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@ backwards diffusion and quasi reversibility
o fractional derivatives and Mittag-Leffler functions
@ regularization based on subdiffusion

@ reconstructions - numerical experiments

@ convergence analysis




backwards diffusion and quasi reversibility




Backwards diffusion
Reconstruct initial data up(x) = u(x,0) in

up—Lu=0, (x,t)€Qx(0,T)+ boundary conditions
u(x,0) =u xeQ
from final time values

u(lx, T)=ur(x) x€Q

where L is a uniformly elliptic second order partial differential
operator defined in a C? domain Q with sufficiently smooth
coefficients.




Backwards diffusion
Reconstruct initial data up(x) = u(x,0) in

up—Lu=0, (x,t)€Qx(0,T)+ boundary conditions
u(x,0) =up xeQ
from final time values
u(lx, T)=ur(x) x€Q

where L is a uniformly elliptic second order partial differential
operator defined in a C? domain Q with sufficiently smooth
coefficients.

@ This is a classical inverse problem.
@ More recent applications are, e.g.:
o identification of airborne contaminants
e imaging with acoustic or elastic waves in the presence of

strong attenuation
o deblurring




Quasi-reversibility
Replace diffusion equation
up—Lu=0, u(T)=ur

by a nearby differential equation, e.g.,
[Lattes & Lions 1969] weakly damped wave or beam equation

eugtu—Lu=0, u(T)=ur ui—Lu+el?u=0, u(T)=ur

drawback: additional boundary and/or initial conditions needed.
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see also the proof of the Hille-Phillips-Yosida Theorem.




Quasi-reversibility
Replace diffusion equation

up—Lu=0, u(T)=ur

by a nearby differential equation, e.g.,
[Lattes & Lions 1969] weakly damped wave or beam equation

euptu—Lu=0, u(T)=ur ui—Lu+el?u=0, u(T)=ur
drawback: additional boundary and/or initial conditions needed.
[Showalter 1974,'75,'76] add inviscid term

(I —el)u; —Lu*=0,, u(T)=ur
see also the proof of the Hille-Phillips-Yosida Theorem.

[Ames, Clark, Epperson, Oppenheimer, 1998; '94] quasi-final value
ur—Lu=0, eu0)+u(T)=ur

This is in fact Tikhonov/Lavrentiev regularization and not
causality preserving.




Quasi-reversibility

Replace diffusion equation
up—Lu=0, u(T)=ur
by a nearby differential equation.
Here: Replace u; by a fractional time derivative of order o < 1

Ofuy —Lu=0, u(T)=ur

with a < 1, i.e., replace diffusion by subdiffusion.




Quasi-reversibility

Replace diffusion equation
up—Lu=0, u(T)=ur
by a nearby differential equation.
Here: Replace u; by a fractional time derivative of order @ < 1
Ofuy —Lu=0, u(T)=ur

with a < 1, i.e., replace diffusion by subdiffusion.

This is natural in view of modeling (both diffusion and subdiffusion
are limits of continuous time random walks)
and causality preserving.




fractional derivatives and Mittag-Leffler functions




Fractional derivatives
Abel fractional integral operator

1 tf(s
570 = iy |, G

Then a fractional (time) derivative can be defined by either

fo‘f = %Ial_af Riemann-Liouville derivative

df
Cpaf = /;*C'E Djrbashian-Caputo derivative

or




Fractional derivatives
Abel fractional integral operator

1 Eof(s
570 = iy |, G

Then a fractional (time) derivative can be defined by either

. fo‘f = Elal_o‘f Riemann-Liouville derivative
df
Cpof = /alfag Djrbashian-Caputo derivative

@ R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a
@ D-C maps constants to zero ~» appropriate for prescribing
initial values
Nonlocal and causal character of these derivatives provides them
with a “memory” ~ initial values are tied to later values and can
therfore be better reconstructed backwards in time- . <=, <=,




Mittag-Leffler functions: solutions to ODEs/PDEs

o0
R
kz:%rak—i—ﬁ a>0, BeR, zeC,

generalizes exponential E; 1(z) = e%; E, = Eq

[Djrbashian 1966,'93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]




Mittag-Leffler functions: solutions to ODEs/PDEs

o0
R
kz:%rak—i—ﬁ a>0, BeR, zeC,

generalizes exponential E; 1(z) = e%; E, = Eq

[Djrbashian 1966,'93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]

ForO<a<landx,t>0 A>0

d
aA&Ea,l( Ax) = —Eq o(—Ax).

Consequently, u(t) := Ey1(—At®) solves fractional ODE ~ 97'u + Au=0.




Mittag-Leffler functions: asymptotics

o0
E.p5(z) = Zrak—i—ﬁ a>0, BeR, zeC,
k=0

generalizes exponential E1 1(z) = €7; E,:=Eqy1

Theorem (Djrbashian, 1966,'93)

Let « € (0,2), B €R, and p € (am/2, min(m, ar)), and N € N.
Then for |arg(z)| < p with |z| — oo,

1
E.p(z) ~ e

and for p < |arg(z)| < 7 with |z| — o

N

1 1 1
@) =~ gy + O ()




Mittag-Leffler functions: asymptotics

For x — +o00 For x — OO

1
1 15 L —
E. p(x) ~ axla e Eap(x) = Z F(ﬁ ak) Xk +0 (XN—H)




Mittag-Leffler functions: asymptotics
For x — +oo For x — OO

1
1 15 L I
Eop(x) ~ —x e Eap(x) = Z < T(5- ak) Xk +0 (XN—H)

On the positive real axis, E, g grows superexponetially.
On the negative real axis, E, g decreases only linearly.
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regularization based on subdiffusion




Subdiffusion regularization — the quasi-reversibility
paradigm

Replace diffusion equation
us + Au=0
by subdiffusion equation

Ofus +Au=0

with a < 1, a 1 (regularization parameter);
note that lim,_,;- 0fu = uy but i.g. lim,_ 1+ Of'u # u;
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@ numerical computations based on finite element - finite
difference approximations, see, e.g., [Langlands, Henry 2005;
Lin, Xu, 2007; Jin, Lazarov, Zhou, 2013, 2016; Alikhanov
2015; Mustapha, Abdallah, Furati 2015]




Subdiffusion regularization — the quasi-reversibility
paradigm

Replace diffusion equation
us + Au=0

by subdiffusion equation
Ofus +Au=0

with a < 1, a 1 (regularization parameter);
note that lim,_,;- 0fu = uy but i.g. lim,_ 1+ Of'u # u;
@ numerical computations based on finite element - finite
difference approximations, see, e.g., [Langlands, Henry 2005;
Lin, Xu, 2007; Jin, Lazarov, Zhou, 2013, 2016; Alikhanov
2015; Mustapha, Abdallah, Furati 2015]
@ analysis based on separation of variables and properties of
Mittag-Leffler functions




Solution representation by separation of variables

1-d ODE:
u(t)+ du(t) =0, u(T) = e u(0), u(0) = e*Tu(T)

PDE with elliptic operator A = —LL
with eigensystem \; oo, ¢j € H2(Q) N H&(Q) j eN:

ue(t) + Au(t) =0, Ze* T(u(, T), 6;);(x)

exponential amplification of noise in Fourier coefficients (u(-, T), ¢;)




Solution representation by separation of variables

1-d ODE:
u'(t) + Au(t) =0, u(T)=e*Tu(0), u(0) = e} u(T)

PDE with elliptic operator A = —LL
with eigensystem \; oo, ¢j € HZ(Q) N H&(Q) j eN:

ue(t) + Au(t) =0, ZeA T(u(, T), 6;);(x)

exponential amplification of noise in Fourier coefficients (u(-, T), ¢;)

replace diffusion by subdiffusion:

1-d ODE:
Ofu(t)+Au(t) =0, u(T)=Ey1(—AT*)u(0), u(0)=




Plain subdiffusion regularization

backwards diffusion u; + Au = 0,

u(x, T) = ut ~ uf,




Plain subdiffusion regularization

backwards diffusion u; + Au = 0,
u(x, T) = ut ~ uf,

in terms of Fourier coefficients:

<UO,¢J’> = W()\j)(UT,QSj> with — w(\) = Al — 7




Plain subdiffusion regularization

backwards diffusion us + Au =0,
noisy smoothed

—~
ux, )= ur ~ o ~ @&

€C=(Q) €l2(Q) €H2(Q)
in terms of Fourier coefficients:

<u07¢j> = W(/\J)<U§I—,¢J> with W()\) = e/\T = ﬁ
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noisy smoothed
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Plain subdiffusion regularization

backwards diffusion us + Au =0,
noisy smoothed

—~
ux, )= ur =~ uy ~ @

€C®(Q)  e12(Q)  eH(Q)
in terms of Fourier coefficients (truncated SVD):

(U . 0) = wN){uT, ¢5) forj <K with  w()) =e'T = o
replace 0 by 9¢ with a < 1 (~ regularization parameter)

<ug,a7 ¢J> = W()‘Jv a)<ij§'a ()bj) with W(Av a) -

Ea,l(_)\ TO‘)




Plain subdiffusion regularization
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Plain subdiffusion regularization
backwards diffusion u + Au =0, u(x, T) = ur ~ u%y ~ i,
in terms of Fourier coefficients (truncated SVD):

(Wl &) = W) (U, 6j) for j< K with  w()) = e =

replace 0 by 0¢ with aw < 1 (~ regularization parameter)
~ . 1
<ug,a7¢j> = W(>‘J7a)<u§'a¢.j> with W()\,O{) -

Ea71(*)\ T)
103 7 logyo(w(A, @)
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Split frequency subdiffusion regularization
backwards diffusion v + Au =0, u(x, T) = ur ~ u%y ~ i,

in terms of Fourier coefficients (truncated SVD):

1
Y

(U ks 85) = w(N)(uF, @) forj< K with w())=e =




Split frequency subdiffusion regularization
backwards diffusion v + Au =0, u(x, T) = ur ~ u%y ~ i,
in terms of Fourier coefficients (truncated SVD):

. . 1
(ugﬂK,géj) = W()\J-)(u‘-s,—,¢j> for j < K with  w()\) = M = peSvs

backwards diffusion on small frequencies, subdiffusion on large frequencies

N, Dws,¢) forj< K
<u8a,<z3,-> _ w(j, )(UNZ;,GM orJ. < with w(h, ) = 1
7 W()‘jaa)<uT7¢j> fOI’j >K+1 Ea,l(_)\Ta)

~> regularization parameters a, K




Split frequency subdiffusion regularization

backwards diffusion v + Au =0, u(x, T) = ur ~ u%y ~ i,

in terms of Fourier coefficients (truncated SVD):

. . 1
<U3,K7¢j> = W()\J-)(u‘-s,—,¢j> for j < K with  w()\) = M = peSvs

backwards diffusion on small frequencies, subdiffusion on large frequencies

6 .
L&) = th w(\, o) = —————
e ) {w(xj,a)<ﬁ$,¢j> forj > k11 N N = T

~> regularization parameters a, K

numerical computations:
e perform truncated SVD on P, u‘-s,- ~ P/oug K
o backpropagate Py; i by subdiffusion PDE ~ ~ Phiu&a,K

where P/o = PSpan{¢>1,‘-.,¢>K}v Ph,' =/ - P/o
... projections onto low and high frequencies, respectively

<O (Fr «Er «E = a0




Multiple split frequency subdiffusion regularization

backwards diffusion u; + Au =0, u(x, T) = ut ~ v} ~ i},
in terms of Fourier coefficients:

1
(ug, ¢j) = W()\j)(u‘ST,d)j> for j < K with  w()\) = M = pesvs
backwards diffusion on small frequencies, subdiffusion on larger frequencies

(

W()‘Jal)<u§r’¢_]> for.j < Ki

w(\j, ar)(@, ¢j) for K1 +1<j < Ky
(ug,w@) ...

w(Nj, i) (@, ¢j)  for Ki+1<j < Ki1

\

~ regularization parameters a3 > ap > --- > ay, K1 < Ko <--- < Kpy1




Other regularization approaches
based on fractional derivatives

@ add fracional time derivative:

ur+Au=0 ~ wu+edfu+Au=0

amplification factors

w(\, a, 8,¢) = (ﬁ‘l (%)>_1 o T (1—a) % \

regularization parameters a, ¢

sin(am)




Other regularization approaches
based on fractional derivatives

@ add fracional time derivative:

ur+Au=0 ~ wu+edfu+Au=0
amplification factors

w(\ o, B,e) = <£—1 (1+€sa_1 ))‘1 _aT°T(1-a) 1 1 \

s+es¥+A sin(am)
regularization parameters a, ¢

o add fractional space derivative A®, e g., Aj— )\J@:

ue+Au=0 ~ (I +eA?)0%u+Au=0

.- . 1
amplification factors  w(\, a, 5,¢) = Eaa(-1255 %)

regularization parameters «, 3, ¢




reconstructions - numerical experiments




Test case 1: ug with kink; § = 0.1%

2.0

uo(x) T =0.02 §=0.001
—— Actual ug
14 A single split freq
----- double split freq
1.04
[l
[/ A
/
[/
0.5
[/ g
\-
N\ /A :
B\, T
0.0 . < . . .
0.0 0.2 0.4 0.6 0.8 1.0

Reconstructions from single and double split frequency method.
single split: K1 =4 and o = 0.92;
double split: K1 =4, K, =10 and a3 = 0.999, a, = 0.92.

» « E >




Test case 2: wup with (uo, ¢;) #0, j=1,...,7,10...,15; 6 = 1%
Uo ()

T =0.02 § =0.01

—— Actual ug

"""" SVD
double split freq
2 -
14
\ -
0 f— At
0 : 08 _)\ o
14
_9 ]

frequency method.

Reconstructions from truncated SVD, single and double split




Test case 3: wp with (ug, ¢;) #0, j=1,...,7,10...,15; § = 1%
T =0.02 6 =0.001

uo(x)
5 -
i - —— Actual ug
B ! L
i .= : \\... SVD '
g 17 "\, v . — — — double-split freq
31 l.’l’ ‘.\ \ 0 \ ————— triple-split freq
= . \ 0
i W ST,
24 fir; X \\ %!
i A U
,'l':' S 2
14fi
0
0{0 0.2
14

-9 J
Reconstructions from truncated SVD, single, double, and triple

split frequency method.




convergence analysis




Plain subdiffusion regularization

backwards diffusion us + Au=0, u(x, T) = ur = u‘sT ~ 0%,
in terms of Fourier coefficients:

(ug, ¢j) = w(\)(ur,¢))  with  w(\)=e' = =t

replace 0 by 0¢ with aw < 1 (~ regularization parameter)

1
Eq1(—AT®)

<ug,a7 ¢J> = W(>‘j7 O‘)<a§'7 ¢J> with W(>‘7 a) =




Properties of the Mittag-Leffler function E, 1(—Ax) (1)

[Djrbashian 1966,'93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]

ForO<a<1landx>0

1 < Ea ( ) < 1
—_— _X
1+|(1—a)x 1 1+|(1—|—a) 1X
Co seque tl e have the stability estimate ! < C A
n uently, w \Y 1 |
Y Y E371(—)\ ] a) — 1 O




Properties of the Mittag-Leffler function E, 1(—Ax) (1)

Lemma (BK&Rundell 2018)

For any ag € (0,1) and p € [1, = ao) there exists
C = C(ao, p) > 0 such that for all A > A1, a € [ag, 1)

|Ea1(—AT®) —exp(=AT)| < CAYP(1 - a).
exp(—AT)

Consequently, we have the convergence rate TR q| < AP
e : Eaa(-AT®) |~

with ag, a, p, A1, A as above, C = C(ao,p) > 0.




Exponential ill-posedness — mild ill-posedness

backwards diffusion:

(uo, 0j) = w(N)(ur, &) with  w(}) =T = —

~+ exponential instability.




Exponential ill-posedness — mild ill-posedness

backwards diffusion:

(uo, 0j) = w(N)(ur, &) with  w(}) =T = —

~+ exponential instability.

backwards subdiffusion

(U,0s 85) = WXy, @) (8%, &) with wh o) = E AT

1 C

stability estimate Eor(oAT) < 1 a)\




Exponential ill-posedness — mild ill-posedness

backwards diffusion:

(uo, 0j) = w(N)(ur, &) with  w(}) =T = —

~+ exponential instability.
backwards subdiffusion

1

(U,0s 85) = WXy, @) (8%, &) with wh o) = E AT

stability estimate ! < ¢ A
y Ea1(-AT%) “1—a

[ee)
and Sobolev norm equivalence  [|v||ys(q) ~ Z)\f(v,(ﬁj)z
j=1

— H? — [? stability of backwards subdiffusion,
with a stability constant that degenerates as o /ﬁl}.

« E «E»




Pre-smoothing the data

ulx, T) =

noisy smoothed
1 0
ur &~ Uy = T
€C>(Q)  er2(Q) eH2(Q)
T

mildly ill-posed




Pre-smoothing the data

noisy smoothed
—~

—
u(x, T) = dr %\ufr/z \ﬁi
€C>(Q)  er2(Q) eH2(Q)
T
mildly ill-posed
/I\

infinitely smooth solution




Pre-smoothing the data

noisy smoothed
—~

—
u(x, T) = dr %\ui% \[]i
€C>(Q)  er2(Q) eH2(Q)

T
mildly ill-posed

/I\

infinitely smooth solution

Here an exponential source condition is satisfied.

Tikhonov regularization would not properly pre-smooth
due to saturation.




Pre-smoothing the data

noisy smoothed

—
ux, )= ur ~ o ~ @

€C=(2)  er2(Q) €H(Q)
Use Landweber iteration for defining fl‘-sl— = y(ix)

with 1 > 0 chosen so that pu||A=%/?|[;2_,2 < 1.




Pre-smoothing the data

noisy smoothed

4 4
ulx, T)= ur = uy =~ O3
€C=(Q) €l2(Q) €H2(Q)

Use Landweber iteration for defining fl‘-sl— = y(ix)

with 1 > 0 chosen so that pu||A=%/?|[;2_,2 < 1.

Lemma (BK&Rundell 2018; pre-smoothing)

A choice of i, ~ T~2log (%) yields ||ur — L’](-SI—||L2(Q) <G,

lu — @[l ey ~ 142 (ur — 85l 12() < ¢ 34 /log (3) =: 6

for some Cy, C; > 0 independent of T and §.




Convergence with a priori choice of

Fup = urt
with forward operator F = exp(—AT)
Theorem (BK&Rundell 2018)

Let ug € L2(Q), A1tY/Pug € 12(Q) for some p € (1,0),
iy = v(*) as in pre-smoothing Lemma with s > 2(1 + %) and

assume that o = «(9) is chosen such that

a(g)/‘landLN%O, asd— 0,
1— ()

Then )
”u(ia(ﬁ) — wll2@@) — 0, asd—0.

Backwards time fractional diffusion is a regularization method.

«E>» =




Convergence with a posteriori choice of «

FUO = ur
with forward operator F = exp(—AT)
Theorem (BK&Rundell 2018)

Let up € L2(Q), A1+YPuy € L[2(Q) for some p € (1,00),
i = v() as in pre-smoothing Lemma with s > 2(1 + %J) and
assume that a = a(ii, ) is chosen according to

78 < ||Fui(-i @) — a% | < 7

(discrepancy principle) with fixed 1 < 7 < 7.
Then

”ga(S) — g in [3(Q), asd—0.

Backwards time fractional diffusion is a regularization method.

> < > CE>» <=




Convergence rates
Theorem (BK&Rundell 2018)

Let up € [2(Q), AL+Y/ptmax{l/p.at g c [2(Q) for some p € (1,00),
qg>0, ﬁ‘;- = v() asin pre-smoothing Lemma with s > 2(1 + 1—1))

and assume that a = (%, ) is chosen according to

1—a(8) ~ \/g, asd —0.
Then
Hug,a(S) — uoll2(q) = O (log(}) %), asd—0.
In the noise free case we have

4§ o, — toll2() = O <|0g(ﬁ)_2q) , asa /1.

Finite Sobolev regularity (= log-source condition) implies log rate.




Split frequency subdiffusion regularization

backwards diffusion u; + Au =0, u(x, T) = ut ~ v} ~ iy,

in terms of Fourier coefficients:

(uo, ¢j) = W()\j)(u‘-s,—,d)j> for j < K with  w(\) = M = ST
backwards diffusion on small frequencies, subdiffusion on large frequencies

(WS, ) forj < K
(0 ) = 4 VW Dt 0 for j < with w(h,a) = — +
7 W()‘Jaa)<u(;'7¢_]> fOF_j >K+1 anl(_)‘Ta)

~> regularization parameters a, K




Convergence with a posteriori choice of K and «
First choose K:

K =min{k e N : | exp(]LT)ug’,f — u|| < 76} (1)
for some fixed 7 > 1. Then choose «

8 < || exp(—AT)ug o x — uTll <76 (2)

Theorem (BK&Rundell 2018)

Let up € [2(Q), AL*YPuy € L2(Q) for some p € (1,00),
iy = v(*) as in pre-smoothing Lemma with s > 2(1 + ,%) and
assume that K = K(u%,8) and o = (%, 8) are chosen according
to (1) and (2). Then

5 2
Uy (a8 5),K (u. ) — Yo i L5(Q2), asd—0.

4

Split frequency backwards time fractional diffusion is a regularization method

» > «E> (=




Conclusions and remarks

@ based on the paradigm of quasi-reversibility,
backwards subdiffusion (with pre-smoothing) is a regularizer
for backwards diffusion
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@ can be improved by spitting frequencies (using eigensystem)
and treating different parts of the frequency range by different
time differentiation orders «




Conclusions and remarks

@ based on the paradigm of quasi-reversibility,
backwards subdiffusion (with pre-smoothing) is a regularizer
for backwards diffusion

@ can be implemented without explicit use of eigensystem by
just numerical solution of time-fractional PDE

@ can be improved by spitting frequencies (using eigensystem)
and treating different parts of the frequency range by different
time differentiation orders «

—» prove numerically observed superiority to TSVD for
appropriate classes of initial data(?)




Thank you for your attention!




