Regularization of backwards diffusion by fractional time derivatives

Barbara Kaltenbacher, Alpen-Adria-Universität Klagenfurt joint work with William Rundell, Texas A&M University

> Chmenitz Inverse Problems Symposium, Frankfurt, October 2, 2019

Outline

- backwards diffusion and quasi reversibility
- fractional derivatives and Mittag-Leffler functions
- regularization based on subdiffusion
- reconstructions numerical experiments
- convergence analysis

A D A D A D A

backwards diffusion and quasi reversibility

< 🗆 🕨

▲□► ▲ □► ▲ □►

Backwards diffusion

Reconstruct initial data $u_0(x) = u(x, 0)$ in

 $egin{aligned} u_t - \mathbb{L} u &= 0, \quad (x,t) \in \Omega imes (0,\mathcal{T}) + ext{ boundary conditions} \ u(x,0) &= u_0 \quad x \in \Omega \end{aligned}$

from final time values

$$u(x, T) = u_T(x) \quad x \in \Omega$$

where \mathbb{L} is a uniformly elliptic second order partial differential operator defined in a C^2 domain Ω with sufficiently smooth coefficients.

★@> ★ E> ★ E> = E

Backwards diffusion

Reconstruct initial data $u_0(x) = u(x, 0)$ in

 $egin{aligned} & u_t - \mathbb{L} u = 0, \quad (x,t) \in \Omega imes (0,\mathcal{T}) + ext{ boundary conditions} \ & u(x,0) = u_0 \quad x \in \Omega \end{aligned}$

from final time values

$$u(x, T) = u_T(x) \quad x \in \Omega$$

where \mathbb{L} is a uniformly elliptic second order partial differential operator defined in a C^2 domain Ω with sufficiently smooth coefficients.

- This is a classical inverse problem.
- More recent applications are, e.g.:
 - identification of airborne contaminants
 - imaging with acoustic or elastic waves in the presence of strong attenuation
 - deblurring

イロト イポト イヨト イヨト 三日

Replace diffusion equation

$$u_t - \mathbb{L}u = 0, \quad u(T) = u_T$$

by a nearby differential equation, e.g., [Làttes & Lions 1969] weakly damped wave or beam equation $\varepsilon u_{tt}+u_t-\mathbb{L}u=0$, $u(T)=u_T$ $u_t-\mathbb{L}u+\varepsilon\mathbb{L}^2u=0$, $u(T)=u_T$ drawback: additional boundary and/or initial conditions needed.

Replace diffusion equation

$$u_t - \mathbb{L}u = 0, \quad u(T) = u_T$$

by a nearby differential equation, e.g., [Làttes & Lions 1969] weakly damped wave or beam equation $\varepsilon u_{tt}+u_t-\mathbb{L}u=0$, $u(T)=u_T$ $u_t-\mathbb{L}u+\varepsilon\mathbb{L}^2u=0$, $u(T)=u_T$ drawback: additional boundary and/or initial conditions needed. [Showalter 1974,'75,'76] add inviscid term

$$(I - \epsilon \mathbb{L})u_t^{\epsilon} - \mathbb{L}u^{\epsilon} = 0, , \quad u(T) = u_T$$

see also the proof of the Hille-Phillips-Yosida Theorem.

Replace diffusion equation

$$u_t - \mathbb{L}u = 0, \quad u(T) = u_T$$

by a nearby differential equation, e.g., [Làttes & Lions 1969] weakly damped wave or beam equation $\varepsilon u_{tt}+u_t-\mathbb{L}u=0$, $u(T)=u_T$ $u_t-\mathbb{L}u+\varepsilon\mathbb{L}^2u=0$, $u(T)=u_T$ drawback: additional boundary and/or initial conditions needed. [Showalter 1974,'75,'76] add inviscid term

$$(I - \epsilon \mathbb{L})u_t^{\epsilon} - \mathbb{L}u^{\epsilon} = 0, , \quad u(T) = u_T$$

see also the proof of the Hille-Phillips-Yosida Theorem.

[Ames, Clark, Epperson, Oppenheimer, 1998; '94] quasi-final value

$$u_t - \mathbb{L}u = 0$$
, $\epsilon u(0) + u(T) = u_T$

This is in fact Tikhonov/Lavrentiev regularization and not causality preserving.

Replace diffusion equation

$$u_t - \mathbb{L}u = 0, \quad u(T) = u_T$$

by a nearby differential equation.

Here: Replace u_t by a fractional time derivative of order $\alpha < 1$

$$\partial_t^{\alpha} u_t - \mathbb{L} u = 0, \quad u(T) = u_T$$

with $\alpha < 1$, i.e., replace diffusion by subdiffusion.

A D A D A D A

Replace diffusion equation

$$u_t - \mathbb{L}u = 0, \quad u(T) = u_T$$

by a nearby differential equation.

Here: Replace u_t by a fractional time derivative of order $\alpha < 1$

$$\partial_t^{\alpha} u_t - \mathbb{L} u = 0, \quad u(T) = u_T$$

with $\alpha < 1$, i.e., replace diffusion by subdiffusion.

This is natural in view of modeling (both diffusion and subdiffusion are limits of continuous time random walks) and causality preserving.

▲□ > < □ > < □ >

fractional derivatives and Mittag-Leffler functions

▲□▶ ▲圖▶ ▲ ≧▶ ▲ ≧▶ ...

Fractional derivatives

Abel fractional integral operator

$$I^{lpha}_{a}f(t)=rac{1}{\Gamma(lpha)}\int_{a}^{t}rac{f(s)}{(t-s)^{1-lpha}}\,ds$$

Then a fractional (time) derivative can be defined by either

$${}^{R}_{a}D^{\alpha}_{t}f = \frac{d}{dt}I^{1-\alpha}_{a}f$$
 Riemann-Liouville derivative
$${}^{C}_{a}D^{\alpha}_{t}f = I^{1-\alpha}_{a}\frac{df}{ds}$$
 Djrbashian-Caputo derivative

or

▲□► ▲ □► ▲ □►

4 11 1

Fractional derivatives

Abel fractional integral operator

$$J^{lpha}_{a}f(t)=rac{1}{\Gamma(lpha)}\int_{a}^{t}rac{f(s)}{(t-s)^{1-lpha}}\,ds$$

Then a fractional (time) derivative can be defined by either

$${}^{R}_{a}D^{\alpha}_{t}f = \frac{d}{dt}I^{1-\alpha}_{a}f \quad \text{Riemann-Liouville derivative}$$
$${}^{C}_{a}D^{\alpha}_{t}f = I^{1-\alpha}_{a}\frac{df}{ds} \quad \text{Djrbashian-Caputo derivative}$$

or

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero ~> appropriate for prescribing initial values

Mittag-Leffler functions: solutions to ODEs/PDEs

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$
 $\alpha > 0, \ \beta \in \mathbb{R}, \ z \in \mathbb{C},$

generalizes exponential $E_{1,1}(z) = e^z$; $E_{\alpha,1} = E_{\alpha,1}$

[Djrbashian 1966,'93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]

Mittag-Leffler functions: solutions to ODEs/PDEs

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(lpha k + eta)} \qquad lpha > 0, \ eta \in \mathbb{R}, \quad z \in \mathbb{C},$$

generalizes exponential $E_{1,1}(z) = e^z$; $E_{\alpha,1} := E_{\alpha,1}$

[Djrbashian 1966,'93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]

Lemma

For
$$0 < lpha \leq 1$$
 and $x, t > 0, \ \lambda > 0$

$$\alpha \,\lambda \frac{d}{dx} E_{\alpha,1}(-\lambda x) = -E_{\alpha,\alpha}(-\lambda x).$$

Consequently, $u(t) := E_{\alpha,1}(-\lambda t^{\alpha})$ solves fractional ODE $\partial_t^{\alpha} u + \lambda u = 0$.

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶

Mittag-Leffler functions: asymptotics

$$E_{lpha,eta}(z) = \sum_{k=0}^{\infty} rac{z^k}{\Gamma(lpha k + eta)} \qquad lpha > 0, \,\, eta \in \mathbb{R}, \quad z \in \mathbb{C},$$

generalizes exponential $E_{1,1}(z) = e^z$; $E_{\alpha,1} = E_{\alpha,1}$

Theorem (Djrbashian, 1966,'93)

Let $\alpha \in (0,2)$, $\beta \in \mathbb{R}$, and $\mu \in (\alpha \pi/2, \min(\pi, \alpha \pi))$, and $N \in \mathbb{N}$. Then for $|\arg(z)| \le \mu$ with $|z| \to \infty$,

$$E_{\alpha,\beta}(z) \sim \frac{1}{\alpha} z^{\frac{1-\beta}{\alpha}} e^{z^{\frac{1}{\alpha}}}$$

and for $\mu \leq |\arg(z)| \leq \pi$ with $|z| \to \infty$

$$E_{\alpha,\beta}(z) = -\sum_{k=1}^{N} \frac{1}{\Gamma(\beta - \alpha k)} \frac{1}{z^{k}} + O\left(\frac{1}{z^{N+1}}\right).$$

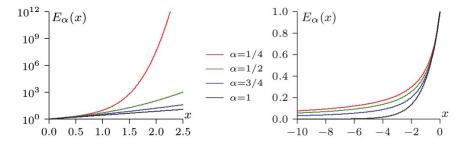
Mittag-Leffler functions: asymptotics

For $x \to +\infty$ For $x \to -\infty$ $E_{\alpha,\beta}(x) \sim \frac{1}{\alpha} x^{\frac{1-\beta}{\alpha}} e^{x^{\frac{1}{\alpha}}} \qquad E_{\alpha,\beta}(x) = -\sum_{k=1}^{N} \frac{1}{\Gamma(\beta - \alpha k)} \frac{1}{x^{k}} + O\left(\frac{1}{x^{N+1}}\right)$

Mittag-Leffler functions: asymptotics

For
$$x \to +\infty$$
 For $x \to -\infty$
 $E_{\alpha,\beta}(x) \sim \frac{1}{\alpha} x^{\frac{1-\beta}{\alpha}} e^{x^{\frac{1}{\alpha}}} E_{\alpha,\beta}(x) = -\sum_{k=1}^{N} \frac{1}{\Gamma(\beta - \alpha k)} \frac{1}{x^{k}} + O\left(\frac{1}{x^{N+1}}\right)$

On the positive real axis, $E_{\alpha,\beta}$ grows superexponetially. On the negative real axis, $E_{\alpha,\beta}$ decreases only linearly.



regularization based on subdiffusion

▲□ > < □ > < □ >

< <p>I I

Subdiffusion regularization — the quasi-reversibility paradigm

Replace diffusion equation

$$u_t + Au = 0$$

by subdiffusion equation

$$\partial_t^{\alpha} u_t + A u = 0$$

with $\alpha < 1$, $\alpha \nearrow 1$ (regularization parameter); note that $\lim_{\alpha \to 1^-} \partial_t^{\alpha} u = u_t$ but i.g. $\lim_{\alpha \to 1^+} \partial_t^{\alpha} u \neq u_t$

▲□▶ < □▶ < □▶ <</p>

Subdiffusion regularization — the quasi-reversibility paradigm

Replace diffusion equation

$$u_t + Au = 0$$

by subdiffusion equation

$$\partial_t^{\alpha} u_t + A u = 0$$

with $\alpha < 1$, $\alpha \nearrow 1$ (regularization parameter); note that $\lim_{\alpha \to 1^-} \partial_t^{\alpha} u = u_t$ but i.g. $\lim_{\alpha \to 1^+} \partial_t^{\alpha} u \neq u_t$

 numerical computations based on finite element - finite difference approximations, see, e.g., [Langlands, Henry 2005; Lin, Xu, 2007; Jin, Lazarov, Zhou, 2013, 2016; Alikhanov 2015; Mustapha, Abdallah, Furati 2015]

イロト イボト イヨト イヨト 三日

Subdiffusion regularization — the quasi-reversibility paradigm

Replace diffusion equation

$$u_t + Au = 0$$

by subdiffusion equation

$$\partial_t^{\alpha} u_t + A u = 0$$

with $\alpha < 1$, $\alpha \nearrow 1$ (regularization parameter); note that $\lim_{\alpha \to 1^-} \partial_t^{\alpha} u = u_t$ but i.g. $\lim_{\alpha \to 1^+} \partial_t^{\alpha} u \neq u_t$

- numerical computations based on finite element finite difference approximations, see, e.g., [Langlands, Henry 2005; Lin, Xu, 2007; Jin, Lazarov, Zhou, 2013, 2016; Alikhanov 2015; Mustapha, Abdallah, Furati 2015]
- analysis based on separation of variables and properties of Mittag-Leffler functions

Solution representation by separation of variables

1-d ODE:

 $u'(t) + \lambda u(t) = 0$, $u(T) = e^{-\lambda T} u(0)$, $u(0) = e^{\lambda T} u(T)$

PDE with elliptic operator $A = -\mathbb{L}$ with eigensystem $\lambda_j \nearrow \infty$, $\phi_j \in H^2(\Omega) \cap H^1_0(\Omega)$, $j \in \mathbb{N}$:

$$u_t(t) + Au(t) = 0,$$
 $u(x,0) = \sum_{j=1} e^{\lambda_j T} \langle u(\cdot, T), \phi_j \rangle \phi_j(x)$

exponential amplification of noise in Fourier coefficients $\langle u(\cdot, T), \phi_j \rangle$

Solution representation by separation of variables

1-d ODE:

 $u'(t) + \lambda u(t) = 0$, $u(T) = e^{-\lambda T} u(0)$, $u(0) = e^{\lambda T} u(T)$

PDE with elliptic operator $A = -\mathbb{L}$ with eigensystem $\lambda_j \nearrow \infty$, $\phi_j \in H^2(\Omega) \cap H^1_0(\Omega)$, $j \in \mathbb{N}$:

$$u_t(t) + Au(t) = 0,$$
 $u(x,0) = \sum_{j=1} e^{\lambda_j T} \langle u(\cdot, T), \phi_j \rangle \phi_j(x)$

exponential amplification of noise in Fourier coefficients $\langle u(\cdot, T), \phi_j \rangle$ replace diffusion by subdiffusion:

1-d ODE:

$$\partial_t^{\alpha} u(t) + \lambda u(t) = 0$$
, $u(T) = E_{\alpha,1}(-\lambda T^{\alpha})u(0)$, $u(0) = \frac{u(T)}{E_{\alpha,1}(-\lambda T^{\alpha})}$

PDE with elliptic operator $A = -\mathbb{L}$: $\partial_t^{\alpha} u(t) + Au(t) = 0, \qquad u(x,0) = \sum_{j=1}^{\infty} \frac{\langle u(\cdot, T), \phi_j \rangle}{E_{\alpha,1}(-\lambda_j T^{\alpha})} \phi_j(x)$

where $E_{\alpha,1}$ is a Mittag-Leffler function.

backwards diffusion $u_t + Au = 0$,

$$u(x,T)=u_T\approx u_T^{\delta},$$

▲□▶ ▲ □▶ ▲ □▶

4 D b

backwards diffusion $u_t + Au = 0$,

$$u(x,T)=u_T\approx u_T^{\delta},$$

in terms of Fourier coefficients:

$$\langle u_0, \phi_j \rangle = w(\lambda_j) \langle u_T, \phi_j \rangle$$
 with $w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$

▲@▶ ▲ ≧▶ ▲ ≧▶

4 D b

backwards diffusion $u_t + Au = 0$, $u(x, T) = \underbrace{u_T}_{} \approx \underbrace{u_T^{\delta}}_{} \approx \underbrace{u_T^{\delta}}_{} \approx$

in terms of Fourier coefficients:

$$\langle u_0, \phi_j
angle = w(\lambda_j) \langle u_T^{\delta}, \phi_j
angle$$
 with $w(\lambda) = e^{\lambda T} = rac{1}{e^{-\lambda T}}$

 $\in C^{\infty}(\Omega)$

 $\in L^2(\Omega)$

1

A B >
 A B >
 A

smoothed



$$\langle u_{0,K}^{\delta}, \phi_j \rangle = w(\lambda_j) \langle u_T^{\delta}, \phi_j \rangle \text{ for } j \leq K \text{ with } w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$$

backwards diffusion
$$u_t + Au = 0$$
,
 $u(x, T) = \underbrace{u_T}_{\in C^{\infty}(\Omega)} \approx \underbrace{\widetilde{u_T^{\delta}}}_{\in L^2(\Omega)} \approx \underbrace{\widetilde{u_T^{\delta}}}_{\in H^2(\Omega)}$
in terms of Fourier coefficients (truncated SVD):
 $\langle u_{0,K}^{\delta}, \phi_j \rangle = w(\lambda_j) \langle u_T^{\delta}, \phi_j \rangle$ for $j \leq K$ with $w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$
replace ∂_t by ∂_t^{α} with $\alpha < 1$ (\rightsquigarrow regularization parameter)
 $\langle u_{0,\alpha}^{\delta}, \phi_j \rangle = w(\lambda_j, \alpha) \langle \widetilde{u}_T^{\delta}, \phi_j \rangle$ with $w(\lambda, \alpha) = \frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$

< □ > < □ > < □ > < □ > < □ >

backwards diffusion $u_t + Au = 0$, $u(x, T) = u_T \approx u_T^{\delta} \approx \tilde{u}_T^{\delta}$, in terms of Fourier coefficients (truncated SVD):

$$\langle u_{0,K}^{\delta}, \phi_j \rangle = w(\lambda_j) \langle u_T^{\delta}, \phi_j \rangle$$
 for $j \leq K$ with $w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$
replace ∂_t by ∂_t^{α} with $\alpha < 1$ (\rightsquigarrow regularization parameter)

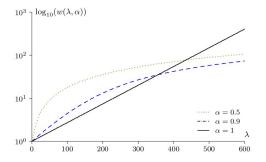
 $\langle u_{0,\alpha}^{\delta}, \phi_j \rangle = w(\lambda_j, \alpha) \langle \tilde{u}_T^{\delta}, \phi_j \rangle \quad \text{with} \quad w(\lambda, \alpha) = \frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$

-1

backwards diffusion $u_t + Au = 0$, $u(x, T) = u_T \approx u_T^{\delta} \approx \tilde{u}_T^{\delta}$, in terms of Fourier coefficients (truncated SVD):

$$\langle u_{0,K}^{\delta}, \phi_j \rangle = w(\lambda_j) \langle u_T^{\delta}, \phi_j \rangle$$
 for $j \leq K$ with $w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$
replace ∂_t by ∂_t^{α} with $\alpha < 1$ (\rightsquigarrow regularization parameter)

 $\langle u_{0,\alpha}^{\delta}, \phi_j \rangle = w(\lambda_j, \alpha) \langle \tilde{u}_T^{\delta}, \phi_j \rangle$ with $w(\lambda, \alpha) = \frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$



more stable for large frequencies, less stable for small frequencies

-1

Split frequency subdiffusion regularization backwards diffusion $u_t + Au = 0$, $u(x, T) = u_T \approx u_T^{\delta} \approx \tilde{u}_T^{\delta}$, in terms of Fourier coefficients (truncated SVD):

$$\langle u_{0,K}^{\delta}, \phi_j
angle = w(\lambda_j) \langle u_T^{\delta}, \phi_j
angle ext{ for } j \leq K ext{ with } w(\lambda) = e^{\lambda T} = rac{1}{e^{-\lambda T}}$$

Split frequency subdiffusion regularization backwards diffusion $u_t + Au = 0$, $u(x, T) = u_T \approx u_T^{\delta} \approx \tilde{u}_T^{\delta}$, in terms of Fourier coefficients (truncated SVD):

backwards diffusion on small frequencies, subdiffusion on large frequencies

$$\langle u_{0,\alpha}^{\delta}, \phi_j \rangle = \begin{cases} w(\lambda_j, 1) \langle u_T^{\delta}, \phi_j \rangle & \text{for } j \le K \\ w(\lambda_j, \alpha) \langle \tilde{u}_T^{\delta}, \phi_j \rangle & \text{for } j \ge K + 1 \end{cases} \text{ with } w(\lambda, \alpha) = \frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$$

 \rightsquigarrow regularization parameters α, K

▲◎▶ ▲臣▶ ▲臣▶

Split frequency subdiffusion regularization backwards diffusion $u_t + Au = 0$, $u(x, T) = u_T \approx u_T^{\delta} \approx \tilde{u}_T^{\delta}$, in terms of Fourier coefficients (truncated SVD):

backwards diffusion on small frequencies, subdiffusion on large frequencies

$$\langle u_{0,\alpha}^{\delta}, \phi_j \rangle = \begin{cases} w(\lambda_j, 1) \langle u_T^{\delta}, \phi_j \rangle & \text{for } j \leq K \\ w(\lambda_j, \alpha) \langle \tilde{u}_T^{\delta}, \phi_j \rangle & \text{for } j \geq K+1 \end{cases} \text{ with } w(\lambda, \alpha) = \frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$$

 \rightsquigarrow regularization parameters α, \textit{K}

numerical computations:

- perform truncated SVD on $P_{lo} u_{T}^{\delta} \longrightarrow P_{lo} u_{0,\alpha,K}^{\delta}$
- backpropagate $P_{hi} \tilde{u}_T^{\delta}$ by subdiffusion PDE $\rightsquigarrow P_{hi} u_{0,\alpha,K}^{\delta}$

where $P_{lo} = P_{\text{span}\{\phi_1,...,\phi_K\}}$, $P_{hi} = I - P_{lo}$

... projections onto low and high frequencies, respectively,

Multiple split frequency subdiffusion regularization

backwards diffusion $u_t + Au = 0$, $u(x, T) = u_T \approx u_T^{\delta} \approx \tilde{u}_T^{\delta}$, in terms of Fourier coefficients:

$$\langle u_0, \phi_j \rangle = w(\lambda_j) \langle u_T^{\delta}, \phi_j \rangle \text{ for } j \leq K \text{ with } w(\lambda) = e^{\lambda T} = rac{1}{e^{-\lambda T}}$$

backwards diffusion on small frequencies, subdiffusion on larger frequencies

$$\langle u_{0,lpha}^{\delta}, \phi_j
angle = egin{cases} w(\lambda_j, 1) \langle u_T^{\delta}, \phi_j
angle & ext{for } j \leq K_1 \ w(\lambda_j, lpha_1) \langle \widetilde{u}_T^{\delta}, \phi_j
angle & ext{for } K_1 + 1 \leq j \leq K_2 \ \cdots & w(\lambda_j, lpha_i) \langle \widetilde{u}_T^{\delta}, \phi_j
angle & ext{for } K_i + 1 \leq j \leq K_{i+1} \ \cdots & \cdots & \end{array}$$

 \rightsquigarrow regularization parameters $\alpha_1 > \alpha_2 > \cdots > \alpha_\ell$, $K_1 < K_2 < \cdots < K_{\ell+1}$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ □ Ξ

Other regularization approaches based on fractional derivatives

• add fracional time derivative:

$$u_t + Au = 0 \quad \rightsquigarrow \quad u_t + \varepsilon \partial_t^{\alpha} u + Au = 0$$

amplification factors

$$w(\lambda, \alpha, \beta, \varepsilon) = \left(\mathcal{L}^{-1} \left(\frac{1 + \epsilon s^{\alpha - 1}}{s + \epsilon s^{\alpha} + \lambda} \right) \right)^{-1} \sim \frac{\pi T^{\alpha} \Gamma(1 - \alpha)}{\sin(\alpha \pi)} \frac{1}{\epsilon} \lambda$$
regularization parameters α, ε

A D A D A A D A

Other regularization approaches based on fractional derivatives

add fracional time derivative:

$$u_t + Au = 0 \quad \rightsquigarrow \quad u_t + \varepsilon \partial_t^{\alpha} u + Au = 0$$

amplification factors

$$w(\lambda, \alpha, \beta, \varepsilon) = \left(\mathcal{L}^{-1} \left(\frac{1 + \epsilon s^{\alpha - 1}}{s + \epsilon s^{\alpha} + \lambda} \right) \right)^{-1} \sim \frac{\pi T^{\alpha} \Gamma(1 - \alpha)}{\sin(\alpha \pi)} \frac{1}{\epsilon} \lambda$$
regularization parameters α, ε

• add fractional space derivative A^{β} , e.g., $\lambda_j \rightarrow \lambda_j^{\beta}$:

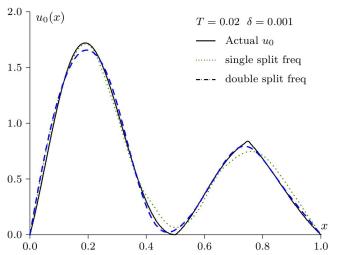
$$u_t + Au = 0 \quad \rightsquigarrow \quad (I + \varepsilon A^{\beta})\partial_t^{\alpha}u + Au = 0$$

amplification factors $w(\lambda, \alpha, \beta, \varepsilon) = \frac{1}{E_{\alpha,1}(-\frac{\lambda}{1+\varepsilon\lambda^{\beta}}T^{\alpha})}$ regularization parameters $\alpha, \beta, \varepsilon$

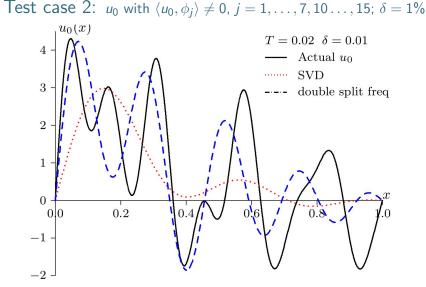
reconstructions - numerical experiments

・ロト ・回ト ・ヨト ・ヨト

Test case 1: u_0 with kink; $\delta = 0.1\%$



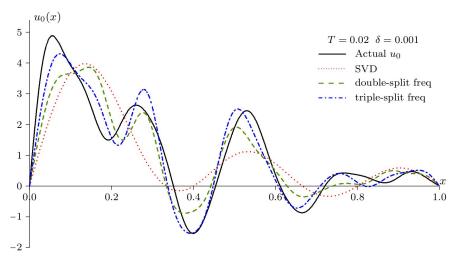
Reconstructions from single and double split frequency method. single split: $K_1 = 4$ and $\alpha = 0.92$; double split: $K_1 = 4$, $K_2 = 10$ and $\alpha_1 = 0.999$, $\alpha_2 = 0.92$.



Reconstructions from truncated SVD, single and double split frequency method.

- ∢ ⊒ →

Test case 3: u_0 with $\langle u_0, \phi_j \rangle \neq 0$, $j = 1, \dots, 7, 10 \dots, 15$; $\delta = 1\%$



Reconstructions from truncated SVD, single, double, and triple split frequency method.

convergence analysis

< □ > < □ > < □ > < □ > < □ >

Plain subdiffusion regularization

backwards diffusion $u_t + Au = 0$, $u(x, T) = u_T \approx u_T^{\delta} \approx \tilde{u}_T^{\delta}$, in terms of Fourier coefficients:

 $\langle u_0, \phi_j \rangle = w(\lambda_j) \langle u_T, \phi_j \rangle$ with $w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$

replace ∂_t by ∂_t^{α} with $\alpha < 1$ (\rightsquigarrow regularization parameter)

$$\langle u_{0,\alpha}^{\delta}, \phi_j
angle = w(\lambda_j, \alpha) \langle \tilde{u}_T^{\delta}, \phi_j
angle \quad \text{with} \quad w(\lambda, \alpha) = rac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$$

Properties of the Mittag-Leffler function $E_{\alpha,1}(-\lambda x)$ (I)

[Djrbashian 1966,'93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]

Lemma
For
$$0 < \alpha < 1$$
 and $x > 0$

$$\frac{1}{1 + \Gamma(1 - \alpha)x} \le E_{\alpha,1}(-x) \le \frac{1}{1 + \Gamma(1 + \alpha)^{-1}x}$$
Consequently, we have the stability estimate $\frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})} \le \bar{C}\frac{\lambda}{1 - \alpha}$

▲@▶ ▲ ≧▶ ▲ ≧▶

Properties of the Mittag-Leffler function $E_{\alpha,1}(-\lambda x)$ (II)

Lemma (BK&Rundell 2018)

For any $\alpha_0 \in (0, 1)$ and $p \in [1, \frac{1}{1-\alpha_0})$, there exists $C = C(\alpha_0, p) > 0$ such that for all $\lambda \ge \lambda_1$, $\alpha \in [\alpha_0, 1)$

$$|E_{lpha,1}(-\lambda \mathcal{T}^lpha) - \exp(-\lambda \mathcal{T})| \leq C \lambda^{1/p}(1-lpha)$$
 .

Consequently, we have the convergence rate

with α_0, α , p, λ_1 , λ as above, $\tilde{C} = \tilde{C}(\alpha_0, p) > 0$.

 $\left| rac{\exp(-\lambda T)}{E_{lpha,1}(-\lambda T^{lpha})} - 1
ight| \leq ilde{C} \lambda^{1+1/p}$

Exponential ill-posedness \longrightarrow mild ill-posedness backwards diffusion:

$$\langle u_0, \phi_j \rangle = w(\lambda_j) \langle u_T, \phi_j \rangle$$
 with $w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$

 \rightsquigarrow exponential instability.

Exponential ill-posedness \longrightarrow mild ill-posedness backwards diffusion:

$$\langle u_0, \phi_j \rangle = w(\lambda_j) \langle u_T, \phi_j \rangle$$
 with $w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$

 \rightsquigarrow exponential instability.

backwards subdiffusion

 $\langle u_{0,\alpha}^{\delta}, \phi_j \rangle = w(\lambda_j, \alpha) \langle \tilde{u}_T^{\delta}, \phi_j \rangle$ with $w(\lambda, \alpha) = \frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$ stability estimate $\frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})} \leq \frac{\bar{C}}{1-\alpha} \lambda$

1

< □ > < □ > < □ > < □

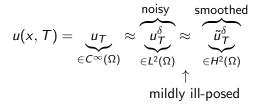
$$\langle u_0, \phi_j \rangle = w(\lambda_j) \langle u_T, \phi_j \rangle$$
 with $w(\lambda) = e^{\lambda T} = \frac{1}{e^{-\lambda T}}$

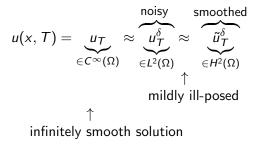
 \rightsquigarrow exponential instability.

backwards subdiffusion

$$\langle u_{0,\alpha}^{\delta}, \phi_j \rangle = w(\lambda_j, \alpha) \langle \tilde{u}_T^{\delta}, \phi_j \rangle$$
 with $w(\lambda, \alpha) = \frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$
stability estimate $\frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})} \leq \frac{\bar{C}}{1-\alpha} \lambda$
and Sobolev norm equivalence $\|v\|_{H^s(\Omega)} \sim \sum_{j=1}^{\infty} \lambda_j^s \langle v, \phi_j \rangle^2$

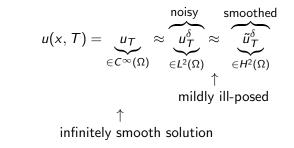
 \Rightarrow $H^2 - L^2$ stability of backwards subdiffusion, with a stability constant that degenerates as $\alpha \nearrow 1$.





< D

3 × 4 3 ×



Here an exponential source condition is satisfied.

Tikhonov regularization would not properly pre-smooth due to saturation.

$$u(x, T) = \underbrace{u_T}_{\in C^{\infty}(\Omega)} \approx \underbrace{u_T}_{\in L^2(\Omega)} \approx \underbrace{\widetilde{u}_T^{\delta}}_{\in H^2(\Omega)},$$

Use Landweber iteration for defining $\widetilde{u}_T^{\delta} = v^{(i_*)}$

1

$$v^{(i+1)} = v^{(i)} - \mu A^{-s/2} (v^{(i)} - u_T^{\delta}), \qquad v^{(0)} = 0,$$

with $\mu > 0$ chosen so that $\mu \| A^{-s/2} \|_{L^2 \to L^2} \leq 1$.

▲@▶ ▲ ≧▶ ▲ ≧▶

Image: Contract of the second seco

$$u(x, T) = \underbrace{u_T}_{\in C^{\infty}(\Omega)} \approx \underbrace{u_T^{\delta}}_{\in L^2(\Omega)} \approx \underbrace{\widetilde{u_T^{\delta}}}_{\in H^2(\Omega)}$$

Use Landweber iteration for defining \tilde{u}_{T}^{δ}

$$\mathbf{v}^{(i+1)} = \mathbf{v}^{(i)} - \mu A^{-s/2} (\mathbf{v}^{(i)} - u_T^{\delta}), \qquad \mathbf{v}^{(0)} = 0,$$

with $\mu > 0$ chosen so that $\mu \| A^{-s/2} \|_{L^2 \to L^2} \leq 1$.

Lemma (BK&Rundell 2018; pre-smoothing)

A choice of $i_* \sim T^{-2} \log \left(\frac{1}{\delta}\right)$ yields $\|u_T - \tilde{u}_T^{\delta}\|_{L^2(\Omega)} \leq C_1 \delta$, $\|u_{\mathcal{T}} - \tilde{u}_{\mathcal{T}}^{\delta}\|_{H^{s}(\Omega)} \sim \|\mathcal{A}^{s/2}(u_{\mathcal{T}} - \tilde{u}_{\mathcal{T}}^{\delta})\|_{L^{2}(\Omega)} \leq \frac{C_{2}}{T} \,\delta \sqrt{\log\left(\frac{1}{\delta}\right)} =: \tilde{\delta}$ for some $C_1, C_2 > 0$ independent of T and δ .

Convergence with a priori choice of α

 $Fu_0 = u_T$

with forward operator $F = \exp(-AT)$

Theorem (BK&Rundell 2018)

Let $u_0 \in L^2(\Omega)$, $A^{1+1/p}u_0 \in L^2(\Omega)$ for some $p \in (1,\infty)$, $\tilde{u}_T^{\delta} = v^{(i_*)}$ as in pre-smoothing Lemma with $s \ge 2(1+\frac{1}{p})$, and assume that $\alpha = \alpha(\tilde{\delta})$ is chosen such that

$$\alpha(\tilde{\delta}) \nearrow 1 \text{ and } \frac{\tilde{\delta}}{1 - \alpha(\tilde{\delta})} \to 0, \quad \text{ as } \tilde{\delta} \to 0,$$

Then

$$\|u_{0,\alpha(\widetilde{\delta})}^{\delta}-u_0\|_{L^2(\Omega)} o 0\,,\quad ext{ as }\widetilde{\delta} o 0\,.$$

Backwards time fractional diffusion is a regularization method.

Convergence with a posteriori choice of α

 $Fu_0 = u_T$

with forward operator $F = \exp(-AT)$

Theorem (BK&Rundell 2018)

Let $u_0 \in L^2(\Omega)$, $A^{1+1/p}u_0 \in L^2(\Omega)$ for some $p \in (1,\infty)$, $\tilde{u}_T^{\delta} = v^{(i_*)}$ as in pre-smoothing Lemma with $s \ge 2(1+\frac{1}{p})$, and assume that $\alpha = \alpha(\tilde{u}_T^{\delta}, \tilde{\delta})$ is chosen according to

$$\underline{\tau}\widetilde{\delta} \leq \|\mathsf{Fu}_0^{\delta}(\cdot;\alpha) - \widetilde{u}_T^{\delta}\| \leq \overline{\tau}\widetilde{\delta}$$

(discrepancy principle) with fixed $1 < \underline{\tau} < \overline{\tau}$. Then

$$u^{\delta}_{0,lpha(\widetilde{\delta})}
ightarrow u_0 \, \, {\it in} \, \, L^2(\Omega) \, , \hspace{1em} {\it as} \, \, \widetilde{\delta}
ightarrow 0 \, .$$

Backwards time fractional diffusion is a regularization method.

Convergence rates

Theorem (BK&Rundell 2018)

Let $u_0 \in L^2(\Omega)$, $A^{1+1/p+\max\{1/p,q\}}u_0 \in L^2(\Omega)$ for some $p \in (1,\infty)$, q > 0, $\tilde{u}_T^{\delta} = v^{(i_*)}$ as in pre-smoothing Lemma with $s \ge 2(1 + \frac{1}{p})$, and assume that $\alpha = \alpha(\tilde{u}_T^{\delta}, \tilde{\delta})$ is chosen according to

$$1-lpha(ilde{\delta})\sim \sqrt{ ilde{\delta}}\,, \quad ext{ as } ilde{\delta} o \mathsf{0}\,.$$

Then

$$\|u_{0,lpha(\widetilde{\delta})}^{\delta} - u_0\|_{L^2(\Omega)} = O\left(\log(rac{1}{\delta})^{-2q}
ight), \quad \text{ as } \delta o 0\,.$$

In the noise free case we have

$$\|u_{0,lpha}^0-u_0\|_{L^2(\Omega)}=O\left(\log(rac{1}{1-lpha})^{-2q}
ight)\,,\quad ext{ as }lpha
earrow 1\,.$$

Finite Sobolev regularity (\equiv log-source condition) implies log rate.

Split frequency subdiffusion regularization

backwards diffusion $u_t + Au = 0$, $u(x, T) = u_T \approx u_T^{\delta} \approx \tilde{u}_T^{\delta}$, in terms of Fourier coefficients:

$$\langle u_0, \phi_j
angle = w(\lambda_j) \langle u_T^\delta, \phi_j
angle ext{ for } j \leq \mathcal{K} ext{ with } w(\lambda) = e^{\lambda \mathcal{T}} = rac{1}{e^{-\lambda \mathcal{T}}}$$

backwards diffusion on small frequencies, subdiffusion on large frequencies

$$\langle u_{0,\alpha}^{\delta}, \phi_j \rangle = \begin{cases} w(\lambda_j, 1) \langle u_T^{\delta}, \phi_j \rangle & \text{for } j \leq K \\ w(\lambda_j, \alpha) \langle \tilde{u}_T^{\delta}, \phi_j \rangle & \text{for } j \geq K + 1 \end{cases} \text{ with } w(\lambda, \alpha) = \frac{1}{E_{\alpha,1}(-\lambda T^{\alpha})}$$

 \rightsquigarrow regularization parameters $\alpha, {\it K}$

・回・ ・ヨト ・ヨト

Convergence with a posteriori choice of K and α First choose K:

$$K = \min\{k \in \mathbb{N} : \|\exp(\mathbb{L}T)u_{0,lf}^{\delta} - u_T^{\delta}\| \le \tau\delta\}$$
(1)

for some fixed $\tau > 1$. Then choose α

$$\underline{\tau}\tilde{\delta} \leq \|\exp(-AT)u_{0,\alpha,K}^{\delta} - u_{T}^{\delta}\| \leq \overline{\tau}\tilde{\delta}.$$
 (2)

Theorem (BK&Rundell 2018)

Let $u_0 \in L^2(\Omega)$, $A^{1+1/p}u_0 \in L^2(\Omega)$ for some $p \in (1, \infty)$, $\tilde{u}_T^{\delta} = v^{(i_*)}$ as in pre-smoothing Lemma with $s \ge 2(1 + \frac{1}{p})$, and assume that $K = K(u_T^{\delta}, \delta)$ and $\alpha = \alpha(\tilde{u}_T^{\delta}, \tilde{\delta})$ are chosen according to (1) and (2). Then

$$u_{0,\alpha(\tilde{u}_{\tau}^{\delta},\tilde{\delta}),\mathcal{K}(u_{\tau}^{\delta},\delta)}^{\delta} \rightharpoonup u_0 \text{ in } L^2(\Omega), \quad \text{ as } \delta \to 0.$$

Split frequency backwards time fractional diffusion is a regularization method.

 based on the paradigm of quasi-reversibility, backwards subdiffusion (with pre-smoothing) is a regularizer for backwards diffusion

4 🗇 🕨 4 🖻 🕨 4 🖻 🕨

- based on the paradigm of quasi-reversibility, backwards subdiffusion (with pre-smoothing) is a regularizer for backwards diffusion
- can be implemented without explicit use of eigensystem by just numerical solution of time-fractional PDE

A (10) A (10)

- based on the paradigm of quasi-reversibility, backwards subdiffusion (with pre-smoothing) is a regularizer for backwards diffusion
- can be implemented without explicit use of eigensystem by just numerical solution of time-fractional PDE
- can be improved by spitting frequencies (using eigensystem) and treating different parts of the frequency range by different time differentiation orders α

· • @ • • = • • = •

- based on the paradigm of quasi-reversibility, backwards subdiffusion (with pre-smoothing) is a regularizer for backwards diffusion
- can be implemented without explicit use of eigensystem by just numerical solution of time-fractional PDE
- can be improved by spitting frequencies (using eigensystem) and treating different parts of the frequency range by different time differentiation orders α
- \rightarrow prove numerically observed superiority to TSVD for appropriate classes of initial data(?)

< □ > < 圖 > < 필 > < 필 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you for your attention!