### ALPEN-ADRIA UNIVERSITAT KLAGENFURT I WIEN GRAZ

Helmut Lindner, Wilfried Elmenreich Institute for Networked and Embedded Systems University of Klagenfurt

## Self-organized Positioning of Mobile Relays

### **Helicopter Drones**

Wireless communication is an important means for coordination rescue and saving operations. Helicopter drones could easily be used as mobile relay stations, to provide a wireless link over long distances. Choosing a selforganizing approach for positioning of the drones shows the following



advantages:

- no knowledge about the landscape is needed
- drones can be dynamically removed and added
- dynamically appearing/disappearing obstacles are automatically considered

Routes along relay drones

 $d_{i1}$ 

# Self-organization based on Flows

 $X_i$ 

The ground stations are connected by multi-hop communication over dronerelays. For each possible route a "flow" value  $\phi$  is calculated. Each drone participates in in several routes and inherits the maximum flow from each route.

Phi value or "Flow" for a Route j

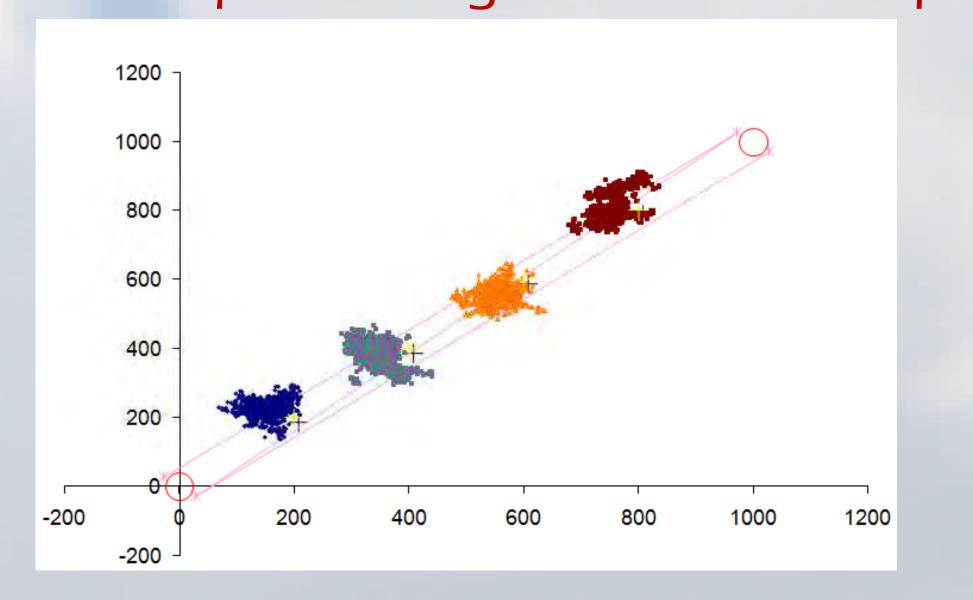
 $\sum_{k=1}^{a} d_{jk}^{\alpha} + h_{j} * c$ 

 $\Phi_i > \Phi_i + 1$ 

## **Movements Controlled by Evolution Strategy**

Each drone decides autonomously on its movements in terms of direction and distance. After a move, a (1+1) evolution strategy (ES), which uses the  $\phi$  value as fitness function, is applied to the actual and previous position. Finally the ES ensures, that the relay drone moves to a direction with increasing phi value. The distance for a move is adopted over time, according to the change rate of the phi value of the drone.

#### Phi value – trend for four drones




### **Simulation & Results**

The simulation implements Rayleigh block fading based on the physical properties of a standard WLAN router model. Simulations have been conducted from one to four drones. The "flow" as depicted by the phi value increases consistently because the evolution strategy selects

positions with a better phi value. The systems shows stability if initially a route can be established. drone positioning after ~1500 steps

All drones reach a region where the position of a drone is near the theoretical optimum. As there are always routes with a suboptimal  $\phi$  value, the position of the drones will be influenced by this kind of "noise". The relay drones therefore do not get pinned to a specific position, but closely oscillate around a theoretical ideal position.



Visit our project MESON (Modeling and Engineering of Self-Organizing Networks) at http://www.demesos.tk