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o Identify parameter ¢ in initial value problem for ODE / PDE
u(t) = f(t,u(t),v) te€ (0, T), wu(0)=up

from discrete of continuous observations of u.
Yi = hi(u(ti))' i€ {17 SO m} or y(t) = h(tay(t))' te (07 T)
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Parameter ldentification: Reduced formulation

@ Application of classical regularization methods requires
repeated evaluation of the parameter-to-state map S

@ often numerically too expensive
@ sometimes requires too restrictive assumptions (e.g. for
singular PDEs, e.g., static MEMS model —Au + % =0)

@ destroys time causality for parameter identification in
time-dependent PDEs

~~ derive formulations of inverse problems and of their
regularization that do not require parameter-to-state map




minimization based formulation of inverse problems




Abstract Formulation as Operator Equation
Identify parameter g in (PDE or ODE) model

A(g,u) =0
from observations y of the state u

Clu) =y,
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A: X x V — W*. . _ differential operator

C :V — Y...observation operator
@ reduced approach: operator equation for g

Fa) =y,
F=CoSwith S: X — V, g u parameter-to-state map
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Abstract Formulation as Minimization Problem: Basic Idea

Flg)=y e, {2‘((71’)2:0

is equivalent to
min | F(q) —y|?
or equivalent to
min [|C(u) — y[[* + | Aq )
or equivalent to

min ||C(u) — y||? s.t. A(g,u) =0
q,u

or equivalent to
min [ A(g, u)|* s.t. C(u) =y

...and beyond, e.g., variational formulation of EIT [Kohn&Vogelius'87]
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The variational approach to EIT
see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98]

Identify spatially distributed conductivity o = o(x) in Q C R?
V-Ji=0, V'-E; =0, Ji=0cE, inQ, i=1,...,1,

from observations y of boundary currents j; and voltages v;.

with V4o = (— 8X2, 82 )7 so that V- = curl
Using potentials ¢; and 1);
for current densities J; and electric fields E;

Ji= -V, Ei=-V¢;, i=1,...,1,

we can rewrite the problem as

\/‘w,_Tviw, in Q: ¥ =7, ¢; = v; on 89, i:1,...,/,J

where'y,(x(s) = — Jo Ji(x(r)) dr for 8Q = {x(s) : s € (0, length(6))}.
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The variational approach to EIT

1
VoV = —=VLi in Q; i =i, ¢i = v; on 9Q, i=1,...,I7J

NG
equivalent to (¢ (¢1,-~-7¢>/) = (t1,..-,1))
(,,¢,TVZ /|\/_V¢, — va |2 dx

st. Yj=7;, ¢i=v; ondQ, i=1,...,/
equivalent to (since [, Vi - V4 e dx = Joq viji dx)

I
1
, Z; Vo2 VL2
a,dJI,QV P 2/Q(O-| ¢I| O‘l ¢’| )dX

st. Y=, pi=v; ondQ, i=1,...,1




Regularized variational EIT
inverse problem (EIT):

I
min >3 / (o|V¢;|2+§|vL¢;|2) dx
i=1

U?v

st. Y=, pi=v; ondQ, i=1.../1




Regularized variational EIT
inverse problem (EIT):

!
1
: 1 2 €L 2
Grp‘;,wizz;i/g(a|v¢i| +;|V Uil )dx
st. Y=, pi=v; ondQ, i=1.../1

regularization (RegEIT):

/ )
: ' 1
. 1 1 02 L ol 2 a . 2
m;{%;%(wm P2V a ot 2||(¢,,w)|Hm(mz}
st. o<o<aoon(,

4 5
v =70 < ¢ < + 70, o
Y — 76 < thi <A 476, ondQ, i=1,...1

with the noise level § > ||y — y°|| and a safetly factor 7 > 1
Convergence as § — 0 [BK, SIOPT 2018] -




Remarks on EIT example

@ cost function: J? differentiable;

@ constraints: pointwise bounds can be efficiently implemented
[Hungerlander, BK and Rend| 2020] and are practically relevant
in view of known a prior bounds on ¢;

o first order least squares formulation of the PDE model;

@ Euler-Lagrange equation for unregularized problem yields
second order PDE model V - (¢V¢;) = 0;

@ can be extended to complete electrode model CEM
[Somersalo, Cheney, and Isaacson, 1992], see [Huynh and BK, IPI 2021];




Some further examples

@ crack detection: ¥ C Q

(za¢la"'¢lawla-~-¢l) S

/
i T 0ot L oLy :
argmln{; /Q\):(2|V¢I| + 20|V il )dx :
= diloa = vi, Yiloq =i}
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(Z ¢17 ¢/71/)17 'I;Z)I)

argmln{Z/ —|V¢:|2 |VJ'1/"|2>

¢1|8Q = Vi, ¢:|aQ = 'Y/}

o magnetostatics: 1 = ji(x), Bi=V x A;, H;=V¢;+ A",

(1, A1, .. AL, .. 1) €

im| 1 i
argmm Z/ Evei+ AP+ _|V x Aj[2 — Jm. A,-) dx :
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00,
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Inverse problem formulated via constrained minimization

min J(x) s.t. x e M (1)
with solution x'
first order optimality condition for a minimizer of (1)

(VI(x"),x =xTy >0 forallxe M (2)
normalization assumption

J>0on M, xteM, J(XT):miArJ’J(X)zo (3)
xe

noisy data y° ~ y ~-
min J°(x) s.t. x € M?
~> replace (3) by
S>00on M, xteM, JS(xT)<n(d) forallde(0,0),
where n(6) > 0 and n(d) - 0asd — 0

study convergence as § tends to zero.
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define steps by
o gradient descent
@ regularized Newton type method
take into account constraints by
@ projection onto M
@ minimization over M
consider the following combinations:
@ projected gradient method (in Hilbert spaces)

e regularized sequential quadratic programming SQP (in general
Banach spaces)

... taking into account ill-posedness of the underlying problem.
regularize - then - iterate versus
regularize by iterating (and early stopping)
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Projected gradient method
aim to solve N
min J°(x) s.t. x € M?

projected gradient descent:
Fea1 = xic — VI (%), Xiew1 = Ppzs(St1) J

early stopping according to discrepancy principle (with 7 > 1 fixed)
ke = ka(6) = min{k : [V (x0)|* < 70(6)}

Assume convexity (i.e., monotonicity of gradient)

(VL (x) = VL (xP),x —xT) > || VL(x)|]> forall x € M°

and (approximate) stationarity
(VLO(xT),x —xt)y > —n(6) forall x e M°,

or combined:
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Projected gradient method
aim to solve N
min J°(x) s.t. x € M?

projected gradient descent:
Fea1 = xic — VI (%), Xiew1 = Ppzs(St1) J

early stopping according to discrepancy principle (with 7 > 1 fixed)
ke = ka(6) = min{k : [V (x0)|* < 70(6)}

Assume convexity (i.e., monotonicity of gradient)

(VL (x) = VL (xP),x —xT) > || VL(x)|]> forall x € M°

and (approximate) stationarity
(VLO(xT),x —xt)y > —n(6) forall x e M°,

or combined:

(VL (x),x — x1) > ~||[VL(x)||> = n(6) forall x € M°

as well as a continuity and closedness condition on V.J . and M

D (v




Convergence

Theorem (BK and Huynh, COAP 2021)

@ For § = 0 the sequence (xx)ken converges weakly to a solution
x* € M of the first order optimality condition (2) as k — oc.

@ Ifd > 0 then the family (Xk*(5))6€(0,5] converges weakly

subsequentially to a stationary point x' according to (2) as
0 — 0. If this stationary point is unique, then the whole
sequence converges weakly to x'.

The same assertions hold with stationarity (2) replaced by

(a) minimality, i.e., x' € argmin{J(x) : x € M}

or by
(b) IVJ(xM)] =0




Convergence

Theorem (BK and Huynh, COAP 2021)

@ For § = 0 the sequence (xx)ken converges weakly to a solution
x* € M of the first order optimality condition (2) as k — oc.

@ Ifd > 0 then the family (Xk*(é))cse(o,S] converges weakly

subsequentially to a stationary point x' according to (2) as
0 — 0. If this stationary point is unique, then the whole
sequence converges weakly to x'.

The same assertions hold with stationarity (2) replaced by

(a) minimality, i.e., x' € argmin{J(x) : x € M}

or by
(b) IVJ(xM)] =0

see also [Kindermann, IPI 2017] for J(x) = ||F(x) — y||>, M = X,
generalized convexity
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An SQP type constrained Newton method

aim to solve
min S°(x) s.t. x € M?

' Xk+1 € argmin s QY(x) + aR(x)
where QJ(x) = J2(xx) + G°(xi)(x — xx) + %Hﬁ(xk)(x — x)?

with , "
G‘S(xk) ~ J° (xk), H‘S(xk) ~ J° (xk)

R ... regularization functional

Here X is a general Banach space.
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An SQP type constrained Newton method
— comparison to Gauss-Newton type methods

aim to solve

min J°(x) = S(F(x),y) s.t. x € M°

SQP:
Xkt1 € argmin s QY (x) + axR(x)

where Q)(x) = J°(xk) + G°(xk)(x — xk) + 3 H° (xk) (x — xx)?

W

IRGNM:
Xi41 € argmin, s S(F(xi) + F'(xi) (x — x), ¥°) + aR(x)

v

Differently from the iteratively regularized Gauss-Newton method IRGNM
[Bakushinskii 1992, BK&Neubauer&Scherzer 1994 ff.] and the
Levenberg Marquardt method [Hanke 1995]

. . 1
@ we do not necessarily neglect F” term in J° (xx);

@ we always solve quadratic programs if R is quadratic.
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An SQP type constrained Newton method

Xky1 € argmin s Q2(x) + aR(x)
where Q(x) = J2(xx) + G°(xk)(x — xx) + %H‘S(xk)(x — xk)?

with , "
GOxi) m (i), H () = S ()
R ... regularization functional

a priori choice of regularization parameters:
ax = aph®

(alternatively, a posteriori choice of ay as in [Hanke 1997])

early stopping according to discrepancy principle
ke = ky(6) = min{k = J2(x) < mn(6)}

for some constants ag >0, 6 € (0,1), 7> 1.,
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An SQP type constrained Newton method

Xky1 € argmin s Q2(x) + s R(x)

where Qf(x) = J°(xk) + G (xi)(x — xk) + 2 H° (i) (x — xx)?
assume

Go(x) : X = R linear ,  H°(x¢) : X2 = R bilinear ,

R : X — [0, 00] proper with domain dom(R) D U M2 UM
5€(0,5)

restriction on nonlinearity

al’(xy) = b (x) < G°(x)(x — %) + H’ (x) (xt — x)* <3S (x;) — bS*(x)
(%) for all x,xy € M°, &€ (0,9),
Taylor ~» a,a, b, b,~1

and some “usual” continuity/closedness/compactness assumptions
on J° G° H® M? in some topology 7.




Convergence

Theorem (BK and Huynh, COAP 2021)

o Forany é € (0,9), and any xo € Nse(0.5) Mo N M,

o the iterates xy are well-defined for all k < k.(9)
o k.(0) is finite;

o forall ke {1,...,k.(0)} we have

EBJ‘S(xk_l) + éakR(xT) +

o

L (x) <

v o]

UH
® Asd — 0, the final iterates xy, (5 tend to a solution of the
inverse problem T -subsequentially, i.e., every sequence Xk (57)

with 6; — 0 as j — oo has a T convergent subsequence and
the limit of every T convergent subsequence solves (1).
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Identify o = o(x) in the elliptic PDE

V- (cVe)=0inQ

from observations of ¢.




Application in diffusion/impedance identification

Identify o = o(x) in the elliptic PDE
V- (cVe)=0inQ
from observations of ¢.

@ electrical impedance tomography EIT (Calderon’s problem)
v = ¢lgq (the voltage at the boundary)

@ impedance acoustic tomography IAT
H = o|Vp|? (the power density)

o simplified version of inverse groundwater filtration GWF
(Darcy's problem)
p = ¢ (the hydraulic head)




Minimization based formulations

E=Ve¢, J=Viy
@ Cost function part incorporating the model: Kohn-Vogelius
functional

2
JKY (0,E,J) = %/Q‘\/EE— \/%;J‘ dqQ,




Minimization based formulations

E=Ve¢, J=Viy
@ Cost function part incorporating the model: Kohn-Vogelius
functional

2
JKY (0,E,J) = %/Q‘\/EE— \/%;J‘ dqQ,

@ Cost function part incorporating the observations:
JEIT 2
) =4 [ (0=vPen

JAT(E, ;1) = /(J E—H1)2dQ or 2/(U|E|2 H)? dQ

o

IS (i p) = 5116 — pllis(a




Minimization based formulations

several excitations (j1,...,Ji)
~~ several states ® = (¢1,...,0;), V= (¢Y1,...,¢)):

@ Cost function part incorporating the model: Kohn-Vogelius
functional

I
2
Jmod o,EJ) = %Z/{; ‘\/EEI - \/L(;Ji dQ,
i=1

@ Cost function part incorporating the observations:

ST -~>—22/
JAT(E, 3 H) = 22/ onrQZ/a|E|—H)dQ

Jons (®:B) = 51161 — Pillbs()
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Three versions of treating o, ®, ¥

@ all-at-once: minimize with respect to o, ®, ¥ simultaneously
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@ all-at-once: minimize with respect to o, ®, ¥ simultaneously

@ eliminate o, minimize with respect to ®, ¥, setting

!
o — i= |Vl¢i|2
o(®,V) = m'“{"’max {9’ V Siver }}




Minimization based formulations

Three versions of treating o, ®, ¥
@ all-at-once: minimize with respect to o, ®, ¥ simultaneously

@ eliminate o, minimize with respect to ®, ¥, setting

—mind s S Va2
o(®, V) = min {a, max {g, Z:{:ll Vol }

@ eliminate ®, W, minimize with respect to o,
setting ¢;(o) ¥i(o), Ei(o) according to:

) — in Q
¢(o) solves { v (UV(@ _ 8 |0nn 90

V-(cV¢) = 0 inQ
¢"’(")S°"’es{ Vé-v = j ondQ [,6dQ2=0

1. (1gl _ in Q
(o) solves { VoGV 12 _ g :)nn 90

E(o) = w pointwise in Q




Minimization based formulations
T min, Ul 99,9500+ AT (0) - 0 € L (@), 6 € HA (@), 0 € HE) + w0}
(i) min {Imog (0, Vs V) 0 € Ly 71(R), 6 € Ho() + 0, ¥ € Hy(R) + vo}
() i {Imoa(9(V 6, V0), V6, VE) + Byl (#iv) = 6 € Ho (@), € Ho() + o}
() i {Imoa(o(V 9, V), Ve, V) 1 b € Hy(Q) + do, % € HY(Q) + o}
(V) min{Jmoa(, Vé(0), V(o)) : o € LF, ()}

(vi) min{J S (en(0)iv) 1 o € LTy (D}
IAT:

JIAT (Y, Vo M)
(@) min_ {Imod(e V6, vlw)w{ J‘,’ﬁﬁl -, Vi H) F 0 €Ly 5)(9), ¢ € HL(R), ¥ € Hy(9) + Yo}
o, ob52
ST (Yo, VL H)

(i) min {mod (7(V 6, V), V6, V- 0) + 6 { Jml L ¢ € HL (), % € Ho(Q) + %o}

obsy (7 V& H)
JIAT vJ_ H
(i) mm{{ J‘,’z? Bl ) (); 7;;}(0) ) o€ L[Zi’g](ﬂ)}

GWF:

JOWF
- obe (¢:p)
(:)vaw{Jmod(o,V¢,va)+a{ " & (0:8)

JEWF(dy )
(i) min Unoa(2(V 6, V), V6, 9 w) +ﬂ{ OZVZFW;’ o

Do €L, 5, ¢ € HL(Q), v € Hy(Q) + vo}

© ¢ € HL ()% € Hy(Q) + o}

< > < P AE>r A




Computational setup

8 electrodes ~» 28 possible excitation combinations; we consider:
o /=1, withji; =1, js; = —1
and jx,1 = 0 otherwise;

o [ =2, with _]'1’1 :j3’2 =1,
Js1=Jrp=—1and jx; =0

otherwise;
o [ =4, with
jl,l :j3,2 :_/.273 :_/.474 = ]_,
Js,1 = J12=J63 =Js4 = —1 and

Jk,i = 0 otherwise.

@ |/ =28, with all (g) combinations
- 05 0 05 1 of setting jk,i =1, jo,j = —1 for
k#0e{l,...,8)
starting values: o9 = %(g-l— 7); ©g = P(00), Vo = V(op)




numerical results with

projected gradient method
by Kha Van Huynh




Numerical Tests

IS

w

-05 0

2
0.5 1
test case 0: exact o

AO> «F > «E» « > = 3



GWEF: all-at-once reconstructions with / € {1,2}

| =1:
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|AT: eliminating ®, W reconstructions with | € {1,2}

| =1:




|AT: eliminating ®, W reconstructions with | € {4,28}

| = 4:




IAT: comparison
relative errors:

all-at-once
1) I=1|1=2|1=4|1=28
0. 0.130 | 0.076 | 0.061 | 0.060
0.01 || 0.131 | 0.077 | 0.062 | 0.060
0.1 0.159 | 0.118 | 0.086 | 0.064
elim. o
1) I=1|1=2|1=4|1=28
0. 0.115 | 0.071 | 0.064 | 0.065
0.01 || 0.163 | 0.074 | 0.062 | 0.065
0.1 0.174 | 0.087 | 0.084 | 0.065
elim. ¢,V
1) | = | = I=4|1=28
0. 0. 0. 0. 0.
0.01 || 0.004 | 0.003 | 0.003 | 0.001
0.1 0.044 0.024 | 0.013




IAT: comparison
relative errors:

runtimes (in hours):

all-at-once
I=1|1=2|1=4|1=28
262 74 20.4 | 22.8
259 74 20.8 | 22.9
274 845 | 218 | 344

elim. o

I=1|1=2|1=4|1=28
0.16 | 033 |0.23 |042
0.08 | 029 | 0.34 |0.39
0.07 | 036 | 0.18 | 0.39

elim. ¢,V
| = | = I=4|1=28
41.1 |8.38 |29 13.6
231 | 170 |75 26.7
106 | 115 |55 33.6

all-at-once
) I=1\|1=2|1=4]1=28
0. 0.130 | 0.076 | 0.061 | 0.060
0.01 || 0.131 | 0.077 | 0.062 | 0.060
0.1 0.159 | 0.118 | 0.086 | 0.064
elim. o
1) I=1|1=2|1=4]1=28
0. 0.115 | 0.071 | 0.064 | 0.065
0.01 || 0.163 | 0.074 | 0.062 | 0.065
0.1 0.174 | 0.087 | 0.084 | 0.065
elim. &,V
1) | = | = I=4|1=28
0. 0. 0. 0. 0.
0.01 || 0.004 | 0.003 | 0.003 | 0.001
0.1 0.044 | 0.034 | 0.024 | 0.013




IAT: comparison
relative errors:

runtimes (in hours):

all-at-once all-at-once
b I=1|1=2]1=4]1=28 I=1|1=2|1=4|1=28
0. 0.130 | 0.076 | 0.061 | 0.060 262 | 74 204 | 2238
0.01 || 0.131 | 0.077 | 0.062 | 0.060 259 | 74 20.8 | 229
0.1 | 0.159 | 0.118 | 0.086 | 0.064 274 1845 | 218 | 344
elim. o elim. o
5 I=1]1=2|1=4]1=28 I=1|1=2|1=4]/=28
0. 0.115 | 0.071 | 0.064 | 0.065 0.16 | 0.33 | 0.23 | 0.42
0.01 || 0.163 | 0.074 | 0.062 | 0.065 0.08 | 0.29 | 034 |0.39
0.1 | 0.174 | 0.087 | 0.084 | 0.065 0.07 | 0.36 | 0.18 | 0.39
elim. &,V elim. &,V
b I=1]/1=2]1=4[1=28||I=1|1=2|1=4]|1=28
0. 0. 0. 0. 0. 411 [838 |29 13.6
0.01 || 0.004 | 0.003 | 0.003 | 0.001 231 |17.0 |75 26.7
0.1 | 0.044 | 0.034 | 0.024 | 0.013 106 | 115 |55 33.6

DA




EIT: four different starting values

2" (average) 5 "2 (10% blurring) %
1
45 45
05
4 4
35 o 35
3 3
05
25 25
-1
H 2
-1 0.5 0 0.5 1
% (larger radius) o™ (smaller radius)

=)

1
45 45
0.5
4 4
35 35
3 3
0.5
25 25
-1
-1 -0.5 o 0.5 1




EIT: eliminating ¢, ¥

reconstructions with /| = 28

«O» «F» «E»

<




EIT: comparison
Comparing relative errors

0.304 0.304 0.309 0.304

0.2

015

0.105 0.105 0.105 0.105
0.1

0.05

_ 0 _ 0z _ 03 _ 04
0y=0 Gy =0 gy=0 gyp=0

Comparing runtimes (in hours)

160 156
140
120
100
80
60
40
20




further test cases

™1 (two components) 2 °*2 (three components) P
1
45 45
0.5
4 4
35 0 35
3 3
0.5
25 25
-1
2 2
-1 -05 0 05 1 -1 0.5 0 0.5 1
ex3 exd
a®* (two nested components) i a™*" (three nested components) g
1
45 45
05
4 4
35 0 35
3 3
0.5
25 25
-1
2 H

-1 -05 o 05 1 -1 -0.5 o 0.5 1 =)




EIT: reconstructions of &1 o2

o.exl:

ex2.




EIT: reconstructions of 03, &4

o.ex3:

ex4.




IAT: reconstructions of o1, o2
aexl:

0.ex2:

> « =




Uex3:

IAT: reconstructions of g3, g4

o.ex4:

> « =




Conclusions

@ all-at-once and minimization based formulations provide more
freedom in formulating and regularizing inverse problems
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@ all-at-once gradient type methods never solve PDE models

@ all-at-once Newton type methods only solve linear PDE
models




Conclusions

@ all-at-once and minimization based formulations provide more
freedom in formulating and regularizing inverse problems

@ all-at-once gradient type methods never solve PDE models

@ all-at-once Newton type methods only solve linear PDE
models

o further applications: sound source localization, distributed or
nonlinear permeabilities in magentostatics, Lamé parameters
in elastostatics, cracks. . .




Thank you for your attention!
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Idea of proof |
Nonexpansivity of Pys =
)2 12— llxe — x1?

— Ixk = xH12 = [|Pigs (as1) — Pz (x1)

< IS — xT2 = fxe — xTJ?

XK1 — x




Idea of proof |
Nonexpansivity of Pys =
17 2

— lxk = xT1? = |Pizs (Rkr1) — Ppgs (xDIIZ = [1xc — xT|?

< [[Rg1 — X2 =[xk — xT|?

XK1 — x

= || Xkg1 — XkHz + 2(Xpt1 — Xk, Xk — XT)
= 12|V (i) 12 — 20k (VL (i), 3 — xT) .




Idea of proof |
Nonexpansivity of Pys =
k1 = XTI = [ = XTI = [[Pigs (Ras1) = Prgs DII1Z = [l = T2
< Ier — X2 = [ — x|
= [|%es1 — Xicll® + 2(fu1 — xi 36 — xT)
= 1 VL )1 = 20 (VS (i), 0 — xT)
Under combined convexity and approximate stationarity condition
(VL (x),x — x1) > ~||[VL(x)||> = n(6) forall x € M°
which for k < k. = min{k : [|[VJO(x¢)||? < 71(5)} implies
(vr = 1)n(8) < (VI () i — xT),
(14 =23) (VL ()i — xT) = AV ()l

~y7—1




Idea of proof |
Nonexpansivity of Pys =
k1 = XTI = [ = XTI = [[Pigs (Ras1) = Prgs DII1Z = [l = T2
< Ier — X2 = [ — x|
= [|%es1 — Xill® + 2(fug1 — xi, i — xT)
= 1 VL )1 = 20 (VS (i), 0 — xT)
Under combined convexity and approximate stationarity condition
(VL (x),x — x1) > ~||[VL(x)||> = n(6) forall x € M°
which for k < k. = min{k : [|[VJO(x¢)||? < 71(5)} implies
(vr = 1)n(8) < (VI () i — xT),
(14 =23) (VL ()i — xT) = AV ()l

~y7—1

T>10<pu<m<u< w we get monotonicity of the error

1 — xT12 =[x — xT)1? < = E(V I (), xe — xF)
< — ik C|| VL (xe)|> < 0




Idea of proof Il

monotonicity estimate
xir1 = X[ = o = x> < = E(V L (), 3k — xT)
< —uClIVL(x)|? <0
implies summability of residuals

K
S (VL ()~ 2ty < o — €12
k=0

&
5 2 1 v _ 12
kZ_OIIVJ Cadll™ = Jzllxo =T~




Convexity Condition
special case J%(x) = 3||F(x) — y°||?:  Condition
(VL (x),x — x1) > ~||[VL(x)||> = n(6) forall x € M°

becomes

(F(x) =%, F'(0)0x = x1) 2 AllF ()" (F(x) = y*) 17 = 0(8) (4)




Convexity Condition
special case J%(x) = 3||F(x) — y°||?:  Condition
(VL (x),x — x1) > ~||[VL(x)||> = n(6) forall x € M°

becomes

(F(x) =%, F'(0)0x = x1) 2 AllF ()" (F(x) = y*) 17 = 0(8) (4)

which follows, e.g., from the weak tangential cone and
boundedness conditions

|F'(x)|]| <1 and
(F(x) = F(x) = F/(x)(x = x1), F(x) = y°) < (1 =y = K)|F(x) = ¥°|)?
with [|F(xT) = y?|[> < 4rn(6).




Convexity Condition
special case J%(x) = 3||F(x) — y°||?:  Condition
(VL (x),x — x1) > ~||[VL(x)||> = n(6) forall x € M°
becomes
(F(x) = y*, F'0)(x = x1)) 2 A F'(x)*(F(x) = y")I> = 0(8) (4)

which follows, e.g., from the weak tangential cone and
boundedness conditions

|F'(x)|]| <1 and
(F(x) = F(x) = F/(x)(x = x1), F(x) = y°) < (1 =y = K)|F(x) = ¥°|)?

with [|F(xT) — y° |12 < 4rn(9).
cf. normalization and tangential cone conditions for Landweber
iteration, see, e.g., [Hanke&Neubauer&Scherzer 1995].




Convexity Condition
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becomes
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which follows, e.g., from the weak tangential cone and
boundedness conditions

|F'(x)|]| <1 and
(F(x) = F(x) = F/(x)(x = x1), F(x) = y°) < (1 =y = K)|F(x) = ¥°|)?

with [|F(xT) — y° |12 < 4rn(9).

cf. normalization and tangential cone conditions for Landweber
iteration, see, e.g., [Hanke&Neubauer&Scherzer 1995].

For more general conditions on gradiend descent regularization
methods see [Kindermann 2017].




Convexity Condition
special case J%(x) = 3||F(x) — y°||?:  Condition
(VL (x),x — x1) > ~||[VL(x)||> = n(6) forall x € M°
becomes
(F(x) =y F'(x)(x = x)) = 7 F'(x)*(F(x) = ") I? = n(6) (4)
which follows, e.g., from the weak tangential cone and

boundedness conditions
|F'(x)|]| <1 and

(F(x) = F(xT) = F1()(x = xT), F(x) = y°) < (L= = 0)IIF(x) = y° |17

with [|F(xT) — y° |12 < 4rn(9).

cf. normalization and tangential cone conditions for Landweber
iteration, see, e.g., [Hanke&Neubauer&Scherzer 1995].

For more general conditions on gradiend descent regularization
methods see [Kindermann 2017].

This applies to both reduced F(gq) = CS(q)

and all-at-once F(q, u) = (A(q, u), Cu) type formulation.




Nonlinearity Restriction

al’(x4) = bS(x) < G°(x)(xt — x) + 3H () (x — x)* <3S (x1) — bS°(x)
(*) for all x,xy € M°, &€ (0,9),

with a,b,3,b > 0;
motivated by (with equality in case of quadratic J°)

GO 0x) (x4 = x) + 3HO(x) (g = x)? = S (x4) = S°(x),




Nonlinearity Restriction

al’(x4) = bS(x) < G°(x)(xt — x) + 3H () (x — x)* <3S (x1) — bS°(x)
(*) for all x,xy € M°, &€ (0,9),

with a,b,3,b > 0;
motivated by (with equality in case of quadratic J°)

GO 0x) (x4 = x) + 3HO(x) (g = x)? = S (x4) = S°(x),

sufficient for () (witha=1—-¢ b=1+¢ a=1+& b=1-8)is

P () — P(x) — G2(x)(x — %) — BHOG)(xs — x| < E(S(x1) + ()
(xx) for all x,x, € M®, &€ (0,3),




Nonlinearity Restriction

al’(x4) = bS(x) < G°(x)(xt — x) + 3H () (x — x)* <3S (x1) — bS°(x)
(*) for all x,xy € M°, &€ (0,9),

with a, b,3, b > 0;
motivated by (with equality in case of quadratic J°)

GO (x4 = x) + 3H () (xs = x)? = S (xy) = S (%),
sufficient for () (witha=1—-¢ b=1+¢ a=1+& b=1-8)is

P () — P(x) — G2(x)(x — %) — BHOG)(xs — x| < E(S(x1) + ()
(xx) for all x,xy € M®, &€ (0,3),

sufficient for (xx) in special case J°(x) = %||F(x) — y°||?, X Hilbert space, is

[(F(xt) = F(x) = F/(x) (x4 = x), F(x) = y*)| < ceellF(xq) = F)IF(x) = ¥°|
for all x, xp € M%< -6 € (0,0),




