Mathematics of nonlinear acoustics: modeling, analysis and inverse problems

Barbara Kaltenbacher

Alpen-Adria-Universität Klagenfurt

Equadiff, Brno, July 15, 2022
joint work with
Vanja Nikolić, Radboud University William Rundell, Texas A\&M University

Modeling - Analysis - Optimization

- doc.funos doctoral school

Outline

- modeling:
- models of nonlinear acoustics
- fractional damping models in ultrasonics
- parameter asymptotics
- some inverse problems

Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:

Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:
sound speed depends on (signed) amplitude \Rightarrow sawtooth profile
models of nonlinear acoustics

Physical Principles

main physical quantities:

- acoustic particle velocity v;
- acoustic pressure p;
- mass density ϱ;
- absolute temperature ϑ;
- heat flux \boldsymbol{q};
- entropy η;
decomposition into mean and fluctuating part:

$$
\mathbf{v}=\mathbf{v}_{0}+\mathbf{v}_{\sim}=\mathbf{v}, \quad p=p_{0}+p_{\sim}, \quad \varrho=\varrho_{0}+\varrho_{\sim}
$$

Physical Principles

- acoustic particle velocity v;
- absolute temperature ϑ;
- acoustic pressure p;
- heat flux q;
- mass density ϱ;
- entropy η;

governing equations:

- momentum conservation $=$ Navier Stokes equation (with $\nabla \times \mathbf{v}=0$):

$$
\varrho\left(\mathbf{v}_{t}+\nabla(\mathbf{v} \cdot \mathbf{v})\right)+\nabla p=\left(\frac{4 \mu_{V}}{3}+\zeta_{v}\right) \Delta \mathbf{v}
$$

- mass conservation $=$ equation of continuity: $\quad \nabla \cdot(\varrho v)=-\varrho_{t}$
- entropy equation:

$$
\varrho \vartheta\left(\eta_{t}+\mathbf{v} \cdot \nabla \eta\right)=-\nabla \cdot \boldsymbol{q}
$$

- equation of state:

$$
\frac{p}{p_{0}}=\varrho^{\gamma} \exp \left(\frac{\eta-\eta_{0}}{c_{V}}\right)
$$

- Gibbs equation: $\quad \vartheta d \eta=c_{V} d \vartheta-p \frac{1}{\varrho^{2}} d \varrho$
$\gamma=\frac{c_{p}}{c_{v}} \ldots$ adiabatic index;
$c_{p} / c_{v} \ldots$ specific heat at constant pressure / volume;
$\zeta_{v} / \mu_{V} \ldots$ bulk / shear viscosity

Physical Principles

So far, 5 equations for 6 unknowns v, $p, \varrho, \vartheta, \boldsymbol{q}, \eta$.
Still need a constitutive relation between temperature and heat flux.

Physical Principles

So far, 5 equations for 6 unknowns v, $p, \varrho, \vartheta, \boldsymbol{q}, \eta$.
Still need a constitutive relation between temperature and heat flux.
Classically: Fourier's law $\quad \boldsymbol{q}=-K \nabla \vartheta$
K...thermal conductivity
leads to infinite speed of propagation paradox.

Physical Principles

So far, 5 equations for 6 unknowns v, $p, \varrho, \vartheta, \boldsymbol{q}, \eta$.
Still need a constitutive relation between temperature and heat flux.
Classically: Fourier's law $\quad \boldsymbol{q}=-K \nabla \vartheta$
K...thermal conductivity
leads to infinite speed of propagation paradox.
Maxwell-Cattaneo law $\quad \tau \boldsymbol{q}_{t}+\boldsymbol{q}=-K \nabla \vartheta$
$\tau \ldots$. relaxation time
allows for "thermal waves" (second sound phenomenon)

Classical Models of Nonlinear Acoustics

- Kuznetsov's equation [Lesser \& Seebass 1968, Kuznetsov 1971]

$$
p_{\sim_{t t}}-c^{2} \Delta p_{\sim}-\delta \Delta p_{\sim_{t}}=\left(\frac{B}{2 A \varrho_{0} c^{2}} p_{\sim}^{2}+\varrho_{0}|\mathbf{v}|^{2}\right)_{t t}
$$

where $\varrho_{0} \mathbf{v}_{t}=-\nabla p$ $\rightsquigarrow \varrho_{0} \psi_{t}=p$
for the particle velocity \mathbf{v} and the pressure p, i.e.,

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}\right)^{2}+|\nabla \psi|^{2}\right)_{t}
$$

since $\nabla \times \mathbf{v}=0$ hence $\mathbf{v}=-\nabla \psi$ for a velocity potential ψ
$\delta=\kappa\left(\operatorname{Pr}\left(\frac{4}{3}+\frac{\zeta V}{\mu_{V}}\right)+\gamma-1\right) \ldots$ diffusivity of sound; $\kappa \ldots$ thermal diffusivity $\frac{B}{A} \hat{=} \gamma-1 \ldots$ nonlinearity parameter (in liquids / gases)

Classical Models of Nonlinear Acoustics

- Kuznetsov’s equation [Lesser \& Seebass 1968, Kuznetsov 1971]

$$
p_{\sim_{t t}}-c^{2} \Delta p_{\sim}-\delta \Delta p_{\sim_{t}}=\left(\frac{B}{2 A \varrho_{0} c^{2}} p_{\sim}^{2}+\varrho_{0}|\mathbf{v}|^{2}\right)_{t t}
$$

where $\varrho_{0} \mathbf{v}_{t}=-\nabla p$

$$
\rightsquigarrow \varrho_{0} \psi_{t}=p
$$

for the particle velocity \mathbf{v} and the pressure p

- Westervelt equation [Westervelt 1963] via $\varrho_{0}|\mathbf{v}|^{2} \approx \frac{1}{\varrho_{0} c^{2}}\left(p_{\sim}\right)^{2}$

$$
p_{\sim_{t t}}-c^{2} \Delta p_{\sim}-\delta \Delta p_{\sim_{t}}=\frac{1}{\varrho_{0} c^{2}}\left(1+\frac{B}{2 A}\right) p_{\sim t t}^{2}
$$

$\delta=\kappa\left(\operatorname{Pr}\left(\frac{4}{3}+\frac{\varsigma_{V}}{\mu_{V}}\right)+\gamma-1\right) \ldots$ diffusivity of sound; $\kappa \ldots$ thermal diffusivity $\frac{B}{A} \hat{=} \gamma-1 \ldots$ nonlinearity parameter (in liquids / gases)

Advanced Models of Nonlinear Acoustics (Examples)

- Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014], [Christov 2009], [Straughan 2010]

$$
\tau \psi_{t t t}+\psi_{t t}-c^{2} \Delta \psi-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}\right)^{2}+|\nabla \psi|^{2}\right)_{t}
$$

τ. . . relaxation time

Advanced Models of Nonlinear Acoustics (Examples)

- Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014], [Christov 2009], [Straughan 2010]

$$
\tau \psi_{t t t}+\psi_{t t}-c^{2} \Delta \psi-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}\right)^{2}+|\nabla \psi|^{2}\right)_{t}
$$

$\tau \ldots$. relaxation time
$z:=\psi_{t}+\frac{c^{2}}{\delta+\tau c^{2}} \psi$ solves weakly damped wave equation

$$
z_{t t}-\tilde{c} \Delta z+\gamma z_{t}=r(z, \psi)
$$

with $\tilde{c}=c^{2}+\frac{\delta}{\tau}, \gamma=\frac{1}{\tau}-\frac{c^{2}}{\delta+\tau c^{2}}>0$
\rightsquigarrow second sound phenomenon

Advanced Models of Nonlinear Acoustics (Examples)

- Blackstock-Crighton equation [Brunnhuber \& Jordan 2016], [Blackstock 1963], [Crighton 1979]
$\left(\partial_{t}-a \Delta\right)\left(\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}\right)-r a \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t t}$ $a=\frac{\nu}{\operatorname{Pr}} \ldots$ thermal conductivity

Advanced versus Classical Models of Nonlinear Acoustics

- Blackstock-Crighton equation [Brunnhuber \& Jordan 2016], [Blackstock 1963], [Crighton 1979]
$\left(\partial_{t}-a \Delta\right)\left(\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}\right)-r a \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t t}$
$a=\frac{\nu}{\operatorname{Pr}} \ldots$ thermal conductivity
- Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014], [Christov 2009], [Straughan 2010]

$$
\tau \psi_{t t t}+\psi_{t t}-c^{2} \Delta \psi-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}\right)^{2}+|\nabla \psi|^{2}\right)_{t}
$$

τ. . . relaxation time

- cf. Kuznetsov:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

- further models:[Angel \& Aristegui 2014], [Christov \& Christov \& Jordan 2007], [Kudryashov \& Sinelshchikov 2010], [Ockendon \& Tayler 1983], [Makarov \& Ochmann 1996], [Rendón \& Ezeta \&Pérez-López 2013], [Rasmussen \& Sørensen \& Christiansen 2008], [Soderholm 2006], ...
- resonances, shock waves:[Ockendon \& Ockendon \& Peake \& Chester 1993], [Ockendon \& Ockendon 2001, 2004, 2016],...
- traveling waves solutions:[Jordan 2004], [Chen \& Torres \& Walsh 2009], [Keiffer \& McNorton \& Jordan \& Christov, 2014], [Gaididei \& Rasmussen \& Christiansen \& Sørensen, 2016],...
- well-posendness and asymptotic behaviour:
for KZK: [Rozanova-Pierrat 2007, 2008, 2009, 2010]
for Westervelt, Kuznetsov, Blackstock-Crighton, JMGT on bounded domain Ω :
based on semigroup theory and energy estimates:[BK \& Lasiecka 2009, 2012], [BK \& Lasiecka \& Veljović 2011], [BK \& Lasiecka \& Marchand 2012], [BK \& Lasiecka \& Pospiezalska 2012], [Lasiecka \& Wang 2015], [Liu \& Triggiani 2013], [Marchand \& McDevitt \& Triggiani 2012], [Nikolić 2015], [Nikolić \& BK 2016], [Pellicer \& Solá-Morales 2019], , [Dell'Oro\&Lasiecka\&Pata 2020] based on maximal L_{p} regularity:[Meyer \& Wilke 2011, 2013], [Meyer \& Simonett 2016], [Brunnhuber \& Meyer 2016], [BK 2016] Cauchy problem (on $\Omega=\mathbb{R}^{\ltimes}$)
for Kuznetsov: [Dekkers \& Rozanova-Pierrat 2019]
for JMGT: [Pellicer \& Said-Houari 2017], [Nikolić \& Said-Houari 2021]
- control of JMGT [Bucci\&Lasiecka 2020], [Bucci\&Pandolfi 2020].

The Westervelt equation: potential degeneracy

with $\kappa:=\frac{1+\frac{B}{2 A}}{\varrho_{0} c^{2}}, u=p_{\sim}$

$$
u_{t t}-c^{2} \Delta u-b \Delta u_{t}=\kappa\left(u^{2}\right)_{t t}
$$

The Westervelt equation: potential degeneracy

with $\kappa:=\frac{1+\frac{B}{2 A}}{\varrho_{0} c^{2}}, u=p_{\sim}$

$$
u_{t t}-c^{2} \Delta u-b \Delta u_{t}=\kappa\left(u^{2}\right)_{t t}
$$

\Leftrightarrow

$$
\left(u-\kappa u^{2}\right)_{t t}-c^{2} \Delta u-b \Delta u_{t}=0
$$

The Westervelt equation: potential degeneracy

with $\kappa:=\frac{1+\frac{B}{2 A}}{\varrho_{0} c^{2}}, u=p_{\sim}$

$$
\begin{gathered}
u_{t t}-c^{2} \Delta u-b \Delta u_{t}=\kappa\left(u^{2}\right)_{t t} \\
\left(u-\kappa u^{2}\right)_{t t}-c^{2} \Delta u-b \Delta u_{t}=0
\end{gathered}
$$

This also illustrates state dependence of the effective wave speed:

$$
u_{t t}-\tilde{c}(u)^{2} \Delta u-\tilde{b}(u) \Delta u_{t}=f(u)
$$

with $\tilde{c}(u)=\frac{c}{\sqrt{1-2 \kappa u}}, \tilde{b}(u)=\frac{b}{1-2 \kappa u}, f(u)=\frac{2 \kappa\left(u_{t}\right)^{2}}{1-2 \kappa u}$
as long as $2 \kappa u<1$ (otherwise the model loses its validity)

parameter asymptotics

Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation $\quad\left(b=\delta+\tau c^{2}\right)$

$$
\tau \psi_{t t t}^{\tau}+\psi_{t t}^{\tau}-c^{2} \Delta \psi^{\tau}-b \Delta \psi_{t}^{\tau}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\tau}\right)^{2}+\left|\nabla \psi^{\tau}\right|^{2}\right)_{t}
$$

Kuznetsov's equation:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation $\quad\left(b=\delta+\tau c^{2}\right)$

$$
\tau \psi_{t t t}^{\tau}+\psi_{t t}^{\tau}-c^{2} \Delta \psi^{\tau}-b \Delta \psi_{t}^{\tau}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\tau}\right)^{2}+\left|\nabla \psi^{\tau}\right|^{2}\right)_{t}
$$

Kuznetsov's equation:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{τ} as $\tau \searrow 0$?
Does ψ^{0} solve Kuznetsov's equation?

Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation $\quad\left(b=\delta+\tau c^{2}\right)$

$$
\tau \psi_{t t t}^{\tau}+\psi_{t t}^{\tau}-c^{2} \Delta \psi^{\tau}-b \Delta \psi_{t}^{\tau}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\tau}\right)^{2}+\left|\nabla \psi^{\tau}\right|^{2}\right)_{t}
$$

Kuznetsov's equation:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{τ} as $\tau \searrow 0$?
Does ψ^{0} solve Kuznetsov's equation?
[Bongarti\&Charoenphon\&Lasiecka; BK\& Nikolić, 2019-21]

Remarks

- We will consider the "Westervelt type" and the "Kuznetsov type" equation; without and with the gradient nonlinearity $|\nabla \psi|_{t}^{2}$

Remarks

- We will consider the "Westervelt type" and the "Kuznetsov type" equation; without and with the gradient nonlinearity $|\nabla \psi|_{t}^{2}$
- For $\tau=0$ (classical Westervelt and Kuznetsov equation) the reformulation of the linearization as a first order system leads to an analytic semigroup and maximal parabolic regularity. These properties get lost with $\tau>0$; the equation loses its "parabolic nature".
This is consistent with physics: infinite \rightarrow finite propagation speed.

Remarks

- We will consider the "Westervelt type" and the "Kuznetsov type" equation; without and with the gradient nonlinearity $|\nabla \psi|_{t}^{2}$
- For $\tau=0$ (classical Westervelt and Kuznetsov equation) the reformulation of the linearization as a first order system leads to an analytic semigroup and maximal parabolic regularity.
These properties get lost with $\tau>0$; the equation loses its "parabolic nature".
This is consistent with physics: infinite \rightarrow finite propagation speed.
- As in the classical models, potential degeneracy can be an issue

$$
\begin{aligned}
\tau \psi_{t t t}^{\tau}+\psi_{t t}^{\tau}-c^{2} \Delta \psi^{\tau}-b \Delta \psi_{t}^{\tau} & =\left(\frac{k}{2}\left(\psi_{t}^{\tau}\right)^{2}+\left|\nabla \psi^{\tau}\right|^{2}\right)_{t} \\
& =k \psi_{t}^{\tau} \psi_{t t}^{\tau}+\left|\nabla \psi^{\tau}\right|_{t}^{2}
\end{aligned}
$$

Remarks

- We will consider the "Westervelt type" and the "Kuznetsov type" equation; without and with the gradient nonlinearity $|\nabla \psi|_{t}^{2}$
- For $\tau=0$ (classical Westervelt and Kuznetsov equation) the reformulation of the linearization as a first order system leads to an analytic semigroup and maximal parabolic regularity.
These properties get lost with $\tau>0$; the equation loses its "parabolic nature".
This is consistent with physics: infinite \rightarrow finite propagation speed.
- As in the classical models, potential degeneracy can be an issue

$$
\begin{aligned}
& \tau \psi_{t t t}^{\tau}+\psi_{t t}^{\tau}-c^{2} \Delta \psi^{\tau}-b \Delta \psi_{t}^{\tau}=\left(\frac{k}{2}\left(\psi_{t}^{\tau}\right)^{2}+\left|\nabla \psi^{\tau}\right|^{2}\right)_{t} \\
&=k \psi_{t}^{\tau} \psi_{t t}^{\tau}+\left|\nabla \psi^{\tau}\right|_{t}^{2} \\
& \Longleftrightarrow \tau \psi_{t t t}^{\tau}+\left(1-k \psi_{t}^{\tau}\right) \psi_{t t}^{\tau}-c^{2} \Delta \psi^{\tau}-b \Delta \psi_{t}^{\tau}=\left|\nabla \psi^{\tau}\right|_{t}^{2}
\end{aligned}
$$

Plan of the analysis

- Establish well-posedness of the linearized equation along with energy estimates.
- Use these results to prove well-posedness of the Westervelt type JMGT equation for $\tau>0$ by a fixed point argument.
- Establish additional higher order energy estimates.
- Use these results to prove well-posedness of the Kuznetsov type JMGT equation for $\tau>0$ (sufficiently small) by a fixed point argument.
- Take limits as $\tau \rightarrow 0$

Plan of the analysis

- Establish well-posedness of the linearized equation along with energy estimates.
- Use these results to prove well-posedness of the Westervelt type JMGT equation for $\tau>0$ by a fixed point argument.
- Establish additional higher order energy estimates.
- Use these results to prove well-posedness of the Kuznetsov type JMGT equation for $\tau>0$ (sufficiently small) by a fixed point argument.
- Take limits as $\tau \rightarrow 0$

圊
BK \& Vanja Nikolić. On the Jordan-Moore-Gibson-Thompson equation: well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time. Math. Meth. Mod. Appl. Sci. (M3AS), 29:2523-2556, 2019.
宣
BK \& Vanja Nikolić. Vanishing relaxation time limit of the Jordan-Moore-Gibson-Thompson wave equation with Neumann and absorbing boundary conditions. Pure and Applied Functional Analysis, 5:1-26, 2020.

The linearized problem

$$
\left\{\begin{array}{l}
\tau \psi_{t t t}+\alpha(x, t) \psi_{t t}-c^{2} \Delta \psi-b \Delta \psi_{t}=f \quad \text { in } \Omega \times(0, T), \\
\psi=0 \quad \text { on } \partial \Omega \times(0, T), \\
\left(\psi, \psi_{t}, \psi_{t t}\right)=\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \quad \text { in } \Omega \times\{0\},
\end{array}\right.
$$

under the assumptions

$$
\begin{gather*}
\alpha(x, t) \geq \underline{\alpha}>0 \text { on } \Omega \text { a.e. in } \Omega \times(0, T) . \tag{1}\\
\alpha \in L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right) \cap L^{\infty}\left(0, T ; W^{1,3}(\Omega)\right), \\
f \in H^{1}\left(0, T ; L^{2}(\Omega)\right) . \tag{2}\\
\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \times H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \times H_{0}^{1}(\Omega) . \tag{3}
\end{gather*}
$$

The linearized problem

$$
\left\{\begin{array}{l}
\tau \psi_{t t t}+\alpha(x, t) \psi_{t t}-c^{2} \Delta \psi-b \Delta \psi_{t}=f \quad \text { in } \Omega \times(0, T), \tag{4}\\
\psi=0 \quad \text { on } \partial \Omega \times(0, T), \\
\left(\psi, \psi_{t}, \psi_{t t}\right)=\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \quad \text { in } \Omega \times\{0\},
\end{array}\right.
$$

Theorem (lin)

Let $c^{2}, b, \tau>0$, and let $T>0$. Let the assumptions (1), (2), (3) hold. Then there exists a unique solution $\psi \in X^{W}:=W^{1, \infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \cap W^{2, \infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{3}\left(0, T ; L^{2}(\Omega)\right)$.

The solution fulfils the estimate

$$
\begin{aligned}
\|\psi\|_{W, \tau}^{2} & :=\tau^{2}\left\|\psi_{t t t}\right\|_{L^{2} L^{2}}^{2}+\tau\left\|\psi_{t t}\right\|_{L^{\infty} H^{1}}^{2}+\left\|\psi_{t t}\right\|_{L^{2} H^{1}}^{2}+\|\psi\|_{W^{1, \infty} H^{2}}^{2} \\
& \leq C(\alpha, T, \tau)\left(\left|\psi_{0}\right|_{H^{2}}^{2}+\left|\psi_{1}\right|_{H^{2}}^{2}+\tau\left|\psi_{2}\right|_{H^{1}}^{2}+\|f\|_{L^{\infty} L^{2}}^{2}+\left\|f_{t}\right\|_{L^{2} L^{2}}^{2}\right) .
\end{aligned}
$$

If additionally $\|\nabla \alpha\|_{L^{\infty} L^{3}}<\frac{\alpha}{C_{H^{1}, L^{6}}^{\Omega}}$ holds, then $C(\alpha, T, \tau)$ is independent of τ.

Well-posedness of the Westervelt type JMGT equation

$$
\left\{\begin{array}{l}
\tau \psi_{t t t}+\left(1-k \psi_{t}\right) \psi_{t t}-c^{2} \Delta \psi-b \Delta \psi_{t}=0 \quad \text { in } \Omega \times(0, T), \\
\psi=0 \quad \text { on } \partial \Omega \times(0, T), \\
\left(\psi, \psi_{t}, \psi_{t t}\right)=\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \quad \text { in } \Omega \times\{0\},
\end{array}\right.
$$

Theorem

Let $c^{2}, b>0, k \in \mathbb{R}$ and let $T>0$. There exist $\rho, \rho_{0}>0$ such that for all $\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \times H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \times H_{0}^{1}(\Omega)$ satisfying

$$
\left\|\psi_{0}\right\|_{H^{2}(\Omega)}^{2}+\left\|\psi_{1}\right\|_{H^{2}(\Omega)}^{2}+\tau\left\|\psi_{2}\right\|_{H^{1}(\Omega)}^{2} \leq \rho_{0}^{2},
$$

there exists a unique solution $\psi \in X^{W}$ and $\|\psi\|_{W, \tau}^{2} \leq \rho^{2}$.

Banach's Contraction Principle for $\mathcal{T}: \phi \mapsto \psi$ solution ψ of (4) with $\alpha=1-k \phi_{t}, f=0$: self-mapping on $B_{\rho}^{X^{W}}$: energy estimate from Theorem (lin).
contractivity: $\left\|\mathcal{T}\left(\phi_{1}\right)-\mathcal{T}\left(\phi_{2}\right)\right\| w, \tau \leq q\left\|\phi_{1}-\phi_{2}\right\| w, \tau$ by estimate from Theorem (lin):
$\hat{\psi}=\psi_{1}-\psi_{2}=\mathcal{T}\left(\phi_{1}\right)-\mathcal{T}\left(\phi_{2}\right)$ solves (4) with $\alpha=1-k \phi_{1 t}$ and
$f=k \hat{\phi}_{t} \psi_{2 t t}$ where $\hat{\phi}=\phi_{1}-\phi_{2}$.

Limits for vanishing relaxation time

Consider the τ-independent part of the norms

$$
\begin{aligned}
& \|\psi\|_{W, \tau}^{2}:= \\
& \tau^{2}\left\|\psi_{t t t}\right\|_{L^{2} L^{2}}^{2}+\tau\left\|\psi_{t t}\right\|_{L^{\infty} H^{1}}^{2}+\left\|\psi_{t t}\right\|_{L^{2} H^{1}}^{2}+\|\psi\|_{W^{1, \infty} H^{2}}^{2}
\end{aligned}
$$

namely

$$
\|\psi\|_{\bar{X} W}^{2}:=\left\|\psi_{t t}\right\|_{L^{2} H^{1}}^{2}+\|\psi\|_{W^{1, \infty} H^{2}}^{2},
$$

since these norms will be uniformly bounded, independently of τ.

Limits for vanishing relaxation time

Consider the τ-independent part of the norms

$$
\|\psi\|_{\bar{\chi}^{W}}^{2}:=\left\|\psi_{t t}\right\|_{L^{2} H^{1}}^{2}+\|\psi\|_{W^{1, \infty} H^{2}}^{2},
$$

and recall the spaces for the initial data

$$
X_{0}^{W}:=H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \times H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \times H_{0}^{1}(\Omega)
$$

Theorem

Let $c^{2}, b, T>0$, and $k \in \mathbb{R}$. Then there exist $\bar{\tau}, \rho_{0}>0$ such that for all $\left(\psi_{0}, \psi_{1}, \psi_{2}\right) \in X_{0}^{W}$, the family $\left(\psi^{\tau}\right)_{\tau \in(0, \bar{\tau})}$ of solutions to the Westervelt type JMGT equation converges weakly* in \bar{X}^{W} to a solution $\bar{\psi} \in \bar{X}^{W}$ of the Westervelt equation with initial conditions $\bar{\psi}(0)=\psi_{0}, \bar{\psi}_{t}(0)=\psi_{1}$.

Numerical Experiments

- comparison of Westervelt-JMGT and Westervelt solutions
- numerical experiments for water in a 1-d channel geometry

$$
c=1500 \mathrm{~m} / \mathrm{s}, \delta=6 \cdot 10^{-9} \mathrm{~m}^{2} / \mathrm{s}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, B / A=5 ;
$$

- space discretization with B-splines (Isogeometric Analysis): quadratic basis functions, globally $C^{2} ; 251$ dofs on $\Omega=[0,0.2 m]$
- time discretization by Newmark scheme, adapted to 3rd order equation; 800 time steps on $[0, T]=[0,45 \mu s]$
- initial conditions $\left(\psi_{0}, \psi_{1}, \psi_{2}\right)=\left(0, \mathcal{A} \exp \left(-\frac{(x-0.1)^{2}}{2 \sigma^{2}}\right), 0\right)$ with $\mathcal{A}=8 \cdot 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2}$ and $\sigma=0.01$,

Snapshots of pressure $p=\varrho \psi_{t}$ for fixed relaxation time $\tau=0.1 \mu \mathrm{~s}$

Pressure wave for different relaxation parameters τ at final time $t=45 \mu \mathrm{~s}$.

Relative errors as $\tau \rightarrow 0$

Recap: Vanishing relaxation time

Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\tau}+\psi_{t t}^{\tau}-c^{2} \Delta \psi^{\tau}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\tau}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\tau}\right)^{2}+\left|\nabla \psi^{\tau}\right|^{2}\right)_{t}
$$

versus Kuznetsov's equation:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\left(\psi_{t}\right)^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{τ} as $\tau \searrow 0$? Yes
Does ψ^{0} solve Kuznetsov's equation? Yes
[Bongarti\&Charoenphon\&Lasiecka; BK\& Nikolić, 2019-21]

limit in JMGT/Kuznetsov/Westervelt

 for vanishing diffusivity of sound δ
Vanishing diffusivity of sound

Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

and Kuznetsov's equation:

$$
\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\delta \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Vanishing diffusivity of sound

Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

and Kuznetsov's equation:

$$
\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\delta \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{δ} as $\delta \searrow 0$?
Does ψ^{0} solve the respective inviscid $(\delta=0)$ equation?

Vanishing diffusivity of sound

Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

and Kuznetsov's equation:

$$
\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\delta \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{δ} as $\delta \searrow 0$?
Does ψ^{0} solve the respective inviscid $(\delta=0)$ equation?
Challenge: $\delta>0$ is crucial for global in time well-posedness and exponential decay in $d \in\{2,3\}$ space dimensions.

Vanishing diffusivity of sound

Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

and Kuznetsov's equation:

$$
\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\delta \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{δ} as $\delta \searrow 0$?
Does ψ^{0} solve the respective inviscid $(\delta=0)$ equation?
Challenge: $\delta>0$ is crucial for global in time well-posedness and exponential decay in $d \in\{2,3\}$ space dimensions.
[BK\& Nikolić, SIAP 2021]
recover results (in particular on required regularity of initial data) from
[Dörfler Gerner Schnaubelt 2016] for $\delta=0$

limit in Blackstock-Crighton

for vanishing thermal conductivity a

Vanishing thermal conductivity

Blackstock-Crighton equation
$\left(\partial_{t}-a \Delta\right)\left(\psi_{t t}^{a}-c^{2} \Delta \psi^{a}-\delta \Delta \psi_{t}^{a}\right)-r a \Delta \psi_{t}^{a}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{a 2}\right)+\left|\nabla \psi^{a}\right|^{2}\right)_{t t}$
Kuznetsov's equation:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

Vanishing thermal conductivity

Blackstock-Crighton equation
$\left(\partial_{t}-a \Delta\right)\left(\psi_{t t}^{a}-c^{2} \Delta \psi^{a}-\delta \Delta \psi_{t}^{a}\right)-r a \Delta \psi_{t}^{a}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{a 2}\right)+\left|\nabla \psi^{a}\right|^{2}\right)_{t t}$
Kuznetsov's equation:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{a} as $a \searrow 0$?
Does ψ^{0} solve Kuznetsov's equation?

Vanishing thermal conductivity

Blackstock-Crighton equation
$\left(\partial_{t}-a \Delta\right)\left(\psi_{t t}^{a}-c^{2} \Delta \psi^{a}-\delta \Delta \psi_{t}^{a}\right)-r a \Delta \psi_{t}^{a}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{a 2}\right)+\left|\nabla \psi^{a}\right|^{2}\right)_{t t}$
Kuznetsov's equation:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{a} as $a \searrow 0$?
Does ψ^{0} solve Kuznetsov's equation?
Integrate once wrt time: Consistency of initial data needed:
$\psi_{2}-c^{2} \Delta \psi_{0}-\delta \Delta \psi_{1}=\frac{B}{A c^{2}} \psi_{1} \psi_{2}+2 \nabla \psi_{0} \cdot \nabla \psi_{1}$

Vanishing thermal conductivity

Blackstock-Crighton equation
$\left(\partial_{t}-a \Delta\right)\left(\psi_{t t}^{a}-c^{2} \Delta \psi^{a}-\delta \Delta \psi_{t}^{a}\right)-r a \Delta \psi_{t}^{a}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{a 2}\right)+\left|\nabla \psi^{a}\right|^{2}\right)_{t t}$
Kuznetsov's equation:

$$
\psi_{t t}-c^{2} \Delta \psi-\delta \Delta \psi_{t}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{2}\right)+|\nabla \psi|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{a} as $a \searrow 0$?
Does ψ^{0} solve Kuznetsov's equation?
Integrate once wrt time: Consistency of initial data needed:
$\psi_{2}-c^{2} \Delta \psi_{0}-\delta \Delta \psi_{1}=\frac{B}{A c^{2}} \psi_{1} \psi_{2}+2 \nabla \psi_{0} \cdot \nabla \psi_{1}$
[BK\& Thalhammer, M3AS 2018]

limit in time fractional JMGT

for differentiation order $\alpha \nearrow 1$

Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation

$$
\tau^{\alpha} D_{t}^{2+\alpha} \psi^{\alpha}+\psi_{\mathrm{tt}}^{\alpha}-c^{2} \Delta \psi^{\alpha}-\left(\delta+\tau^{\alpha} c^{2}\right) \Delta D_{t}^{\alpha} \psi^{\alpha}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation
$\tau^{\alpha} D_{t}^{2+\alpha} \psi^{\alpha}+\psi_{t t}^{\alpha}-c^{2} \Delta \psi^{\alpha}-\left(\delta+\tau^{\alpha} c^{2}\right) \Delta D_{t}^{\alpha} \psi^{\alpha}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}$
Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{α} as $\alpha \nearrow 1$?
Does ψ^{α} solve the respective integer order equation?

Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation
$\tau^{\alpha} D_{t}^{2+\alpha} \psi^{\alpha}+\psi_{t t}^{\alpha}-c^{2} \Delta \psi^{\alpha}-\left(\delta+\tau^{\alpha} c^{2}\right) \Delta D_{t}^{\alpha} \psi^{\alpha}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}$
Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{α} as $\alpha \nearrow 1$?
Does ψ^{α} solve the respective integer order equation?

- Derivation of proper models from physical balance and constitutive laws

Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation
$\tau^{\alpha} D_{t}^{2+\alpha} \psi^{\alpha}+\psi_{t t}^{\alpha}-c^{2} \Delta \psi^{\alpha}-\left(\delta+\tau^{\alpha} c^{2}\right) \Delta D_{t}^{\alpha} \psi^{\alpha}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}$
Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{α} as $\alpha \nearrow 1$?
Does ψ^{α} solve the respective integer order equation?

- Derivation of proper models from physical balance and constitutive laws
- Leading derivative order in PDE changes with α.

Fractional to integer damping

fractional Jordan-Moore-Gibson-Thompson equation
$\tau^{\alpha} D_{t}^{2+\alpha} \psi^{\alpha}+\psi_{t t}^{\alpha}-c^{2} \Delta \psi^{\alpha}-\left(\delta+\tau^{\alpha} c^{2}\right) \Delta D_{t}^{\alpha} \psi^{\alpha}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}$
Jordan-Moore-Gibson-Thompson equation

$$
\tau \psi_{t t t}^{\delta}+\psi_{t t}^{\delta}-c^{2} \Delta \psi^{\delta}-\left(\delta+\tau c^{2}\right) \Delta \psi_{t}^{\delta}=\left(\frac{B}{2 A c^{2}}\left(\psi_{t}^{\delta}\right)^{2}+\left|\nabla \psi^{\delta}\right|^{2}\right)_{t}
$$

Existence of a limit ψ^{0} of ψ^{α} as $\alpha \nearrow 1$?
Does ψ^{α} solve the respective integer order equation?

- Derivation of proper models from physical balance and constitutive laws
- Leading derivative order in PDE changes with α.
[BK\& Nikolić, M3AS 2022]
fractional damping models in ultrasonics

Figure 2.6 in [Chan\&Perlas, Basics of Ultrasound Imaging, 2011]

Figure 2.6 in [Chan\&Perlas, Basics of Ultrasound Imaging, 2011]
\rightsquigarrow constitutive modeling of

- pressure - density relation
- temperature - heat flux relation

Fractional Models of (Linear) Viscoelasticity

- equation of motion (resulting from balance of forces)

$$
\varrho \mathbf{u}_{t t}=\operatorname{div} \sigma+\mathbf{f}
$$

- strain as symmetric gradient of displacements:

$$
\epsilon=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right) .
$$

- constitutive model: stress-strain relation
u. . . displacements
σ. . . stress tensor
ϵ. . . strain tensor
@. . . mass density

Fractional Models of (Linear) Viscoelasticity 1-d setting

- equation of motion (resulting from balance of forces)

$$
\varrho u_{t t}=\sigma_{x}+f
$$

- strain as symmetric gradient of displacements:

$$
\epsilon=u_{x} .
$$

- constitutive model: stress-strain relation:

Hooke's law (pure elasticity): $\sigma=b_{0} \epsilon$
Newton model: $\sigma=b_{1} \epsilon_{t}$
Kelvin-Voigt model: $\quad \sigma=b_{0} \epsilon+b_{1} \epsilon_{t}$
Maxwell model: $\sigma+a_{1} \sigma_{t}=b_{0} \epsilon$
Zener model: $\quad \sigma+a_{1} \sigma_{t}=b_{0} \epsilon+b_{1} \epsilon_{t}$

Fractional Models of (Linear) Viscoelasticity 1-d setting

- equation of motion (resulting from balance of forces)

$$
\varrho u_{t t}=\sigma_{x}+f
$$

- strain as symmetric gradient of displacements:

$$
\epsilon=u_{x}
$$

- constitutive model: stress-strain relation:

$$
\text { fractional Newton model: } \quad \sigma=b_{1} \partial_{t}^{\beta} \epsilon
$$

fractional Kelvin-Voigt model: $\quad \sigma=b_{0} \epsilon+b_{1} \partial_{t}^{\beta} \epsilon$
fractional Maxwell model: $\quad \sigma+a_{1} \partial_{t}^{\alpha} \sigma=b_{0} \epsilon$
fractional Zener model: $\quad \sigma+a_{1} \partial_{t}^{\alpha} \sigma=b_{0} \epsilon+b_{1} \partial_{t}^{\beta} \epsilon$

$$
\text { general model class: } \quad \sum_{n=0}^{N} a_{n} \partial_{t}^{\alpha_{n}} \sigma=\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \epsilon
$$

[Caputo 1967, Atanackovic, Pilipović, Stanković, Zorịcą 2014]

Fractional Models of (Linear) Acoustics via $p-\varrho$

balance of momentum

$$
\varrho_{0} \mathbf{v}_{t}=-\nabla p+\mathbf{f}
$$

balance of mass

$$
\varrho \nabla \cdot \mathbf{v}=-\varrho_{t}
$$

equation of state

$$
\frac{\varrho_{\sim}}{\varrho_{0}}=\frac{p_{\sim}}{p_{0}}
$$

Fractional Models of (Linear) Acoustics via $p-\varrho$ balance of momentum

$$
\varrho_{0} \mathbf{v}_{t}=-\nabla p+\mathbf{f}
$$

balance of mass
equation of state

$$
\begin{aligned}
\varrho \nabla \cdot \mathbf{v} & =-\varrho_{t} \\
\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \frac{\varrho_{\sim}}{\varrho_{0}} & =\sum_{n=0}^{N} a_{n} \partial_{t}^{\alpha_{n}} \frac{p_{\sim}}{p_{0}}
\end{aligned}
$$

Fractional Models of (Linear) Acoustics via $p-\varrho$

 balance of momentum$$
\varrho_{0} \mathbf{v}_{t}=-\nabla p+\mathbf{f}
$$

balance of mass

$$
\begin{aligned}
\varrho \nabla \cdot \mathbf{v} & =-\varrho_{t} \\
\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \frac{\varrho_{\sim}}{\varrho_{0}} & =\sum_{n=0}^{N} a_{n} \partial_{t}^{\alpha_{n}} \frac{p_{\sim}}{p_{0}}
\end{aligned}
$$

equation of state
insert constitutive equations into combination of balance laws \rightsquigarrow fractional acoustic wave equations [Holm 2019, Szabo 2004]:

Fractional Models of (Linear) Acoustics via $p-\varrho$

 balance of momentum$$
\varrho_{0} \mathbf{v}_{t}=-\nabla p+\mathbf{f}
$$

balance of mass

$$
\varrho \nabla \cdot \mathbf{v}=-\varrho_{t}
$$

equation of state

$$
\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \frac{\varrho_{\sim}}{\varrho_{0}}=\sum_{n=0}^{N} a_{n} \partial_{t}^{\alpha_{n}} \frac{p_{\sim}}{p_{0}}
$$

insert constitutive equations into combination of balance laws \rightsquigarrow fractional acoustic wave equations [Holm 2019, Szabo 2004]:

- Caputo-Wismer-Kelvin wave equation (fractional Kelvin-Voigt):

$$
p_{t t}-b_{0} \Delta p-b_{1} \partial_{t}^{\beta} \triangle p=\tilde{f}
$$

- modified Szabo wave equation (fractional Maxwell):

$$
p_{t t}-a_{1} \partial_{t}^{2+\alpha} p-b_{0} \triangle p=\tilde{f}
$$

- fractional Zener wave equation:

$$
p_{t t}-a_{1} \partial_{t}^{2+\alpha} p-b_{0} \triangle p+b_{1} \partial_{t}^{\beta} \triangle p=\tilde{f}
$$

- general fractional model:

$$
\sum_{n=0}^{N} a_{n} \partial_{t}^{2+\alpha_{n}} p-\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \triangle p=\tilde{f}
$$

Fractional Models of (Linear) Acoustics via $\vartheta-\boldsymbol{q}$

 recall:Classically: Fourier's law

$$
q=-K \nabla \vartheta
$$

leads to infinite speed of propagation paradox.
Maxwell-Cattaneo law $\tau \boldsymbol{q}_{t}+\boldsymbol{q}=-K \nabla \vartheta$
allows for "thermal waves" (second sound phenomenon) can lead to violation of the 2nd law of thermodynamics

Fractional Models of (Linear) Acoustics via $\vartheta-\boldsymbol{q}$

 recall:Classically: Fourier's law

$$
\boldsymbol{q}=-K \nabla \vartheta
$$

leads to infinite speed of propagation paradox.
Maxwell-Cattaneo law $\quad \tau \boldsymbol{q}_{t}+\boldsymbol{q}=-K \nabla \vartheta$
allows for "thermal waves" (second sound phenomenon) can lead to violation of the 2nd law of thermodynamics
"interpolate" by using fractional derivatives
[Compte \& Metzler 1997, Povstenko 2011]:
(GFE I)
$\left(1+\tau^{\alpha} \mathrm{D}_{t}^{\alpha}\right) \boldsymbol{q}(t)=-K \tau_{\vartheta}^{1-\alpha} \mathrm{D}_{t}^{1-\alpha} \nabla \vartheta ;$
(GFE II)
$\left(1+\tau^{\alpha} D_{t}^{\alpha}\right) q(t)=-K \tau_{\vartheta}^{\alpha-1} D_{t}^{\alpha-1} \nabla \vartheta ;$
(GFE III)
(GFE)

$$
\begin{aligned}
\left(1+\tau \partial_{t}\right) \boldsymbol{q}(t) & =-K \tau_{\vartheta}^{1-\alpha} \mathrm{D}_{t}^{1-\alpha} \nabla \vartheta ; \\
\left(1+\tau^{\alpha} \mathbf{D}_{t}^{\alpha}\right) \boldsymbol{q}(t) & =-K \nabla \vartheta
\end{aligned}
$$

Fractional derivatives

Abel fractional integral operator

$$
l_{a}^{\gamma} f(x)=\frac{1}{\Gamma(\gamma)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-\gamma}} d s
$$

Then a fractional (time) derivative can be defined by either

$$
\begin{array}{ll}
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{1-\alpha} f & \text { Riemann-Liouville derivative } \\
{ }_{a}^{C} D_{t}^{\alpha} f=I_{a}^{1-\alpha} \frac{d f}{d s} & \text { Djrbashian-Caputo derivative }
\end{array}
$$

Fractional derivatives

Abel fractional integral operator

$$
l_{a}^{\gamma} f(x)=\frac{1}{\Gamma(\gamma)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-\gamma}} d s
$$

Then a fractional (time) derivative can be defined by either
or

$$
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{1-\alpha} f \quad \text { Riemann-Liouville derivative }
$$

$$
{ }_{a}^{c} D_{t}^{\alpha} f=I_{a}^{1-\alpha} \frac{d f}{d s} \quad \text { Djrbashian-Caputo derivative }
$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero \rightsquigarrow appropriate for prescribing initial values

Fractional derivatives

Abel fractional integral operator

$$
l_{a}^{\gamma} f(x)=\frac{1}{\Gamma(\gamma)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-\gamma}} d s
$$

Then a fractional (time) derivative can be defined by either
or

$$
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{1-\alpha} f \quad \text { Riemann-Liouville derivative }
$$

$$
{ }_{a}^{c} D_{t}^{\alpha} f=l_{a}^{1-\alpha} \frac{d f}{d s} \quad \text { Djrbashian-Caputo derivative }
$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero \rightsquigarrow appropriate for prescribing initial values
some recent books on fractional PDEs: [Kubica \& Ryszewska \& Yamamoto 2020], [Jin 2021], [BK \& Rundell 2022]

Fractional derivatives

Abel fractional integral operator

$$
l_{a}^{\gamma} f(x)=\frac{1}{\Gamma(\gamma)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-\gamma}} d s
$$

Then a fractional (time) derivative can be defined by either

$$
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{1-\alpha} f \quad \text { Riemann-Liouville derivative }
$$

$$
{ }_{a}^{c} D_{t}^{\alpha} f=I_{a}^{1-\alpha} \frac{d f}{d s} \quad \text { Djrbashian-Caputo derivative }
$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero \rightsquigarrow appropriate for prescribing initial values
Nonlocal and causal character of these derivatives provides them with a "memory"

Fractional derivatives

Abel fractional integral operator

$$
l_{a}^{\gamma} f(x)=\frac{1}{\Gamma(\gamma)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-\gamma}} d s
$$

Then a fractional (time) derivative can be defined by either

$$
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{1-\alpha} f \quad \text { Riemann-Liouville derivative }
$$

$$
{ }_{a}^{c} D_{t}^{\alpha} f=I_{a}^{1-\alpha} \frac{d f}{d s} \quad \text { Djrbashian-Caputo derivative }
$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero \rightsquigarrow appropriate for prescribing initial values
Nonlocal and causal character of these derivatives provides them with a "memory"
\rightsquigarrow initial values are tied to later values and can therefore be better reconstructed backwards in time.

some inverse problems

Photoacoustic tomography PAT with fractional attenuation

- attenuation of ultrasound in human tissue follows a power law frequency dependence ω^{α}
\rightsquigarrow fractional derivative ∂_{t}^{α} term in time domain
- PAT acoustic (sub)problem: Reconstruct initial pressure from observations of pressure at some transducer array over time see, e.g., [Kuchment \& Kunyanski 2011]
- only mildly ill-posed without attenuation
- severely ill-posed in with integer (1st) order damping

Photoacoustic tomography PAT with fractional attenuation

- attenuation of ultrasound in human tissue follows a power law frequency dependence ω^{α}
\rightsquigarrow fractional derivative ∂_{t}^{α} term in time domain
- PAT acoustic (sub)problem: Reconstruct initial pressure from observations of pressure at some transducer array over time see, e.g., [Kuchment \& Kunyanski 2011]
- only mildly ill-posed without attenuation
- severely ill-posed in with integer (1st) order damping
? Uniqueness and reconstruction for PAT/TAT with fractional attenuation
? Dependence of instability on fractional differentition order

Photoacoustic tomography PAT with fractional attenuation

- attenuation of ultrasound in human tissue follows a power law frequency dependence ω^{α}
\rightsquigarrow fractional derivative ∂_{t}^{α} term in time domain
- PAT acoustic (sub)problem: Reconstruct initial pressure from observations of pressure at some transducer array over time see, e.g., [Kuchment \& Kunyanski 2011]
- only mildly ill-posed without attenuation
- severely ill-posed in with integer (1st) order damping
? Uniqueness and reconstruction for PAT/TAT with fractional attenuation
? Dependence of instability on fractional differentition order
Nonlocal and causal character of fractional derivatives provides them with a "memory"
\rightsquigarrow initial values are tied to later values and can therefore be better reconstructed backwards in time.

The inverse problem of PAT and TAT

Identify $u_{0}(x)$ in

$$
\begin{aligned}
u_{t t}+c^{2} \mathcal{A} u+D u & =0 \text { in } \Omega \times(0, T) \\
u(0)=u_{0}, \quad u_{t}(0) & =0 \text { in } \Omega
\end{aligned}
$$

where $\mathcal{A} u=-\triangle$ with homogeneous Dirichlet boundary conditions from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} . \ldots$ transducer array (surface or collection of discrete points)

The inverse problem of PAT and TAT

 Identify $u_{0}(x)$ in$$
\begin{aligned}
u_{t t}+c^{2} \mathcal{A} u+D u & =0 \text { in } \Omega \times(0, T) \\
u(0)=u_{0}, \quad u_{t}(0) & =0 \text { in } \Omega
\end{aligned}
$$

where $\mathcal{A} u=-\triangle$ with homogeneous Dirichlet boundary conditions from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} . \ldots$ transducer array (surface or collection of discrete points)
Caputo-Wismer-Kelvin:

$$
D=b \mathcal{A} \partial_{t}^{\beta} \quad \text { with } \beta \in[0,1], \quad b \geq 0
$$

fractional Zener:

$$
D=a \partial_{t}^{2+\alpha}+b \mathcal{A} \partial_{t}^{\beta} \quad \text { with } a>0, b \geq a c^{2}, 1 \geq \beta \geq \alpha>0
$$

space fractional Chen-Holm:

$$
D=b \mathcal{A}^{\tilde{\beta}} \partial_{t} \quad \text { with } \tilde{\beta} \in[0,1], \quad b \geq 0
$$

The inverse problem of PAT and TAT

Identify $u_{0}(x)$ in

$$
\begin{aligned}
u_{t t}+c^{2} \mathcal{A} u+D u & =0 \text { in } \Omega \times(0, T) \\
u(0)=u_{0}, \quad u_{t}(0) & =0 \text { in } \Omega
\end{aligned}
$$

where $\mathcal{A} u=-\triangle$ with homogeneous Dirichlet boundary conditions from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} . \ldots$ transducer array (surface or collection of discrete points)
C. . . H Caputo-Wismer-Kelvin / space fractional Chen-Holm:

$$
D=b \mathcal{A}^{\tilde{\beta}} \partial_{t}^{\beta} \quad \text { with } \beta \in[0,1], \tilde{\beta} \in[0,1], \quad b \geq 0
$$

FZ fractional Zener:

$$
D=a \partial_{t}^{2+\alpha}+b \mathcal{A} \partial_{t}^{\beta} \quad \text { with } a>0, b \geq a c^{2}, 1 \geq \beta \geq \alpha>0
$$

Uniqueness

Linear independence assumption:
For each eigenvalue λ of \mathcal{A} with eigenfunctions $\left(\varphi_{k}\right)_{k \in K^{\lambda}}$, the restrictions of the eigenfunctions to the observation manifold are linear independent: For any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$

$$
\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0 \text { for all } x \in \Sigma\right) \Longrightarrow\left(b_{k}=0 \text { for all } k \in K^{\lambda}\right)
$$

Theorem

Suppose the domain Ω and the operator \mathcal{A} are known. Then under the linear independence assumption we can uniquely recover the initial value $u_{0}(x)$ from time trace measurements g on Σ.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.
- It is a condition on zeros of eigenfunctions.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.
- It is a condition on zeros of eigenfunctions.
- Instead of $\mathcal{A} u=-\triangle$ we may have $\mathcal{A} u=-c_{0}^{2} \nabla \cdot\left(\frac{1}{\varrho_{0}} \nabla u\right)$ or $\mathcal{A} u=-c_{0}^{2} \triangle$ with $c_{0}=c_{0}(x)$ a spatially variable sound speed.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.
- It is a condition on zeros of eigenfunctions.
- Instead of $\mathcal{A} u=-\triangle$ we may have $\mathcal{A} u=-c_{0}^{2} \nabla \cdot\left(\frac{1}{\varrho_{0}} \nabla u\right)$ or $\mathcal{A} u=-c_{0}^{2} \triangle$ with $c_{0}=c_{0}(x)$ a spatially variable sound speed.
- Uniqueness of $c_{0}(x)$ from the same observations can be shown by Sturm-Liouville theory.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.
- It is a condition on zeros of eigenfunctions.
- Instead of $\mathcal{A} u=-\triangle$ we may have $\mathcal{A} u=-c_{0}^{2} \nabla \cdot\left(\frac{1}{\varrho_{0}} \nabla u\right)$ or $\mathcal{A} u=-c_{0}^{2} \triangle$ with $c_{0}=c_{0}(x)$ a spatially variable sound speed.
- Uniqueness of $c_{0}(x)$ from the same observations can be shown by Sturm-Liouville theory.
- tools of proof:
separation of variables (solution representation), analysis in Laplace domain (location of poles), uniqueness of eigenvalues from poles.
[BK\&Rundell. Inverse Problems, 37(4):045002]

Nonlinearity parameter imaging

- B / A parameter is sensitive to differences in tissue properties, thus appropriate for characterization of biological tissues
- viewing $\kappa=\frac{1}{\rho c^{2}}\left(\frac{B}{2 A}+1\right)$ as a spatially varying coefficient in the Westervelt equation, it can be used for medical imaging
- \rightsquigarrow acoustic nonlinearity parameter tomography [Bjørnø 1986; Burov, Gurinovich, Rudenko, Tagunov 1994; Cain 1986; Ichida, Sato, Linzer 1983; Varray, Basset, Tortoli, Cachard 2011; Zhang, Gong et al 1996, 2001]...

The inverse problem of nonlinearity parameter imaging

 Identify $k(x)$ in$$
\left.\begin{array}{ll}
\left(u-\kappa(x) u^{2}\right)_{t t}-c_{0}^{2} \Delta u+D u=r & \text { in } \Omega \times(0, T) \\
u=0 \text { on } \partial \Omega \times(0, T), \quad u(0)=0, & u_{t}(0)=0
\end{array} \quad \text { in } \Omega\right)
$$

(with excitation r) from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} \ldots$ transducer array (surface or collection of discrete points)

The inverse problem of nonlinearity parameter imaging Identify $k(x)$ in

$$
\begin{array}{ll}
\left(u-\kappa(x) u^{2}\right)_{t t}-c_{0}^{2} \Delta u+D u=r & \text { in } \Omega \times(0, T) \\
u=0 \text { on } \partial \Omega \times(0, T), \quad u(0)=0, & u_{t}(0)=0 \quad \text { in } \Omega
\end{array}
$$

(with excitation r) from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} \ldots$ transducer array (surface or collection of discrete points)
fractional damping
Caputo-Wismer-Kelvin:

$$
D=-b \Delta \partial_{t}^{\beta} \quad \text { with } \beta \in[0,1], \quad b \geq 0
$$

fractional Zener:

$$
D=a \partial_{t}^{2+\alpha}-b \Delta \partial_{t}^{\beta} \quad \text { with } a>0, b \geq a c^{2}, 1 \geq \beta \geq \alpha>0,
$$

space fractional Chen-Holm:

$$
D=b(-\Delta)^{\tilde{\beta}} \partial_{t} \quad \text { with } \tilde{\beta} \in[0,1], b \geq 0,
$$

Chances and Challenges

- model equation is nonlinear; nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data $g(t)$ is in the "orthogonal" time direction;
This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.

Chances and Challenges

- model equation is nonlinear; nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data $g(t)$ is in the "orthogonal" time direction;
This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information":

Chances and Challenges

- model equation is nonlinear; nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data $g(t)$ is in the "orthogonal" time direction;
This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information": linear case: double excitation \Rightarrow double observation linear case: exitation at freq. $\omega \Rightarrow$ observation at freq. ω

Chances and Challenges

- model equation is nonlinear; nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data $g(t)$ is in the "orthogonal" time direction;
This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.
- nonlinearity helps by "adding information":
linear case: double excitation \Rightarrow double observation
linear case: exitation at freq. $\omega \Rightarrow$ observation at freq. ω nonlinear case: higher harmonics
see also asymptotics argument in [Kurylev \& Lassas \& Uhlmann 2019]

Results

[Yamamoto \&BK 2021] BCBJ equation

- uniqueness and conditional stability via Carleman estimates

Results

[Yamamoto \&BK 2021] BCBJ equation

- uniqueness and conditional stability via Carleman estimates
[BK\&Rundell IPI 2021, Math.Comp. 2021] Westervelt eq.
- Well-definedness and Fréchet differentiability of forward operator $F:\left.\kappa \mapsto u\right|_{\Sigma}$
- uniqueness for linearized problem under linear independence assumption
- reconstructions by Newton's method
[BK\&Rundell 2022 in preparation] Westervelt eq.
* simultaneous uniqueness of $c(x)$ and $\kappa(x)$ from single boundary observation

Results

[Yamamoto \&BK 2021] BCBJ equation

- uniqueness and conditional stability via Carleman estimates
[BK\&Rundell IPI 2021, Math.Comp. 2021] Westervelt eq.
- Well-definedness and Fréchet differentiability of forward operator $F:\left.\kappa \mapsto u\right|_{\Sigma}$
- uniqueness for linearized problem under linear independence assumption
- reconstructions by Newton's method
[BK\&Rundell 2022 in preparation] Westervelt eq.
* simultaneous uniqueness of $c(x)$ and $\kappa(x)$ from single boundary observation
[Acosta \& Uhlmann \& Zhai 2022] Westervelt equation:
- uniqueness from Neumann-Dirichlet map

Reconstructions of $\kappa(x)$

Caputo-Wismer-Kelvin:

$$
D=-b \Delta \partial_{t}^{\beta},
$$

0.1% noise

Reconstructions of $\kappa(x)$

Singular values of linearized forward operator

Outlook: Some further inverse problems

- Determine fractional differentiation orders α_{n}, β_{m} in wave type eq.

$$
\sum_{n=0}^{N} a_{n} \partial_{t}^{2+\alpha_{n}} p-\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \triangle p=\tilde{f}
$$

[BK\& Rundell 2022];
for subdiffusion, see [Hatano\& Nakagawa\& Wang\& Yamamoto 2013]
... [Jin\& Kian 2022]

Outlook: Some further inverse problems

- Determine nonlinearity f in generalized Westervelt equation

$$
u_{t t}-c^{2} \Delta u-b \Delta u_{t}=-\kappa(f(u))_{t t}
$$

[BK\& Rundell 2021]

Outlook: Some further inverse problems

- Determine kernels $k_{\varepsilon}, k_{\operatorname{tr} \varepsilon}$ in viscoelastic model

$$
\rho \mathbf{u}_{t t}-\operatorname{div}\left[\mathbb{C} \varepsilon(\mathbf{u})+k_{\varepsilon} * \mathbb{A} \varepsilon\left(\mathbf{u}_{t}\right)+k_{\operatorname{tr} \varepsilon} * \operatorname{tr} \varepsilon\left(\mathbf{u}_{t}\right) \mathbb{I}\right]=\mathbf{f}
$$

[BK \& Khristenko \& Nikolić \& Rajendran \& Wohlmuth 2022]

Thank you for your attention!

Thank you for your attention!

