM for single operator equations

Xes1 = X0 = Ga (F O))(FOR) =y — F(x0) (3 — x0))

e.g., Go(K) = (K*K +al)!
Choice of ay: (inexact Newton) p € (0,1)
IF' () (1 (@) = xQ) + F(x2) = y° Il = plIF(Q) — |l
Discrepancy principle:
stop the iteration as soon as  ||F(x?) — y°| < 74
Nonlinearity condition:
IF(%X) — F(x) = F'(x)(% = x)[| < nl[F(%) — F(x)]|
Convergence Results:
@ convergence + rates in Banach space
[BK Schopfer Schuster'09], [BK Hofmann'09]
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The IRGNM for single operator equations

Xea1 = %0 — Gy (F () (FO) — y° = F/(x) (x¢ — x0))

e.g., Go(K) = (K*K +al)™!

Choice of ay: ay = apgX
a priori stopping rule ~~ k, ~ |log d|
Nonlinearity condition:
F((5) =F(x)R;, [IRg— 1| < CrlI% — x]|
Convergence Results:

@ convergence with exact/noisy data

@ convergence rates
[BK '97]
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X/f+1 = X0,[k] ~ GOék(F[/k] (le))(F[k] (Xf) - y[‘i(] - F[/k] (x,f)(x,f —X0,14]))
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Choice of ay: o, = apgX
a priori stopping rule
Nonlinearity condition:
Fi(%) = Fl()R%, [IRE -1l < Crll% — x| Vi
Condition on a priori guess
xo,i = x* € N(F/(x*))* Vi



IRGNM Kaczmarz iteration

X/f+1 = X0,[k] ~ GOék(F[/k] (le))(F[k] (Xf) - y[‘i(] - F[/k] (Xlé)(xlé —X0,14]))

e.g., Go(K) = (K*K +al)™!
Choice of ay: o, = apgX
a priori stopping rule
Nonlinearity condition:
FIR) = FIOORE,  IRE — 1]l < CrlI% — x| Vi
Condition on a priori guess
xo,i — x* € N(F/(x*))* Vi
Convergence Results:

@ convergence with exact/noisy data [Burger BK '06]



Nonlinearity conditions
Fi(%) =F ()RS, [IRf—1]| < Crl% —x[|, % x€By(x")
= (with Ri§ := R})
F!(%) = FI(X)R%, [|[Riz — || < Crl|X — x|, X, x € By(x*) (x) forall i
i.e., range invariance of all individual F; is a weaker condition than
range invariance of collection F



Nonlinearity conditions
Fi(%) =F ()RS, [IRf—1]| < Crl% —x[|, % x€By(x")
= (with Ri§ := R})
F!(%) = FI(X)R%, [|[Riz — || < Crl|X — x|, X, x € By(x*) (x) forall i
i.e., range invariance of all individual F; is a weaker condition than
range invariance of collection F

Lemma

Let X,Y,Z be Hilbert spaces, and let L; € L(Z;, Y;). Moreover,
let Hi: Xi — Z;, i =0,...,p—1 be continuously Fréchet
differentiable. Then,

Vi : H; satisfies (x) = Vi : F; = L;o H; satisfies (x)
Moreover,

aG, (VX € B,(x*),: ||H,{(X)_1|| < C,') and H! Lipschitz
= H; satisfies (x)

W




Example 1

Reconstruction from Dirichlet-Neumann Map:
Estimate space-dependent coefficient ¢ > 0

—Au+qu = 0, in Q,
u = f on 09,
from N Dirichlet-Neumann pairs (f;, %bg).

L:uws %’ag .. .trace operator
H; : q— uj ...parameter-to-solution map for PDE with Dirichlet data f;



Example 2

Reconstruction from multiple sources:
Estimate space-dependent coefficient ¢ > 0

—Au+qu = h, in €,

ou
— =0 on 09,
ov
from N source-Dirichlet pairs (h;, u;).
L: uw ulpq ...trace operator
H; : q— u; ...parameter-to-solution map for PDE with source h;,



Further Examples

SPECT: Reconstruct source f and coefficient a > 0 in
0;-Vuj+auj=1f in QcRY

from N pairs (0;, uj|p+)
where 6; € 5(0,1), I := {x € 9Q : v(x) - 6; > 0}, and uilpg\rr = 0.



Further Examples
SPECT: Reconstruct source f and coefficient a > 0 in

0;-Vuj+auj=1f in QcRY

from N pairs (0;, ui|r+)
where §; € $(0,1), I == {x € 0Q : v(x) - 0; = 0}, and ui[y\r+ = 0.

Ultrasound tomography: Reconstruct f in

Avi+ K2 (1—f)y; = k>fellx?i in Q,
% = By; on 0%,

from N pairs (6;, ujlsq)
where 9,’ S 5(0, 1), u = eikx'ei + v
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Avi+ K2 (1—f)y; = k>fellx?i in Q,
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Further Examples
SPECT: Reconstruct source f and coefficient a > 0 in
0;-Vuj+auj=1f in QcRY

from N pairs (0;, ui|r+)
where §; € $(0,1), I == {x € 0Q : v(x) - 0; = 0}, and ui[y\r+ = 0.

Ultrasound tomography: Reconstruct f in

Avi+ K2 (1—f)y; = k>fellx?i in Q,
% = By; on 0%,

from N pairs (6;, ujlsq)
where 9,’ S 5(0, 1), u = eikx'ei + v

(see [Natterer'96], [Burger BK'06])



Example 2

Reconstruction from multiple sources:
Estimate space-dependent coefficient g > 0

—Au+qu = h, in Q,

% =0 on 0%,
from N source-Dirichlet pairs (h;, u;).
Q=(0,1) .
hi = (- — x'), x" uniformly spaced in Q
N =20
q* =5+5x(1—x)
go=5



Results with IRGNM-Kaczmarz (exact data)
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Reconstructions qi at iterates 1, 4, 8, 12, 16, and 20.



Convergence of IRGNM-Kaczmarz (exact data)

(] 10 20 40 50

£
teration Number

Plot of error (left) and residual (right) vs. iteration number



Results with IRGNM-Kaczmarz (noisy data)

Reconstructions gx for noise levels § = 0.5% (top left), § = 1%
(top right), 6 = 3% (bottom left), § = 5% (bottom right).



Expectation Maximization (EM) algorithms



EM (Richardson-Lucy) algorithm for linear problems

for image reconstruction with nonnegativity constraints:
[Bertero 1998], [Natterer&Wuebbeling 2001], [Dempster&Laird&Rubin 1977]

F: LY(Q) — L*(X) linear operator

1 _ 5,_—* y(; 1
Xe+1 = Xk S ) (1)
k

~» multiplicative fixed-point scheme.
~~ well-suited for multiplicative noise models (e.g. Poisson models)



EM (Richardson-Lucy) algorithm for linear problems

for image reconstruction with nonnegativity constraints:
[Bertero 1998], [Natterer&Wuebbeling 2001], [Dempster&Laird&Rubin 1977]

F: LY(Q) — L*(X) linear operator

1 _ 5,_—* y(; 1
Xe+1 = Xk S ) (1)
k

~» multiplicative fixed-point scheme.
~~ well-suited for multiplicative noise models (e.g. Poisson models)

F, F* positivity preserving, x; >0, y° >0 = YkeN: x) >0



Derivation

1) _ 5,_—* y(S 2
Xk+1 = Xk Fxd ) (2)
k

is descent method for the functional

J(x) = /z [y5 log (/yr_i) —y'+ Fx] do,

Kullback-Leibler divergence (relative entropy) between Fx and yo.
optimality condition

0
* .y X
—F (L) +F1)=0.

with operator scaling F*1 =1 ~~ (2)



|dea of convergence proof

[Miilthei&Schorr89], [Natterer&Wuebbeling 2001], [Resmerita&Engl&lusem
2007], [Bissantz&Mair&Munk]
similar to Landweber with || - ||2 > Kullback-Leibler divergence

KL(x,z):/ [x|og’—f—x+f< :
Q X

For x! with Fx! = y by convexity

KL(xT, x11) + J(xx) < KL(xT, xi) .

k—1
-I-ZJ (x) < KL(x", x0),
= boundedness of KL(XT,Xk) and summability of J(x;).



EM algorithm for nonlinear problems

nonlinear operator F : L1(Q) — L}(X), no scaling ~ fixed-point
equation

/ / y6
F'(x)"1=xF'(x)* | — | .
01 = () (1)
nonlinear EM algorithm
) )
6 Xk /(0 \* y
=—=_F — .
o= e ()

[Haltmeier&Leitao& Resmerita 2009]



	Problem setting: System of nonlinear operator equations
	Gradient type Kaczmarz methods
	Newton type Kaczmarz methods
	Levenberg-Marquardt type Kaczmarz methods
	IRGNM type Kaczmarz methods

	EM algorithms

