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Inverse Problems

Determining causes for

identification
↗

observed
or

desired
↘

optimization

effects.

Inverse probleme are often unstable:
Small perturbations in the data can lead to
large deviations in the solution.
→ regularization necessary

Question of identifiability:
Are the searched for quantities uniquely determined
by the given data

Mathematical modeling:
Formulate the underlying physical/biological/economic. . . laws in a
mathematical language (usually partial differential equations PDEs)
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Inverse Problems

forward problem:

cause =⇒ effect

inverse problem:

cause =⇒ effect

PDE coefficients,
initial conditions,
boundary conditions,
source terms,
shapes,
. . .

data:

boundary traces
Dirichlet-to-Neumann map
far field
. . .
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Inverse Problems
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examples
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A classical example: Computerized tomography

∫ tD

tS

ρ(s~ϑ+ t~ϑ⊥)dt = − log

(
ID(s, ~ϑ)

IE (s, ~ϑ)

)

Johann Radon, 1887–1956

ρ 7→
∫ tD

tS

ρ(s~ϑ+ t~ϑ⊥)dt . . . Radon transform
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An elementary example: Numerical differentiation

Given perturbed values f̃1, f̃2, f̃3, . . . , f̃n of a differentiable function f
with |f̃i − f (xi )| ≤ δ, xi = i h, i = 1, 2, . . . , n

Find f ′

secant approximation:

f ′(xi ) ≈
f (xi+1)− f (xi−1)

2h
=: f ′h(xi )

insert given measured data:

f ′(xi ) ≈
f̃i+1 − f̃i−1

2h
= f̃ ′h(xi )

h h

xi−1 xi xi+1
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exact data: secant approximation with h = 1
10 :
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exact data: secant approximation with h = 1
10 :

secant approximation with h = 1
100 :
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perturbed data (1% noise): secant approximation with h = 1
100 :
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What goes wrong here?
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What goes wrong here?

|f̃ ′h(xi )− f ′h(xi )| = | f̃i+1 − f̃i−1
2h

− fi+1 − fi−1
2h

|

=
1

2h
| f̃i−1 − fi−1︸ ︷︷ ︸

≤δ

− f̃i+1 − fi+1︸ ︷︷ ︸
≥−δ

| ≤ 2δ

2h
=
δ

h
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perturbed data (1% noise): secant approximation with h = 1
100 :

secant approximation with hopt :

 Regularization!
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How large is the deviation from the exact derivative?

|f̃ ′h(xi )− f ′(xi )| ≤ |f ′h(xi )− f ′(xi )|︸ ︷︷ ︸
approximation error

+ |f̃ ′h(xi )− f ′h(xi )|︸ ︷︷ ︸
propagated noise

h→0−→ 0 ≤ δ/h h→0−→∞ → instability

Regularization:

choice of h = h(δ) such that h(δ)
δ→0−→ 0 and δ/h(δ)

δ→0−→ 0

⇒ |f̃ ′h(xi )− f ′(xi )|
δ→0−→ 0 d.h.: smaller noise ⇒ better result

21



Parameter Identification in Differential Equations:
Some Examples

Identify spatially varying coefficients/source a, b, c in linear
elliptic boundary value problem on Ω ⊆ Rd , d ∈ {1, 2, 3}

−∇(a∇u) + cu = b in Ω ,
∂u

∂n
= j on ∂Ω ,

from boundary or (restricted) interior observations of u.

applications in medical imaging (electrical impedance tomography),

nondestructive testing, seismic prospection, material

characterization,. . .

Identify parameter ϑ in initial value problem for ODE / PDE

u̇(t) = f (t, u(t), ϑ) t ∈ (0,T ) , u(0) = u0

from discrete of continuous observations of u.
yi = gi (u(ti )), i ∈ {1, . . . ,m} or y(t) = g(t, y(t)), t ∈ (0,T )

applications in population dynamics, epidemology, combustion

(parabolic); imaging with waves (hyperbolic),. . .
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