

H. Kazianka

No. 3

Exercises "VU Finanzstatistik" (SS 2014)

- 15. Let X, Y and Z be continuous local martingales and $a, b \in \mathbb{R}$. Show the following properties of the covariation only with the help of its definition:
 - a) [X, Y] = [Y, X]
 - b) [aX, bY] = ab[X, Y]
 - c) [X + Y, Z] = [X, Z] + [Y, Z]
 - d) $[X X_0, Z] = [X, Z]$
- 16. Let $M \in \mathcal{M}^2$ and $H \in \mathcal{P}_2(M)$. Show with the help of Theorem 2.18 that $||H \cdot M|| = ||H||_M$ (Ito-Isometry).
- 17. Let $h : [0, \infty) \to \mathbb{R}$ be a continuous mapping and $(B_t)_{t\geq 0}$ a Brownian motion. Show that $(h \cdot B)_t = \int_0^t h(s) dB_s$ defines a centered Gaussian process with covariance function $\Gamma(s,t) = \int_0^{\min\{s,t\}} h^2(u) du$.
- 18. For two continuous semimartingales X and Y, the Stratonovich integral is defined as $(X \circ Y)_t := (X \cdot Y)_t + \frac{1}{2}[X,Y]_t, t \ge 0$. Now, let X be a continuous semimartingale in \mathbb{R}^d and $f \in C^3(\mathbb{R}^d), d \in \mathbb{N}$. Show that

$$f(X) = f(X_0) + \sum_{i=1}^{d} f^{(i)}(X) \circ X^i,$$

where $f^{(i)}$ is the partial derivative of f with respect to its *i*th component and X^i is the *i*th component of X.

- 19. Let $(B_t)_{t\geq 0}$. Show that
 - a) $\int_0^t s dB_s = tB_t \int_0^t B_s ds$,
 - b) $\int_0^t B_s^2 dB_s = \frac{1}{3}B_t^3 \int_0^t B_s ds.$
- 20. Show that $X_t = \sin(B_t)$ solves the stochastic differential equation

$$dX_t = -\frac{1}{2}X_t dt + \sqrt{1 - X_t^2} dB_t$$

for all $t < \inf_s \{s > 0 : B_s \notin [-\pi/2, \pi/2]\}.$