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backwards diffusion and quasi reversibility
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Backwards diffusion
Reconstruct initial data u0(x) = u(x , 0) in

ut − Lu = 0, (x , t) ∈ Ω× (0,T ) + boundary conditions

u(x , 0) = u0 x ∈ Ω

from final time values

u(x ,T ) = uT (x) x ∈ Ω

where L is a uniformly elliptic second order partial differential
operator defined in a C 2 domain Ω with sufficiently smooth
coefficients.

This is a classical inverse problem.

More recent applications are, e.g.:

identification of airborne contaminants
imaging with acoustic or elastic waves in the presence of
strong attenuation
deblurring
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Quasi-reversibility
Replace diffusion equation

ut − Lu = 0 , u(T ) = uT

by a nearby differential equation, e.g.,
[Làttes & Lions 1969] weakly damped wave or beam equation

εutt+ut−Lu = 0 , u(T ) = uT ut−Lu+εL2u = 0 , u(T ) = uT

drawback: additional boundary and/or initial conditions needed.

[Showalter 1974,’75,’76] add inviscid term

(I − εL)uεt − Luε = 0, , u(T ) = uT

see also the proof of the Hille-Phillips-Yosida Theorem.

[Ames, Clark, Epperson, Oppenheimer, 1998; ’94] quasi-final value

ut − Lu = 0 , εu(0) + u(T ) = uT

This is in fact Tikhonov/Lavrentiev regularization and not
causality preserving.
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Quasi-reversibility

Replace diffusion equation

ut − Lu = 0 , u(T ) = uT

by a nearby differential equation.

Here: Replace ut by a fractional time derivative of order α < 1

∂αt ut − Lu = 0 , u(T ) = uT

with α < 1, i.e., replace diffusion by subdiffusion.

This is natural in view of modeling (both diffusion and subdiffusion
are limits of continuous time random walks)
and causality preserving.
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fractional derivatives and Mittag-Leffler functions
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Fractional derivatives
Abel fractional integral operator

Iαa f (t) =
1

Γ(α)

∫ t

a

f (s)

(t − s)1−α ds

Then a fractional (time) derivative can be defined by either

R
a D

α
t f =

d

dt
I 1−α
a f Riemann-Liouville derivative

or
C
a D

α
t f = I 1−α

a

df

ds
Djrbashian-Caputo derivative

R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a

D-C maps constants to zero  appropriate for prescribing
initial values

Nonlocal and causal character of these derivatives provides them
with a “memory”  initial values are tied to later values and can
therfore be better reconstructed backwards in time.

8



Fractional derivatives
Abel fractional integral operator

Iαa f (t) =
1

Γ(α)

∫ t

a

f (s)

(t − s)1−α ds

Then a fractional (time) derivative can be defined by either

R
a D

α
t f =

d

dt
I 1−α
a f Riemann-Liouville derivative

or
C
a D

α
t f = I 1−α

a

df

ds
Djrbashian-Caputo derivative

R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a

D-C maps constants to zero  appropriate for prescribing
initial values

Nonlocal and causal character of these derivatives provides them
with a “memory”  initial values are tied to later values and can
therfore be better reconstructed backwards in time.

8



Mittag-Leffler functions: solutions to ODEs/PDEs

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
α > 0, β ∈ R, z ∈ C,

generalizes exponential E1,1(z) = ez ; Eα := Eα,1

[Djrbashian 1966,’93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]

Lemma

For 0 < α ≤ 1 and x , t > 0, λ > 0

αλ
d

dx
Eα,1(−λx) = −Eα,α(−λx).

Consequently, u(t) := Eα,1(−λtα) solves fractional ODE ∂αt u + λu = 0.
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Mittag-Leffler functions: asymptotics

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
α > 0, β ∈ R, z ∈ C,

generalizes exponential E1,1(z) = ez ; Eα := Eα,1

Theorem (Djrbashian, 1966,’93)

Let α ∈ (0, 2), β ∈ R, and µ ∈ (απ/2,min(π, απ)), and N ∈ N.
Then for |arg(z)| ≤ µ with |z | → ∞,

Eα,β(z) ∼ 1

α
z

1−β
α ez

1
α

and for µ ≤ |arg(z)| ≤ π with |z | → ∞

Eα,β(z) = −
N∑

k=1

1

Γ(β−αk)

1

zk
+ O

(
1

zN+1

)
.
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Mittag-Leffler functions: asymptotics

For x → +∞

Eα,β(x) ∼ 1

α
x

1−β
α ex

1
α

For x → −∞

Eα,β(x) = −
N∑

k=1

1

Γ(β−αk)

1

xk
+ O

(
1

xN+1

)

On the positive real axis, Eα,β grows superexponetially.
On the negative real axis, Eα,β decreases only linearly.
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regularization based on subdiffusion
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Subdiffusion regularization — the quasi-reversibility
paradigm

Replace diffusion equation

ut + Au = 0

by subdiffusion equation

∂αt ut + Au = 0

with α < 1, α↗ 1 (regularization parameter);
note that limα→1− ∂

α
t u = ut but i.g. limα→1+ ∂αt u 6= ut

numerical computations based on finite element - finite
difference approximations, see, e.g., [Langlands, Henry 2005;
Lin, Xu, 2007; Jin, Lazarov, Zhou, 2013, 2016; Alikhanov
2015; Mustapha, Abdallah, Furati 2015]

analysis based on separation of variables and properties of
Mittag-Leffler functions
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Solution representation by separation of variables
1-d ODE:
u′(t) + λu(t) = 0 , u(T ) = e−λTu(0) , u(0) = eλTu(T )

PDE with elliptic operator A = −L
with eigensystem λj ↗∞, φj ∈ H2(Ω) ∩ H1

0 (Ω), j ∈ N:

ut(t) + Au(t) = 0 , u(x , 0) =
∞∑
j=1

eλjT 〈u(·,T ), φj〉φj(x)

exponential amplification of noise in Fourier coefficients 〈u(·,T ), φj〉

replace diffusion by subdiffusion:

1-d ODE:

∂αt u(t)+λu(t) = 0 , u(T ) = Eα,1(−λTα)u(0) , u(0) =
u(T )

Eα,1(−λTα)

PDE with elliptic operator A = −L:

∂αt u(t) + Au(t) = 0 , u(x , 0) =
∞∑
j=1

〈u(·,T ), φj〉
Eα,1(−λjTα)

φj(x)

where Eα,1 is a Mittag-Leffler function.
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Plain subdiffusion regularization

backwards diffusion ut + Au = 0,

u(x ,T ) = uT ≈ uδT ,

in terms of Fourier coefficients:

〈u0, φj〉 = w(λj)〈uT , φj〉 with w(λ) = eλT =
1

e−λT
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Split frequency subdiffusion regularization
backwards diffusion ut + Au = 0, u(x ,T ) = uT ≈ uδT ≈ ũδT ,
in terms of Fourier coefficients (truncated SVD):

〈uδ0,K , φj〉 = w(λj)〈uδT , φj〉 for j ≤ K with w(λ) = eλT =
1

e−λT

backwards diffusion on small frequencies, subdiffusion on large frequencies

〈uδ0,α, φj〉 =

{
w(λj , 1)〈uδT , φj〉 for j ≤ K

w(λj , α)〈ũδT , φj〉 for j ≥ K + 1
with w(λ, α) =

1

Eα,1(−λTα)

 regularization parameters α,K

numerical computations:

perform truncated SVD on Plo u
δ
T  Plou

δ
0,α,K

backpropagate Phi ũ
δ
T by subdiffusion PDE  Phiu

δ
0,α,K

where Plo = Pspan{φ1,...,φK}, Phi = I − Plo

. . . projections onto low and high frequencies, respectively
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Multiple split frequency subdiffusion regularization

backwards diffusion ut + Au = 0, u(x ,T ) = uT ≈ uδT ≈ ũδT ,
in terms of Fourier coefficients:

〈u0, φj〉 = w(λj)〈uδT , φj〉 for j ≤ K with w(λ) = eλT =
1

e−λT

backwards diffusion on small frequencies, subdiffusion on larger frequencies

〈uδ0,α, φj〉 =



w(λj , 1)〈uδT , φj〉 for j ≤ K1

w(λj , α1)〈ũδT , φj〉 for K1 + 1 ≤ j ≤ K2

· · ·
w(λj , αi )〈ũδT , φj〉 for Ki + 1 ≤ j ≤ Ki+1

· · ·

 regularization parameters α1 > α2 > · · · > α`, K1 < K2 < · · · < K`+1
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Other regularization approaches
based on fractional derivatives

add fracional time derivative:

ut + Au = 0  ut + ε∂αt u + Au = 0

amplification factors

w(λ, α, β, ε) =
(
L−1

(
1+εsα−1

s+εsα+λ

))−1
∼ πTαΓ(1−α)

sin(απ)
1
ε λ

regularization parameters α, ε

add fractional space derivative Aβ, e.g., λj → λβj :

ut + Au = 0  (I + εAβ)∂αt u + Au = 0

amplification factors w(λ, α, β, ε) = 1
Eα,1(− λ

1+ελβ
Tα)

regularization parameters α, β, ε
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reconstructions - numerical experiments
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Test case 1: u0 with kink; δ = 0.1%

Reconstructions from single and double split frequency method.
single split: K1 = 4 and α = 0.92;
double split: K1 = 4, K2 = 10 and α1 = 0.999, α2 = 0.92.
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Test case 2: u0 with 〈u0, φj〉 6= 0, j = 1, . . . , 7, 10 . . . , 15; δ = 1%

Reconstructions from truncated SVD, single and double split
frequency method.
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Test case 3: u0 with 〈u0, φj〉 6= 0, j = 1, . . . , 7, 10 . . . , 15; δ = 1%

Reconstructions from truncated SVD, single, double, and triple
split frequency method.
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convergence analysis
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Plain subdiffusion regularization

backwards diffusion ut + Au = 0, u(x ,T ) = uT ≈ uδT ≈ ũδT ,
in terms of Fourier coefficients:
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1

e−λT
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Properties of the Mittag-Leffler function Eα,1(−λx) (I)

[Djrbashian 1966,’93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]

Lemma

For 0 < α < 1 and x > 0

1

1 + Γ(1− α)x
≤ Eα,1(−x) ≤ 1

1 + Γ(1 + α)−1x

Consequently, we have the stability estimate
1

Eα,1(−λTα)
≤ C̄

λ

1− α
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Properties of the Mittag-Leffler function Eα,1(−λx) (II)

Lemma (BK&Rundell 2018)

For any α0 ∈ (0, 1) and p ∈ [1, 1
1−α0

), there exists
C = C (α0, p) > 0 such that for all λ ≥ λ1, α ∈ [α0, 1)

|Eα,1(−λTα)− exp(−λT )| ≤ Cλ1/p(1− α) .

Consequently, we have the convergence rate

∣∣∣∣ exp(−λT )

Eα,1(−λTα)
− 1

∣∣∣∣ ≤ C̃λ1+1/p .

with α0, α, p, λ1, λ as above, C̃ = C̃ (α0, p) > 0.
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Exponential ill-posedness −→ mild ill-posedness
backwards diffusion:

〈u0, φj〉 = w(λj)〈uT , φj〉 with w(λ) = eλT =
1

e−λT

 exponential instability.

backwards subdiffusion

〈uδ0,α, φj〉 = w(λj , α)〈ũδT , φj〉 with w(λ, α) =
1

Eα,1(−λTα)

stability estimate
1

Eα,1(−λTα)
≤ C̄

1− α
λ

and Sobolev norm equivalence ‖v‖Hs(Ω) ∼
∞∑
j=1

λsj 〈v , φj〉2

=⇒ H2 − L2 stability of backwards subdiffusion,
with a stability constant that degenerates as α↗ 1.
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Exponential ill-posedness −→ mild ill-posedness
backwards diffusion:

〈u0, φj〉 = w(λj)〈uT , φj〉 with w(λ) = eλT =
1

e−λT

 exponential instability.

backwards subdiffusion
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1
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Pre-smoothing the data

u(x ,T ) = uT︸︷︷︸
∈C∞(Ω)

≈

noisy︷ ︸︸ ︷
uδT︸︷︷︸
∈L2(Ω)

≈

smoothed︷ ︸︸ ︷
ũδT︸︷︷︸
∈H2(Ω)

↑
mildly ill-posed

↑
infinitely smooth solution

Here an exponential source condition is satisfied.

Tikhonov regularization would not properly pre-smooth
due to saturation.
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ũδT︸︷︷︸
∈H2(Ω)

↑
mildly ill-posed

↑
infinitely smooth solution

Here an exponential source condition is satisfied.

Tikhonov regularization would not properly pre-smooth
due to saturation.

32



Pre-smoothing the data

u(x ,T ) = uT︸︷︷︸
∈C∞(Ω)

≈

noisy︷ ︸︸ ︷
uδT︸︷︷︸
∈L2(Ω)

≈

smoothed︷ ︸︸ ︷
ũδT︸︷︷︸
∈H2(Ω)

,

Use Landweber iteration for defining ũδT = v (i∗)

v (i+1) = v (i) − µA−s/2(v (i) − uδT ) , v (0) = 0 ,

with µ > 0 chosen so that µ‖A−s/2‖L2→L2 ≤ 1.

Lemma (BK&Rundell 2018; pre-smoothing)

A choice of i∗ ∼ T−2 log
(

1
δ

)
yields ‖uT − ũδT‖L2(Ω) ≤ C1δ ,

‖uT − ũδT‖Hs(Ω) ∼ ‖As/2(uT − ũδT )‖L2(Ω) ≤ C2
T δ

√
log
(

1
δ

)
=: δ̃

for some C1,C2 > 0 independent of T and δ.
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Convergence with a priori choice of α

Fu0 = uT

with forward operator F = exp(−AT )

Theorem (BK&Rundell 2018)

Let u0 ∈ L2(Ω), A1+1/pu0 ∈ L2(Ω) for some p ∈ (1,∞),
ũδT = v (i∗) as in pre-smoothing Lemma with s ≥ 2(1 + 1

p ), and

assume that α = α(δ̃) is chosen such that

α(δ̃)↗ 1 and
δ̃

1− α(δ̃)
→ 0 , as δ̃ → 0 ,

Then
‖uδ

0,α(δ̃)
− u0‖L2(Ω) → 0 , as δ̃ → 0 .

Backwards time fractional diffusion is a regularization method.
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Convergence with a posteriori choice of α

Fu0 = uT

with forward operator F = exp(−AT )

Theorem (BK&Rundell 2018)

Let u0 ∈ L2(Ω), A1+1/pu0 ∈ L2(Ω) for some p ∈ (1,∞),
ũδT = v (i∗) as in pre-smoothing Lemma with s ≥ 2(1 + 1

p ), and

assume that α = α(ũδT , δ̃) is chosen according to

τ δ̃ ≤ ‖Fuδ0(·;α)− ũδT‖ ≤ τ δ̃

(discrepancy principle) with fixed 1 < τ < τ .
Then

uδ
0,α(δ̃)

⇀ u0 in L2(Ω) , as δ̃ → 0 .

Backwards time fractional diffusion is a regularization method.
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Convergence rates

Theorem (BK&Rundell 2018)

Let u0 ∈ L2(Ω), A1+1/p+max{1/p,q}u0 ∈ L2(Ω) for some p ∈ (1,∞),
q > 0, ũδT = v (i∗) as in pre-smoothing Lemma with s ≥ 2(1 + 1

p ),

and assume that α = α(ũδT , δ̃) is chosen according to

1− α(δ̃) ∼
√
δ̃ , as δ̃ → 0 .

Then

‖uδ
0,α(δ̃)

− u0‖L2(Ω) = O
(
log( 1

δ )−2q
)
, as δ → 0 .

In the noise free case we have

‖u0
0,α − u0‖L2(Ω) = O

(
log( 1

1−α)−2q
)
, as α↗ 1 .

Finite Sobolev regularity (≡ log-source condition) implies log rate.
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Split frequency subdiffusion regularization

backwards diffusion ut + Au = 0, u(x ,T ) = uT ≈ uδT ≈ ũδT ,
in terms of Fourier coefficients:

〈u0, φj〉 = w(λj)〈uδT , φj〉 for j ≤ K with w(λ) = eλT =
1

e−λT

backwards diffusion on small frequencies, subdiffusion on large frequencies

〈uδ0,α, φj〉 =

{
w(λj , 1)〈uδT , φj〉 for j ≤ K

w(λj , α)〈ũδT , φj〉 for j ≥ K + 1
with w(λ, α) =

1

Eα,1(−λTα)

 regularization parameters α,K
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Convergence with a posteriori choice of K and α
First choose K :

K = min{k ∈ N : ‖ exp(LT )uδ0,lf − uδT‖ ≤ τδ} (1)

for some fixed τ > 1. Then choose α

τδ̃ ≤ ‖ exp(−AT )uδ0,α,K − uδT‖ ≤ τ δ̃ . (2)

Theorem (BK&Rundell 2018)

Let u0 ∈ L2(Ω), A1+1/pu0 ∈ L2(Ω) for some p ∈ (1,∞),
ũδT = v (i∗) as in pre-smoothing Lemma with s ≥ 2(1 + 1

p ), and

assume that K = K (uδT , δ) and α = α(ũδT , δ̃) are chosen according
to (1) and (2). Then

uδ
0,α(ũδT ,δ̃),K(uδT ,δ)

⇀ u0 in L2(Ω) , as δ → 0 .

Split frequency backwards time fractional diffusion is a regularization method.
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Conclusions and remarks

based on the paradigm of quasi-reversibility,
backwards subdiffusion (with pre-smoothing) is a regularizer
for backwards diffusion

can be implemented without explicit use of eigensystem by
just numerical solution of time-fractional PDE

can be improved by spitting frequencies (using eigensystem)
and treating different parts of the frequency range by different
time differentiation orders α

→ prove numerically observed superiority to TSVD for
appropriate classes of initial data(?)
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Thank you for your attention!
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