Alpen Adria Universität Klagenfurt Institut für Statistik

H. Kazianka

No. 5

Exercises "VU Finanzstatistik (SS 2014)"

- 25. Prove that the price process $(X_t)_{t \in [0,T]}$ has an arbitrage if and only if the normalized price process $(\bar{X}_t)_{t \in [0,T]}$ has an arbitrage.
- 26. Suppose the price process $(X_t)_{t \in [0,T]}$ is normalized. Prove that $(X_t)_{t \in [0,T]}$ has an arbitrage if and only if there exists an admissible portfolio θ_t such that

$$V_0^{\theta} \leq V_T^{\theta}$$
 a.s. and $\mathbb{P}[V_T^{\theta} > V_0^{\theta}] > 0.$

Hint: Define $\tilde{\theta}_t = (\tilde{\theta}_t^0, \tilde{\theta}_t^1, \dots, \tilde{\theta}_t^n)^T$ as follows: $\tilde{\theta}_t^i = \theta_t^i$ for $i = 1, \dots, n$, $\tilde{\theta}_0^0$ such that $V_0^{\tilde{\theta}} = 0$ and $\tilde{\theta}_t^0$ to make $\tilde{\theta}$ self-financing. Show that $V_t^{\tilde{\theta}} = V_t^{\theta} - V_0^{\theta}$ and draw the conclusions.

- 27. Let $\theta_t = (\theta^0, \theta^1, \dots, \theta^n)^T$ be a constant portfolio. Show that θ_t is self-financing.
- 28. Check which of the following normalized markets allow an arbitrage. If so, find one.
 - a) $dS_t^1 = dt + dB_t^1 + dB_t^2 dB_t^3$, $dS_t^2 = 5dt dB_t^1 + dB_t^2 + dB_t^3$.
 - b) $dS_t^1 = dt + dB_t^1 + dB_t^2 dB_t^3$, $dS_t^2 = 5dt dB_t^1 dB_t^2 + dB_t^3$.
 - c) $dS_t^1 = dt + dB_t^1 + dB_t^2$, $dS_t^2 = 2dt + dB_t^1 dB_t^2$, $dS_t^3 = -2dt dB_t^1 + dB_t^2$.