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Outline

@ modeling:
e models of nonlinear acoustics
e fractional damping models in ultrasonics

@ parameter asymptotics

@ some inverse problems




Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:




Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:

sound speed depends on (signed) amplitude = sawtooth profile




models of nonlinear acoustics




Physical Principles

main physical quantities:

@ acoustic particle velocity v; @ absolute temperature ;
@ acoustic pressure p; @ heat flux q;
@ mass density o; @ entropy 7);

decomposition into mean and fluctuating part:

V=vg+v.=uv, p=po+ p~, 0= 00+ 0~




Physical Principles

@ acoustic particle velocity v; @ absolute temperature VJ;
@ acoustic pressure p; @ heat flux gq;
@ mass density g; @ entropy 7};

governing equations:
@ momentum conservation = Navier Stokes equation (with V x v = 0):
o(ve+V(v-v)) +Vp = (% +Gv) v

@ mass conservation = equation of continuity: V- (ov) = —ot
@ entropy equation: ol +v-Vy)=-V-q
e equation of state: P exp <m>
Po Cy
, 1
@ Gibbs equation: vdn = ¢, dv — p—2dg
1%

v = 2...adiabatic index;

¢p / ¢ ...specific heat at constant pressure / volume;

Cv / pv ...bulk / shear viscosity




Physical Principles

So far, 5 equations for 6 unknowns v, p, o, ¥, g, 7.
Still need a constitutive relation between temperature and heat flux.
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Physical Principles

So far, 5 equations for 6 unknowns v, p, o, ¥, g, 7.
Still need a constitutive relation between temperature and heat flux.

Classically: Fourier's law q=—KVv
K...thermal conductivity

leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law Tqr +q=—KVU

7. ..relaxation time

allows for “thermal waves” (second sound phenomenon)




Classical Models of Nonlinear Acoustics

o Kuznetsov's equation [Lesser & Seebass 1968, Kuznetsov 1971]

Pyt — C2ApN —0Ap, = (ﬁpi + QO|V|2)tt

where gov; = —Vp ~ ot = p
for the particle velocity v and the pressure p, i.e.,

Yo — 2B — 500 = (3 ()2 + V)

since V x v =0 hence v= —V1 for a velocity potential v

= r(Pr(% + ;%) + v —1) ...diffusivity of sound; k...thermal diffusivity

= 4 — 1 ...nonlinearity parameter (in liquids / gases)




Classical Models of Nonlinear Acoustics

o Kuznetsov's equation [Lesser & Seebass 1968, Kuznetsov 1971]

Pt — CQApN —0Ap.; = (w%l?i + QO|V|2)tt

where gov; = —Vp ~ oot = p
for the particle velocity v and the pressure p
o Westervelt equation [Westervelt 1963]

via 00lv[2 & =L (p..)?

1
2 B 2
Prte — CTAp — 0Ap., = 00C2 (1 + 2A>p~tt

= r(Pr(%+ %) + v — 1) ...diffusivity of sound; &...thermal diffusivity

= 4 — 1 ...nonlinearity parameter (in liquids / gases)




Advanced Models of Nonlinear Acoustics (Examples)

e Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014],
[Christov 2009], [Straughan 2010]

TVeet + Ve — C2A¢ —(0+ TCZ)ATpt = (ﬁB@(QﬁtV + ‘sz)t

T...relaxation time




Advanced Models of Nonlinear Acoustics (Examples)

e Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014],
[Christov 2009], [Straughan 2010]

TVt + Yee — C2A¢ - ((5 + TC2)A¢t = (%(thf + ‘quz)t

T...relaxation time

2 .
z =1t + 55 solves weakly damped wave equation

zy — EAz + vz = r(z,9))

Shox_ 2,6 o _1_ _c?
with ¢ = ¢ +7_.’}’—7_ m>0
~~ second sound phenomenon




Advanced Models of Nonlinear Acoustics (Examples)

e Blackstock-Crighton equation [Brunnhuber & Jordan 2016],
[Blackstock 1963], [Crighton 1979]

(00 — ah) (Ve — CPAY — 51,) — ralsre = (52 (7) + Vo)

tt

a= PLr .. thermal conductivity




Advanced versus Classical Models of Nonlinear Acoustics

o Blackstock-Crighton equation [Brunnhuber & Jordan 2016],
[Blackstock 1963], [Crighton 1979]

(00 — aB) (e — A — 5Ap0) — radsihe = (32 (V) + V)

tt

a= ﬁ .. thermal conductivity

e Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014],
[Christov 2009], [Straughan 2010]

Tue + e — DY — (6 + 7C)Arpy = (WBCz(V)tY + ‘Vw|2)t

T...relaxation time

o cf. Kuznetsov:

Vet — PO — 089 = (5E7(43) + Ve,

CO> <F>r «E> (=




@ further models:[Angel & Aristegui 2014], [Christov & Christov & Jordan 2007],
[Kudryashov & Sinelshchikov 2010], [Ockendon & Tayler 1983], [Makarov &
Ochmann 1996], [Rendén & Ezeta &Pérez-Lépez 2013], [Rasmussen & Sgrensen &
Christiansen 2008], [Soderholm 2006], ...

@ resonances, shock waves:[Ockendon & Ockendon & Peake & Chester 1993],
[Ockendon & Ockendon 2001, 2004, 2016],. ..

@ traveling waves solutions:[Jordan 2004], [Chen & Torres & Walsh 2009], [Keiffer &
McNorton & Jordan & Christov, 2014], [Gaididei & Rasmussen & Christiansen &
Sgrensen, 2016],. ..

@ well-posendness and asymptotic behaviour:
for KZK: [Rozanova-Pierrat 2007, 2008, 2009, 2010]
for Westervelt, Kuznetsov, Blackstock-Crighton, JMGT on bounded domain Q:
based on semigroup theory and energy estimates:[BK & Lasiecka 2009, 2012], [BK &
Lasiecka & Veljovi¢ 2011], [BK & Lasiecka & Marchand 2012], [BK & Lasiecka &
Pospiezalska 2012], [Lasiecka & Wang 2015], [Liu & Triggiani 2013], [Marchand &
McDevitt & Triggiani 2012], [Nikoli¢ 2015], [Nikoli¢ & BK 2016], [Pellicer &
Sold-Morales 2019], , [Dell’Oro&Lasiecka&Pata 2020]
based on maximal L, regularity:[Meyer & Wilke 2011, 2013], [Meyer & Simonett
2016], [Brunnhuber & Meyer 2016], [BK 2016]
Cauchy problem (on Q = R*)
for Kuznetsov: [Dekkers & Rozanova-Pierrat 2019]
for JMGT: [Pellicer & Said-Houari 2017], [Nikoli¢ & Said-Houari 2021]

@ control of JMGT [Bucci&Lasiecka 2020], [Bucci&Pandolfi 2020]

«<O» «Fr «E>» «=r» = DA




The Westervelt equation: potential degeneracy

B

) 1
with k1= —24,
00c

u=p~

Ut — C2AU — bAUt = l‘i(uz)tt




The Westervelt equation: potential degeneracy

B

) 1
with k1= —24,
00c

u=p~

Ut — C2AU — bAUt = /‘D(U2)tt

(u — nu2> 0 Au— bAu; =0




The Westervelt equation: potential degeneracy

B
. 1+554
with K := —Qogf, U= p~

Ut — C2AU — bAUt = /‘i(uz)tt

(u — muz) — PAu— bAu; =0
tt
This also illustrates state dependence of the effective wave speed:
uge — E(u)?Au — b(u)Auy = f(u)

c ~ b 2r(ut)?

with é(u) =

P - f =
V1-="2ku’ b(u) 1—2ku’ (1) 1—2ku

as long as 2ku < 1 (otherwise the model loses its validity)




parameter asymptotics




Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation (b = & + 7¢?)
Tk + Vi — CDYT — bAY] = (o (W7)? + VT ?),

Kuznetsov's equation:

Ve — % — 08V = (5£2(03) + [Vul?).




Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation (b = & + 7¢?)
Tk + Vi — CDYT — bAY] = (o (W7)? + VT ?),

Kuznetsov's equation:

Ve — O — 3B = (522 (03) + Vo)

Existence of a limit 10 of ¢™ as 7\, 0?
Does 19 solve Kuznetsov's equation?




Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation (b = & + 7¢?)
Tk + Vi — CDYT — bAY] = (o (W7)? + VT ?),

Kuznetsov's equation:

Ve — O — 3B = (522 (03) + Vo)

Existence of a limit 10 of ¢™ as 7\, 0?
Does 19 solve Kuznetsov's equation?

[Bongarti&Charoenphon&Lasiecka; BK& Nikoli¢, 2019-21]
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e For 7 = 0 (classical Westervelt and Kuznetsov equation) the
reformulation of the linearization as a first order system leads to an
analytic semigroup and maximal parabolic regularity.

These properties get lost with 7 > 0; the equation loses its “parabolic
nature”.
This is consistent with physics: infinite — finite propagation speed.
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Remarks

@ We will consider the “Westervelt type” and the “Kuznetsov type”
equation; without and with the gradient nonlinearity |V1)|?

e For 7 = 0 (classical Westervelt and Kuznetsov equation) the
reformulation of the linearization as a first order system leads to an
analytic semigroup and maximal parabolic regularity.

These properties get lost with 7 > 0; the equation loses its “parabolic
nature”.

This is consistent with physics: infinite — finite propagation speed.

@ As in the classical models, potential degeneracy can be an issue

k
i + Vi — CAYT — bAYT = (E(w:)z + rWF)
t

=kiivg, + |VYT|3
= YL+ (1— kv])vp — CAYT — bAYT = [V |3




Plan of the analysis

Establish well-posedness of the linearized equation along with
energy estimates.

Use these results to prove well-posedness of the Westervelt
type JMGT equation for 7 > 0 by a fixed point argument.
Establish additional higher order energy estimates.

Use these results to prove well-posedness of the Kuznetsov
type JMGT equation for 7 > 0 (sufficiently small) by a fixed
point argument.

Take limits as 7 — 0



Plan of the analysis

o Establish well-posedness of the linearized equation along with
energy estimates.

@ Use these results to prove well-posedness of the Westervelt
type JMGT equation for 7 > 0 by a fixed point argument.

@ Establish additional higher order energy estimates.

@ Use these results to prove well-posedness of the Kuznetsov
type JMGT equation for 7 > 0 (sufficiently small) by a fixed
point argument.

@ Take limitsas 7 — 0

BK & Vanja Nikoli¢. On the Jordan-Moore-Gibson-Thompson equation:
well-posedness with quadratic gradient nonlinearity and singular limit for vanishing
relaxation time. Math. Meth. Mod. Appl. Sci. (M3AS), 29:2523-2556, 20109.

BK & Vanja Nikoli¢. Vanishing relaxation time limit of the
Jordan—Moore—Gibson—Thompson wave equation with Neumann and absorbing
boundary conditions. Pure and Applied Functional Analysis, 5:1-26, 2020.

» shortcut to limit result < > < > AEr «E>




The linearized problem

thtt + O((X, t)¢tf - C2Aw — bA’d)t =f in Q x (O, T),
=0 ondQx(0,7),
(¢7wtawtt) = (¢07w17¢2) in Q x {0}7

under the assumptions

a(x,t)>a>0 onQ ae inQ2x(0,T). (1)

a € L0, T; L(Q)) N L0, T; W3(Q)),
f e HY(0, T; L3(Q)).
(Yo, P1,92) € Hg(Q) N H*(Q) x Hz(Q) N H*(Q) x Hy(Q).  (3)




The linearized problem
Tee + (X, b — A — bAY: = f  in Qx (0, T),
=0 ondQx(0,T), (4)

(1, e, Y1) = (Yo, ¥1,¢2)  in Q x {0},

Theorem (lin)

Let c®, b, 7 >0, and let T > 0. Let the assumptions (1), (2), (3) hold.
Then there exists a unique solution

Y e XW = Whe°(0,T; HY(Q)NH?(Q)NW?2(0,T; HY(Q)NH3(0,T; L*(Q)).
The solution fullfils the estimate
V.- =721 0eel T2 + TIWeel Toopn + NWeel T2 + 191 yrope
<C(a, T,7) (W)Oﬁ-p + Y113 + 7220 4 1 Pser2 + 1l 22p2) -

If additionally || Vo peo 3 < zo— ho/ds then C(«, T,7) is independent of 7.




Well-posedness of the Westervelt type JMGT equation
e + (1 — ktpe)iher — 2O — bApy =0 in Q x (0, T),
=0 ondQx(0,T),

(11&7 wta ¢tt) = (wOa ¢1’¢2) in  x {0}?

Theorem

Let 2, b>0, k€ R and let T > 0. There exist p,po > 0 such that for all
(v00, 1, 92) € H(}(Q) N H?(Q) x H&(Q) N H?(Q) x H&(Q) satisfying

oty + 1¥1litey + Tllv2ltng) < A5,

there exists a unique solution 1) € X" and ||¢H‘2/VT < p?.

Banach's Contraction Principle for 7 : ¢ — 1 solution ¢ of (4) with o =1 — k¢¢, f = 0:
self-mapping on B;(W: energy estimate from Theorem (lin).
contractivity: ||7(¢1) — T(#2)llw,» < qll¢1 — ¢2|lw,r by estimate from Theorem (lin):

) =1p1 — hs = T(¢1) — T(¢2) solves (4) with a =1 — k¢ and
f= éﬂbz «t Where qAb = ¢1— ¢2.




Limits for vanishing relaxation time
Consider the 7-independent part of the norms

Il - =

T el fope + 70t oo + 19t 2 + 191100 e

namely

1l %w = IeellZp + 191 yr.ce e

since these norms will be uniformly bounded, independently of 7.




Limits for vanishing relaxation time

Consider the T-independent part of the norms

||¢“§‘<w = th”%zHl + ||¢||%/\/1><><>H2 ;
and recall the spaces for the initial data

XJV = H}(Q) N H?(Q) x H}(Q) N H*(Q) x Hi(Q).

Theorem

Let c?, b, T >0, and k € R. Then there exist 7, pg > 0 such that
for all (v, ¥1,12) € X3V, the family (¥7)re(o,7) of solutions to

the Westervelt type JMGT equation converges weakly* in XV to a
solution 1 € X' of the Westervelt equation with initial conditions

$(0) = ¢, P¢(0) = ¢1.




Numerical Experiments

@ comparison of Westervelt-JMGT and Westervelt solutions

@ numerical experiments for water in a 1-d channel geometry

c=1500m/s, 6 =6-10"°m?/s, p = 1000 kg/m>, B/A = 5;

@ space discretization with B-splines (Isogeometric Analysis):
quadratic basis functions, globally C?; 251 dofs on
Q = [0,0.2m]

@ time discretization by Newmark scheme, adapted to 3rd order
equation; 800 time steps on [0, T] = [0, 45us]

e initial conditions (v, ¥1,12) = (0 Aexp( M) , 0)
with 4 =8-10*m?/s? and ¢ = 0.01,




Snapshots of pressure p = p1); for fixed relaxation time
T=0.1pus

T=0.1pus
| [—t=0s
—t=16.85pus
100} —t=3371ps |
—t=45pus
— 80 1
o
=
g 60 1
2
5_40, -
20r 1
0

0 4107 8107 012 016 02




Pressure wave for different relaxation parameters 7 at final
time t = 45 pus.

t=45us
70 T

—7=1pus
601 —7=05pus||
—T17=0pus

pressure [MPa]

0014 0.16 0.18 0.2




Relative errors as 7 — 0

Error in C([O, T]% HI(Q)) Error in XW
0.12F 07l
0.10f 0.6f
0.08F 0.5
T >
S Rl L
g‘ 0.06| g 04
0.3f
0.04
0.2}
0.02F 01
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
8] 1077 8] 1077
in C([0, T]; HY(Q in XW = H2(0, T; HY(Q
in C([0, T]; H*(2)) in = H%(0, T; HY(Q))




Recap: Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation
T + U — YT — (84 7)AY] = (g (VD)7 + [VUT?),

versus Kuznetsov's equation:

b — P00 — 680 = (55 ((0e)) + [VYI),

Existence of a limit 1% of 7 as 7\, 0? Ves
Does 19 solve Kuznetsov's equation? Yes

[Bongarti&Charoenphon&Lasiecka; BK& Nikoli¢, 2019-21]




limit in JMGT /Kuznetsov/Westervelt

for vanishing diffusivity of sound o




Vanishing diffusivity of sound

Jordan-Moore-Gibson-Thompson equation
Thhe + Ve — PO — (0 4+ 728 = (B2 (v0)? + V)

and Kuznetsov's equation:

2
Ve — AT = IAY; = (Wiz(wﬁ)z +|ve!| )
t
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Vanishing diffusivity of sound

Jordan-Moore-Gibson-Thompson equation
Thhe + Ve — PO — (0 4+ 728 = (B2 (v0)? + V)

and Kuznetsov's equation:

2
I U
t

Existence of a limit ¢° of 4% as § \, 0?
Does 10 solve the respective inviscid (6 = 0) equation?

Challenge: § > 0 is crucial for global in time well-posedness and
exponential decay in d € {2,3} space dimensions.

[BK& Nikoli¢, SIAP 2021]
recover results (in particular on required regularity of initial data) from
[Dorfler Gerner Schnaubelt 2016] for § = 0 .

< > < > AE>r =




limit in Blackstock-Crighton

for vanishing thermal conductivity a




Vanishing thermal conductivity

Blackstock-Crighton equation

(0c = a83) (v — D% = 5007) ~rab? = (522 (63) + [V9°P)

Kuznetsov's equation:

Ve — 0 — 30 = (B2 (v3) + Vo)
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Ve — 0 — 30 = (B2 (v3) + Vo)

Existence of a limit 40 of 1) as a \, 0?
Does 19 solve Kuznetsov's equation?

Integrate once wrt time: Consistency of initial data needed:
Yo — Ay — A1 = 31t + 2V - Vi




Vanishing thermal conductivity
Blackstock-Crighton equation
(9 — 2B) (¥}, — 2D — 687 —rahyi = (525 (v3) + Vvl
Kuznetsov's equation:

Ve — 0 — 30 = (B2 (v3) + Vo)

Existence of a limit 40 of 1) as a \, 0?
Does 19 solve Kuznetsov's equation?

Integrate once wrt time: Consistency of initial data needed:
Yo — Ay — A1 = 31t + 2V - Vi

[BK& Thalhammer, M3AS 2018]




limit in time fractional JMGT

for differentiation order o "1




Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation

T(\cDE—&—(,ywa_i_,(p(t)é_CZAwa_(5+T(xc2)AD;x,¢a — (2EC2 (1/};5)2 + |V’l/)5|2) t

Jordan-Moore-Gibson-Thompson equation

T+ U — A — (5 + ) Au] = (52 (00 + VOO




Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation
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Jordan-Moore-Gibson-Thompson equation

T + e — AU — (64 7 A = (5B (W) + V),

Existence of a limit 90 of ¥® as o 7 17

Does ¥ solve the respective integer order equation?
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@ Derivation of proper models from physical balance and
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o Leading derivative order in PDE changes with a.




Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation

7_(\aDg—ﬁ-ncwa_i_wtt);_C2Awa_(5+7_uc2)AD;x,¢a — (2IEC2 (1/};5)2 + |V’l/)6|2) t

Jordan-Moore-Gibson-Thompson equation

T + e — AU — (64 7 A = (5B (W) + V),

Existence of a limit 90 of ¥® as o 7 17
Does ¥ solve the respective integer order equation?

@ Derivation of proper models from physical balance and
constitutive laws

o Leading derivative order in PDE changes with a.
[BK& Nikoli¢, M3AS 2022]




fractional damping models in ultrasonics




10 —
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Figure 2.6 in [Chan&Perlas, Basics of Ultrasound Imaging, 2011]




10 —

Liver

Attenuation (dB/cm)
{2}
I

/ Blood
f f f f f
2 4 6 8 10
Frequency (MHz)

Figure 2.6 in [Chan&Perlas, Basics of Ultrasound Imaging, 2011]

~~ constitutive modeling of

@ pressure — density relation

e temperature — heat flux relation




Fractional Models of (Linear) Viscoelasticity

@ equation of motion (resulting from balance of forces)
OU¢ = dive + f

@ strain as symmetric gradient of displacements:
1 T
€= E(Vu +(Vu)").

@ constitutive model: stress-strain relation

... displacements
... stress tensor
.. strain tensor
... mass density

u
o
€.
0




Fractional Models of (Linear) Viscoelasticity 1-d setting
@ equation of motion (resulting from balance of forces)
oupt = 0x + f
@ strain as symmetric gradient of displacements:
€ = Uy.
@ constitutive model: stress-strain relation:

Hooke's law (pure elasticity): o = bge
Newton model: o = bie;
Kelvin-Voigt model: o = bge + bie;

Maxwell model: o + ajo: = bge

Zener model: o + ajo; = bpe + bres




Fractional Models of (Linear) Viscoelasticity 1-d setting
@ equation of motion (resulting from balance of forces)
oupt = ox + f
@ strain as symmetric gradient of displacements:
€ = Uy.
@ constitutive model: stress-strain relation:
fractional Newton model: o = blafe
fractional Kelvin-Voigt model: o = bpe + blatﬁe

fractional Maxwell model: o + a;07c = bpe

fractional Zener model: o + a10{'0c = bpe + blatﬁe
N M
general model class: Zanﬁf”a = Z bmatﬁ’"e
n=0 m=0

[Caputo 1967, Atanackovic, Pilipovié, Stankovié, Zorica 2014]




Fractional Models of (Linear) Acoustics via p — o

balance of momentum
oove = —Vp+f

balance of mass
oV v =—p;

equation of state O~ _ P~

Qo Po
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Zb 0= o~ ZanaanPN

equation of state




Fractional Models of (Linear) Acoustics via p — o

balance of momentum
oove = —Vp+f

balance of mass

QV'VZ—Q

Zb 0= o~ ZanaanPN

insert constitutive equatlons into comblnatlon of balance laws
~ fractional acoustic wave equations [Holm 2019, Szabo 2004]:

equation of state




Fractional Models of (Linear) Acoustics via p — o

balance of momentum
oove = —Vp+f

balance of mass
oV -v= —Q

Zb 0= o~ ZanaanPN

insert constitutive equatlons into comblnatlon of balance laws
~ fractional acoustic wave equations [Holm 2019, Szabo 2004]:

equation of state

@ Caputo-Wismer-Kelvin wave equation (fractional Kelvin-Voigt):
— boAp— b 0P Ap=F,
@ modified Szabo wave equation (fractional Maxwell):
Ptt — a18?-WP — boAp = Fa
@ fractional Zener wave equation:
o — 31077 — boAp + b0 Ap = F

@ general fractional model:
N M - z
Yoo 2n07 D = S0 bmd " Ap = F .
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Classically: Fourier's law q=—KV
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allows for “thermal waves” (second sound phenomenon)
can lead to violation of the 2nd law of thermodynamics
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recall:
Classically: Fourier's law q=—KV

leads to infinite speed of propagation paradox.

Maxwell-Cattaneo law Tq: +q=—KVU

allows for “thermal waves” (second sound phenomenon)
can lead to violation of the 2nd law of thermodynamics

“interpolate” by using fractional derivatives
[Compte & Metzler 1997, Povstenko 2011]:

(GFE 1) (14 7°D)q(t) = —K1y *Dy “V;
(GFE 11) (14 79D q(t) = —Kry D v,

(GFE 1l (14 70:)q(t) =Kty *Dy *V;
(GFE) (1+7°DY)q(t) = —K V.
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Fractional derivatives
Abel fractional integral operator

N 1 [ f(s)
B0 = | e

Then a fractional (time) derivative can be defined by either

d
Rpef = Elal*o‘f Riemann-Liouville derivative

or df
Cpaf = Ial_ag Djrbashian-Caputo derivative

@ R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a
@ D-C maps constants to zero ~~ appropriate for prescribing
initial values
some recent books on fractional PDEs: [Kubica & Ryszewska &
2020], [Jin 2021], [BK & Rundell 2022]

DQC

Yamamoto
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Fractional derivatives
Abel fractional integral operator

N 1 [ f(s)
0= | e

Then a fractional (time) derivative can be defined by either

d
Rpaf = —11=%f  Riemann-Liouville derivative

dt
f
Cpof = Ial_o‘% Djrbashian-Caputo derivative

or

@ R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a
@ D-C maps constants to zero ~» appropriate for prescribing
initial values
Nonlocal and causal character of these derivatives provides them
with a “memory”
~> initial values are tied to later values and can therefore be better
reconstructed backwards in time. COr B (> (2>
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Photoacoustic tomography PAT with fractional attenuation

@ attenuation of ultrasound in human tissue follows a power law
frequency dependence w®
~~ fractional derivative 0f' term in time domain

e PAT acoustic (sub)problem: Reconstruct initial pressure from
observations of pressure at some transducer array over time
see, e.g., [Kuchment & Kunyanski 2011]

@ only mildly ill-posed without attenuation

@ severely ill-posed in with integer (1st) order damping
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Photoacoustic tomography PAT with fractional attenuation

@ attenuation of ultrasound in human tissue follows a power law
frequency dependence w®
~~ fractional derivative 0f' term in time domain

e PAT acoustic (sub)problem: Reconstruct initial pressure from
observations of pressure at some transducer array over time
see, e.g., [Kuchment & Kunyanski 2011]

@ only mildly ill-posed without attenuation
@ severely ill-posed in with integer (1st) order damping

? Uniqueness and reconstruction for PAT /TAT with fractional
attenuation

7 Dependence of instability on fractional differentition order

Nonlocal and causal character of fractional derivatives provides
them with a “memory”

~> initial values are tied to later values and can therefore be better
reconstructed backwards in time.
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Identify up(x) in
gt + cAu+Du=0in Q x (0, T)
u(0) = up, u(0)=0inQ
where Au = —/A with homogeneous Dirichlet boundary conditions
from observations

g=u onXx(0,T)

¥ C Q... transducer array (surface or collection of discrete points)
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The inverse problem of PAT and TAT
Identify up(x) in

use + 2 Au+ Du=0in Q x (0, 7)
u(0) = up, u(0)=0inQ

where Au = — /A with homogeneous Dirichlet boundary conditions
from observations

g=u onXx(0,T)
¥ C Q... transducer array (surface or collection of discrete points)

C...H Caputo-Wismer-Kelvin / space fractional Chen-Holm:
D =bA%9]  with B [0,1], B€[0,1], b>0

FZ fractional Zener:

D:aaf+°‘+bAaf witha>0, b>ac’>, 1>8>a>0,




Uniqueness

Linear independence assumption:

For each eigenvalue A of A with eigenfunctions (k) ek, the
restrictions of the eigenfunctions to the observation manifold are
linear independent: For any coefficient set (b )k

Z brpk(x) =0 forall xe X | = (bk =0 forall k € K)‘> .
keKX

Suppose the domain Q2 and the operator A are known. Then under
the linear independence assumption we can uniquely recover the
initial value ug(x) from time trace measurements g on X.
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Some remarks

@ The linear independence assumption is satisfied in 1-d
(trivially) and in geometries allowing for separation of
variables in eigenfunctions.

@ It is a condition on zeros of eigenfunctions.
o Instead of Au = —A we may have Au= —c2V - (éVu) or
Au = —c3 A with ¢ = co(x) a spatially variable sound speed.

@ Uniqueness of ¢y(x) from the same observations can be shown
by Sturm-Liouville theory.

@ tools of proof:
separation of variables (solution representation),
analysis in Laplace domain (location of poles),
uniqueness of eigenvalues from poles.

[BK&Rundell. Inverse Problems, 37(4):045002]




Nonlinearity parameter imaging

e B/A parameter is sensitive to differences in tissue properties,
thus appropriate for characterization of biological tissues

@ viewing Kk = #(% + 1) as a spatially varying coefficient in
the Westervelt equation, it can be used for medical imaging

@ ~- acoustic nonlinearity parameter tomography [Bjgrng 1986;
Burov, Gurinovich, Rudenko, Tagunov 1994; Cain 1986;
Ichida, Sato, Linzer 1983; Varray, Basset, Tortoli, Cachard
2011; Zhang, Gong et al 1996, 2001]. ..
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The inverse problem of nonlinearity parameter imaging
Identify x(x) in
(u— H(X)U2)tt —@Au+Du=r inQx(0,T)
u=00n0Qx(0,T), w(0)=0, u(0)=0 in Q
(with excitation r) from observations
g=u onXxXx(0,T)
¥ C Q... transducer array (surface or collection of discrete points)
fractional damping

Caputo-Wismer-Kelvin:
D=—bAd? withBe[0,1], b>0

fractional Zener:
D = ad?™® — bAOY  witha>0, b>ac®, 1>8>a>0,

space fractional Chen-Holm:
D = b(—A)?d; with 3 €[0,1], b>0,

< > < P AEDP» =




Chances and Challenges

@ model equation is nonlinear;
nonlinearity occurs in highest order term;

@ unknown coefficient x(x) appears in this nonlinear term

@ k is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;
This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.
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Chances and Challenges

@ model equation is nonlinear;
nonlinearity occurs in highest order term;

@ unknown coefficient x(x) appears in this nonlinear term

@ k is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;
This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.

@ nonlinearity helps by “adding information”:
linear case: double excitation = double observation
linear case: exitation at freq. w = observation at freq. w
nonlinear case: higher harmonics
see also asymptotics argument in [Kurylev & Lassas & Uhlmann 2019]
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Results

[Yamamoto &BK 2021] BCBJ equation
e uniqueness and conditional stability via Carleman estimates
[BK&Rundell IPI 2021, Math.Comp. 2021] Westervelt eq.

o Well-definedness and Fréchet differentiability of forward
operator F : k — uly

e uniqueness for linearized problem under linear independence
assumption

e reconstructions by Newton's method

[BK&Rundell 2022 in preparation] Westervelt eq.

* simultaneous uniqueness of ¢(x) and x(x) from single
boundary observation

[Acosta & Uhlmann & Zhai 2022] Westervelt equation:

e uniqueness from Neumann-Dirichlet map




Reconstructions of x(x)
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Reconstructions of x(x)
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Singular values of linearized forward operator
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Outlook: Some further inverse problems

@ Determine fractional differentiation orders a,, 8, in wave type eq.

N M
Z an83+a"p — Z bmﬁf’”Ap =f.

n=0 m=0

[BK& Rundell 2022];
for subdiffusion, see [Hatano& Nakagawa& Wang& Yamamoto 2013]
... [Jin& Kian 2022]




Outlook: Some further inverse problems

@ Determine nonlinearity f in generalized Westervelt equation

U — CZAU — bAUt = —K'/(f(u))tt

[BK& Rundell 2021]




Outlook: Some further inverse problems

@ Determine kernels k., kirc in viscoelastic model

pug — div[Ce(u) + ke * Ac(uy) + kere * tre(ug)l] = f

[BK & Khristenko & Nikoli¢ & Rajendran & Wohlmuth 2022]




Thank you for your attention!
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