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Parameter identification in PDEs (1)
> e.g., electrical impedance tomography (EIT)
—V(ocV¢)=0in Q.

Identify conductivity o from measurements of the
Dirichlet-to-Neumann map A, i.e., all possible pairs

(¢, cOne) on 0.

> e.g., magnetic resonance electrical impedance tomography
(MREIT):

2

V x (p 1V><E)+a§£+g§2 =JinQ.

Identify o from measurements of the deposited energy o|E|?
in Q.
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Parameter identification in PDEs (I1)

> e.g. “a-example” (transmissivity in groundwater modelling)
—V(aVu) =0in Q.

Identify a from measurements of u in €.

> e.g. “c-example” (potential in stat. Schrodinger equation)
—Au+cu=0inQ.

Identify ¢ from measurements of v in €.
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Phase retrieval

|Ffl=r

Reconstruct the real-valued function f : R — R from
measurements of the intensity r : R — R™ of its Fourier
transform.
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Forward operator F

» EIT: F:o—= A,
where Ay 1 ¢ +— 00, and —V(cVep) =0in Q.

» MREIT: F:o0+ o|E|?
where V x (,u_lv X E) + O‘%E —{—z—:g—:zE =J in Q + bndy.cond.

» a-example: F:ar—u
where —V(aVu) = 0 in Q + boundary conditions

» c-example: F:cw—u
where —Au+ cu =0 in Q + boundary conditions

» phase retrieval:  F : f — |Ff|

forward operator F is nonlinear and in the last example
nonsmooth
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Nonlinear ill-posed problems

nonlinear operator equation
F(x)=y

F :D(F)(C X) — Y ...nonlinear operator;
F not continuously invertible;

X, Y ...Banach spaces;

yo ~y ...noisy data, [|y® — y|| <4...noise level.

~ regularization necessary
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Motivation for working in Banach space

» X = LP with P~ 1 ~» sparse solutions
~~ MS08 OPTIMIZATION IN BANACH SPACES WITH
SPARSITY CONSTRAINTS

» X = LP with P~ 0o ~ ellipticity and boundedness in the
context of parameter id. in PDEs (e.g. V(aVu) =0 );
avoid artificial increase of ill-posedness, that would result from
a Hilbert space choice X = H9/2+e

» Y = LR with R = 00 ~~ realistic measurement noise model;
avoid artificial increase of ill-posedness, that would result from
a Hilbert space choice Y = [?
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c-example in Banach spaces

—Au+cu=0inQ.
Identify ¢ from measurements of u in Q C RY.

Au

(theoretical) reconstruction formula: ¢ =
u

~~ abstract stability result: Assume |u| > u > 0, use Y = L°°:

1 [u(e2)llwzp
ler = eaflp < —lluler) = ule)llwar+ == 5" llu(c1) — u(c2)lL=

where W29/2(Q) ~ L°°(Q) in the sense that
W29/2(Q) 4 L>(Q) and W29/2+¢(Q) — L=(Q) for any € > 0;

~ choose P = d/2, X = L9?(Q)
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Phase retrieval in Banach spaces

|Ffl=r

Reconstruct the real-valued function f : R — R from
measurements of the intensity r : R — R™ of its Fourier transform.

natural preimage- and image spaces (Hausdorff-Young Theorem):

_P_
X =LER), Y=L (R) with P€L,2]

sparse signal, L% measurement noise ~» X = [' Y = [>
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Regularization in Banach space

» case Y = X: iterative and variational regularization methods
for linear and nonlinear problems
[Plato’92,'94,'95, Bakushinskii&Kokurin'04]

» Tikhonov regularization for linear and nonlinear problems
S(F(x),y%) + aR(x) = min!

[Burger&Osher'04, Resmerita&Scherzer'06,
Hofmann&BK&Poschl&Scherzer'07,
Grasmair&Haltmeier&Scherzer'08,'10, .. .]
needs global minimizer, but Tikhonov functional i.g.
nonsmooth and nonconvex if F nonlinear

~ motivates iterative regularization for nonlinear problems
[Schopfer&Louis&Schuster'06, Hein& Kazimierski'10,
BK&Schépfer&Schuster'09, BK&Hofmann'10,. . .]
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Outline

» short review on iterative regularization for nonlinear problems
in Hilbert space

some Banach space tools
Landweber for nonlinear problems in Banach space

Newton for nonlinear problems in Banach space

vV v vy

numerical tests
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Iterative regularization for nonlinear problems in Hilbert
space

» gradient method for minx ||F(x) — y°|?
~~ Landweber iteration

R R CON (ACARES

[Hanke&Neubauer&Scherzer'96]
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Iterative regularization for nonlinear problems in Hilbert
space

» Newton's method for F(x) = y°

~» Levenberg Marquardt method

s =5k = (FODF 00 + ) P () (F(x) = )

%F’(xf)*l

plus regularization

[Hanke'97,'10], Newton-CG: [Hanke'97], inexact Newton [Rieder'01]
~ iteratively regularized Gauss-Newton method (IRGN)

X1 = xi=(F ()" F () + and) P (FOd) -y +an(xi—x0))

~F/(x)) 1

[Bakushinskii'92, BK&Neubauer&Scherzer'96,'08, BK'97, Hohage'97]
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Some Banach space tools (I)

Smoothness

» X ...smooth <= norm Géteaux differentiable on X\ {0};

» X ...uniformly smooth <= norm Fréchet differentiable on unit sphere;
Convexity

» X ...strictly convex <= boundary of unit ball contains no line segment;

» X ...uniformly convex <= modulus of convexity dx(e) > 0 Ve € (0,2];
ox(e) = inf{L— |3+ )| Ixl = Iyl =1, [Ix =yl > €

LP(Q), P € (1,00) is uniformly convex (Hanner's ineq.)
and uniformly smooth
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Some Banach space tools (II)

» Dual space:
X* = L(X,R)... bounded linear functionals on X
x* 1 x = (x*)x)

» X uniformly smooth < X* uniformly convex

» X reflexive: X smooth < X* strictly convex
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Some Banach space tools (III)

» Duality mapping:
i X — 2X*
Jp(x) ={x" € X* + {x*,x) = X" x|l = lIx]|”}
Jp set valued;
Jp --- single valued selection of J,;
> Jp= 8% I[P (Asplund)
» X smooth & J, single valued

*

» X reflexive, smooth, strictly convex = Jp_1 =J
p—1

LP(Q), P € (1,00): Jp(x) = |Ix]I7, " Ix|P~sign(x)

~+ Jp possibly nonlinear and nonsmooth
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Some Banach space tools (V)

Bregman distance:

Dy(x,%) = L x[I” = L %P — inf{(&.5 — ) : € € K(X)},
x,x € X;

smooth X:

Dp(x, %) = EZE(IXIIP = [|Ix]1) + (Jp(x) = Jp(%), x) ;

smooth and uniformly convex X:
convergence in D, < convergence in |||

Hilbert space case: Dy(x,%) = 3 [Ix — %2
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Assumptions on pre-image and image space X, Y

» X smooth, uniformly convex
= X reflexive (Milman-Pettis) and strictly convex
Jp single valued, norm-to-weak-continuous, bijective

» Y arbitrary Banach space
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Further assumptions for convergence proofs

» closeness to a solution x':  ||xg — x| sufficiently small

» F’ Lipschitz continuous and x' sufficiently smooth
or

» tangential cone condition: For all x € D(F) there exists
F'(x) € L(X,Y) (F'(x) not necess. Fréchet derivative) s.t.

IFC)=FR)=F ) (x=X)] < ceel FO)-F(X)II Vx,x € B

» for Landweber:
F, F’ continuous and interior of D(F) nonempty

» for IRGN:
F (weakly) sequentially closed
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Stopping rule

discrepancy principle
k.(8) = min{k €N : HF(xg) - y5H < Capd)

Cap > 1, |ly® —y|| <6...noise level
Trade off between stability and approximation:

Stop as early as possible (stability) such that
the resudual is lower than the noise level (approximation)
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Landweber for inverse problems in Banach space

Do) = Jplxk) = mF OR)Jr(F/(x) = ¥°).
@

5
Xk+1 — Ll (Xk+1))

p,r € (1,00).
for comparison: Landweber in Hilbert space:

X1 = xp — ucF' ()" < (Xf)—yé)
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Convergence results for Landweber (1)

Theorem (monotonicity of the error)
i appropriately chosen (suff. small), ¢t suff. small, Cyp suff. large.
Then for all k < k,(6) — 1, x)_; € D(F) and

IFC) =y |I”
Qi IS, VA |
(LGl

5

DP(XTaX/§+1) - Dp(XT,Xk) < <0
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|dea of proof
recall: Dy(x, %) = 222 (IIX]1” — IxII7) + (Jp(x) = Jp(%), x)
DP(XT?XI(<5+1) - DP(XTaXIf)

=l ) sy

/

-~

=mcF’ () e (F(x0)—y®)
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|dea of proof
recall: Dp(x, %) = EZ2([IZ]” — [Ix[I7) + (Jo(x) = Jp(%), %)

DP(XT’X;(S+1) — DP(XTaX/f)
p—1 P p
- Tp (HX’fHH B HX’fH )_< Jo(11) = Jp(xR) 5 xT)

/

=pkF'(x0)*Jr(F(x7)~y°)
= Dp(x, xp+1) — lir(F () = %), F/ () (x — x1))
N—

~F(x0)—y®
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|dea of proof

recall: D,(x, %) = 2 (|51 — x117) + (Jpl0x) — Jo(%). )

DP(XT,XI(<5+1) — DP(XTaX/f)
p—1 P p
- Tp (HX’fHH B HX’fH )_< Jo(11) = Jp(xR) 5 xT)

=F () (F () =)
Dp(x, x+1) — lir(F () = ¥°), F/ () (xk — x1))
%/_/

~F(x8)—y® .
< Dyl xin) —u (1 = cletes Cap) ) || Fx) = |
—_————
=0(u}")
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|dea of proof

recall: D,(x, %) = 2 (|51 — x117) + (Jpl0x) — Jo(%). )

DP(XT’X;EJFI) — DP(XTaX/f)
p—1 P p
- Tp (HX’(‘S“H B HX’fH )_< Jo(11) = Jp(xR) 5 xT)

=cF’ () Jr(F (<) —y°)
Do(xk: xk41) = mcr(FOx2) = ¥°), F'(x0) (xk = x1))
N——— —

~F(x8)—y® .
< Dyl xin) —u (1 = cletes Cap) ) || Fx) = |
N——’
=0(u;*)
<0

by the choice of pi.
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Convergence results for Landweber (II)

Theorem (convergence with exact data)
0 =0, pk appropriately chosen (suff. small). Then

xx — x| solution to F(x) =y as k — oo

Theorem (stability for 6 > 0 and convergence as 6 — 0)
ik appropriately chosen, ¢ suff. small, Cy, suff. large.

Y uniformly smooth.

Then for all k < k.(d), x{ continuously depends on y° and

Xi*(o‘) — xT solution to F(x) =y asd — 0

[Schopfer&Louis&Schuster'06] linear case,
[BK&Schopfer&Schuster'09] nonlinear case
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Remark

» convergence rates can be shown for the iteratively regularized
Landweber iteration

Jp(xes1 —x0) = (1 —ai)dplxi = x0) = 1kF'(x0)Jr (F'(x7) — ¥°)

X/(<5+1 = X+ J%(Jp(xlé-i-l —x0))

p,r € (1,00), and xp .. .initial guess.
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IRGN for inverse problems in Banach space

,
X4 € argmingepiry [[F/OR)0 = x) + FO) — || o x = o
p,r € (1,00), and xg .. .initial guess;

convex minimization problem:
efficient solution see, e.g., [Bonesky, Kazimierski, Maass, Schépfer, Schuster'07]

for comparison: IRGN in Hilbert space:

Xor1 =X — (F/(R) F' () + aud) (F(X/f) —y° + ak(x) — Xo)>
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Choice of ay

discrepancy type principle:
0||FGa) = < | PO 0da(@) =) + Fixd) = v <7 || Fix) = |

0<h<f<1
Trade off between stability and approximation:

Choose « as large as possible (stability) such that
the predicted residual is smaller than the old one (approximation)

see also: inexact Newton (for inverse problems: [Hanke'97, Rieder'99,'01])
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Convergence of the IRGN
Theorem [BK&Schdpfer& Schuster’09]
Cap, 0, 0 sufficiently large, ctc sufficently small.
Additionally, assume that either
(a) F'(x) : X — Y is weakly closed for all x € D(F) and Y reflexive or
(b) D(F) weakly closed.
Then for all k < k,(0) — 1 the iterates

5 i LE GOV x — X0 + F(x®) — o0 r P
X1 € argmin || F/(xg)(x — x) + F(x) — y°|| + auc [Ix — o
a st || F ) = x) + FO) || ~ 0| Fx) — |

are well-defined and
Xpe, (5) — x" solution to F(x) =y asd — 0

if xI unique, (and along subsequences otherwise).
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|dea of proof
By minimality of x,‘fH:
r p
|0 = x) + FOxd) = ||+ e [xis = o

r p
< FODE =)+ Fod) = | e [x = x|

~

~ir<Cy) R
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|dea of proof
By minimality of X£+1Z
r p
|0 = x) + FOxd) = ||+ e [xis = o

r p
< FODE =)+ Fod) = | e [x = x|

~

~ir<Cy! [Fe—l

Choice of oy = ||F/(X2)(X£+1 - X,f) + F(X,f) — y‘SH >0 HF(X;E) — y‘sH
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|dea of proof

By minimality of X£+1Z

r p
| PO = )+ FOxd) = ||+ e [xis = o

r p
DO =) + FO) = | e [x =

~or<Cy || FOxd)—y3||”
Choice of oy = ||F/(x2)(xdq — x0) + F(x) — P || = 8 | F(xd) — 7|

5 p t P
Qe Xk+1 — X0 — ||X' — X0

< (c(cee, Cap) — Hka)—y H
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|dea of proof

By minimality of X£+1Z

r p
| PO = )+ FOxd) = ||+ e [xis = o

r p
DO =) + FO) = | e [x =

~or<Cy || FOd) -y
Choice of oy = ||F’(X2)(X£+1 — X))+ F(x)) — y5H 20 HF(XE) B yéH
o)
< (clete; Cap) — HF )=y H

Choice of 8" > c(ctc, Cap) = HX2+1 — XoHp < HXT — XoHp
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Convergence rates for the IRGN

Theorem [BK&Hofmann'10]
Let the assumptions of the previous theorem be satisfied.
Under the source type condition

Lo(xT = x0) NR(F/(xN)) #0, ie.,

¥ e L(xt —x0), ve Y E=F(x)v

we obtain optimal convergence rates
Dp(xk, — xo,xT —xp) = 0(9),
where D°(x, %) = Dp(x — x0,X — x0).

Hilbert space case: ||xx, — XTH = 0(V/9)
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|dea of proof

recall: Dy(x.%) = 1 [x]P = 1 %] — inf{(€.% — %) : € € (3}
X — X()Hp < Hxf - XQHP for k < k.

We have, from the previous proof,
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|dea of proof

recall: Dy(x, %) = L I[P — L [I%]” — inf{(¢.% — x) : &€ Jp(¥)}
We have, from the previous proof, ||x,f — XOHP < ||xJr — onp for k < k..

Dp(xg — xp, x — X0)

= s N P2 t 5\
S~ — |[Xx — X0 *E X — X0 —\ \g/ , X — Xy)
F'(xT)*v

<0
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|dea of proof

recall: Dy(x,%) = L [Ix[I° = L [I%]7 = inf{(¢,% — x) : & € Jp(X)}
We have, from the previous proof, ||x2 - onp < ||XT — XoHp for k < k..
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|dea of proof

recall: Dy(x,%) = L [Ix[I° = L [I%]7 = inf{(¢,% — x) : & € Jp(X)}
We have, from the previous proof, ||x,f — onp < ||XJr — XoHp for k < k..

Dp(le — Xo, PUS X0)

1 P 1 P .
N S e
p P ~~
~~ :F’(xf)*v

<0
< (v, F'(x")(x — x7))

~F(x0)—y®
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|dea of proof

recall: Dy(x,%) = L [Ix[I° = L [I%]7 = inf{(¢,% — x) : & € Jp(X)}
We have, from the previous proof, ||x,f — onp < ||XJr — XoHp for k < k..

Dp(x,‘(s — X, Xt — X0)

1 1
o - e
p P

~~ =F’(xT)*v
20 (1)

< (v, F'(xN)(xg = x1))
—_—
~F(x0)—y®
< VI + el FO) =¥
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|dea of proof

recall: Dy(x,%) = L [Ix[[* = L [[%]” — inf{(6.% —x) : &€ Jp(%)}
We have, from the previous proof, ||x2 — onp < ||XJr — XoHp for k < k..
Dp(x,‘(s — X, xt — X0)
1 1 p
o - e
p p ~
;r() =F/(xT)*v
< (v, F'(N) 0 — x1)
—_—
~F(x0)—y®
< VI + c)IF Q) — Y|l
Hence, for k = ki Dp(xT — x0.x). — x0) < [[v[[(1 + ctc)Cap 6.
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Remarks

» rates result can be extended to
DX (xi,, x") = O(6") with € (0,1) or
D;O(xk*,xT) = O(log(0)™") with k > 0
under approximate source conditions;

» rates can be shown alternatively with a priori choice
of ay and k, instead of the discrepancy principle;
needs a priori information on smoothness of x', though
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Numerical tests

c-example:
—Au+cu=0in Q.

Identify ¢ from measurements of v in Q.

Q=(0,1)> CR?

—0.3)2 —0.3)?
“smooth” c:  c(x,y) = 10exp (—(X )0—54(}/ ) )

“sparse” c: c(x,y) = 40X[0.19,0.2412(X; ¥)



Iterative regularization of nonlinear ill-posed problems in Banach space

Test examples

smooth c: Sparse C:

\!

i
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Smooth test examp

exact data u:

oy

T,
ST
% 0‘\““‘“\ AN

le, 1% L*°-noise

noisy data 9, ||u — t’|| =~ =1%:

AL o
A SN
S TR
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SRy

L
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Smooth test example, 1% L*>-noise

reconstruction c,f* ,

exact potential c:
P ! X=12Y=I1°p=2r=2:

i

-

S )
i
g
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Smooth test example, 1% L*>-noise

reconstruction c,f* ,

exact potential c:
xact potentt X=12y=1% p=2 r=2

i I |
' 0\!\\\\\ :
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Smooth test example, 10% L°°-noise

exact data u: noisy data 1°, ||u—u0|| o =10%:

e AN
s

4
"
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Smooth test example, 10% L°°-noise

reconstruction c,f* ,

exact potential c:
xact potentt X=12Y=1[2p=2r=2

f

-

=y o6l \\\;\ S
TN
a0 = 1'//[[',,’?”’3&“\{*%\-».
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Smooth test example, 10% L°°-noise

reconstruction c,f* ,

exact potential c:
xact potentt X=12y=1% p=2 r=2
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Smooth test example, 10% L*-noise

reconstruction c,f* ,

exact potential c:

‘« 5
- //i'".“\\\\\ '

X=1Yy=102p
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Sparse test example, 3% L*>-noise

exact potential c: exact data u: noisy data u°:

CT (8 u5

computations by Frank Schépfer
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Sparse test example, 3% L*-noise

exact potential c:

reconstructions c,f*:

X=02Yy=1" X=["y=["

p=2,r=2: p=11r=2:
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Sparse test example, 3% L*>-noise
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Sparse test example, 1% L*-noise

exact potential c: reconstructions c,f*:
X=02Yy=11 X=("1y=["
p=2,r=2: p=11r=2:




Iterative regularization of nonlinear ill-posed problems in Banach space

Sparse test example, 1% L*-noise
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Summary and Outlook

l

l

motivation for solving inverse problems in Banach spaces:
more natural norms, possible reduction of ill-posedness,
sparsity

use of Banach spaces instead of Hilbert spaces may

add nonlinearity and nonsmoothness, but keeps convexity
gradient (Landweber) and Gauss-Newton methods for
nonlinear inverse problems

formulation and convergence analysis in Banach space

replace Tikhonov for Newton step by an inner iteration
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Thank you for your attention!



