Iterative regularization of nonlinear ill-posed problems in Banach space

Barbara Kaltenbacher, University of Klagenfurt joint work with

Bernd Hofmann, Technical University of Chemnitz,
Frank Schöpfer and Thomas Schuster, University of Oldenburg

25th IFIP TC 7, Berlin, September 2011

Parameter identification in PDEs (I)

- e.g., electrical impedance tomography (EIT)

$$
-\nabla(\sigma \nabla \phi)=0 \text { in } \Omega .
$$

Identify conductivity σ from measurements of the Dirichlet-to-Neumann map Λ_{σ}, i.e., all possible pairs $\left(\phi, \sigma \partial_{n} \phi\right)$ on $\partial \Omega$.

- e.g., magnetic resonance electrical impedance tomography (MREIT):

$$
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)+\sigma \frac{\partial}{\partial t} \mathbf{E}+\varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\mathbf{J} \text { in } \Omega
$$

Identify σ from measurements of the deposited energy $\sigma|\mathbf{E}|^{2}$ in Ω.

Parameter identification in PDEs (I)

- e.g., electrical impedance tomography (EIT)

$$
-\nabla(\sigma \nabla \phi)=0 \text { in } \Omega .
$$

Identify conductivity σ from measurements of the Dirichlet-to-Neumann map Λ_{σ}, i.e., all possible pairs $\left(\phi, \sigma \partial_{n} \phi\right)$ on $\partial \Omega$.

- e.g., magnetic resonance electrical impedance tomography (MREIT):

$$
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)+\sigma \frac{\partial}{\partial t} \mathbf{E}+\varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\mathbf{J} \text { in } \Omega
$$

Identify σ from measurements of the deposited energy $\sigma|\mathbf{E}|^{2}$ in Ω.

Parameter identification in PDEs (II)

- e.g. "a-example" (transmissivity in groundwater modelling)

$$
-\nabla(a \nabla u)=0 \text { in } \Omega .
$$

Identify a from measurements of u in Ω.

- e.g. "c-example" (potential in stat. Schrödinger equation)

$$
-\Delta u+c u=0 \text { in } \Omega .
$$

Identify c from measurements of u in Ω.

Parameter identification in PDEs (II)

- e.g. "a-example" (transmissivity in groundwater modelling)

$$
-\nabla(a \nabla u)=0 \text { in } \Omega .
$$

Identify a from measurements of u in Ω.

- e.g. "c-example" (potential in stat. Schrödinger equation)

$$
-\Delta u+c u=0 \text { in } \Omega .
$$

Identify c from measurements of u in Ω.

Phase retrieval

$$
|\mathcal{F} f|=r
$$

Reconstruct the real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ from measurements of the intensity $r: \mathbb{R} \rightarrow \mathbb{R}^{+}$of its Fourier transform.

Forward operator F

- EIT: $F: \sigma \mapsto \Lambda_{\sigma}$ where $\Lambda_{\sigma}: \phi \mapsto \sigma \partial_{n} \phi$ and $-\nabla(\sigma \nabla \phi)=0$ in Ω. - MREIT: $F: \sigma \mapsto \sigma|E|^{2}$ where $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)+\sigma \frac{\partial}{\partial t} \mathbf{E}+\varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\mathbf{J}$ in $\Omega+$ bndy.cond.

Forward operator F

- EIT: $F: \sigma \mapsto \Lambda_{\sigma}$ where $\Lambda_{\sigma}: \phi \mapsto \sigma \partial_{n} \phi$ and $-\nabla(\sigma \nabla \phi)=0$ in Ω.
- MREIT: $\quad F: \sigma \mapsto \sigma|\mathbf{E}|^{2}$ where $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)+\sigma \frac{\partial}{\partial t} \mathbf{E}+\varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\mathbf{J}$ in $\Omega+$ bndy.cond.
- a-example: $F: a \mapsto u$ where $-\nabla(a \nabla u)=0$ in $\Omega+$ boundary conditions

Forward operator F

- EIT: $F: \sigma \mapsto \Lambda_{\sigma}$ where $\Lambda_{\sigma}: \phi \mapsto \sigma \partial_{n} \phi$ and $-\nabla(\sigma \nabla \phi)=0$ in Ω.
- MREIT: $F: \sigma \mapsto \sigma|\mathbf{E}|^{2}$ where $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)+\sigma \frac{\partial}{\partial t} \mathbf{E}+\varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\mathbf{J}$ in $\Omega+$ bndy.cond.
- a-example: $F: a \mapsto u$ where $-\nabla(a \nabla u)=0$ in $\Omega+$ boundary conditions
- c-example: $F: c \longmapsto u$ where $-\Delta u+c u=0$ in $\Omega+$ boundary conditions

Forward operator F

- EIT: $F: \sigma \mapsto \Lambda_{\sigma}$ where $\Lambda_{\sigma}: \phi \mapsto \sigma \partial_{n} \phi$ and $-\nabla(\sigma \nabla \phi)=0$ in Ω.
- MREIT: $F: \sigma \mapsto \sigma|\mathbf{E}|^{2}$ where $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)+\sigma \frac{\partial}{\partial t} \mathbf{E}+\varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\mathbf{J}$ in $\Omega+$ bndy.cond.
- a-example: $F: a \mapsto u$ where $-\nabla(a \nabla u)=0$ in $\Omega+$ boundary conditions
- c-example: $\quad F: c \mapsto u$ where $-\Delta u+c u=0$ in $\Omega+$ boundary conditions
- phase retrieval:

Forward operator F

- EIT: $F: \sigma \mapsto \Lambda_{\sigma}$ where $\Lambda_{\sigma}: \phi \mapsto \sigma \partial_{n} \phi$ and $-\nabla(\sigma \nabla \phi)=0$ in Ω.
- MREIT: $F: \sigma \mapsto \sigma|\mathbf{E}|^{2}$ where $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)+\sigma \frac{\partial}{\partial t} \mathbf{E}+\varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\mathbf{J}$ in $\Omega+$ bndy.cond.
- a-example: $F: a \mapsto u$ where $-\nabla(a \nabla u)=0$ in $\Omega+$ boundary conditions
- c-example: $F: c \mapsto u$ where $-\Delta u+c u=0$ in $\Omega+$ boundary conditions
- phase retrieval: $F: f \mapsto|\mathcal{F} f|$
forward operator F is nonlinear and in the last example

Forward operator F

- EIT: $F: \sigma \mapsto \Lambda_{\sigma}$ where $\Lambda_{\sigma}: \phi \mapsto \sigma \partial_{n} \phi$ and $-\nabla(\sigma \nabla \phi)=0$ in Ω.
- MREIT: $F: \sigma \mapsto \sigma|\mathbf{E}|^{2}$ where $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)+\sigma \frac{\partial}{\partial t} \mathbf{E}+\varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\mathbf{J}$ in $\Omega+$ bndy.cond.
- a-example: $F: a \mapsto u$ where $-\nabla(a \nabla u)=0$ in $\Omega+$ boundary conditions
- c-example: $F: c \mapsto u$ where $-\Delta u+c u=0$ in $\Omega+$ boundary conditions
- phase retrieval: $F: f \mapsto|\mathcal{F} f|$
forward operator F is nonlinear and in the last example nonsmooth

Nonlinear ill-posed problems

nonlinear operator equation

$$
F(x)=y
$$

$F: \mathcal{D}(F)(\subseteq X) \rightarrow Y \ldots$ nonlinear operator;
F not continuously invertible;
$X, Y \ldots$ Banach spaces;
$y^{\delta} \approx y \ldots$ noisy data, $\left\|y^{\delta}-y\right\| \leq \delta \ldots$ noise level.
\rightsquigarrow regularization necessary

Motivation for working in Banach space

- $X=L^{P}$ with $P \approx 1 \rightsquigarrow$ sparse solutions
\rightsquigarrow MS08 Optimization in Banach Spaces with Sparsity Constraints
- $X=L^{P}$ with $P \approx \infty \rightsquigarrow$ ellipticity and boundedness in the context of parameter id. in PDEs (e.g. $\nabla(a \nabla u)=0$); avoid artificial increase of ill-posedness, that would result from a Hilbert space choice $X=H^{d / 2+\epsilon}$

Motivation for working in Banach space

- $X=L^{P}$ with $P \approx 1 \rightsquigarrow$ sparse solutions
\rightsquigarrow MS08 Optimization in Banach Spaces with Sparsity Constraints
- $X=L^{P}$ with $P \approx \infty \rightsquigarrow$ ellipticity and boundedness in the context of parameter id. in PDEs (e.g. $\nabla(a \nabla u)=0$); avoid artificial increase of ill-posedness, that would result from a Hilbert space choice $X=H^{d / 2+\epsilon}$
- $Y=L^{R}$ with $R=\infty \rightsquigarrow$ realistic measurement noise model; avoid artificial increase of ill-posedness, that would result from a Hilbert space choice $Y=L^{2}$

Motivation for working in Banach space

- $X=L^{P}$ with $P \approx 1 \rightsquigarrow$ sparse solutions
\rightsquigarrow MS08 Optimization in Banach Spaces with Sparsity Constraints
- $X=L^{P}$ with $P \approx \infty \rightsquigarrow$ ellipticity and boundedness in the context of parameter id. in PDEs (e.g. $\nabla(a \nabla u)=0$); avoid artificial increase of ill-posedness, that would result from a Hilbert space choice $X=H^{d / 2+\epsilon}$
- $Y=L^{R}$ with $R=\infty \rightsquigarrow$ realistic measurement noise model; avoid artificial increase of ill-posedness, that would result from a Hilbert space choice $Y=L^{2}$

c-example in Banach spaces

$$
-\Delta u+c u=0 \text { in } \Omega \text {. }
$$

Identify c from measurements of u in $\Omega \subseteq \mathbb{R}^{d}$.
(theoretical) reconstruction formula: $c=\frac{\Delta u}{u}$

c-example in Banach spaces

$$
-\Delta u+c u=0 \text { in } \Omega \text {. }
$$

Identify c from measurements of u in $\Omega \subseteq \mathbb{R}^{d}$.
(theoretical) reconstruction formula: $c=\frac{\Delta u}{u}$
\rightsquigarrow abstract stability result: Assume $|u| \geq \underline{u}>0$, use $Y=L^{\infty}$:

$$
\left\|c_{1}-c_{2}\right\|_{L^{p}} \leq \frac{1}{\underline{u}}\left\|u\left(c_{1}\right)-u\left(c_{2}\right)\right\|_{W^{2, P}}+\frac{\left\|u\left(c_{2}\right)\right\|_{W^{2, P}}}{\underline{u}^{2}}\left\|u\left(c_{1}\right)-u\left(c_{2}\right)\right\|_{L^{\infty}},
$$

c-example in Banach spaces

$$
-\Delta u+c u=0 \text { in } \Omega \text {. }
$$

Identify c from measurements of u in $\Omega \subseteq \mathbb{R}^{d}$.
(theoretical) reconstruction formula: $c=\frac{\Delta u}{u}$
\rightsquigarrow abstract stability result: Assume $|u| \geq \underline{u}>0$, use $Y=L^{\infty}$:
$\left\|c_{1}-c_{2}\right\|_{L^{P}} \leq \frac{1}{\underline{u}}\left\|u\left(c_{1}\right)-u\left(c_{2}\right)\right\|_{W^{2, P}}+\frac{\left\|u\left(c_{2}\right)\right\|_{W^{2, P}}}{\underline{u}^{2}}\left\|u\left(c_{1}\right)-u\left(c_{2}\right)\right\|_{L^{\infty}}$,
where $W^{2, d / 2}(\Omega) \sim L^{\infty}(\Omega)$ in the sense that
$W^{2, d / 2}(\Omega) \nrightarrow L^{\infty}(\Omega)$ and $W^{2, d / 2+\epsilon}(\Omega) \rightarrow L^{\infty}(\Omega)$ for any $\epsilon>0$;

c-example in Banach spaces

$$
-\Delta u+c u=0 \text { in } \Omega .
$$

Identify c from measurements of u in $\Omega \subseteq \mathbb{R}^{d}$.
(theoretical) reconstruction formula: $c=\frac{\Delta u}{u}$
\rightsquigarrow abstract stability result: Assume $|u| \geq \underline{u}>0$, use $Y=L^{\infty}$:
$\left\|c_{1}-c_{2}\right\|_{L^{P}} \leq \frac{1}{\underline{u}}\left\|u\left(c_{1}\right)-u\left(c_{2}\right)\right\|_{W^{2, P}}+\frac{\left\|u\left(c_{2}\right)\right\|_{W^{2, P}}}{\underline{u}^{2}}\left\|u\left(c_{1}\right)-u\left(c_{2}\right)\right\|_{L^{\infty}}$,
where $W^{2, d / 2}(\Omega) \sim L^{\infty}(\Omega)$ in the sense that $W^{2, d / 2}(\Omega) \nrightarrow L^{\infty}(\Omega)$ and $W^{2, d / 2+\epsilon}(\Omega) \rightarrow L^{\infty}(\Omega)$ for any $\epsilon>0$;

c-example in Banach spaces

$$
-\Delta u+c u=0 \text { in } \Omega .
$$

Identify c from measurements of u in $\Omega \subseteq \mathbb{R}^{d}$.
(theoretical) reconstruction formula: $\quad c=\frac{\Delta u}{u}$
\rightsquigarrow abstract stability result: Assume $|u| \geq \underline{u}>0$, use $Y=L^{\infty}$:
$\left\|c_{1}-c_{2}\right\|_{L^{P}} \leq \frac{1}{\underline{u}}\left\|u\left(c_{1}\right)-u\left(c_{2}\right)\right\|_{W^{2, P}}+\frac{\left\|u\left(c_{2}\right)\right\|_{W^{2, P}}}{\underline{u}^{2}}\left\|u\left(c_{1}\right)-u\left(c_{2}\right)\right\|_{L^{\infty}}$,
where $W^{2, d / 2}(\Omega) \sim L^{\infty}(\Omega)$ in the sense that $W^{2, d / 2}(\Omega) \nrightarrow L^{\infty}(\Omega)$ and $W^{2, d / 2+\epsilon}(\Omega) \rightarrow L^{\infty}(\Omega)$ for any $\epsilon>0$;
\rightsquigarrow choose $P=d / 2, \quad X=L^{d / 2}(\Omega)$

Phase retrieval in Banach spaces

$$
|\mathcal{F} f|=r
$$

Reconstruct the real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ from measurements of the intensity $r: \mathbb{R} \rightarrow \mathbb{R}^{+}$of its Fourier transform.
natural preimage- and image spaces (Hausdorff-Young Theorem):

$$
X=L_{\mathbb{R}}^{P}(\mathbb{R}), \quad Y=L_{\mathbb{R}}^{\frac{P}{P-1}}(\mathbb{R}) \quad \text { with } P \in[1,2]
$$

Phase retrieval in Banach spaces

$$
|\mathcal{F} f|=r
$$

Reconstruct the real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ from measurements of the intensity $r: \mathbb{R} \rightarrow \mathbb{R}^{+}$of its Fourier transform.
natural preimage- and image spaces (Hausdorff-Young Theorem):

$$
X=L_{\mathbb{R}}^{P}(\mathbb{R}), \quad Y=L_{\mathbb{R}}^{\frac{P}{P-1}}(\mathbb{R}) \quad \text { with } P \in[1,2]
$$

sparse signal, L^{∞} measurement noise $\rightsquigarrow X=L^{1}, \quad Y=L^{\infty}$

Phase retrieval in Banach spaces

$$
|\mathcal{F} f|=r
$$

Reconstruct the real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ from measurements of the intensity $r: \mathbb{R} \rightarrow \mathbb{R}^{+}$of its Fourier transform.
natural preimage- and image spaces (Hausdorff-Young Theorem):

$$
X=L_{\mathbb{R}}^{P}(\mathbb{R}), \quad Y=L_{\mathbb{R}}^{\frac{P}{P-1}}(\mathbb{R}) \quad \text { with } P \in[1,2]
$$

sparse signal, L^{∞} measurement noise $\rightsquigarrow X=L^{1}, \quad Y=L^{\infty}$

Regularization in Banach space

- case $Y=X$: iterative and variational regularization methods for linear and nonlinear problems [Plato'92,'94,'95, Bakushinskii\&Kokurin'04]
- Tikhonov regularization for linear and nonlinear problems

$$
\mathcal{S}\left(F(x), y^{\delta}\right)+\alpha \mathcal{R}(x)=\min !
$$

[Burger\&Osher'04, Resmerita\&Scherzer'06, Hofmann\&BK\&Pöschl\&Scherzer'07, Grasmair\&Haltmeier\&Scherzer'08,'10, ...] needs global minimizer, but Tikhonov functional i.g. nonsmooth and nonconvex if F nonlinear

Regularization in Banach space

- case $Y=X$: iterative and variational regularization methods for linear and nonlinear problems
[Plato'92,'94,'95, Bakushinskii\&Kokurin'04]
- Tikhonov regularization for linear and nonlinear problems

$$
\mathcal{S}\left(F(x), y^{\delta}\right)+\alpha \mathcal{R}(x)=\min !
$$

[Burger\&Osher'04, Resmerita\&Scherzer'06, Hofmann\&BK\&Pöschl\&Scherzer'07, Grasmair\&Haltmeier\&Scherzer'08,'10, ...] needs global minimizer, but Tikhonov functional i.g. nonsmooth and nonconvex if F nonlinear
\rightsquigarrow motivates iterative regularization for nonlinear problems [Schöpfer\&Louis\&Schuster'06, Hein\&Kazimierski'10, BK\&Schöpfer\&Schuster'09, BK\&Hofmann'10,...]

Regularization in Banach space

- case $Y=X$: iterative and variational regularization methods for linear and nonlinear problems
[Plato'92,'94,'95, Bakushinskii\&Kokurin'04]
- Tikhonov regularization for linear and nonlinear problems

$$
\mathcal{S}\left(F(x), y^{\delta}\right)+\alpha \mathcal{R}(x)=\min !
$$

[Burger\&Osher'04, Resmerita\&Scherzer'06, Hofmann\&BK\&PöschI\&Scherzer'07, Grasmair\&Haltmeier\&Scherzer'08,'10, ...] needs global minimizer, but Tikhonov functional i.g. nonsmooth and nonconvex if F nonlinear
\rightsquigarrow motivates iterative regularization for nonlinear problems [Schöpfer\&Louis\&Schuster'06, Hein\&Kazimierski'10, BK\&Schöpfer\&Schuster'09, BK\&Hofmann'10,...]

Outline

- short review on iterative regularization for nonlinear problems in Hilbert space
- some Banach space tools
- Landweber for nonlinear problems in Banach space
- Newton for nonlinear problems in Banach space
- numerical tests

Iterative regularization for nonlinear problems in Hilbert space

- gradient method for $\min _{x}\left\|F(x)-y^{\delta}\right\|^{2}$
\rightsquigarrow Landweber iteration

$$
x_{k+1}^{\delta}=x_{k}^{\delta}-\mu_{k} F^{\prime}\left(x_{k}^{\delta}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)
$$

[Hanke\&Neubauer\&Scherzer'96]

Iterative regularization for nonlinear problems in Hilbert space

- Newton's method for $F(x)=y^{\delta}$ plus regularization \rightsquigarrow Levenberg Marquardt method

$$
x_{k+1}^{\delta}=x_{k}^{\delta}-\underbrace{\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*} F^{\prime}\left(x_{k}^{\delta}\right)+\alpha_{k} I\right)^{-1} F^{\prime}\left(x_{k}^{\delta}\right)^{*}}_{\approx F^{\prime}\left(x_{k}^{\delta}\right)^{-1}}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)
$$

[Hanke'97,'10], Newton-CG: [Hanke'97], inexact Newton [Rieder'01]
\rightsquigarrow iteratively regularized Gauss-Newton method (IRGN)

$$
x_{k+1}^{\delta}=x_{k}^{\delta}-\underbrace{\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*} F^{\prime}\left(x_{k}^{\delta}\right)+\alpha_{k} I\right)^{-1} F^{\prime}\left(x_{k}^{\delta}\right)^{*}}_{\approx F^{\prime}\left(x_{k}^{\delta}\right)^{-1}}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}+\alpha_{k}\left(x_{k}^{\delta}-x_{0}\right)\right)
$$

[Bakushinskii'92, BK\&Neubauer\&Scherzer'96,'08, BK'97, Hohage'97]

Some Banach space tools (I)

Smoothness

- $X \ldots$. smooth \Longleftrightarrow norm Gâteaux differentiable on $X \backslash\{0\}$;
- X... uniformly smooth \Longleftrightarrow norm Fréchet differentiable on unit sphere;

Convexity

- $X \ldots$...strictly convex \Longleftrightarrow boundary of unit ball contains no line segment;
- $X \ldots$ uniformly convex \Longleftrightarrow modulus of convexity $\delta_{X}(\epsilon)>0 \forall \epsilon \in(0,2]$; $\delta_{x}(\epsilon)=\inf \left\{1-\left\|\frac{1}{2}(x+y)\right\|:\|x\|=\|y\|=1,\|x-y\| \geq \epsilon\right\}$
$L^{P}(\Omega), P \in(1, \infty)$ is uniformly convex (Hanner's ineq.)
and uniformly smooth

Some Banach space tools (II)

- Dual space:
$X^{*}=L(X, \mathbb{R}) \ldots$ bounded linear functionals on X
$x^{*}: x \mapsto\left\langle x^{*}, x\right\rangle$
- X uniformly smooth $\Leftrightarrow X^{*}$ uniformly convex
- X reflexive: X smooth $\Leftrightarrow X^{*}$ strictly convex

Some Banach space tools (III)

- Duality mapping:

$$
\begin{aligned}
& J_{p}: X \rightarrow 2^{X^{*}} \\
& J_{p}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=\left\|x^{*}\right\|\|x\|=\|x\|^{p}\right\}
\end{aligned}
$$

J_{p} set valued;
$j_{p} \ldots$ single valued selection of J_{p};

- $J_{p}=\partial \frac{1}{p}\|\cdot\|^{p}$ (Asplund)
- X smooth $\Leftrightarrow J_{p}$ single valued
- X reflexive, smooth, strictly convex $\Rightarrow J_{p}^{-1}=J_{\frac{p}{p-1}}^{*}$
$L^{P}(\Omega), P \in(1, \infty): \quad J_{P}(x)=\|x\|_{L_{P}}^{p-P}|x|^{P-1} \operatorname{sign}(x)$
$\rightsquigarrow J_{P}$ possibly nonlinear and nonsmooth

Some Banach space tools (IV)

Bregman distance:

$D_{p}(x, \tilde{x})=\frac{1}{p}\|x\|^{p}-\frac{1}{p}\|\tilde{x}\|^{p}-\inf \left\{\langle\xi, \tilde{x}-x\rangle: \xi \in J_{p}(\tilde{x})\right\}$, $x, \tilde{x} \in X$;
smooth X :
$D_{p}(x, \tilde{x})=\frac{p-1}{p}\left(\|\tilde{x}\|^{p}-\|x\|^{p}\right)+\left\langle J_{p}(x)-J_{p}(\tilde{x}), x\right\rangle ;$
smooth and uniformly convex X :
convergence in $D_{p} \Leftrightarrow$ convergence in $\|\cdot\|$
Hilbert space case: $D_{2}(x, \tilde{x})=\frac{1}{2}\|x-\tilde{x}\|^{2}$

Assumptions on pre-image and image space X, Y

- X smooth, uniformly convex
$\Rightarrow X$ reflexive (Milman-Pettis) and strictly convex J_{p} single valued, norm-to-weak-continuous, bijective
- Y arbitrary Banach space

Further assumptions for convergence proofs

- closeness to a solution x^{\dagger} : $\left\|x_{0}-x^{\dagger}\right\|$ sufficiently small
- F^{\prime} Lipschitz continuous and x^{\dagger} sufficiently smooth or
- tangential cone condition: For all $x \in \mathcal{D}(F)$ there exists $F^{\prime}(x) \in L(X, Y)\left(F^{\prime}(x)\right.$ not necess. Fréchet derivative) s.t.
$\left\|F(x)-F(\bar{x})-F^{\prime}(x)(x-\bar{x})\right\| \leq c_{t c}\|F(x)-F(\bar{x})\| \quad \forall x, \bar{x} \in \mathcal{B}$
- for Landweber:
F, F^{\prime} continuous and interior of $\mathcal{D}(F)$ nonempty
- for IRGN:
F (weakly) sequentially closed

Stopping rule

discrepancy principle

$$
k_{*}(\delta)=\min \left\{k \in \mathbb{N}:\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \leq C_{d p} \delta\right\}
$$

$C_{d p}>1,\left\|y^{\delta}-y\right\| \leq \delta \ldots$ noise level
Trade off between stability and approximation:
Stop as early as possible (stability) such that the resudual is lower than the noise level (approximation)

Landweber for inverse problems in Banach space

$$
\begin{aligned}
J_{p}\left(x_{k+1}^{\delta}\right) & =J_{p}\left(x_{k}^{\delta}\right)-\mu_{k} F^{\prime}\left(x_{k}^{\delta}\right)^{*} j_{r}\left(F^{\prime}\left(x_{k}^{\delta}\right)-y^{\delta}\right), \\
x_{k+1}^{\delta} & =J_{\frac{p}{p-1}}^{*}\left(J_{p}\left(x_{k+1}^{\delta}\right)\right)
\end{aligned}
$$

$p, r \in(1, \infty)$.
for comparison: Landweber in Hilbert space:

$$
x_{k+1}^{\delta}=x_{k}^{\delta}-\mu_{k} F^{\prime}\left(x_{k}^{\delta}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)
$$

Convergence results for Landweber (I)

Theorem (monotonicity of the error)
μ_{k} appropriately chosen (suff. small), $c_{t c}$ suff. small, $C_{d p}$ suff. large.
Then for all $k \leq k_{*}(\delta)-1, x_{k+1}^{\delta} \in \mathcal{D}(F)$ and

$$
D_{p}\left(x^{\dagger}, x_{k+1}^{\delta}\right)-D_{p}\left(x^{\dagger}, x_{k}^{\delta}\right) \leq-C \frac{\left\|F\left(x_{k}\right)-y^{\delta}\right\|^{p}}{\left\|F^{\prime}\left(x_{k}^{\delta}\right)\right\|^{p}}<0
$$

Idea of proof

$$
\begin{aligned}
& \text { recall: } D_{p}(x, \tilde{x})=\frac{p-1}{p}\left(\|\tilde{x}\|^{p}-\|x\|^{p}\right)+\left(J_{p}(x)-J_{p}(\tilde{x}), x\right) \\
& \qquad \begin{array}{l}
D_{p}\left(x^{\dagger}, x_{k+1}^{\delta}\right)-D_{p}\left(x^{\dagger}, x_{k}^{\delta}\right) \\
=\frac{p-1}{p}\left(\left\|x_{k+1}^{\delta}\right\|^{p}-\left\|x_{k}^{\delta}\right\|^{p}\right)-\langle\underbrace{J_{p}\left(x_{k+1}^{\delta}\right)-J_{p}\left(x_{k}^{\delta}\right)}_{=\mu_{k} F^{\prime}\left(x_{k}^{\delta}\right)^{*} j_{r}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)}, x^{\dagger}\rangle \\
=D_{p}\left(x_{k}^{\delta}, x_{k+1}^{\delta}\right)-\mu_{k}\langle j_{r}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right), \underbrace{\left.F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k}^{\delta}-x^{\dagger}\right)\right\rangle}_{\approx F\left(x_{k}^{\delta}\right)-y^{\delta}}
\end{array}
\end{aligned}
$$

Idea of proof

$$
\text { recall: } D_{p}(x, \tilde{x})=\frac{p-1}{p}\left(\|\tilde{x}\|^{p}-\|x\|^{p}\right)+\left(J_{p}(x)-J_{p}(\tilde{x}), x\right)
$$

$$
\begin{aligned}
& D_{p}\left(x^{\dagger}, x_{k+1}^{\delta}\right)-D_{p}\left(x^{\dagger}, x_{k}^{\delta}\right) \\
& \quad=\frac{p-1}{p}\left(\left\|x_{k+1}^{\delta}\right\|^{p}-\left\|x_{k}^{\delta}\right\|^{p}\right)-\langle\underbrace{J_{p}\left(x_{k+1}^{\delta}\right)-J_{p}\left(x_{k}^{\delta}\right)}_{=\mu_{k} F^{\prime}\left(x_{k}^{\delta}\right)^{*} j_{r}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)}, x^{\dagger}\rangle \\
& \quad=D_{p}\left(x_{k}^{\delta}, x_{k+1}^{\delta}\right)-\mu_{k}\langle j_{r}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right), \underbrace{F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k}^{\delta}-x^{\dagger}\right)}_{\approx F\left(x_{k}^{\delta}\right)-y^{\delta}}\rangle \\
&
\end{aligned}
$$

Idea of proof

$$
\text { recall: } D_{p}(x, \tilde{x})=\frac{p-1}{p}\left(\|\tilde{x}\|^{p}-\|x\|^{p}\right)+\left(J_{p}(x)-J_{p}(\tilde{x}), x\right)
$$

$$
\begin{aligned}
& D_{p}\left(x^{\dagger}, x_{k+1}^{\delta}\right)-D_{p}\left(x^{\dagger}, x_{k}^{\delta}\right) \\
& =\frac{p-1}{p}\left(\left\|x_{k+1}^{\delta}\right\|^{p}-\left\|x_{k}^{\delta}\right\|^{p}\right)-\langle\underbrace{J_{p}\left(x_{k+1}^{\delta}\right)-J_{p}\left(x_{k}^{\delta}\right)}_{=\mu_{k} F^{\prime}\left(x_{k}^{\delta}\right)^{*} j_{r}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)}, x^{\dagger}\rangle \\
& =D_{p}\left(x_{k}^{\delta}, x_{k+1}^{\delta}\right)-\mu_{k}\langle j_{r}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right), \underbrace{F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k}^{\delta}-x^{\dagger}\right)}_{\approx F\left(x_{k}^{\delta}\right)-y^{\delta}}\rangle \\
& \leq \underbrace{D_{p}\left(x_{k}^{\delta}, x_{k+1}^{\delta}\right)}_{=O\left(\mu_{k}^{1+\epsilon}\right)}-\mu_{k}\left(1-c\left(c_{t c}, C_{d p}\right)\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}
\end{aligned}
$$

Idea of proof

 recall: $D_{p}(x, \tilde{x})=\frac{p-1}{p}\left(\|\tilde{x}\|^{p}-\|x\|^{p}\right)+\left(J_{p}(x)-J_{p}(\tilde{x}), x\right)$$$
\begin{aligned}
& D_{p}\left(x^{\dagger}, x_{k+1}^{\delta}\right)-D_{p}\left(x^{\dagger}, x_{k}^{\delta}\right) \\
& \quad=\frac{p-1}{p}\left(\left\|x_{k+1}^{\delta}\right\|^{p}-\left\|x_{k}^{\delta}\right\|^{p}\right)-\langle\underbrace{J_{p}\left(x_{k+1}^{\delta}\right)-J_{p}\left(x_{k}^{\delta}\right)}_{=\mu_{k} F^{\prime}\left(x_{k}^{\delta}\right)^{*} j_{r}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)}, x^{\dagger}\rangle \\
& \quad=D_{p}\left(x_{k}^{\delta}, x_{k+1}^{\delta}\right)-\mu_{k}\langle j_{r}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right), \underbrace{F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k}^{\delta}-x^{\dagger}\right)}_{\approx F\left(x_{k}^{\delta}\right)-y^{\delta}}\rangle \\
& \quad \leq \underbrace{D_{p}\left(x_{k}^{\delta}, x_{k+1}^{\delta}\right)}_{=O\left(\mu_{k}^{1+\epsilon}\right)}-\mu_{k}\left(1-c\left(c_{t c}, C_{d p}\right)\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r} \\
& \leq 0
\end{aligned}
$$

by the choice of μ_{k}.

Convergence results for Landweber (II)

Theorem (convergence with exact data)
$\delta=0, \mu_{k}$ appropriately chosen (suff. small). Then

$$
x_{k} \rightarrow x^{\dagger} \text { solution to } F(x)=y \text { as } k \rightarrow \infty
$$

Theorem (stability for $\delta>0$ and convergence as $\delta \rightarrow 0$) μ_{k} appropriately chosen, $c_{t c}$ suff. small, $C_{d p}$ suff. large. Y uniformly smooth.
Then for all $k \leq k_{*}(\delta), x_{k}^{\delta}$ continuously depends on y^{δ} and

$$
x_{k_{*}(\delta)}^{\delta} \rightarrow x^{\dagger} \text { solution to } F(x)=y \text { as } \delta \rightarrow 0
$$

[Schöpfer\&Louis\&Schuster'06] linear case,
[BK\&Schöpfer\&Schuster'09] nonlinear case

Remark

- convergence rates can be shown for the iteratively regularized Landweber iteration

$$
\begin{aligned}
J_{p}\left(x_{k+1}^{\delta}-x_{0}\right) & =\left(1-\alpha_{k}\right) J_{p}\left(x_{k}^{\delta}-x_{0}\right)-\mu_{k} F^{\prime}\left(x_{k}^{\delta}\right)^{*} j_{r}\left(F^{\prime}\left(x_{k}^{\delta}\right)-y^{\delta}\right) \\
x_{k+1}^{\delta} & =x_{0}+J_{\frac{p}{p-1}}^{*}\left(J_{p}\left(x_{k+1}^{\delta}-x_{0}\right)\right)
\end{aligned}
$$

$p, r \in(1, \infty)$, and $x_{0} \ldots$ initial guess.

IRGN for inverse problems in Banach space

$x_{k+1}^{\delta} \in \operatorname{argmin}_{x \in \mathcal{D}(F)}\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}+\alpha_{k}\left\|x-x_{0}\right\|^{p}$,
$p, r \in(1, \infty)$, and $x_{0} \ldots$ initial guess;
convex minimization problem:
efficient solution see, e.g., [Bonesky, Kazimierski, Maass, Schöpfer, Schuster'07] for comparison: IRGN in Hilbert space:
$x_{k+1}^{\delta}=x_{k}^{\delta}-\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*} F^{\prime}\left(x_{k}^{\delta}\right)+\alpha_{k} l\right)^{-1}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}+\alpha_{k}\left(x_{k}^{\delta}-x_{0}\right)\right)$

Choice of α_{k}

discrepancy type principle:
$\underline{\theta}\left\|F\left(x_{k}\right)-y^{\delta}\right\| \leq\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}(\alpha)-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \leq \bar{\theta}\left\|F\left(x_{k}\right)-y^{\delta}\right\|$
$0<\underline{\theta}<\bar{\theta}<1$
Trade off between stability and approximation:
Choose α_{k} as large as possible (stability) such that the predicted residual is smaller than the old one (approximation)
see also: inexact Newton (for inverse problems: [Hanke'97, Rieder'99,'01])

Convergence of the IRGN

Theorem [BK\&Schöpfer\&Schuster'09]
$C_{d p}, \underline{\theta}, \bar{\theta}$ sufficiently large, $c_{t c}$ sufficently small.
Additionally, assume that either
(a) $F^{\prime}(x): X \rightarrow Y$ is weakly closed for all $x \in \mathcal{D}(F)$ and Y reflexive or
(b) $\mathcal{D}(F)$ weakly closed.

Then for all $k \leq k_{*}(\delta)-1$ the iterates

$$
\begin{aligned}
& x_{k+1}^{\delta} \in \operatorname{argmin}\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}+\alpha_{k}\left\|x-x_{0}\right\|^{p} \\
& \alpha_{k} \text { s.t. }\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \sim \theta\left\|F\left(x_{k}\right)-y^{\delta}\right\|
\end{aligned}
$$

are well-defined and

$$
x_{k_{*}(\delta)} \rightarrow x^{\dagger} \text { solution to } F(x)=y \text { as } \delta \rightarrow 0
$$

if x^{\dagger} unique, (and along subsequences otherwise).

Idea of proof

By minimality of x_{k+1}^{δ} :

$$
\begin{gathered}
\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}+\alpha_{k}\left\|x_{k+1}^{\delta}-x_{0}\right\|^{p} \\
\leq \underbrace{\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x^{\dagger}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}+\alpha_{k}\left\|x^{\dagger}-x_{0}\right\|^{p}}_{\approx \delta^{r} \leq C_{d p}^{-r}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}}
\end{gathered}
$$

Choice of $\alpha_{k} \Rightarrow\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{s}\right)-y^{\delta}\right\| \geq \underline{\theta}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|$

Idea of proof

By minimality of x_{k+1}^{δ} :

$$
\begin{gathered}
\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}+\alpha_{k}\left\|x_{k+1}^{\delta}-x_{0}\right\|^{p} \\
\leq \underbrace{\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x^{\dagger}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}}_{\approx \delta^{r} \leq C_{d p}^{-r}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}}+\alpha_{k}\left\|x^{\dagger}-x_{0}\right\|^{p}
\end{gathered}
$$

Choice of $\alpha_{k} \Rightarrow\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \geq \underline{\theta}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|$

$$
\begin{aligned}
& \alpha_{k}\left(\left\|x_{k+1}^{\delta}-x_{0}\right\|^{p}-\left\|x^{\dagger}-x_{0}\right\|^{p}\right) \\
& \quad \leq\left(c\left(c_{t c}, C_{d p}\right)-\underline{\theta}^{r}\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}
\end{aligned}
$$

Idea of proof

By minimality of x_{k+1}^{δ} :

$$
\begin{aligned}
& \left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}+\alpha_{k}\left\|x_{k+1}^{\delta}-x_{0}\right\|^{p} \\
& \leq \underbrace{\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x^{\dagger}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}}_{\approx \delta^{r} \leq C_{d p}^{-r}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}}+\alpha_{k}\left\|x^{\dagger}-x_{0}\right\|^{p} .
\end{aligned}
$$

Choice of $\alpha_{k} \Rightarrow\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \geq \underline{\theta}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|$

$$
\begin{aligned}
& \alpha_{k}\left(\left\|x_{k+1}^{\delta}-x_{0}\right\|^{p}-\left\|x^{\dagger}-x_{0}\right\|^{p}\right) \\
& \quad \leq\left(c\left(c_{t c}, C_{d p}\right)-\underline{\theta}^{r}\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}
\end{aligned}
$$

Idea of proof

By minimality of x_{k+1}^{δ} :

$$
\begin{aligned}
& \left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}+\alpha_{k}\left\|x_{k+1}^{\delta}-x_{0}\right\|^{p} \\
& \leq \underbrace{\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x^{\dagger}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}}_{\approx \delta^{r} \leq C_{d p}^{-r}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}}+\alpha_{k}\left\|x^{\dagger}-x_{0}\right\|^{p} .
\end{aligned}
$$

Choice of $\alpha_{k} \Rightarrow\left\|F^{\prime}\left(x_{k}^{\delta}\right)\left(x_{k+1}^{\delta}-x_{k}^{\delta}\right)+F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \geq \underline{\theta}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|$

$$
\begin{aligned}
& \alpha_{k}\left(\left\|x_{k+1}^{\delta}-x_{0}\right\|^{p}-\left\|x^{\dagger}-x_{0}\right\|^{p}\right) \\
& \quad \leq\left(c\left(c_{t c}, C_{d p}\right)-\underline{\theta}^{r}\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{r}
\end{aligned}
$$

Choice of $\underline{\theta}^{r}>c\left(c_{t c}, C_{d p}\right) \Rightarrow\left\|x_{k+1}^{\delta}-x_{0}\right\|^{p} \leq\left\|x^{\dagger}-x_{0}\right\|^{p}$

Convergence rates for the IRGN

Theorem [BK\&Hofmann'10]
Let the assumptions of the previous theorem be satisfied.
Under the source type condition

$$
\begin{gathered}
J_{p}\left(x^{\dagger}-x_{0}\right) \cap \mathcal{R}\left(F^{\prime}\left(x^{\dagger}\right)^{*}\right) \neq \emptyset, \text { i.e. }, \\
\exists \hat{\xi} \in J_{p}\left(x^{\dagger}-x_{0}\right), v \in Y^{*}: \hat{\xi}=F^{\prime}\left(x^{\dagger}\right)^{*} v
\end{gathered}
$$

we obtain optimal convergence rates

$$
D_{p}\left(x_{k_{*}}-x_{0}, x^{\dagger}-x_{0}\right)=O(\delta),
$$

where $D_{p}^{x_{0}}(x, \tilde{x})=D_{p}\left(x-x_{0}, \tilde{x}-x_{0}\right)$.
Hilbert space case: $\left\|x_{k_{*}}-x^{\dagger}\right\|=O(\sqrt{\delta})$

Idea of proof

recall: $D_{p}(x, \tilde{x})=\frac{1}{p}\|x\|^{p}-\frac{1}{p}\|\tilde{x}\|^{p}-\inf \left\{\langle\xi, \tilde{x}-x\rangle: \xi \in J_{p}(\tilde{x})\right\}$ We have, from the previous proof, $\left\|x_{k}^{\delta}-x_{0}\right\|^{P} \leq\left\|x^{\dagger}-x_{0}\right\|^{P}$ for $k \leq k_{*}$.

Idea of proof

recall: $D_{p}(x, \tilde{x})=\frac{1}{p}\|x\|^{p}-\frac{1}{p}\|\tilde{x}\|^{p}-\inf \left\{\langle\xi, \tilde{x}-x\rangle: \xi \in J_{p}(\tilde{x})\right\}$
We have, from the previous proof, $\left\|x_{k}^{\delta}-x_{0}\right\|^{p} \leq\left\|x^{\dagger}-x_{0}\right\|^{p}$ for $k \leq k_{*}$.

Idea of proof

recall: $\quad D_{p}(x, \tilde{x})=\frac{1}{p}\|x\|^{p}-\frac{1}{p}\|\tilde{x}\|^{p}-\inf \left\{\langle\xi, \tilde{x}-x\rangle: \xi \in J_{p}(\tilde{x})\right\}$
We have, from the previous proof, $\left\|x_{k}^{\delta}-x_{0}\right\|^{p} \leq\left\|x^{\dagger}-x_{0}\right\|^{p}$ for $k \leq k_{*}$.

$$
\begin{aligned}
& D_{p}\left(x_{k}^{\delta}-x_{0}, x^{\dagger}-x_{0}\right) \\
& \leq \underbrace{\frac{1}{p}\left\|x_{k}^{\delta}-x_{0}\right\|^{p}-\frac{1}{p}\left\|x^{\dagger}-x_{0}\right\|^{p}}_{\leq 0}-\langle\underbrace{\hat{\xi}}_{=F^{\prime}\left(x^{\dagger}\right)^{*} v}, x^{\dagger}-x_{k}^{\delta}\rangle \\
& \leq\langle v, \underbrace{F^{\prime}\left(x^{\dagger}\right)\left(x_{k}^{\delta}-x^{\dagger}\right)}_{\approx F\left(x_{k}^{\delta}\right)-y^{\delta}}\rangle
\end{aligned}
$$

Idea of proof

recall: $D_{p}(x, \tilde{x})=\frac{1}{p}\|x\|^{p}-\frac{1}{p}\|\tilde{x}\|^{p}-\inf \left\{\langle\xi, \tilde{x}-x\rangle: \xi \in J_{p}(\tilde{x})\right\}$
We have, from the previous proof, $\left\|x_{k}^{\delta}-x_{0}\right\|^{p} \leq\left\|x^{\dagger}-x_{0}\right\|^{p}$ for $k \leq k_{*}$.

$$
\begin{aligned}
& D_{p}\left(x_{k}^{\delta}-x_{0}, x^{\dagger}-x_{0}\right) \\
& \leq \underbrace{\frac{1}{p}\left\|x_{k}^{\delta}-x_{0}\right\|^{p}-\frac{1}{p}\left\|x^{\dagger}-x_{0}\right\|^{p}}_{\leq 0}-\langle\underbrace{\hat{\xi}}_{=F^{\prime}\left(x^{\dagger}\right)^{*} v}, x^{\dagger}-x_{k}^{\delta}\rangle \\
& \leq\langle v, \underbrace{\left.F^{\prime}\left(x^{\dagger}\right)\left(x_{k}^{\delta}-x^{\dagger}\right)\right\rangle}_{\approx F\left(x_{k}^{\delta}\right)-y^{\delta}} \\
& \leq\|v\|\left(1+c_{t c}\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|
\end{aligned}
$$

Idea of proof

recall: $D_{p}(x, \tilde{x})=\frac{1}{p}\|x\|^{p}-\frac{1}{p}\|\tilde{x}\|^{p}-\inf \left\{\langle\xi, \tilde{x}-x\rangle: \xi \in J_{p}(\tilde{x})\right\}$
We have, from the previous proof, $\left\|x_{k}^{\delta}-x_{0}\right\|^{p} \leq\left\|x^{\dagger}-x_{0}\right\|^{p}$ for $k \leq k_{*}$.

$$
\begin{aligned}
& D_{p}\left(x_{k}^{\delta}-x_{0}, x^{\dagger}-x_{0}\right) \\
& \leq \underbrace{\frac{1}{p}\left\|x_{k}^{\delta}-x_{0}\right\|^{p}-\frac{1}{p}\left\|x^{\dagger}-x_{0}\right\|^{p}}_{\leq 0}-\langle\underbrace{\hat{\xi}}_{=F^{\prime}\left(x^{\dagger}\right)^{*} v}, x^{\dagger}-x_{k}^{\delta}\rangle \\
& \leq\langle v, \underbrace{\left.F^{\prime}\left(x^{\dagger}\right)\left(x_{k}^{\delta}-x^{\dagger}\right)\right\rangle}_{\approx F\left(x_{k}^{\delta}\right)-y^{\delta}} \\
& \leq\|v\|\left(1+c_{t c}\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|
\end{aligned}
$$

Hence, for $k=k_{*}: D_{p}\left(x^{\dagger}-x_{0}, x_{k_{*}}^{\delta}-x_{0}\right) \leq\|v\|\left(1+c_{t c}\right) C_{d p} \delta$.

Idea of proof

recall: $D_{p}(x, \tilde{x})=\frac{1}{p}\|x\|^{p}-\frac{1}{p}\|\tilde{x}\|^{p}-\inf \left\{\langle\xi, \tilde{x}-x\rangle: \xi \in J_{p}(\tilde{x})\right\}$
We have, from the previous proof, $\left\|x_{k}^{\delta}-x_{0}\right\|^{p} \leq\left\|x^{\dagger}-x_{0}\right\|^{p}$ for $k \leq k_{*}$.

$$
\begin{aligned}
& D_{p}\left(x_{k}^{\delta}-x_{0}, x^{\dagger}-x_{0}\right) \\
& \leq \underbrace{\frac{1}{p}\left\|x_{k}^{\delta}-x_{0}\right\|^{p}-\frac{1}{p}\left\|x^{\dagger}-x_{0}\right\|^{p}}_{\leq 0}-\langle\underbrace{\hat{\xi}}_{=F^{\prime}\left(x^{\dagger}\right)^{*} v}, x^{\dagger}-x_{k}^{\delta}\rangle \\
& \leq\langle v, \underbrace{\left.F^{\prime}\left(x^{\dagger}\right)\left(x_{k}^{\delta}-x^{\dagger}\right)\right\rangle}_{\approx F\left(x_{k}^{\delta}\right)-y^{\delta}} \\
& \leq\|v\|\left(1+c_{t c}\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|
\end{aligned}
$$

Hence, for $k=k_{*}: D_{p}\left(x^{\dagger}-x_{0}, x_{k_{*}}^{\delta}-x_{0}\right) \leq\|v\|\left(1+c_{t c}\right) C_{d p} \delta$.

Remarks

- rates result can be extended to
$D_{p}^{x_{0}}\left(x_{k_{*}}, x^{\dagger}\right)=O\left(\delta^{\kappa}\right)$ with $\kappa \in(0,1)$ or $D_{p}^{x_{0}}\left(x_{k_{*}}, x^{\dagger}\right)=O\left(\log (\delta)^{-\kappa}\right)$ with $\kappa>0$ under approximate source conditions;
- rates can be shown alternatively with a priori choice of α_{k} and k_{*} instead of the discrepancy principle; needs a priori information on smoothness of x^{\dagger}, though

Numerical tests

c-example:

$$
-\Delta u+c u=0 \text { in } \Omega .
$$

Identify c from measurements of u in Ω.
$\Omega=(0,1)^{2} \subseteq \mathbb{R}^{2}$,
"smooth" $c: \quad c(x, y)=10 \exp \left(-\frac{(x-0.3)^{2}+(y-0.3)^{2}}{0.04}\right)$
"sparse" c: $\quad c(x, y)=40 \chi_{[0.19,0.24]^{2}}(x, y)$

Test examples

smooth c :

sparse c:

Smooth test example, 1\% L^{∞}-noise

exact data u :

noisy data $u^{\delta},\left\|u-u^{\delta}\right\|_{L^{\infty}}=1 \%$:

Smooth test example, 1\% L^{∞}-noise

exact potential c :

$$
\begin{aligned}
& \text { reconstruction } c_{k_{*}}^{\delta} \\
& X=L^{2}, Y=L^{2}, p=2, r=2
\end{aligned}
$$

Smooth test example, $1 \% L^{\infty}$-noise

exact potential c :

$$
\begin{aligned}
& \text { reconstruction } c_{k_{*}}^{\delta} \\
& X=L^{2}, Y=L^{22}, p=2, r=2 \text { : }
\end{aligned}
$$

Smooth test example, $10 \% L^{\infty}$-noise

exact data u :
noisy data $u^{\delta},\left\|u-u^{\delta}\right\|_{L^{\infty}}=10 \%$:

Smooth test example, $10 \% L^{\infty}$-noise

exact potential c :

$$
\begin{aligned}
& \text { reconstruction } c_{k_{*}}^{\delta} \\
& X=L^{2}, Y=L^{2}, p=2, r=2
\end{aligned}
$$

Smooth test example, $10 \% L^{\infty}$-noise

exact potential c :

$$
\begin{aligned}
& \text { reconstruction } c_{k_{*}}^{\delta} \\
& X=L^{2}, Y=L^{22}, p=2, r=2 \text { : }
\end{aligned}
$$

Smooth test example, $10 \% L^{\infty}$-noise

exact potential c :
reconstruction $c_{k_{*}}^{\delta}$,
$X=L^{1.1}, Y=L^{22}, p=1.1, r=2$:

Sparse test example, $3 \% L^{\infty}$-noise

exact data u :

noisy data u^{δ} :
u^{δ}

computations by Frank Schöpfer

Sparse test example, $3 \% L^{\infty}$-noise

exact potential c :

reconstructions $c_{k_{*}}^{\delta}$:

$$
\begin{gathered}
X=L^{2}, Y=L^{11} \quad X=L^{1.1}, Y=L^{11} \\
p=2, r=2: \quad p=1.1, r=2:
\end{gathered}
$$

Sparse test example, $3 \% L^{\infty}$-noise

Sparse test example, 1\% L^{∞}-noise

exact potential c :

reconstructions $c_{k_{*}}^{\delta}$:

$$
\begin{gathered}
X=L^{2}, Y=L^{11} \quad X=L^{1.1}, Y=L^{11} \\
p=2, r=2: \quad p=1.1, r=2:
\end{gathered}
$$

Sparse test example, $1 \% L^{\infty}$-noise

Summary and Outlook

- motivation for solving inverse problems in Banach spaces: more natural norms, possible reduction of ill-posedness, sparsity
- use of Banach spaces instead of Hilbert spaces may add nonlinearity and nonsmoothness, but keeps convexity
- gradient (Landweber) and Gauss-Newton methods for nonlinear inverse problems
- formulation and convergence analysis in Banach space
\rightarrow replace Tikhonov for Newton step by an inner iteration \rightarrow...

Thank you for your attention!

