Exercises "VU Finanzstatistik" (SS 2014)

15. Let X, Y and Z be continuous local martingales and $a, b \in \mathbb{R}$. Show the following properties of the covariation only with the help of its definition:
a) $[X, Y]=[Y, X]$
b) $[a X, b Y]=a b[X, Y]$
c) $[X+Y, Z]=[X, Z]+[Y, Z]$
d) $\left[X-X_{0}, Z\right]=[X, Z]$
16. Let $M \in \mathcal{M}^{2}$ and $H \in \mathcal{P}_{2}(M)$. Show with the help of Theorem 2.18 that $\|H \cdot M\|=\|H\|_{M}$ (Ito-Isometry).
17. Let $h:[0, \infty) \rightarrow \mathbb{R}$ be a continuous mapping and $\left(B_{t}\right)_{t \geq 0}$ a Brownian motion. Show that $(h \cdot B)_{t}=\int_{0}^{t} h(s) d B_{s}$ defines a centered Gaussian process with covariance function $\Gamma(s, t)=\int_{0}^{\min \{s, t\}} h^{2}(u) d u$.
18. For two continuous semimartingales X and Y, the Stratonovich integral is defined as $(X \circ Y)_{t}:=(X \cdot Y)_{t}+\frac{1}{2}[X, Y]_{t}, t \geq 0$. Now, let X be a continuous semimartingale in \mathbb{R}^{d} and $f \in C^{3}\left(\mathbb{R}^{d}\right), d \in \mathbb{N}$. Show that

$$
f(X)=f\left(X_{0}\right)+\sum_{i=1}^{d} f^{(i)}(X) \circ X^{i},
$$

where $f^{(i)}$ is the partial derivative of f with respect to its i th component and X^{i} is the i th component of X.
19. Let $\left(B_{t}\right)_{t \geq 0}$. Show that
a) $\int_{0}^{t} s d B_{s}=t B_{t}-\int_{0}^{t} B_{s} d s$,
b) $\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s$.
20. Show that $X_{t}=\sin \left(B_{t}\right)$ solves the stochastic differential equation

$$
d X_{t}=-\frac{1}{2} X_{t} d t+\sqrt{1-X_{t}^{2}} d B_{t}
$$

for all $t<\inf _{s}\left\{s>0: B_{s} \notin[-\pi / 2, \pi / 2]\right\}$.

