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Preface

The theory of dynamical systems is a well-developed and successful mathemat-
ical framework to describe time-varying phenomena. Its wide area of applica-
tions ranges from simple predator-prey models to complicated signal transduc-
tion pathways in biological cells, from the motion of a pendulum to complex cli-
mate models in physics, and beyond that to further fields as diverse as chemistry
(reaction kinetics), economics, engineering, sociology or demography. In partic-
ular, this broad scope of applications has provided a significant impact on the
theory of dynamical systems itself, and is one of the main reasons for its popular-
ity over the last decades.

As a general principle, before abstract mathematical tools can be applied to
real-world phenomena from the above areas, one needs corresponding models.
From a conceptional level, in developing such models one distinguishes an ac-
tual dynamical system from its surrounding environment. The system is given in
terms of physical or internal feedback laws yielding an evolutionary equation.
The parameters in this equation describe the current state of the environment.
The latter may or may not be variable, but is assumed to be unaffected by the
system.

For classical autonomous dynamical systems the basic law of evolution is static
in the sense that the environment does not change with time. However, in many
applications such a static approach is too restrictive and a temporally fluctuating
environment favorable:

• Parameters in real-world situations are rarely constant over time. This has var-
ious reasons, like absence of lab conditions, adaption processes, seasonal ef-
fects, changes in nutrient supply, or an intrinsic "background noise".

• On the other hand, sometimes it is desirable to include regulation or control
strategies into a model (e.g. harvesting, dosing of drugs, stimulating chemicals
or catalytic submissions) and to study their influence.

Consequently, in reasonable models adapted to and well-suited for problems
in temporally fluctuating environments, the evolutionary equations have to de-
pend explicitly on time. But also within the autonomous theory, time-dependent
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vi Preface

problems occur naturally: The investigation of a nonconstant solution φ to the
autonomous ODE ẋ = f (x) leads to the equation of perturbed motion

ẋ = f (x +φ(t ))− f (φ(t )),

which is clearly nonautonomous.
In order to study such realistic problems from applications as well as from

mathematics, the classical theory of dynamical systems has to be extended. In-
deed, one has to dismiss certain classical concepts known from the autonomous
theory. This should be illustrated by the following examples:

Example 0.0.1. The scalar autonomous ODE

ẋ = f1(x) :=−x (0.0a)

has the general solution ϕ(t ,τ,ξ) = eτ−tξ for all τ,ξ ∈ R and induces the flow
φ(t ,ξ) = e−tξ. Its unique equilibrium x∗ = 0 can be obtained from f1(x∗) = 0 and
D f1(x∗) =−1 < 0 guarantees its asymptotic stability. Moreover, for every ξ ∈ R one
has the invariant limit set ω(ξ) = {0}.
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Fig. 0.1 Solution portraits of the equations (0.0a) (left) and (0.0b) (right)

Now we perturb (0.0a) with an inhomogeneity decaying to 0 exponentially in
time and obtain

ẋ = f2(t , x) :=−x +e−t . (0.0b)

As opposed to (0.0a), this equation is nonautonomous and has the general solution
ϕ(t ,τ,ξ) = te−t − eτ−t (τe−τ − ξ) for all τ,ξ ∈ R. There are no equilibria (constant
solutions) and the function x∗(t ) = e−t obtained from f2(t , x∗(t )) = 0 is obviously
not a solution to (0.0b). Yet, every solution to (0.0b) is asymptotically stable. Due to
the limit relation

lim
t→∞ϕ(t ,τ,ξ) = 0 for all τ,ξ ∈R
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a naive definition of (forward) limit sets yields ω(τ,ξ) = {0}. This set, however, is by
no means invariant w.r.t. (0.0b).

The above example motivates two questions: (1) What is a nonautonomous
counterpart of an equilibrium? (2) How can one define limit sets, which are in-
variant?

Furthermore, Ex. 0.0.1 allowed to determine stability properties using eigen-
values. In general, this is not possible, as the following periodic example illus-
trates:

Example 0.0.2. We consider the linear ODE

ẋ = A(t )x, A(t ) :=
(−1−2cos(4t ) 2+2sin(4t )
−2+2sin(4t ) −1+2cos(4t )

)
, (0.0c)

whose coefficient matrix satisfies σ(A(t )) ≡ {−1} for all t ∈ R. This property, how-
ever, does not guarantee the (asymptotic) stability. In fact, (0.0c) is unstable, since
it possesses the unbounded solution

φ(t ) = e t
(

sin(2t )
cos(2t )

)
The goal of this class is to tackle the above problems and to present adequate

solutions.

München, July 29, 2011 Christian Pötzsche
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Chapter 1

Basics

Young man, in mathematics you don’t understand things. You just get used to
them.

John von Neumann

We try to present the theory of discrete and continuous dynamical systems in a
parallel fashion. Thereto, it is useful to introduce the notation T for the time axis,
which is one of the sets Z, R and we define its nonnegative part

T+ := {t ∈T : t ≥ 0} .

Note that T and T+ are additive ordered semigroups.

1.1 Autonomous dynamical systems

In this section, we suppose X is a metric (or topological) space.
The solutions of autonomous ordinary differential equations

ẋ = f (x) (1.1a)

and difference equations
xt+1 = f (xt ) (1.1b)

are translational invariant in time. This means, given a solutionφ, also the shifted
function φ(τ+·) resp. sequence φτ+·, τ ∈T, is again a solution. Thus, it suffices to
restrict to the initial time 0. An abstraction of this solution concept led to

Definition 1.1.1 (dynamical system). A semidynamical system is a family of
mappings φt : X → X , t ∈T+, satisfying

(i) φ0 = idX (initial value condition)

1



2 1 Basics

(ii) φt+s =φtφs for all s, t ∈T+ (semigroup property)
(iii) (t , x) 7→φt (x) is continuous.

In case the above conditions hold with the semiaxis T+ replaced by T one
speaks of a dynamical system, for a continuous system it is T = R and for a
discrete system one has T=Z.

Remark 1.1.2. (1) We frequently use the convenient notation φtφs = φt ◦φs , al-
though φt is not assumed to be linear. Similarly, we sometimes write φ(t , x) =φt x.

(2) For dynamical systems, the mappingφt : X → X , t ∈T, is a homeomorphism
with inverse φ−1

t =φ−t .

Example 1.1.3 (time shift). If X =T, then φs t := t + s is a dynamical system on T.

Example 1.1.4 (continuous dynamical system). Let X =Rd , suppose that f :Rd →
Rd is locally Lipschitz continuous and that all solutions to the autonomous ODE
(1.1a) exist on R; the latter assumptions hold for linearly bounded right hand sides
f , i.e. there exist a,b ≥ 0 with

∥∥ f (x)
∥∥ ≤ a +b ‖x‖ for all x ∈ Rd (cf. [Aul04]). If φ

denotes the general (time-independent) solution to (1.1a), which means thatφ(·,ξ)
satisfies the initial condition x(0) = ξ, ξ ∈Rd , then φ :R×Rd →Rd is a continuous
dynamical system on Rd .

Example 1.1.5 (discrete dynamical system). Suppose f : X → X is a continuous
mapping. The forward iterates1 φ(t ,ξ) = f t (ξ), t ≥ 0, i.e. the forward solutions to
(1.1b) define a discrete semidynamical system φ :Z+×X → X . If f is a homeomor-
phism, then the iterates yield a discrete dynamical system φ :Z×X → X .

Example 1.1.6 (cocycles). We consider autonomous ordinary differential resp. dif-
ference equations {

ṗ = f (p),

ẋ = g (p, x)

{
pt+1 = f (pt ),

xt+1 = g (pt , xt )
(1.1c)

with variables p ∈ Rn , x ∈ Rd and mappings f , g satisfying global existence and
uniqueness of forward solutions. Then (1.1c) generates a semidynamical system φ

on Rn ×Rd which can be written in component form as

φ(t , p0, x0) =
(
θ(t , p0)

λ(t , p0, x0)

)
with initial conditionφ(0, p0, x0) = (p0, x0). We point out two important aspects in
this formulation: First, the p-component in (1.1c) generates an independent semi-

1 the iterates of a mapping f : X → X are defined recursively via

f 0 := idX , f t+1 := f ◦ f t for all t ∈N0;

in case f is bijective, one sets f −t := ( f −1)t for t ∈N0.
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dynamical system θ on Rn of its own right; in particular it fulfills the semigroup
property

θ(t + s, p0) = θ(t ,θ(s, p0)) for all t , s ≥ 0, p0 ∈Rn . (1.1d)

Second, the semigroup property of φ can be represented as(
θ(s,θ(t , p0))
λ(t + s, p0, x0)

)
(1.1d)=

(
θ(t + s, p0)

λ(t + s, p0, x0)

)
=φ(t + s, p0, x0) =φ(s,φ(t , p0, x0))

=
(

θ(s,θ(t , p0))
λ(s,θ(t , p0),λ(t , p0, x0))

)
yielding the cocycle property

λ(t + s, p0, x0) =λ(s,θ(t , p0),λ(t , p0, x0)) for all s, t ≥ 0, p0 ∈Rn , x0 ∈Rd .

Remark 1.1.7 (Warning!). One often encounters the remark that every nonauto-
nomous equation ẋ = g (t , x) resp. xt+1 = g (t , xt ) can be written as an autonomous
equation by considering t as a state space variable; this means one chooses ṗ = 1
resp. pt+1 = pt +1 in (1.1c). From a dynamical systems point of view this approach
is useless, as well as pointless for the following reasons:

• The resulting equation (1.1c) has no equilibria
• every solution to (1.1c) is unbounded
• thus, all the limit sets (and attractors) are empty.

Example 1.1.8. Let X = BC (T,Rd ) denote the Banach space of all bounded con-
tinuous functions x :T→Rd equipped with the natural norm

‖x‖ := sup
t∈T

|x(t )| .

On the infinite-dimensional space X we define the shift operator

φt x := x(t +·) for all t ∈T

and obtain that φt : X → X defines a dynamical system on X .

Further examples of continuous semidynamical systems on infinite-dimen-
sional Banach spaces are the solution operators to functional and delay differen-
tial equations (it is X =C [−1,0], cf. [HVL93]), or of semilinear parabolic equations
(where X is an ambient Sobolev space, cf. [Hen81]).

1.2 Nonautonomous dynamical systems and examples

Let P and X be nonempty sets. We consistently use the notation

X := P ×X
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and a subset S ⊆X is called nonautonomous set with p-fiber (see Fig. 1.1)

S (p) := {
x ∈ X : (p, x) ∈S

}
for all p ∈ P.

Throughout these notes, calligraphic letters (S ,X and so on) denote nonauto-
nomous sets. The cartesian product of two nonautonomous sets S1,S2 ⊆ X is
defined to be the following set of triples

S1 ×S2 := {
(p, x1, x2) ∈ P ×X ×X : x1 ∈S1(p), x2 ∈S2(p)

}
.

Accordingly, inclusions, intersections or unions of nonautonomous sets are de-
fined fiber-wise. Sometimes it is convenient to identify a function µ : P → X with
its graph

{
(p,µ(p)) : p ∈ P

}
.

P

X

p

S

S (p)

Fig. 1.1 A nonautonomous set S and the p-fiber S (p)

If (X ,d) is a metric space, then S is said to be open, closed, compact (or an-
other topological property), if every fiber S (p), p ∈ P , is open, closed or compact
etc., w.r.t. the topology given on X . We write clS := {(p, x) ∈ X : x ∈ clS (p)} for
the closure of S and proceed analogously with the interior intS or the boundary
bdS . A nonautonomous set S in metric spaces X is called bounded, provided
each fiber S (p), p ∈ P , is bounded. In metric linear spaces (X ,d) we denote X as
uniformly bounded, if there exists a R > 0 so that one hasS (p)

 := sup
x∈S (p)

d(x,0) ≤ R for all p ∈ P.

For finite sets P the notions of a bounded and a uniformly bounded nonautono-
mous set coincide. A neighborhood of S is a nonautonomous set containing a
so-called ε-neighborhood

Bε(S ) := {
(p,ξ) ∈X : dist(ξ,S (p)) < ε}2

with some given ε> 0; in metric linear spaces we abbreviate Bρ :=Bρ(0).

2 the distance of a point ξ ∈ X to a set S ⊆ X is defined as dist(ξ,S) := infx∈S d(ξ, x).
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A vector bundle3 is a nonautonomous set S with every fiber S (p), p ∈ P , being
a linear space. For vector bundles X1,X2 ⊆X we define

X1 +X2 := {
(p, x) ∈X : x ∈X1(p)+X2(p)

}
,

X1 ⊕X2 := {
(p, x) ∈X : x ∈X1(p)⊕X2(p)

}
and the latter expression is denoted as Whitney sum of X1 and X2. Trivial exam-
ples of vector bundles are the zero bundle resp. the extended state space

O := P × {0} , X = P ×X .

An abstract nonautonomous dynamical system consists of two components, a
driving system modeling the nonautonomy and a so-called cocycle (see Fig. 1.2):

Definition 1.2.1 (nonautonomous dynamical system). A nonautonomous
dynamical system (NDS for short) is a pair of mappings (θ,λ) with the fol-
lowing properties:

(i) The base flow θt : P → P , t ∈T, satisfies the group property

θ0 = idP , θt+s = θtθs for all t , s ∈T, (1.2a)

(ii) λ :T+×P ×X → X satisfies the cocycle property

λ(0, p) = idX , λ(t + s, p) =λ(t ,θs p)λ(s, p) (1.2b)

for all t , s ∈ T+, p ∈ P . We denote the set X as state space, P as base space
and X = P × X as extended state space. If the semiaxis T+ can be replaced
by T in (ii), one speaks of an invertible NDS.

Remark 1.2.2. (1) If P is a singleton, X a topological space and λ is continuous in
the last variable, then Def. 1.2.1 reduces to the usual definition of a semidynamical
system (cf. Def. 1.1.1).

(2) Given topological spaces P, X one speaks of a continuous NDS, if the map-
ping (t , x) 7→λ(t , p, x), p ∈ P, is continuous. Given a linear space X overK, a linear
NDS fulfills

λ(t , p,α1x1 +α2x2) =α1λ(t , p, x1)+α2λ(t , p, x2) for all α1,α2 ∈K, x1, x2 ∈ X

and t ∈T+, p ∈ P.
(3) For an invertible NDS one has λ(t , p)−1 =λ(−t ,θt p) for all t ∈T, p ∈ P.

3 We refer to [AMR88, p. 166, Definition 3.4.1] for the general notion of a vector bundle in differ-
ential topology.
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P

{p}×X

{θt+s p}×X

p

θs p

{θs p}×X

θs+t p

ϕ(s, p)
ϕ(t ,θs p)

ϕ(t + s, p)

Fig. 1.2 A nonautonomous dynamical system (θ,λ)

Corollary 1.2.3 (skew-product flow). Let P, X be topological spaces. If the
mappings θ and λ are continuous, then φ = (θ,λ) : T+ ×P × X → P × X is
a semidynamical system on P × X , a so-called skew-product semiflow. Ac-
cordingly, invertible NDSs generate skew-product flows.

Proof. Let p ∈ P and x ∈ X . Obviously, the mapping φ is continuous and satisfies

φ(0, p, x) =
(

θ0p
λ(0,θ0p, x)

)
(1.2a)=

(
p

λ(0, p, x)

)
(1.2b)=

(
p
x

)
.

On the other hand, one obtains

φ(t ,φ(s, p, x)) = φ(t ,θs p,λ(s, p, x)) =
(

θtθs p
λ(t ,θs p,λ(s, p, x))

)
=

(
θt+s p

λ(t + s, p, x)

)
(1.2a)= φ(t + s, p, x) for all t , s ∈T+

and therefore the claim. ut

In Ex. 1.1.6 we have seen one possibility to construct NDSs. Next we illustrate
that the concept is in fact significantly broader:
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1.2.1 Processes

Let I denote a T-interval, i.e. the intersection of Twith a real interval.
Among the several approaches to describe the dynamics of nonautonomous

evolutionary equations, probably the most straight-forward one is given as

Definition 1.2.4 (process). A family of mappings ϕ(t , s) : X → X , s, t ∈ I,
s ≤ t is called a process or a 2-parameter semigroup on X , if it satisfies

ϕ(τ,τ) = idX , ϕ(t , s)ϕ(s,τ) =ϕ(t ,τ) for all τ≤ s ≤ t . (1.2c)

A 2-parameter group satisfies (1.2c) for all τ, s, t ∈T.

I

X X X

ϕ(τ, s)

ϕ(t , s)

ϕ(t ,τ)

S (τ)
S (s) S (t )

Fig. 1.3 2-parameter semigroup property of ϕ(t ,τ) : X → X , τ≤ t

Remark 1.2.5. For a 2-parameter group the mapping ϕ(t ,τ) : X → X is invertible
with inverse ϕ(t ,τ)−1 :=ϕ(τ, t ).

Example 1.2.6 (nonautonomous ODEs). Consider a nonautonomous ODE

ẋ = f (t , x) (1.2d)

with a right hand side f : R×Rd → Rd guaranteeing global existence and unique-
ness of solutions to initial value problems. Let ϕ(t , s,ξ) denote the general solution
to (1.2d) which starts at time s ∈ R in ξ ∈ Rd , i.e. ϕ(s, s,ξ) = ξ. Then the mapping
ϕ(t , s, ·) :Rd →Rd defines a process on Rd with T=R.

From this, an invertible NDS can be constructed as follows: We choose the time
axis T= R, the base space P = R and the time shift θt : R→ R, θt p := t +p as base
flow. If λ(t , p, x) :=ϕ(t +p, p, x), then the pair φ= (θ,λ) is a NDS.

It has the additional properties that (θ,λ) is continuous (even differentiable, if
f is differentiable); however, the base space P = R is not compact. In case (1.2d) is
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periodic, i.e. f (t +2π, ·) = f (t , ·) for all t ∈ R, one can choose P =S1 and obtains a
compact base space.

Example 1.2.7 (nonautonomous difference equations). Let X be a set. An analo-
gous construction is possible for nonautonomous difference equations

xt+1 = ft (xt ) (1.2e)

with a right hand side ft : X → X , t ∈ Z. Here, the general solution can be con-
structed explicitly by means of the composition

ϕ(t , s) :=
{

idX , t = s,

ft−1 ◦ . . .◦ fs , s < t ,

which defines a process on X . It induces a NDS with cocycle λ(t , p) :=ϕ(t+p, p) on
X over the time shift θt : P → P, θt p := t +p, t ∈Z+, with noncompact base space
P =Z. On ambient spaces (topological, Banach), smoothness properties of ft carry
over to λ.

Examples of processes on infinite-dimensional Banach spaces are the general
(forward) solutions of nonautonomous functional differential equations (with
state space X =C [−r,0]) or of evolutionary partial differential equations.

1.2.2 Nonautonomous differential and difference equations

Besides the process formulation, there is another possibility for (1.2d) or (1.2e)
to generate a NDS. The corresponding construction is denoted as Bebutov flow
and based on the fact that whenever x is a solution, then the shifted solution
xτ := x(·+τ) resp. xτ := x·+τ for some fixed τ ∈ T, satisfies the respective nonau-
tonomous equation

ẋτ = f τ(t , xτ) := f (t +τ, x(t +τ)), xτt+1 = f τ(t , xτ) := ft+τ(xt+τ).

With given continuous right hand sides f : T×Rd → Rd (in case T = Z we write
f (t , x) := ft (x)) we define the hull of f as follows

H( f ) := cl
{

f (t +·, ·) : t ∈T}⊆C (T×Rd ,Rd ),

where the closure is taken w.r.t. an ambient topology; a comparison of different
appropriate topologies is given in [Sel71]. One example is the uniform conver-
gence on compact sets given by the metric

d( f , g ) :=
∞∑

n=1

1

2n

pn( f , g )

1+pn( f , g )
, pn( f , g ) := sup

(t ,x)∈[−n,n]×Bn (0)

∣∣ f (t , x)− g (t , x)
∣∣ .

Choosing P := H( f ) the Bebutov flow reads as θt : H( f ) → H( f ),
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θt p := p(t +·, ·)

and can be shown to be continuous. If λ(·, p, x) denotes the solution to ẋ = p(t , x)
resp. xt+1 = pt (xt ) with λ(0, p, x) = x and p ∈ H( f ), then (θ,λ) defines a NDS.

For right hand sides f being continuous and bounded, uniformly continu-
ous on every set T×K , K ⊆ Rd compact, one obtains the additional structure:
P is compact, θ is continuous and λ is continuous. Moreover, λ(t , p, ·) inherits its
smoothness from the mapping f .

Example 1.2.8 (periodic difference equations). For T -periodic difference equa-
tions (1.2e), T ∈N, i.e.

ft+T = ft for all t ∈Z
the hull H( f ) is finite H( f ) = {

f0, . . . , fT−1
}

and the base space therefore compact.

If more is known about the explicit time-dependence of a nonautonomous
difference equation (1.2e), a compact base space can be obtained as follows:

Example 1.2.9 (finitely many right hand sides). Suppose that the right hand sides
ft in (1.2e) are chosen in some (random) way from a finite number of continuous
mappings gi :Rd →Rd , i ∈ {1, . . . ,r }. Then (1.2e) can be represented as

xt+1 = git (xt )

with it ∈ {1, . . . ,r } for all t ∈ Z. This difference equation generates a discrete NDS
over the base space P := {1, . . . ,r }Z of bi-infinite sequences p = (pt )t∈Z in {1, . . . ,r }.
The base flow is given by

θs p = θs (pt )t∈Z = (pt+s )t∈Z

and the cocycle mapping reads as

λ(t , p, x) :=
{

x t = 0,

gpt−1 ◦ . . .◦ gp0 (x) t > 0

for all t ∈Z+, x ∈Rd and sequences p = (pt )t∈Z ∈ P. The base space P is a compact
metric space w.r.t.

d(p) :=
∑
t∈Z

(r +1)−|t |
∣∣pt −qt

∣∣
and (θ,λ) is continuous.

1.2.3 Delay differential equations

Let r ≥ 0. We consider a delay differential equation

ẋ(t ) = f (t , x(t ), x(t − r ))
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in Rd with a continuous right hand side being of class C 2 in the second and third
argument. If we assume that f is bounded and uniformly continuous on every set
of the form R×K ×K , K ⊆Rd compact, then the hull P := H( f ) becomes compact
w.r.t. the topology of uniform convergence on compact sets.

Let X := C ([−r,0],Rd ). By the standard theory of delay differential equations
(DDEs for short, cf. [HVL93]), for every initial function u0 ∈ X and every g ∈ H( f )
a DDE ẋ(t ) = g (t , x(t ), x(t − r )) admits a unique solution ϕ(·, g ,u0) : R→ X satis-
fying ϕ(t , g ,u0) ≡ u0(t ) on [−r,0]. We now define

ϕt (g ,u0)(s) :=ϕ(t + s, g ,u0) for all t ≥ 0, s ∈ [−r,0]

and obtain that ϕt is Lipschitz in the first and C 1 in the second argument. With
the cocycle λ(t , p,u0) :=ϕt (p,u0) and the base flow

θt : H( f ) → H( f ), θt g := g (t +·, ·, ·);

this yields a nonautonomous dynamical system (θ,λ) on X .
Additional structure: P is compact, θ is continuous and the cocycle λ is con-

tinuous and continuously differentiable in the second argument.

1.2.4 Random differential and difference equations

Suppose that (Ω,F ,P) is a probability space with sample space Ω, σ-algebra F

and probability measure P : F → [0,1]. A metric dynamical system is a family of
mappings θt :Ω→Ω, t ∈T, with the properties

• θ0 = id and θt ◦θs = θs+t for all s, t ∈R,
• (t ,ω) 7→ θtω is measurable,
• θt is P-invariant, i.e., P(θt B) =P(B) for all t ∈T and B ∈F .

With a metric dynamical system θt one denotes

ẋ = f (θtω, x), xt+1 = f (θtω, xt )

as random differential resp. random difference equation. The corresponding so-
lution satisfying the initial condition x(0) = ξ resp. x0 = ξ will be denoted by
t 7→λ(t ,ω)ξ and this defines a NDS (θ,λ) with the base space P =Ω.

Additional structure: P is a probability space, the cocycle λ is measurable and
λ(·, p)ξ :T→Rd is absolutely continuous (cf. [Arn98]).

1.2.5 Control systems

A continuous control system is an ODE of the form
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ẋ = f0(x)+
n∑

j=1
u j (t ) f j (x) (1.2f)

with C∞-functions f0, . . . , fn :Rd →Rd and control functions

u = (u1, . . . ,un) ∈U := {
u :R→U locally integrable

}⊆ L∞,

where U ⊆Rn is compact and convex. For every control function u ∈U and every
initial value ξ ∈ Rd let λ(·,u,ξ) denote the unique solution of (1.2f) satisfying the
initial condition λ(0,u,ξ) = ξ.

We define T = R, equip the base space P = U with the weak∗-topology4 and
obtain a continuous base flow θt u := u(t +·). Then (θ,λ) becomes a NDS on Rd .

Additional structure: P =U is a compact separable metric space, θ is continu-
ous and topologically transitive, and the cocycle λ is continuous (cf. [CK99]).

Exercises

Exercise 1.2.10. Verify Rem. 1.2.2(3).

1.3 Invariant and limit sets

In this section we introduce a number of notions which are important to describe
and understand the asymptotic behavior of 2-parameter semigroups (processes).
Such notions include invariant and limit sets. Let X denote a nonempty set and
I be a T-interval with associated extended state space X = I×X . Throughout the
section we assume that ϕ is a 2-parameter semigroup.

Definition 1.3.1 (invariant). A nonautonomous set A ⊆X is called

(a) forward invariant, if and only if ϕ(t ,τ)A (τ) ⊆A (t ) for all τ< t ,
(b) backward invariant, if and only if A (t ) ⊆ϕ(t ,τ)A (τ) for all τ< t ,
(c) invariant, if and only if ϕ(t ,τ)A (τ) =A (t ) for all τ< t .

Example 1.3.2. (1) The empty set I×; and X are (forward, backward) invariant.

4 this topology is metrizable with the metric

d(u, v) :=
∞∑

n=1

1

2n

∫
R 〈u(t )− v(t ), xn (t )〉 d t

1+∫
R 〈u(t )− v(t ), xn (t )〉 d t

,

where {xn }n∈N is a countable dense subset of L1(R,Rd )
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(2) A function φ : I→ X in X is called entire motion (for ϕ), if one has the re-
lation φ(t ) =ϕ(t ,τ)φ(τ) for all t ≥ τ. Then the nonautonomous set φ is invariant.
Since we did not assume ϕ(t ,τ) to be onto, there might not exist an entire mo-
tion satisfying φ(τ) = ξ for given (τ,ξ) ∈X . Moreover, without the assumption that
ϕ(t ,τ) is one-to-one, there can exist more than one entire motion with φ(τ) = ξ.

(3) Let T ∈ T+, I unbounded below and A ⊆ X be a nonautonomous set. The
nonautonomous set γT

A
⊆X given by the fibers

γT
A (t ) :=

⋃
s≥T

ϕ(t , t − s)A (t − s) ⊆ X for all t ∈ I

is called T -truncated orbit and γ0
A

the orbit of A . One has the embedding

A ⊆ γ0
A , γ

T2
A

⊆ γT1
A

for all T1 ≤ T2

and it is easily seen using Def. 1.3.1 that γT
A

is (forward, backward) invariant, if A

has the corresponding property.

The next result states that invariant sets consist of entire motions, which is
basically due to the fact that 2-parameter semigroups are onto between the fibers
of an invariant set. These motions, however, need not to be uniquely determined,
since the semigroups are not assumed to be one-to-one.

Proposition 1.3.3. The following assertions are equivalent:

(a) A nonautonomous set A ⊆X is invariant,
(b) A is forward and backward invariant,
(c) for every pair (τ,ξ) ∈ A there exists an entire motion φ : I→ X for ϕ such

that φ(τ) = ξ and φ⊆A .

The entire motion φ is uniquely determined, provided every mapping

ϕ(t , s) : X → X is one-to-one for all s < t . (1.3a)

Proof. The implication (b)⇒(a) is clear from Def. 1.3.1.
(a)⇒(c) Let A be invariant and choose (τ,ξ) ∈A . For t ≥ τwe define the func-

tion φ(t ) := ϕ(t ,τ)ξ and the invariance of A yields φ(t ) ∈ A (t ). On the other
hand, for τ ≥ t we have A (τ) = ϕ(τ, t )A (t ) and consequently there exist points
xt ∈ A (t ) with ξ = ϕ(τ, t )xt . Thus, we define φ(t ) := xt for t < τ and φ : I→ X
is an entire motion with the desired properties. Under (1.3a) the sequence xt is
uniquely given.

(c)⇒(b) For arbitrary pairs (τ,ξ) ∈ A there is an entire motion φ : I→ X with
φ(τ) = ξ in A . Hence, one has (t ,ϕ(t ,τ)ξ) = (t ,ϕ(t ,τ)φ(τ)) = (t ,φ(t )) ∈A and thus
the inclusion ϕ(t ,τ)ξ ∈ A (t ) for t ≥ τ. So A is forward invariant. The backward
invariance of A follows from ξ=ϕ(τ, t )φ(t ) ∈ϕ(τ, t )A (t ) for t ≤ τ. ut
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Proposition 1.3.4. Let {Ai }i∈I be a family of nonautonomous sets Ai ⊆ X ,
where I is an index set.

(a) If each Ai , i ∈ I , is forward invariant, then also the union
⋃

i∈I Ai and the
intersection

⋂
i∈I Ai are forward invariant,

(b) if each Ai , i ∈ I , is backward invariant, then also
⋃

i∈I Ai is backward
invariant; moreover, under (1.3a) also

⋂
i∈I Ai is backward invariant.

Proof. The whole proof is based on the elementary relations

ϕ(t , s)

(⋂
i∈I

Ai (t )

)
⊆

⋂
i∈I
ϕ(t , s)Ai (t ), ϕ(t , s)

(⋃
i∈I

Ai (t )

)
=

⋃
i∈I
ϕ(t , s)Ai (t )

for all s < t , with equality in the first case, if ϕ(t , s) is one-to-one. ut
We now postulate that (X ,d) is a metric space and define the distance of a

point x ∈ A from a subset A ⊆ X by

dist(x, A) := inf
a∈A

d(x, a),

as well as the Hausdorff semidistance of two subsets A,B ⊂ X by

dist(A,B) := sup
a∈A

dist(a,B) = sup
a∈A

inf
b∈B

d(a,b).

Lemma 1.3.5. Let X be a complete metric space. If (Bs )s≥0 is a decreasing nested
family of nonempty compact subsets, then their intersection

B∗ :=
⋂
s≥0

Bs

is nonempty, compact and satisfies lims→∞ dist(Bs ,B∗) = 0.

Proof. See [Zei93, p. 495, Prop. 11.4]. ut
Moreover, which might be surprising at first reading, we assume theT-interval

I is unbounded below, i.e. of the form I= (−∞,τ]∩Twith some τ ∈T or I=R∩T.

Theorem 1.3.6. Suppose that X is a complete metric space, ϕ is continuous
and let A ⊆ X be nonempty compact. If A is forward invariant, then there
exists a nonempty compact and invariant subset A∗ ⊆A .

Proof. We keep t ∈ I fixed. Let A be forward invariant. Since A is compact, the
continuity of ϕ shows that the images ϕ(t , s)A (s), s ≤ t , are compact. Moreover,
thanks to (cf. Def. 1.3.1(a))
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ϕ(t ,τ)A (τ)
(1.2c)= ϕ(t ,r )ϕ(r,τ)A (τ) ⊆ϕ(t ,r )A (r ) ⊆A (t ) for all τ≤ r ≤ t (1.3b)

the sets ϕ(t , t − s)A (t − s), s ∈ T+, form a nested family of nonempty compact
subsets of A (t ). Referring to Lemma 1.3.5 their intersection fiber-wise given by
A∗(t ) :=⋂

s≥0ϕ(t , t − s)A (t − s) is nonempty and compact as well, and it remains
to show that A∗ is also invariant:
(⊆) For r ≤ t we choose a ∈A∗(r ) and get a ∈ϕ(r,r − s)A (r − s), s ≥ 0. Thus,

ϕ(t ,r ) {a} ⊆ϕ(t ,r )ϕ(r,r − s)A (r − s)
(1.2c)= ϕ(t ,r − s)A (r − s) for all s ≥ 0

and (1.3b) imply the inclusion

ϕ(t ,r ) {a} ⊆
⋂
0≤s

ϕ(t ,r − s)A (r − s) =
⋂
0≤s

ϕ(t , t − s)A (t − s) =A∗(t )

for all r ≤ t and we deduce the desired relation ϕ(t ,r )A∗(r ) ⊆A∗(t ) for all r ≤ t .
(⊇) Given an arbitrary a ∈A∗(t ) and r ≤ t there exists a real sequence rn ≤ r with
limn→∞ rn = −∞ and a ∈ ϕ(t ,rn)A (rn) = ϕ(t ,r )ϕ(r,rn)A (rn). Therefore, we can
choose bn ∈ϕ(r,rn)A (rn) ⊆ A (r ) such that ϕ(t ,r )bn = a. Since A (r ) is compact
there exists a convergent subsequence (bn j ) j∈N with limit b ∈A (r ). By

dist(b,A∗(r )) ≤ d(b,bn j )+dist(bn j ,A∗(r ))

≤ d(b,bn j )+dist(ϕ(r,rn j )A (rn j ),A∗(r )) −−−−→
j→∞

0

(cf. Lemma 1.3.5) we deduce b ∈ A∗(r ) and the continuity of ϕ shows the limit
relation a = lim j→∞ϕ(t ,r )bn j =ϕ(t ,r )b. This means A∗(t ) ⊆ϕ(t ,r )A∗(r ). ut

Now we are interested in the asymptotic behavior of 2-parameter semigroups.

Definition 1.3.7 (limit set). Let A ⊆X be nonempty. Theω-limit set ωA of
A is the nonautonomous set given by the fibers

ωA (t ) :=
⋂

T≥0
cl

⋃
s≥T

ϕ(t , t − s)A (t − s) =
⋂

T≥0
clγT

A (t ) for all t ∈ I.

Remark 1.3.8. (1) In a dual fashion using pre-images, the α-limit set αA ⊆ X of
A can be defined as nonautonomous set given by the fibers

αA (t ) :=
⋂

T≥0
cl

⋃
s≥T

ϕ(t + s, t )−1A (t + s) for all t ∈ I

withϕ(t+s, t )−1A (t+s) = {
x ∈ X : ϕ(t + s, t )x ∈A (t + s)

}
. Without surjectivity as-

sumptions on ϕ(t ,r ), r < t , α-limit sets can be empty.
(2) If A is a forward invariant (backward invariant resp. invariant) set, then

ωA ⊆ clA (clA ⊆ωA resp. ωA = clA ). For an entire motion φ one has φ=ωφ.
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The following characterization is helpful to derive topological and dynamical
properties of ωA . Namely, each point of an ω-limit set can be approximated by
points on orbits starting in their defining sets A .

Lemma 1.3.9. Let A ⊆ X . Then (t , x) ∈ ωA if and only if there exist sequences
(tn)n≥0 in T+ and xn ∈A (t − tn) such that limn→∞ tn =∞ and

lim
n→∞ϕ(t , t − tn)xn = x.

Proof. Let t ∈ I. We have to show two directions:
(⇒) Assume first that x ∈ ωA (t ). Then for all T ≥ 0 one has x ∈ clγT

A
(t ) and

there exist sequences xT
k in γT

A
(t ) ⊆ X converging to x as k → ∞. This means,

for each ε> 0 there exists an integer K = K (ε,T ) > 0 such that d(x, xT
k ) < ε for all

k ≥ K . In particular, choosing ε = 1
m for some m ∈N and setting ym := xm

K (1/m,m)

this yields d(x, ym) ≤ 1
m and, thus, x = limm→∞ ym . Now one has

ym ∈ γm
A (t ) =

⋃
s≥m

ϕ(t , t − s)A (t − s) for all m ∈N

and there exist sequences tm ≥ m in N and xm ∈ A (t − tm) such that one has
ym = ϕ(t , t − tm)xm . Thus, limm→∞ϕ(t , t − tm)xm = limm→∞ ym = x holds and
tm ≥ m →∞ for m →∞.

(⇐) Conversely, let x ∈ X be the limit of a sequenceϕ(t , t−tn)xn as above. Due
to our assumption, for every T ≥ 0 there exists an m ∈ N such that tm ≥ T and
ϕ(t , t−tn)xn ∈ϕ(t , t−tn)A (t−tn) ⊆ γT

A
(t ) and x ∈ clγT

A
(t ). Since T was arbitrary,

we deduce x ∈⋂
T≥0 clγT

A
(t ) =ωA (t ). ut

Corollary 1.3.10. For subsets B ⊆A one has ωB ⊆ωA .

Proof. Let t ∈ I. The claim readily follows from Lemma 1.3.9, since for (t , x) ∈ωB

the corresponding sequence xn ∈B(t − tn) also satisfies xn ∈A (t − tn). ut

Theorem 1.3.11. For every A ⊆X the ω-limit set ωA is closed. Moreover, if
ϕ is continuous, then ωA is forward invariant.

Proof. Let τ ∈ I. As intersection of closed sets, the fibers ωA (τ) are closed. Now
assume ϕ is continuous and τ≤ t . In order to show that ωA is forward invariant,
we pick (τ, x) ∈ ωA and show the inclusion ϕ(t ,τ)x ∈ ωA (t ). From x ∈ ωA (τ) we
know by Lemma 1.3.9 that there exist sequences τn →∞, xn ∈A (τ−τn) such that
x = limn→∞ϕ(τ,τ−τn)xn . By continuity of ϕ, one arrives at

ϕ(t , t − tn)xn =ϕ(t ,τ−τn)xn
(1.2c)= ϕ(t ,τ)ϕ(τ,τ−τn)xn −−−−→

n→∞ ϕ(t ,τ)x
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with tn := τn + t −τ→ ∞ for n → ∞ and xn ∈ A (τ−τn) = A (t − tn). Therefore,
Lemma 1.3.9 implies ϕ(t ,τ)x ∈ωA (t ). ut

For the remainder of this section we suppose that B̂ is a family of nonempty
nonautonomous subsets of X . The following attraction concept for nonautono-
mous sets A essentially means that the fibers A (t ), t ∈ I, attract particular non-
autonomous sets from B̂ coming from −∞.

Definition 1.3.12 (attracting). A nonautonomous set A ⊆ X is called B̂-
attracting, if

lim
s→∞dist

(
ϕ(t , t − s)B(t − s),A (t )

)= 0 for all t ∈ I, B ∈ B̂ (1.3c)

and we denote the family B̂ as attraction universe.

Remark 1.3.13. From elementary properties of the Hausdorff semidistance one
can deduce the following properties of attracting sets:

(1) Supersets of B̂-attracting sets are B̂-attracting.
(2) Finite unions of B̂-attracting sets are B̂-attracting.

At first glance, the above attraction concept seems counter-intuitive, since it
not necessarily implies the familiar forward convergence:

Example 1.3.14. Suppose X =Z×R and define the 2-parameter semigroup

ϕ(t ,τ) =


αt−τ
+ for 0 ≤ τ≤ t ,

αt
+α

−τ
− for τ≤ 0 ≤ t ,

αt−τ
− for τ≤ t ≤ 0

with nonzero α−,α+ ∈R satisfying |α−| < 1 < |α+|. Obviously, the nonautonomous
set A :=Z× {0} is invariant and due to

lim
t→∞dist(ϕ(t ,τ)ξ,A (t )) = 0 ⇔ ξ= 0 for all τ ∈Z

we have no pointwise forward convergence towards A . Nevertheless, A attracts
all uniformly bounded subsets of X . In order to show this, suppose B ⊆X is uni-
formly bounded with B(t ) ⊆ [−R,R], t ∈Z, for some R > 0. The claim follows from

0 ≤ dist(ϕ(t , t − s)B(t − s),A (t − s)) ≤ R
∣∣ϕ(t , t − s)

∣∣
≤ R |α−|s

{∣∣∣α+
α−

∣∣∣t
for t ≥ 0,

1 for t < 0
−−−→
s→∞ 0 for all t ∈Z.

The motions of ϕ are illustrated in Fig. 1.4.
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Fig. 1.4 Motions of the semiflow from Ex. 1.3.14

Proposition 1.3.15. If A ⊆ X is closed and B̂-attracting, then ωB ⊆ A for
all nonempty B ∈ B̂.

Proof. Let B ∈ B̂ and t ∈ I. For every x ∈ωB(t ) we obtain from Lemma 1.3.9 that
there exist sequences tn →∞, xn ∈B(t − tn) such that x = limn→∞ϕ(t , t − tn)xn .
If we assume x 6∈ A (t ), then ε := dist(x,A (t )) > 0 since A (t ) is closed. Hence,
for sufficiently large n we deduce dist(ϕ(t , t − tn)xn ,A (t )) ≥ ε

2 and therefore the
contradiction dist(ϕ(t , t − tn)B(t − tn),A (t )) ≥ ε

2 to (1.3c). ut

Proposition 1.3.16. Let ϕ be continuous and suppose X is a Banach space.
A compact, invariant and B̂-attracting nonautonomous set A ⊆ X is con-
nected, if one of the conditions holds:

(a) B̂ contains all compact nonautonomous sets,
(b) A is uniformly bounded and B̂ consists of all uniformly bounded com-

pact nonautonomous sets.

Proof. (a) For every t ∈ I we know from Mazur’s theorem (cf. [AB99, p. 175,
Thm. 5.20]) that the closed convex hull coA (t ) ⊆ X of each fiber A (t ) is com-
pact and connected. Thus, A attracts coA .

Suppose A is not connected. Then there exists a time t0 ∈ I and open disjoint
sets U ,V ⊆ X such that

A (t0) ⊆U ∪V , U ∩A (t0) 6= ;, V ∩A (t0) 6= ;
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hold. Yet, by continuity of ϕ we know that Cn := ϕ(t0, t0 − s)coA (t0 − s) is a con-
nected set for all s ≥ 0. From the invariance of A one can deduce the relation
A (t0) =ϕ(t0, t0 − s)A (t0 − s) ⊆Cs and therefore

U ∩ϕ(t0, t0 − s)A (t0 − s) 6= ;, V ∩ϕ(t0, t0 − s)A (t0 − s) 6= ; for all s ≥ 0.

Because each Cs ⊆ X is connected, we can choose a sequence xn ∈ Cn \ (U ∪V ).
Since A (t0) attracts every compact Cn in the sense of (1.3c), xn ∈Cn implies that
the set {xn}n≥0 is relatively compact and there exists a convergent subsequence
(xmn )n≥0 with limit x ∈ X . Moreover, because the difference Cn \(U ∪V ) is closed,
one has x 6∈U ∪V .

On the other hand, by construction there exist ymn ∈ coA (t0 −mn) satisfying
xmn =ϕ(t0, t0 −mn)ymn and since A attracts compact sets, we get

0 ≤ dist
({

xmn

}
,A (t0)

)= dist
(
ϕ(t0, t0 −mn)

{
ymn

}
,A (t0)

) (1.3c)−−−−→
n→∞ 0.

Therefore, x ∈A (t0) ⊆U ∪V . This is a contradiction.
(b) It is easy to see that the uniform boundedness of A carries over to the

closed convex hull coA . Then the assertion follows as above. ut

The general theory of topological dynamics deals with semigroups on metric
spaces and most results are based only on continuity properties ofϕ(t ,τ). Partic-
ularly in an infinite-dimensional setting it is natural to discuss additional features
that may be obtained, if we assume some degree of compactness. For instance,
2-parameter semigroups with relatively compact orbits yield nonempty limit sets
(cf. Def. 1.3.7). Indeed, many of the applications occur in a setting wherein the
given semigroup has a smoothing property. Next we examine three key concepts
related to compactness and playing a pivotal role in the theory of attractors.

Definition 1.3.17 (compact). A 2-parameter semigroup ϕ is called

(i) B̂-compact, if there exists a so-called compactification time T ∈T+ such
that for all B ∈ B̂ the orbit γT

B
is relatively compact,

(ii) B̂-eventually compact, if for all t ∈ I, B ∈ B̂ there exists an T = Tt (B) ∈
T+ such that the set γT

B
(t ) is relatively compact,

(iii) B̂-asymptotically compact, if for all t ∈ I, B ∈ B̂, and all sequences tn →
∞ in T+, xn ∈ B(t − tn), the sequence (ϕ(t , t − tn)xn)n≥0 in X possesses
a convergent subsequence.

Remark 1.3.18. If X is a compact metric space, then 2-parameter semigroups are
B̂-compact with compactification time 0.
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Corollary 1.3.19. A B̂-compact 2-parameter semigroup ϕ is B̂-eventually
compact, and a B̂-eventually compact ϕ is B̂-asymptotically compact.

Proof. Let t ∈ I and B ∈ B̂. Since the first assertion is clear by definition we re-
strict to the second one. We know that there exists an T ∈T+ such thatγT

B
(t ) is rel-

atively compact. Now choose sequences tn →∞, xn ∈B(t − tn), where w.l.o.g. we
can assume tn ≥ T . Then un :=ϕ(t , t − tn)xn defines a sequence in the relatively
compact fiber γT

B
(t ) and consequently there exists a convergent subsequence of

(un)n∈N; thus, ϕ is B̂-asymptotically compact. ut

We arrive at the main result of this section:

Theorem 1.3.20. Let A ∈ B̂. If ϕ is B̂-asymptotically compact, then

(a) ωA is nonempty,
(b) ωA is compact,
(c) ωA is {A }-attracting.

Moreover, provided ϕ is continuous, then ωA is invariant.

Proof. Let A ∈ B̂ and t ∈ I be fixed.
(a) Since ϕ is B̂-asymptotically compact, for arbitrary sequences tn →∞ and

xn ∈A (t − tn), we can extract a convergent subsequence (ϕ(t , t − tnl )xnl )l≥0 from
(ϕ(t , t−tn)xn)n≥0. By construction, the limit ofϕ(t , t−tnl )xnl belongs to the fiber
ωA (t ) and we have ωA (t ) 6= ;.

(b) We already know from Thm. 1.3.11 that ωA (t ) is closed. Thus, in order to
show its compactness, it suffices to see that for any sequence (yn)n≥0 inωA (t ) we
can extract a convergent subsequence. Due to yn ∈ ωA (t ) there exist tn ≥ n and
xn ∈A (t − tn) such that

d(ϕ(t , t − tn)xn , yn) ≤ 1
n for all n ∈N. (1.3d)

Keeping in mind that ϕ is B̂-asymptotically compact, we obtain a subsequence
(tnl )l≥0 such that y := liml→∞ϕ(t , t − tnl )xnl exists and thus

d(y, ynl ) ≤d(y,ϕ(t , t − tnl )xnl )+d(ϕ(t , t − tnl )xnl , yknl
)

(1.3d)−−−−→
l→∞

0.

Hence, ωA has compact fibers.
(c) For our given nonautonomous set A ∈ B̂ we have to show the limit relation

lims→∞ dist(ϕ(t , t − s)A (t − s),ωA (t )) = 0 (cf. (1.3c)). We proceed indirectly and
suppose this relation does not hold. Then there exists an ε > 0 and sequences
tn →∞, xn ∈A (t − tn) so that
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dist(ϕ(t , t − tn)xn ,ωA (t )) ≥ ε. (1.3e)

However, from the sequence (ϕ(t , t − tn)xn)n≥0 we can extract a convergent sub-
sequence with limit y ∈ωA (t ); this contradicts (1.3e).

Letϕ be continuous and we get from Thm. 1.3.11 thatωA is forward invariant.
It remains to prove the inclusion ωA (t ) ⊆ ϕ(t ,τ)ωA (τ) for τ < t . For (t , y) ∈ ωA

there exist sequences tn → ∞, xn ∈ A (t − tn) with y = limn→∞ϕ(t , t − tn)xn

(cf. Lemma 1.3.9). For reals tn ≥ t −τ and τn := tn +τ− t we have

ϕ(t , t − tn)xn
(1.2c)= ϕ(t ,τ)ϕ(τ,τ−τn)xn (1.3f)

and as the 2-parameter semigroup ϕ is B̂-asymptotically compact, τn →∞ and
xn ∈ A (τ−τn) holds, there exist subsequences τnm →∞, xnm ∈ A (τ−τnm ) with
z := limm→∞ϕ(τ,τ−τnm )xnm ∈ ωA (τ). Hence, by (1.3f) and the continuity of ϕ
we obtain y =ϕ(t ,τ)z ∈ϕ(t ,τ)ωA (τ). ut

Exercises

Exercise 1.3.21. Let A,B ,C be (nonempty) subsets of a metric space (X ,d) with
C ⊆ A. Prove the monotonicity relations

dist(C ,B) ≤ dist(A,B), dist(B , A) ≤ dist(B ,C ) (1.3g)

and find an example illustrating that the Hausdorff semidistance is not symmetric.

Exercise 1.3.22. Suppose that θt : X → X is a semidynamical system. Then the
ω-limit sets of a point ξ ∈ X resp. of a set B ⊆ X are defined by

ω(ξ) :=
⋂
r≥0

cl
⋃
s≥r

{θs (ξ)} , ω(B) :=
⋂
r≥0

cl
⋃
s≥r

θs (B).

Verify the inclusion
⋃
ξ∈B ω(ξ) ⊆ω(B). Does equality hold in general?

1.4 Attractors and global attractors

We continue our studies of the asymptotic behavior of 2-parameter semigroups.
Our primary interest is the nonautonomous set which consists of all bounded en-
tire motions, the so-called global attractor. In this section we present results that
construct attractors as ω-limit sets of absorbing sets. This construction requires
at least asymptotical compactness of the 2-parameter semigroup.

In general, the global attractor has a complicated geometry reflecting the com-
plexity of the longtime behavior of a given system. Yet, in our abstract set-up we
desist from tackling such delicate issues and focus on existence issues. For this,
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assume the T-interval I is unbounded below and X is a metric space. In addi-
tion, suppose throughout that B̂ is a family of nonempty subsets of X and ϕ is a
2-parameter semigroup on X .

Definition 1.4.1 (attractor). A compact nonautonomous set A ∗ ⊆X is said
to be a B̂-attractor, if it is invariant and B̂-attracting. In case the attraction
universe B̂ consists of all uniformly bounded subsets of X , a B̂-attractor
is called global attractor.

Remark 1.4.2. For a global attractor A ∗ the elements of B̂ form a cover of the
extended state space X . We speak of a local attractor, whenever B̂ consists only of
neighborhoods of A ∗.

Proposition 1.4.3. A global attractor A ∗ ⊆ X admits the (incomplete) dy-
namical characterization

A ∗ ⊆ {
(τ,ξ) ∈X : there exists an entire motion through (τ,ξ)

}
,{

(τ,ξ) ∈X : there exists a bounded entire motion through (τ,ξ)
}⊆A ∗.

Proof. Concerning the first inclusion, pick (τ,ξ) ∈ A ∗ arbitrarily. Due to the in-
variance of the global attractor A ∗, Prop. 1.3.3 yields that there exists an entire
motion φ through (τ,ξ).

Concerning the second inclusion, if there exists a bounded entire motionφ for
ϕ, then the nonautonomous set φ is invariant and uniformly bounded. Since A ∗

attracts uniformly bounded nonautonomous sets, we have

0 = lim
s→∞dist(ϕ(t , t − s)

{
φ(t − s)

}
,A ∗(t )) = dist(

{
φ(t )

}
,A ∗(t )) for all t ∈ I,

thus φ(t ) ∈ clA ∗(t ). Hence, the closedness of A ∗ implies φ⊆A ∗. ut

Corollary 1.4.4. A uniformly bounded global attractor A ∗ admits the com-
plete dynamical characterization

A ∗ = {
(τ,ξ) ∈X : there exists an entire bounded motion through (τ,ξ)

}
and is therefore uniquely determined.

Proof. Since A ∗ is uniformly bounded, the entire solution φ from the first inclu-
sion in the above proof of Prop. 1.4.3 is clearly bounded. ut
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As demonstrated by Ex. 1.3.14, in general one cannot expect forward con-
vergence towards global attractors. The following example shows that attractors
need not to be unique, and without uniform boundedness assumptions also
global attractors are not uniquely determined.

Example 1.4.5. Suppose X = Z×R and consider the 2-parameter group ϕ from
the above Ex. 1.3.14. Given an arbitrary γ ∈R, it is easy to see that

φγ(t ) := γ
{
αt
+ for t ≥ 0,

αt
− for t < 0

defines an entire motion for ϕ. Hence, the nonautonomous sets Z× {0} and φγ are
invariant, as well as (cf. Prop. 1.3.4) their union Aγ := (Z×{0})∪φγ. In Ex. 1.3.14 we
saw that Z×{0} attracts uniformly bounded subsets of X and Rem. 1.3.13(1) guar-
antees that also Aγ has this property. Since all the fibers Aγ(τ), τ ∈Z, are compact
(in fact finite), each Aγ is a global attractor for ϕ, among which A0 is the unique
uniformly bounded global attractor. An illustration is given in Fig. 1.5.

Definition 1.4.6 (absorbing). A nonempty nonautonomous set A ⊆ X is
called

(a) B̂-absorbing, if for all t ∈ I, B ∈ B̂ there exists an T = Tt (B) ≥ 0 with

ϕ(t , t − s)B(t − s) ⊆A (t ) for all s ≥ T,

(b) B̂-uniformly absorbing, if for all B ∈ B̂ there exists an T = T (B) ≥ 0 with

ϕ(t , t − s)B(t − s) ⊆A (t ) for all t ∈ I, s ≥ T
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and we denote the family B̂ as absorption universe. A 2-parameter semi-
group is called B̂-dissipative, if it has a bounded B̂-absorbing set. More-
over, a B̂-dissipative 2-parameter semigroup is called uniformly bounded
(bounded, compact) dissipative, if B̂ consists of all uniformly bounded
(bounded, compact) subsets of X .

Remark 1.4.7. (1) Any B̂-uniformly absorbing set is B̂-absorbing.
(2) Bounded dissipative 2-parameter semigroups are uniformly bounded dissi-

pative and compact dissipative.

Example 1.4.8. We consider a nonautonomous ODE

ẋ = f (t , x) (1.4a)

with a right-hand side f : R×Rd → Rd guaranteeing existence and uniqueness of
solutions, and satisfies the estimate〈

f (t , x), x
〉≤ β

2 − α
2 |x|2 for all t ∈R, x ∈Rd . (1.4b)

with reals α > 0, β ≥ 0. Given fixed initial data τ ∈ R, ξ ∈ Rd and the general so-
lution ϕ(·;τ,ξ) to (1.4a), we abbreviate ϕ(t ) := ϕ(t ;τ,ξ) and ρ(t ) := 〈

ϕ(t ),ϕ(t )
〉

,
which implies

ρ̇(t ) = 2
〈
ϕ̇(t ),ϕ(t )

〉= 2
〈

f (t ,ϕ(t )),ϕ(t )
〉 (1.4b)≤ β−α

∣∣ϕ(t )
∣∣2 =β−αρ(t ).

We multiply this inequality with eαt to obtain

d

d t

(
eαtρ(t )

)=αeαtρ(t )+eαt ρ̇(t ) ≤βeαt

and integration between τ and t yields eαtρ(t )−eατρ(τ) ≤ β
α

(
eαt −eατ

)
, hence

∣∣ϕ(t ;τ,ξ)
∣∣≤√

eα(τ−t ) |ξ|2 + β
α

(
1−eα(τ−t )

)
.

Now let B ⊆R×Rd be uniformly bounded, i.e. B(t ) ⊆ B̄R (0) for all t ∈R. We choose

ρ0 > β
α and from the limit relation lims→∞

√
e−αs R2 + β

α (1−e−αs ) =
√

β
α we see

that there exists a T = T (B) ≥ 0 such that

ϕ(t ; t − s,B(t − s)) ⊆ Bρ0 (t ) for all t ∈R, s ≥ T.

Hence, the nonautonomous set A := {
(t , x) ∈R×Rd : |x| ≤ ρ0

}
uniformly absorbs

all uniformly bounded subsets of R×Rd .

Lemma 1.4.9. If A is a B̂-absorbing nonautonomous set, then ωB ⊆ ωA for all
B ∈ B̂ holds and in case A ∈ B̂ one additionally obtains
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ωA ⊆ clA , cl
⋃

B∈B̂

ωB(t ) =ωA (t ) for all t ∈ I. (1.4c)

Proof. We arbitrarily fix B ∈ B̂ and a pair (t , y) ∈ωB . By Lemma 1.3.9 there exist
sequences tn →∞ and points xn ∈B(t − tn) such that

lim
n→∞ϕ(t , t − tn)xn = y. (1.4d)

Since the nonautonomous set A is B̂-absorbing, for each m ∈ N there exists a
tnm ≥ m such that one has ϕ(t −m, t − tnm )B(t − tnm ) ⊆ A (t −m) and we define
points ym :=ϕ(t −m, t − tnm )xnm ∈A (t −m). This yields

ϕ(t , t − tnm )xnm

(1.2c)= ϕ(t , t −m)ϕ(t −m, t − tnm )xnm =ϕ(t , t −m)ym

and thus limm→∞ϕ(t , t −m)ym = y by (1.4d). By the inclusion ym ∈A (t −m), our
Lemma 1.3.9 implies y ∈ωA (t ); since (t , y) ∈ωB was arbitrary, we haveωB ⊆ωA .
For the remaining part of the proof suppose A ∈ B̂. Since A is B̂-absorbing,
there exists a real T = Tt (B) ≥ 0 with ϕ(t , t − tl )xl ∈ A (t ) for all l ∈ N such that
l ≥ T and therefore we have y ∈ clA (t ). This guarantees ωB(t ) ⊆ clA (t ) and the
remaining relation is a straight forward consequence of the above. ut

Under the assumption of continuity, we arrive at the first main theorem.

Theorem 1.4.10. Let a 2-parameter semigroup be continuous and B̂-asym-
ptotically compact with B̂-absorbing set A . If A ∈ B̂, then:

(a) The nonautonomous set A ∗ :=ωA is a B̂-attractor,
(b) A ∗ ⊆ clA ,
(c) A ∗ is minimal in the following sense: Every closed and B̂-attracting set

A∗ ⊆X satisfies A ∗ ⊆A∗,
(d) every fiber of A ∗ allows the characterization

A ∗(t ) = cl
⋃

B∈B̂

ωB(t ) for all t ∈ I.

Remark 1.4.11. If a 2-parameter semigroup is uniformly bounded dissipative
with uniformly bounded absorbing set, then its global attractor A ∗ ⊆ X is uni-
formly bounded and has the complete characterization from Cor. 1.4.4.

Proof. Let t ∈ I and we define A ∗ :=ωA .
(a) The compactness of A ∗ follows readily from Thm. 1.3.20(b). Thanks to the

inclusion
⋃

B∈B̂ωB(t ) ⊆A ∗(t ) (see (1.4c) in Lemma 1.4.9) we obtain

dist(ϕ(t , t − s)B(t − s),A ∗(t ))
(1.3g)
≤ dist(ϕ(t , t − s)B(t − s),ωB(t ))
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for s ≥ 0, where the right-hand side tends to 0 for s →∞by Thm. 1.3.20(c), and the
relation lims→∞ dist(ϕ(t , t−s)B(t−s),A ∗(t )) = 0 for all B ∈ B̂ follows. It remains
to show the invariance of attractors. For this, we observe from Thm. 1.3.20 that

A ∗(t )
(1.4c)= cl

⋃
B∈B̂

ωB(t ) = cl
⋃

B∈B̂

ϕ(t ,τ)ωB(τ) = clϕ(t ,τ)
⋃

B∈B̂

ωB(τ)

for τ≤ t . Since ϕ is continuous and cl
⋃

B∈B̂ωB(τ) compact (cf. Lemma 1.4.9),

clϕ(t ,τ)
⋃

B∈B̂

ωB(τ) =ϕ(t ,τ)cl
⋃

B∈B̂

ωB(τ);

thus, we have ϕ(t ,τ)A ∗(τ) =A ∗(t ) for all τ≤ t .
(b) We give another proof of the left relation in (1.4c). Since A is B̂-absorbing

and A ∈ B̂, there exists a real Tt (A ) ≥ 0 with ϕ(t , t − s)A (t − s) ⊆ A (t ) for all
s ≥ Tt (A ) and consequently, from Def. 1.4.6 and assertion (a) follows

A ∗(t ) =ωA (t ) =
⋂
r≥0

cl
⋃
s≥r

ϕ(t , t − s)A (t − s)

⊆
⋂

r≥Tt (A )
cl

⋃
s≥r

ϕ(t , t − s)A (t − s)

⊆
⋂

r≥Tt (A )
clA (t ) = clA (t ).

(c) Now, let A∗ ⊆ X be a closed and B̂-attracting nonautonomous set, i.e.
in particular lims→∞ dist(ϕ(t , t − s)A (t − s),A∗(t )) = 0. For each pair (t , y) ∈ A ∗

one has y = limn→∞ϕ(t , t − tn)xn with sequences tn → ∞, xn ∈ A (t − tn) (cf.
Lemma 1.3.9), and consequently we derive y ∈ clA∗(t ) = A∗(t ). This yields the
inclusion A ∗(t ) ⊆A∗(t ).

(d) See Lemma 1.4.9. ut

Uniformly bounded global attractors are topologically connected:

Corollary 1.4.12. Let X be a Banach. If one of the conditions (a) or (b) from
Prop. 1.3.16 holds, then A ∗ ⊆X is connected.

Proof. On the basis of Thm. 1.4.10 we can deduce that ωA = A ∗ is compact, in-
variant and also B̂-attracting. Then Prop. 1.3.16 implies our claim. ut

We round off this section with another central result on the attractors of para-
meter-dependent 2-parameter semigroups.

Theorem 1.4.13 (upper-semicontinuity of attractors). Let X ,P be metric
spaces and P be complete. Ifϕ(·; p), p ∈ P, is a continuous, B̂-asymptotically
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compact and B̂-dissipative parameter-dependent 2-parameter semigroup
with B̂-absorbing set A ∈ B̂ (uniformly in p ∈ P), then:

(a) Every ϕ(·; p) has a B̂-attractor A ∗
p ,

(b) if A ∈ B̂ is uniformly bounded and B̂ contains all uniformly bounded
finite sets, then A ∗

p is upper-semicontinuous, i.e.

lim
p→p0

dist(A ∗
p (t ),A ∗

p0
(t )) = 0 for all t ∈ I, p0 ∈ P.

Proof. Let t ∈ I, p ∈ P and we restrict to the discrete time case.
(a) The existence of B̂-attractors A ∗

p follows from Thm. 1.4.10(a). Here, A ∗
p is

given as ω-limit set of A w.r.t. the 2-parameter semigroup ϕ(·; p).
(b) W.l.o.g. we can assume that A ⊆ X is closed. From Thm. 1.4.10(b) we ob-

tain A ∗
p ⊆A and consequently the nonautonomous set V given by the fibers

V (t ) :=
⋃

p∈P
A ∗

p (t ) for all t ∈ I

is bounded. Due to the compactness of each A ∗
p (t ) (cf. Thm. 1.3.20(b)) the

bounded union V is relatively compact. In order to prove the upper semiconti-
nuity of a fiber A ∗

p (t ), we must show the following: Provided (p j ) j∈N, (x j ) j∈N de-
note convergent sequences in the spaces P , X , resp., with x j ∈A ∗

p j
and respective

limits p0 ∈ P , x0 ∈ X , then one has x0 ∈A ∗
p0

(t ).
Since the nonautonomous set A ∗

p j
is invariant (cf. Thm. 1.3.20), there ex-

ists a point y1
j ∈ A ∗

p j
(t − 1) with x j = ϕ(t , t − 1; p j )y1

j (cf. Prop. 1.3.3). Because

the fiber V (t − 1) is relatively compact and A (t − 1) is closed, we may assume
that the bounded sequence (y1

j ) j∈N has a limit y1
0 ∈ A (t − 1); the continuity of

ϕ guarantees x0 ∈ ϕ(t , t − 1; p0)y1
0 . In the same fashion, for all n ∈ N there ex-

ists a convergent sequence (yn
j ) j∈N in A ∗

p j
(t − n) with limit yn

0 ∈ A (t − n) and

ϕ(t , t −n; p0)yn
0 = x0. Having this at hand, introduce a sequence φ in X ,

φ(t +n) := yn
0 ∈A (t −n) for all n < 0,

φ(t +n) :=ϕ(t +n, t ; p0)x0 for all n ≥ 0;

by definition, φ represents an entire motion for ϕ(·; p0). Due to the fact that A is
a B̂-absorbing set, for every m ∈Z+

0 there exists an N (m) ∈Z+
0 with

φ(t +m) =ϕ(t +m, t −n; p0)yn
0 ∈A (t +m) for all n ≥ N (m).

Therefore, the sequence φ is a bounded entire motion for ϕ(·; p0). Because, by
assumption, A ∗

p0
attracts uniformly bounded finite sets, we can show as in the

proof of Prop. 1.4.3 that φ(t ) ∈A ∗
p0

(t ), i.e. x0 ∈A ∗
p0

(t ). ut
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Exercises

Exercise 1.4.14. Let θ > 0. A 2-parameter semigroup ϕ is called θ-periodic, if the
relation ϕ(t + θ,τ+ θ) = ϕ(t ,τ) holds for all τ ≤ t . What can you say about the
periodicity properties of the resulting ω-limit sets?

Exercise 1.4.15. Determine the global attractor of the autonomous scalar differ-
ential equation

ẋ =−x(x4 −2x2 +1−p)

depending on the parameter p ∈R.

Exercise 1.4.16. Determine the global attractor of the following difference equa-
tions depending on a parameter p > 0:

(a) For p > 0:

xk+1 =
pxk

1+|xk |
(b) For p > 1:

xk+1 =
pk xk

1+|xk |
, λk :=

{
p, k ≥ 0,

p−1, k < 0





Chapter 2

Linear differential equations

. . . dichotomies, rather than Lyapunov’s characteristic exponents, are the key to
questions of asymptotic behaviour for nonautonomous differential equations.

W.A. Coppel [Cop78]

Our previous considerations dealt with difference and differential equations,
i.e. discrete and continuous time, simultaneously. Now we restrict to finite-di-
mensional differential equations and follow [SS78, Sie02], but point out that a
corresponding discrete theory can be found in [AS01].

In Ex. 0.0.2 we have illustrated that even for periodic equations, eigenvalues
of coefficient matrices do not yield stability properties. To circumvent this prob-
lem, several more adequate spectral notions have been developed. Among them,
exponential dichotomies and the related dichotomy spectrum are the most ap-
propriate for us.

2.1 Preliminaries

In this chapter we deal with linear ordinary differential equations

ẋ = A(t )x (L)

with a continuous coefficient matrix A : R→ Rd×d . We point out that our subse-
quent theory can be extended to the situation that A is piecewise continuous, or
even A ∈ L1

loc(R,Rd×d ) (cf. [AW96, Kur86]). The natural set to describe the dynam-

ics of (L) is the extended state space X :=R×Rd .
LetΦ :R×R→Rd×d denote the transition operator or transition matrix for (L),

i.e.Φ(·,τ)ξ solves the initial value problem ẋ = A(t )x, x(τ) = ξ. It is a 2-parameter
semigroup satisfyingΦ(t , s) ∈GL(Rd ) and

D1Φ(t , s) = A(t )Φ(t , s), Φ(t , s)Φ(s,τ) =Φ(t ,τ) for all τ, s, t ∈R. (2.1a)

29
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In order to classify the solutions to (L) according to their exponential growth, we
introduce the notions:

Definition 2.1.1 (γ±-boundedness). Let γ,τ ∈R. A continuous function φ :
R→Rd is called

(a) γ+-bounded, if supτ≤t eγ(τ−t )
∣∣φ(t )

∣∣<∞,
(b) γ−-bounded, if supt≤τ eγ(τ−t )

∣∣φ(t )
∣∣<∞,

(c) γ-bounded, if supt∈R eγ(τ−t )
∣∣φ(t )

∣∣<∞.

Remark 2.1.2. (1) Note that 0-boundedness corresponds to the conventional no-
tion of boundedness. The zero function is γ±-bounded for every γ ∈R.

(2) The sets of γ±-bounded functions

X +
τ,γ :=

{
φ : [τ,∞) →Rd |sup

τ≤t
eγ(τ−t ) ∣∣φ(t )

∣∣<∞
}

,
∥∥φ∥∥+

τ,γ := sup
τ≤t

eγ(τ−t ) ∣∣φ(t )
∣∣ ,

X −
τ,γ :=

{
φ : (−∞,τ] →Rd |sup

t≤τ
eγ(τ−t ) ∣∣φ(t )

∣∣<∞
}

,
∥∥φ∥∥−

τ,γ := sup
t≤τ

eγ(τ−t ) ∣∣φ(t )
∣∣

are Banach spaces. Indeed, the form a scale of Banach spaces in form of the impli-
cations

γ≤ γ̄⇒ X +
τ,γ ⊆ X +

τ,γ̄, γ̄≤ γ⇒ X −
τ,γ ⊆ X −

τ,γ̄.

In classical autonomous dynamical systems, a particular important class are
the so-called hyperbolic matrices A ∈Rd×d resp. hyperbolic differential equations

ẋ = Ax, (2.1b)

which are characterized by the fact to have no eigenvalues on the imaginary axis
in C. Their importance is due to the fact that also a perturbed matrix B is hy-
perbolic, as long as B − A ∈ Rd×d has a small norm, as well as their prototypical
dynamical behavior:

Indeed, for a hyperbolic matrix A ∈Rd×d one has the spectral decomposition

σ(A) = {λ1, . . . ,λn}∪̇ {λn+1, . . . ,λm}

with integers 0 ≤ m ≤ n ≤ d , and

ℜλ j < 0 for all 1 ≤ j ≤ m, ℜλ j > 0 for all m < j ≤ n.

Moreover, if Eig j A ⊆ Rd denotes the generalized eigenspace1 corresponding to
the eigenvalue λ j , it is not difficult to deduce the dynamical characterization

1 a generalized eigenspace is defined by the relation Eig j A :=⊕d
k=1N (A−λ j id)k
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S :=
{
ξ ∈Rd : lim

t→∞e Atξ= 0
}
=

{
ξ ∈Rd : sup

t≥0

∣∣e Atξ
∣∣<∞

}
=⊕m

j=1 Eig j A,

U :=
{
ξ ∈Rd : lim

t→∞e−Atξ= 0
}
=

{
ξ ∈Rd : sup

t≤0

∣∣e−Atξ
∣∣<∞

}
=⊕1

j=m+1 Eig j A.

For obvious reasons, S is called the stable and U the unstable subspace of (2.1b)
(see Fig. 2.1); one has Rd = S ⊕U .

=

<

Rd

V −

V +

Fig. 2.1 WARNING!!! Not correct Hyperbolic spectral decomposition for A (left). Stable (green)
subspace S and unstable (red) subspace U

Our next goal is to obtain a similar dynamical characterization for nonauto-
nomous difference equations

xk+1 = Ak xk , (L)

where Ak ∈ Rd×d , k ∈ I, is assumed to be a sequence of invertible matrices; the
latter assumption is for the sake of a simple presentation only.

An invariant projector for (L) is a function P : R→ Rd×d of projections P (t ),
t ∈R, satisfying

P (t )Φ(t , s) =Φ(t , s)P (s) for all s, t ∈R. (2.1c)

Due to the relation P =Φ(·, s)P (s)Φ(s, ·) an invariant projector is continuous and
the spaces P (t ), t ∈R, have the same dimensions. This also holds for the fibers of
the associated vector bundles

N (P ) := {(τ,ξ) ∈X : ξ ∈ N (P (τ))} , R(P ) := {(τ,ξ) ∈X : ξ ∈ R(P (τ))} .

For later use, we also define Green’s function Γ :R×R→Rd×d by

Γ(t , s) :=
{
Φ(t , s)P (s), s ≤ t ,

−Φ(t , s)[id−P (s)], t < s.

Definition 2.1.3 (exponential dichotomy). A linear differential equation (L)
is said to possess an exponential dichotomy (ED for short), if there exists an
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invariant projector P :R→Rd×d and reals α> 0, K ≥ 1 such that

|Φ(t , s)P (s)| ≤ K e−α(t−s) for all s ≤ t ,

|Φ(t , s)[id−P (s)]| ≤ K eα(t−s) for all t ≤ s.

Remark 2.1.4. Let γ ∈R be given.
(1) In the following the shifted system

ẋ = [A(t )−γ id]x (Lγ)

will play an important role; its transition operator reads asΦγ(t , s) = eγ(s−t )Φ(t , s)
for all s, t ∈R.

(2) If (Lγ) admits an ED with projector P (t ) ≡ id (resp. P (t ) ≡ 0), then also (Lζ)
also has an ED with the same projector for γ≤ ζ (resp. ζ≤ γ).

(3) We define the invariant vector bundles

Sγ :=
{

(τ,ξ) ∈X : Φ(·,τ)ξ ∈ X +
τ,γ

}
, Uγ :=

{
(τ,ξ) ∈X : Φ(·,τ)ξ ∈ X −

τ,γ

}
,

and observe their monotonicity properties:

γ≤ ζ ⇒ Sγ ⊆Sζ and Uγ ⊇Uζ.

Example 2.1.5. The linear autonomous equation

ẋ =
(−1 0

0 1

)
x (2.1d)

has the invariant vector bundles R× {(0,0)}, S := R×R× {0}, U := R× {0}×R and
R×R2. Their projections {(0,0)}, S :=R×{0}, U := {0}×R andR×R2 are usually called
invariant subspaces. Note that S and U are the eigenspaces corresponding to the
eigenvalues −1 and 1 of the coefficient matrix in (2.1d). We deduce the dynamical
characterization

S0 =
{
(τ,ξ) ∈R×R2 : (e−(·−τ)ξ1,e ·−τξ2) ∈ X +

τ,0

}
,

U0 =
{
(τ,ξ) ∈R×R2 : (e−(·−τ)ξ1,e ·−τξ2) ∈ X −

τ,0

}
.

Proposition 2.1.6. Let γ ∈R. If (Lγ) has an ED with projector P, then

Sγ =R(P ), Uγ =N (P ), Sγ⊕Uγ =X .
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Proof. We only prove Sγ = R(P ), since the proof of Uγ = N (P ) is dual and the
claimed Whitney sum is a direct consequence. Let τ ∈R.

(⊆) Given ξ ∈Sγ(τ) we obtain the existence of a C ≥ 0 such that

|Φ(t ,τ)ξ| ≤Ceγ(t−τ) for all τ≤ t

and consequently
∣∣Φγ(t ,τ)ξ

∣∣≤C . Let us decompose ξ= ξ1 +ξ2 with ξ1 ∈ R(P (τ)),
ξ2 ∈ N (P (τ)) and verify ξ2 = 0. Due to (2.1a) one has

ξ2 =Φγ(τ, t )Φγ(t ,τ)[id−P (τ)]ξ=Φγ(τ, t )[id−P (τ)]Φγ(t ,τ)ξ for all t ∈R

and the ED of (Lγ) implies

|ξ2| ≤ K eα(τ−t ) ∣∣Φγ(t ,τ)ξ
∣∣≤C K eα(τ−t ) for all τ≤ t .

Since α> 0 we obtain in the limit t →∞ that ξ2 = 0.
(⊇) Conversely, suppose ξ ∈ R(P (τ)), i.e. ξ = P (τ)ξ. Our first dichotomy esti-

mate ensures

eγ(τ−t ) |Φ(t ,τ)ξ| =
∣∣Φγ(t ,τ)ξ

∣∣≤ K e−α(t−τ) |ξ| ≤ K |ξ| for all τ≤ t .

Thus,Φ(·,τ)ξ ∈ X +
τ,γ and we have ξ ∈Sγ(τ). ut

Corollary 2.1.7.(a) If δ< γ+α, then (Lγ) has a unique δ+-bounded solution
in N (P ), namely the trivial one.

(b) If γ−α< δ, then (Lγ) has a unique δ−-bounded solution in R(P ), namely
the trivial one.

(c) If γ−α < δ < γ+α, then the unique δ-bounded solution of (Lγ) is the
trivial one.

Proof. (a) Let φ ∈ X +
τ,δ be a solution of (Lγ) in N (P ). Then Prop. 2.1.6 implies

φ(τ) ∈ R(P (τ)) and consequently φ(τ) ∈ R(P (τ))∩N (P (τ)), i.e. φ(τ) = 0.
(b) can be shown analogously, while (c) follows from the above. ut

Next we consider linear inhomogeneous differential equations

ẋ = [A(t )−γ id]x + r (t ) (2.1e)

with a continuous inhomogeneity r :R→Rd .

Theorem 2.1.8 (linear-inhomogeneous perturbations). Let γ,τ ∈ R. If (Lγ)
admits an ED and δ ∈ (γ−α,γ+α), then the following holds true:
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(a) For every x0 ∈Rd and every inhomogeneity r ∈ X +
τ,δ there exists exactly one

solution φ∗ ∈ X +
τ,δ of (2.1e) with (τ,φ∗(τ)−x0) ∈N (P ); one has∥∥φ∗∥∥+

τ,δ ≤ K |x0|+C1(δ)‖r‖+τ,δ . (2.1f)

(b) For every x0 ∈Rd and every inhomogeneity r ∈ X −
τ,δ there exists exactly one

solution φ∗ ∈ X −
τ,δ of (2.1e) with (τ,φ∗(τ)−x0) ∈R(P ); one has∥∥φ∗∥∥−

τ,δ ≤ K |x0|+C1(δ)‖r‖−τ,δ ,

with the real constant C1(δ) := K
δ+α−γ + K

α+γ−δ .

Proof. (a) Let τ ∈ R be fixed, x0 ∈ Rd , r ∈ X +
τ,δ be arbitrary and let Γγ denote

Green’s function associate to (Lγ). Then the function φ∗ : [τ,∞) →Rd ,

φ∗(t ) :=Φγ(t ,τ)P (τ)x0 +
∫ ∞

τ
Γγ(t , s)r (s)d s (2.1g)

is well-defined and using the decomposition

φ∗(t ) =Φγ(t ,τ)P (τ)x0 +
∫ t

τ
Φγ(t , s)P (s)r (s)d s −

∫ ∞

t
Φγ(t , s) [id−P (s)]r (s)d s

we deduce∣∣φ∗(t )
∣∣ ≤ ∣∣Φγ(t ,τ)P (τ)

∣∣ |x0|+
∫ t

τ

∣∣Φγ(t , s)P (s)
∣∣ |r (s)| d s

+
∫ ∞

t

∣∣Φγ(t , s) [id−P (s)]
∣∣ |r (s)| d s

≤ K e(γ−α)(t−τ) |x0|+K
∫ t

τ
e(γ−α)(t−s) |r (s)| d s +K

∫ ∞

t
e(γ+α)(t−s) |r (s)| d s

≤ K e(γ−α)(t−τ) |x0|

+
[

K
∫ t

τ
e(γ−α)(t−s)eδ(s−τ) d s +K

∫ ∞

t
e(γ+α)(t−s)eδ(s−τ) d s

]
‖r‖+τ,δ

≤ K e(γ−α)(t−τ) |x0|+
[

K

δ−γ+α
(
eδ(t−τ) −e(γ−α)(t−τ)

)
+ K

γ+α−δeδ(t−τ)
]
‖r‖+τ,δ

for all τ≤ t . From this we obtain∣∣φ∗(t )
∣∣eδ(τ−t ) ≤ K e(γ−δ−α)(t−τ)︸ ︷︷ ︸

≤1

|x0|+
[

K

δ−γ+α
(
1−e(γ−δ−α)(t−τ)

)
︸ ︷︷ ︸

∈(0,1]

+ K

γ+α−δ

]
‖r‖+τ,δ

≤ K |x0|+C1(δ)‖r‖+τ,δ for all τ≤ t ,
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and passing over to the least upper bound over τ≤ t we deduce φ∗ ∈ X +
τ,δ, as well

as the estimate (2.1f). Furthermore, we define Aγ(t ) := A(t )−γ id and compute

φ̇∗(t )
(2.1g)≡ Aγ(t )Φγ(t ,τ)P (τ)x0 +P (t )r (t )+ Aγ(t )

∫ t

τ
Φγ(t , s)P (s)r (s)d s

+ [id−P (t )]r (t )− Aγ(t )
∫ ∞

t
Φγ(t , s) [id−P (s)]r (s)d s

≡ Aγ(t )

(
Φγ(t ,τ)P (τ)x0 +

∫ ∞

τ
Γγ(t , s)r (s)d s

)
+ r (t )

(2.1g)≡ Aγ(t )φ∗(t )+ r (t )

on R and thus φ∗ is a solution to (2.1e). It remains to show (τ,φ∗(τ)−x0) ∈N (P ),
which follows from

P (τ)φ∗(τ)
(2.1g)= P (τ)Φγ(τ,τ)P (τ)x0 +P (τ)

∫ ∞

τ
Γγ(τ, s)r (s)d s

= P (τ)x0 +
∫ ∞

τ
P (τ)Γγ(τ, s)r (s)d s = P (τ)x0.

Finally, φ∗ is uniquely determined. Indeed, if we suppose that ψ∗ ∈ X +
τ,δ is an-

other solution to (2.1e) satisfying (τ,ψ∗(τ) − x0) ∈ N (P ), then the difference
φ∗−ψ∗ ∈ X +

τ,δ is a solution of the homogeneous system (Lγ) and we obtain

P (τ)
[
φ∗(τ)−ψ∗(τ)

]= P (τ)x0 −P (τ)x0 = 0.

Hence,φ∗−ψ∗ is aδ+-bounded solution of (Lγ) in N (P ), and Cor. 2.1.7(a) implies
φ∗−ψ∗ = 0.

(b) Completely analogous to step (a) one shows that φ∗ : (−∞,τ] →Rd ,

φ∗(t ) :=Φγ(t ,τ) [id−P (τ)] x0 +
∫ τ

−∞
Γγ(t , s)r (s)d s (2.1h)

is a δ−-bounded solution of (2.1e) satisfying the assertions. In particular, its
uniqueness follows from Cor. 2.1.7(b). ut

Theorem 2.1.9 (linear-inhomogeneous perturbations). Let γ ∈ R. If (Lγ)
admits an ED and δ ∈ (γ−α,γ+α), then for every δ-bounded inhomogeneity
r : R→ Rd the equation (2.1e) has a unique δ-bounded solution. It is given
by

φ∗(t ) :=
∫
R
Γγ(t , s)r (s)d s (2.1i)

and satisfies for every τ ∈R that

sup
t∈R

eδ(τ−t ) ∣∣φ∗(t )
∣∣≤C2(δ)sup

t∈R
eδ(τ−t ) |r (t )| (2.1j)
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with the real constant C2(δ) := C1(δ)+max
{

K
δ−α−γ , K

γ+α−δ
}

and C1(δ) > 0

from Thm. 2.1.8.

Proof. The proof is similar to the one of Thm. 2.1.8 and omitted. ut

Theorem 2.1.10 (roughness theorem). Suppose that (L) admits an ED with
constants K ,α. If B :R→Rd×d is a continuous function satisfying

sup
t∈R

|B(t )− A(t )| ≤ α

4K 2 ,

then also the perturbed equation ẋ = B(t )x has an ED.

Proof. We refer to [Cop78, p. 34] for a proof. Note that more recent proofs of
Thm. 2.1.10 use very similar methods like the ones we are about to apply in
Chapt. 3 for the construction of integral manifolds. ut

Exercise 2.1.11. Show the relation

|Φ(t , s)| ≤ exp

(∫ t

s
|A(r )| dr

)
for all s, t ∈R.

Exercise 2.1.12. Prove that an invariant projector P :R→Rd×d for a linear differ-
ential equation (L) with a continuous coefficient mapping A :R→Rd×d is contin-
uously differentiable.

Exercise 2.1.13. Find the invariant vector bundles of

ẋ =
(−1 2

3 4

)
x

and determine the sets Sγ,Uγ for γ ∈R.

Exercise 2.1.14. Verify that an autonomous linear equation (2.1b) has an ED, if
and only if A has no eigenvalue on the imaginary axis.

2.2 Dichotomy spectrum

In this section we investigate a spectral concept which is appropriate to establish
a qualitative theory for nonautonomous differential equations. The following no-
tion is crucial:
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Definition 2.2.1 (dichotomy spectrum). The dichotomy spectrum of (L) is
the set

Σ(A) := {
γ ∈R : (Lγ) admits no ED

}
and its complement ρ(A) :=R\Σ(A) is called resolvent set.

Lemma 2.2.2. The resolvent set ρ(A) is open. This means for every γ ∈ ρ(A) exists
an ε= ε(γ) > 0 such that (γ−ε,γ+ε) ⊂ ρ(A) and moreover

Sζ =Sγ, Uζ =Uγ for all ζ ∈ (γ−ε,γ+ε). (2.2a)

Proof. For each γ ∈ ρ(A) the shifted equation (Lγ) admits an ED, i.e.∣∣Φγ(t , s)P (s)
∣∣≤ K e−α(t−s) for all s ≤ t ,∣∣Φγ(t , s)[id−P (s)]
∣∣≤ K eα(t−s) for all t ≤ s

with an invariant projector P :R→Rd×d and the reals K ≥ 1, α> 0. For ε := α
2 > 0

and ζ ∈ (γ−ε,γ+ε) we haveΦζ(t , s) = e(γ−ζ)(t−s)Φγ(t , s). Now P is also an invariant
projector for (Lζ) satisfying the estimates∣∣Φζ(t , s)P (s)

∣∣≤ K e(γ−ζ−α)(t−s) for all s ≤ t ,∣∣Φζ(t , s)[id−P (s)]
∣∣≤ K e(γ−ζ+α)(t−s) for all t ≤ s,

hence, ζ ∈ ρ(A). Moreover, since the EDs involve the same projector P , the dy-
namical characterization from Lemma 2.1.6 yields (2.2a). ut

Lemma 2.2.3. Let γ1,γ2 ∈ ρ(A) with γ1 < γ2. Then V :=Uγ1 ∩Sγ2 is an invariant
vector bundle for (L) satisfying exactly one of the following two alternatives and
the statements in each alternative are equivalent:

Alternative I Alternative II
(A) V =O (A’) V 6=O

(B) [γ1,γ2] ⊂ ρ(A) (B’) there is a ζ ∈ (γ1,γ2)∩Σ(A)
(C) Sγ1 =Sγ2 and Uγ1 =Uγ2 (C’) dimSγ1 < dimSγ2

(D) Sγ =Sγ2 and Uγ =Uγ2 (D’) dimUγ1 > dimUγ2

for all γ ∈ [γ1,γ2]

Proof. (B) ⇒ (D) Arguing indirectly, we assume there exists a γ ∈ [γ1,γ2] such that
Sγ 6=Sγ2 , or Uγ 6=Uγ2 . W.l.o.g. we restrict to Sγ 6=Sγ2 and define

ζ0 := inf
{
ζ ∈ [γ,γ2] : Sζ =Sγ2

}
.

The inequality Sγ 6=Sγ2 implies ζ0 ∈ [γ,γ2] and therefore ζ0 ∈ ρ(A). There are two
cases to consider:
(i) Sζ0 =Sγ2 , for which Lemma 2.2.2 implies Sζ =Sζ0 for ζ ∈ (ζ0 −ε,ζ0 +ε)
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(ii) Sζ0 6=Sγ2 , for which Lemma 2.2.2 guarantees Sζ 6=Sζ0 for ζ ∈ (ζ0 −ε,ζ0 +ε)
with some ε> 0. Both conclusions contradict the definition of ζ0.

(D) ⇒ (C ) is obvious.
(C ) ⇒ (B) The two shifted equations (Lγ1 ) and (Lγ2 ) admit EDs with constants

Ki ≥ 1, αi > 0 for i = 1,2. Since Sγ1 = Sγ2 and Uγ1 = Uγ2 , Prop. 2.1.6 ensures
that both EDs have the same invariant projector P . We define K := max{K }, α :=
min{α1,α2} and deduce∣∣Φγi (t , s)P (s)

∣∣≤ K e−α(t−s) for all s ≤ t ,∣∣Φγi (t , s)[id−P (s)]
∣∣≤ K eα(t−s) for all t ≤ s

and i = 1,2. The first inequality for i = 1 and the second one for i = 2 imply∣∣Φγ(t , s)P (s)
∣∣≤ K e−α(t−s) for all s ≤ t ,∣∣Φγ(t , s)[id−P (s)]
∣∣≤ K eα(t−s) for all t ≤ s

for every γ ∈ [γ1,γ2] and consequently [γ1,γ2] ⊂ ρ(A).
(C ) ⇒ (A) Prop. 2.1.6 implies V = Uγ1 ∩Sγ2 = Uγ1 ∩Sγ1 = O and we have

established the implications (B) ⇔ (C ) ⇔ (D) ⇒ (A).
(C ′) ⇔ (D ′) Prop. 2.1.6 yields dimSγi +dimUγi = d for i = 1,2, and the equiv-

alences dimSγ1 < dimSγ2 ⇔ d −dimUγ1 < d −dimUγ2 ⇔ dimUγ1 > dimUγ2 .
(B ′) ⇒ (C ′), (D ′) Since (B ′) is the opposite of (B), the established implication

(C ) ⇒ (B) yields Sγ1 6= Sγ2 or Uγ1 6= Uγ2 . Monotonicity guarantees Sγ1 Ú Sγ2

or Uγ1 ! Uγ2 , and w.l.o.g. we focus on the first inclusion. Then there exists an
instant t ∈ R such that Sγ1 (t ) Ú Sγ2 (t ). For subspaces, however, this is possible
only if dimSγ1 (t ) < dimSγ2 (t ).

(C ′), (D ′) ⇒ (A′) Using dimSγ1 < dimSγ2 and dimSγ1+dimUγ1 = d we obtain

dimV = dim
(
Uγ1 ∩Sγ2

)≥ dimUγ1 +dimSγ2 −d > dimUγ1 +dimSγ1 −d = 0

and therefore V is not the trivial invariant vector bundle, which is 0-dimensional.
(A′) ⇒ (B ′) Since (A′) is the opposite of (A), the proved implication (B) ⇒ (A)

implies the opposite of (B), which is (B ′). Thus, we have shown that the assertions
in Alternative II are equivalent.

(A) ⇒ (B) remains to show, but this is equivalent to the proved (B ′) ⇒ (A′). ut

Before stating the main result of this section, we observe the relation

X1 ⊇ X2 ⇒ X1 ∩ (Y +X2) = (X1 ∩Y )+X2 (2.2b)

for subspaces X1, X2,Y of a linear space X .

Theorem 2.2.4 (spectral theorem). The dichotomy spectrum Σ(A) of (L) is
the disjoint union of n ∈ {0, . . . ,d} closed intervals, so-called spectral inter-
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vals, i.e. one has Σ(A) =;, Σ(A) =R or one of the four cases

Σ(A) =


[a1,b1]

or

(−∞,b1]

∪ [a2,b2]∪ . . .∪ [an−1,bn−1]∪


[an ,bn]

or

[an ,∞)

(2.2c)

with reals a1 ≤ b1 < a2 ≤ b2 < . . . < an ≤ bn . Moreover, if we choose

• γ0 ∈ ρ(A) with (−∞,γ0) ⊆ ρ(A) if possible and otherwise set Uγ0 := X ,
Sγ0 :=O ,

• γn ∈ ρ(A) with (γn ,∞) ⊆ ρ(A) if possible and otherwise set Uγn := O ,
Sγn :=X ,

then the sets V0 := Sγ0 , Vn+1 := Uγn are invariant vector bundles of (L). If
n ≥ 2 and γi ∈ (bi , ai+1) ⊆ ρ(A), then the intersections

Vi :=Uγi−1 ∩Sγi for all 1 ≤ i < n

are called spectral manifolds and have the following properties:

(a) Vi is an invariant vector bundle of (L) with dimVi > 0,
(b) Vi , 0 ≤ i ≤ n +1, are independent of the choice of γi above,
(c) one has the Whitney sum V0 ⊕ . . .⊕Vn+1 =X .

Remark 2.2.5. The robustness Thm. 2.1.10 guarantees that for each sufficiently
small ε > 0 and each γ ∈ ρ(A) there exists a δ = δ(ε,γ) > 0 such that γ is also
contained in the resolvent set ρ(B) of a perturbed equation ẋ = B(t )x, provided
B :R→Rd×d is a continuous function satisfying

sup
t∈R

|B(t )− A(t )| ≤ δ.

Nevertheless, under perturbation of (L) two nearby spectral intervals in (2.2c) can
melt together, or a spectral interval can break up into two new intervals. One says
that Σ(A) depends upper-semicontinuously on A.

Proof. Above all, recall that the resolvent set ρ(A) is open due to Lemma 2.2.2 and
therefore the dichotomy spectrum Σ(A) ⊆ R is the disjoint union of closed inter-
vals. Next we establish that the set Σ(A) consists of at most d intervals. Indeed,
if Σ(A) contains d + 1 components, then one can choose points ζ1 < . . . < ζd in
ρ(A) such that each of the intervals (−∞,ζ1), (ζ1,ζ2), . . . , (ζd ,∞) has a nonempty
intersection with Σ(A). Now Alternative II of Lemma 2.2.3 implies

0 ≤ dimSζ1 < . . . < dimSζd
≤ d

and therefore dimSζ1 = 0 or dimSζd
= d holds. W.l.o.g. we suppose dimSζd

= d ,
which means Sζd

=X . Thanks to Prop. 2.1.6 the invariant projector P of the cor-
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responding ED for (Lζd
) is the identity and Rem. 2.1.4(2) implies the contradiction

(ζd ,∞) ⊆ ρ(A). This proves the above representations (2.2c) of Σ(A).
Evidently, the sets Vi , 0 ≤ i ≤ n+1, are invariant vector bundles (cf. Prop. 1.3.4).

To show that dimVi > 0 for i ≥ 1, let us assume that dimV1 = 0 and therefore
Uγ0 ∩Sγ1 = O . If (−∞,b1] is a spectral interval, then Sγ1 = O and the projec-
tor of the corresponding ED for equation (Lγ1 ) equals 0. Hence, Rem. 2.1.4(2)
implies the contradiction (−∞,γ1) ⊆ ρ(A). If [a1,b1] is a spectral interval, then
[γ0,γ1]∩Σ(A) 6= ; and Alternative II of Lemma 2.2.3 yields a contradiction. There-
fore, dimV1 > 0 and similarly dimVn > 0. Furthermore for n ≥ 3 and i = 2, . . . ,n−1
one has (γi−1,γi )∩Σ(A) 6= ; and Alternative II of Lemma 2.2.3 implies dimVi > 0.

For i < j we have Vi ⊆Sγi and V j ⊆Uγ j−1 ⊆Uγi and with Prop. 2.1.6 this gives
Vi ∩V j ⊆Sγi ∩Uγi =O , so Vi ∩V j =O for i 6= j .

To show the representation V0 + . . .+Vn+1 =X , we recall the monotonicity re-
lations (cf. Rem. 2.1.4(3))

Sγ0 ⊆ . . . ⊆Sγn , Uγ0 ⊇ . . . ⊇Uγn

and the identities Sγi +Uγi = Rd for 0 ≤ i ≤ n. Thus, X = V0 +Uγ0 . Using the
algebraic relation (2.2b) for n ≥ 1, one has

X = V0 +Uγ0 ∩ (Sγ1 +Uγ1︸ ︷︷ ︸
=X

) = V0 + (Uγ0 ∩Sγ1 )+Uγ1 = V0 +V1 +Uγ1 ,

X = V0 +V1 +Uγ1 ∩ (Sγ2 +Uγ2︸ ︷︷ ︸
=X

) = V0 +V1 + (Uγ1 ∩Sγ2 )+Uγ2 = V0 +V1 +V2 +Uγ2

and mathematical induction yields X = V0 + . . .+Vn+1.
In order to finish the proof, let δ0, . . . ,δn ∈ ρ(A) satisfy the same properties as

the reals γ0, . . . ,γn given above. Then Alternative I of Lemma 2.2.3 guarantees

Sγi =Sδi , Uγi =Uδi for all 0 ≤ i ≤ n

and consequently the invariant vector bundles V0, . . . ,Vn+1 do not depend on the
choice of γ0, . . . ,γn . ut

Exercise 2.2.6. Show that a scalar differential equation ẋ = a(t )x, a :R→R piece-
wise continuous, has the transition operator

Φ(t , s) = exp

(∫ t

s
a(τ)dτ

)
for all s, t ∈R

and compute the dichotomy spectrum Σ(a) for the following coefficient mappings:

(a) a(t ) = |t |
(b) a(t ) = t

(c) a(t ) =
{
β+ t , t < 0,

β, t ≥ 0
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(d) a(t ) =
{
α, t < 0,

α+ t , t ≥ 0

(e) a(t ) =
{
α, t < 0,

β, t ≥ 0

with reals α≤β.

2.3 Bounded growth

In this section we investigate the dichotomy spectrum for a class of equations
frequently met in applications. A linear differential equation (L) is said to possess
bounded growth, if there exist constants K ≥ 1, a ≥ 0 such that

|Φ(t , s)| ≤ K ea|t−s| for all s, t ∈R. (2.3a)

From Exercise 2.1.11 we see that systems (L) with a bounded coefficient func-
tion A : R→ Rd×d , and in particular autonomous and periodic problems, have
bounded growth. This class features a simple dichotomy spectrum:

Theorem 2.3.1. A linear equation (L) has bounded growth, if and only if it
possesses a nonempty and compact dichotomy spectrum

Σ(A) =
n⋃

i=1
[ai ,bi ] with 1 ≤ n ≤ d ,

the spectral manifolds V0,Vn+1 are trivial and therefore V1 ⊕ . . .⊕Vn =X .

Proof. (⇒) We assume that (2.3a) is fulfilled and choose γ> a. For α := γ−a > 0
the estimate (2.3a) implies∣∣Φγ(t , s)

∣∣≤ K e−α(t−s) for all s ≤ t

and consequently (Lγ) admits an ED with projector P (t ) ≡ id. In particular, we
have γ ∈ ρ(A) and similarly for γ<−a it isΣ(A) ⊆ [−a, a], i.e. the dichotomy spec-
trum is bounded. In addition, Prop. 2.1.6 guarantees V0 = Vn+1 =O , since

Sγ =X , Uγ =O for all γ> a,

Sγ =O , Uγ =X for all γ<−a.

It remains to verify that Σ(A) is nonempty. For this, γ0 := inf
{
γ ∈ ρ(A) : Sγ =X

}
fulfills γ0 ∈ [−a, a]. Arguing indirectly, let us assume γ0 ∈ ρ(A) and we distinguish
two cases:
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• Sγ0 =X : Then Lemma 2.2.2 implies Sγ =X for γ ∈ (γ0 −ε,γ0 +ε)
• Sγ0 =O : Here, Lemma 2.2.2 implies Sγ 6=X for γ ∈ (γ0 −ε,γ0 +ε)

for some ε> 0. Both conclusions contradict the definition of γ0.
(⇐) Choose points γ0, . . . ,γn ∈ ρ(A) such that

γ0 < a1 ≤ b1 < γ1 < . . . < γn−1 < an ≤ bn < γn .

Monotonicity implies the inclusion Vi = Uγi−1 ∩Sγi ⊆ Uγ0 ∩Sγn , 1 ≤ i ≤ n, and
therefore V1 + . . .+ Vn ⊆ Uγ0 ∩Sγn . Since by assumption X = V1 + . . .+ Vn , one
arrives at Uγ0 =X and Sγn =X . Thus, Prop. 2.1.6 shows that (Lγ0 ) admits an ED
with constants K ≥ 1, α1 > 0 and projector P (t ) ≡ 0, i.e. the dichotomy estimate

|Φ(t , s)| ≤ K e(γ0+α1)(t−s) for all t ≤ s

holds. Also the shifted equation (Lγn ) has an ED with constants K ≥ 1, α2 > 0,
projector P (t ) ≡ id and it is

|Φ(t , s)| ≤ K e(γn+α2)(t−s) for all s ≤ t .

We finally combine the two above estimates with

K := max{K } , a := max
{
0,−γ0 −α1,γn −α2

}
in order to obtain |Φ(t , s)| ≤ K ea|t−s| for all s, t ∈R. ut

Exercise 2.3.2. Given A ∈ Rd×d compute the dichotomy spectrum of an au-
tonomous equation (2.1b).



Chapter 3

Integral manifolds

Study the behavior of solutions of the linear equation y ′ = A(t )y near y = 0, and
then show (if possible) that the solutions of the nonlinear equation

y ′ = A(t )y +F (y, t )

near y = 0 inherit the same behavior.
G.R. Sell [Sel78]

In qualitative studies on nonlinear dynamical systems, invariant manifolds are
omnipresent and play a crucial role in a variety of ways for local as well as global
questions: For instance, local stable and unstable manifolds dictate the saddle-
point behavior in the vicinity of hyperbolic solutions (or surfaces) of a system.
Center manifolds are a primary tool to simplify given dynamical systems in terms
of a reduction of their state space dimension — this manifests in the celebrated
reduction principle of Pliss. Concerning a more global perspective, stable man-
ifolds serve as separatrix between different domains of attractions and allow a
classification of solutions with a specific asymptotic behavior. Systems with a gra-
dient structure possess global attractors consisting of unstable manifolds (and
equilibria). Finally, so-called inertial manifolds are global versions of the classi-
cal center-unstable manifolds and yield a global reduction principle for typically
infinite-dimensional dissipative equations.

For nonautonomous differential equations, invariant manifolds are denoted
as integral manifolds. More precisely, an integral manifold W ⊆ R×Rd is an in-
variant nonautonomous set, where each fiber W (t ) is a (smooth) manifold. For
linear differential equations

ẋ = A(t )x

the spectral manifolds Vi constructed in Thm. 2.2.4 are examples of integral man-
ifolds. In the present chapter we rigorously investigate how Vi persist under non-
linear perturbations.

43
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3.1 Semilinear differential equations

In this section we deal with semilinear differential equation

ẋ = A(t )x +F (t , x) (S)

in the state spaceRd . In this context the term "semilinear" means that the nonlin-
ear term F :R×Rd →Rd is so weak (in a sense to be specified) that the dynamics
of (S) is largely determined by its linear part (L).

The transition matrix of (L) is denoted by Φ(t , s) ∈ Rd×d and we write ϕ(t ;τ,ξ)
for the general solution to (S).

We begin by stating some frequently used assumptions for our prototype sys-
tem (S). From now on we assume:

Hypothesis 3.1.1. (i) The linear part (L) has the dichotomy spectrum

Σ(A) =
n⋃

i=1
[ai ,bi ] with 1 ≤ n ≤ d .

(ii) One has the identity
F (t ,0) ≡ 0 on R (3.1a)

and the continuous mapping F : R×Rd → Rd satisfies a global Lipschitz esti-
mate

|F (t , x)−F (t , x̄)| ≤ L |x − x̄| for all t ∈R, x, x̄ ∈Rd (3.1b)

with L ≥ 0. Moreover, for some δmax > 0 we require

L < δmax

4K
, (3.1c)

choose a fixed δ ∈ (4K L,δmax) and abbreviate Γi := (bi +δ, ai+1 −δ).
(iii) Assume the partial derivatives Dk

2 F (t , ·), t ∈R, exist, are continuous on Rd up to
order m ∈N, and suppose they are globally bounded, i.e. for 2 ≤ k ≤ m we have

|F |k := sup
(t ,x)∈R×Rd

∥∥∥Dk
2 F (t , x)

∥∥∥<∞.

Remark 3.1.2. (1) We choose γ ∈ ρ(A), say γ ∈ (bi , ai+1) for 0 ≤ i ≤ n1 and ob-
tain that the shifted differential equation (Lγ) admits an ED on R with invariant
projector Qi and complementary projector Pi := id−Qi . This means we can choose
reals αi <βi such that

|Φ(t , s)Qi (s)| ≤ K eαi (t−s), |Φ(s, t )Pi (t )| ≤ K eβi (s−t ) for all s ≤ t . (3.1d)

It is easy to see that the existence of suitable values for δ follows from (3.1c). Due to
the inequality 0 < δ< δmax there exist functions γ such that αi +δ< γ<βi −δ.

1 this includes the convention b0 =−∞ and an+1 =∞
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(2) As a consequence of (3.1b), the partial derivatives D2F are globally bounded
on R×Rd by the Lipschitz constant L.

(3) Under Hyp. 3.1.1(i)–(ii) the solutions ϕ(·;τ,ξ) exist and are unique on R for
arbitrary initial pairs τ ∈R, ξ ∈Rd .

(4) There are two possible interpretations of the smallness condition (3.1c).

• When interested in local results near the trivial solution of (S), by means of a
cut-off-technique using radial retractions, we can replace the strong assump-
tion on the existence of L <∞ and (3.1c) by

lim
x,x̄→0

F (t , x)−F (t , x̄)

‖x − x̄‖ = 0 uniformly in t ∈R.

Similarly, using C m-bump functions (cf., for instance, Lemma 3.2.6), one sub-
stitutes the existence of |F |n , i = 1,2, n ∈ {2, . . . ,m} and (3.1c) by

lim
x→0

D2F (t , x) = 0 uniformly in t ∈R.

As mentioned above, however, the obtained results hold only locally, i.e., as long
as solutions stay in a neighborhood of zero.

• On the other hand, for differential equations (S) possessing an absorbing ball
BR (0) ⊆ Rd , R > 0, it is sufficient to assume a Lipschitz condition on BR (0) only
(uniformly in t ∈ R). Provided the gap βi −αi in Σ(A) is sufficiently wide, one
can choose δmax so large that (3.1c) holds after the nonlinearities F have been
restricted to BR (0) using the above cut-off approaches.

At this point we transplant most of our technical preparations into an abstract
lemma. It particularly allows to characterize theγ+-solutions of (S) as fixed points
of a suitable so-called Lyapunov-Perron operator.

Lemma 3.1.3. Assume Hyp. 3.1.1(i)–(ii), choose τ ∈ R fixed and set δmax := β−α
2 .

Then for growth rates γ ∈ (α,β), the operator Tτ : X +
τ,γ×Rd → X +

τ,γ,

Tτ(ν; x0) :=Φ(·,τ)Q(τ)x0 +
∫ ·

τ
Φ(·, s)Q(s)F (s,ν(s))d s

−
∫ ∞

·
Φ(·, s)P (s)F (s,ν(s))d s (3.1e)

is well-defined and has, for fixed x0 ∈Rd , the following properties:

(a) ν : [τ,∞) → Rd is a γ+-bounded solution of (S) with Q(τ)ν(τ) = Q(τ)x0, if and
only if ν ∈ X +

τ,γ solves the fixed point problem

ν= Tτ(ν; x0). (3.1f)

Moreover, in case γ ∈ [α+δ,β−δ], we have:

(b) Tτ(·; x0) is a uniform contraction with Lipschitz condition
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‖Tτ(ν; x0)−Tτ(ν̄; x0)‖+τ,γ ≤ `‖ν− ν̄‖+τ,γ , (3.1g)

where ` := 2K
δ L < 1,

(c) the unique fixed point ν∗τ (x0) ∈ X +
τ,γ of Tτ(·; x0) does not depend on the growth

rate γ, it satisfies ν∗τ (0) = 0, ν∗τ (x0) = ν∗τ (Q(τ)x0) and we have

lipP (τ)ν∗τ (·)(τ) ≤ K 2L

δ−2K L
, (3.1h)

(d) for γ ∈ Γ the mapping ν∗τ :Rd → X +
τ,γ is continuous.

Proof. Let τ ∈R be arbitrarily fixed, and choose a growth rate γ ∈ [α+δ,β−δ]. We
show the well-definedness of the operator Tτ. Thereto, let x0 ∈ Rd be arbitrary.
For ν, ν̄ ∈ X +

τ,γ we obtain

|Tτ(ν; x0)(t )−Tτ(ν̄; x0)(t )|eγ(τ−t )

(3.1e)≤
∣∣∣∣∫ t

τ
Φ(t , s)Q(s) [F (s,ν(s))−F (s, ν̄(s))] d s

∣∣∣∣eγ(τ−t )

+
∣∣∣∣∫ ∞

t
Φ(t , s)P (s) [F (s,ν(s))−F (s, ν̄(s))] d s

∣∣∣∣eγ(τ−t )

(3.1d)≤ K
∫ t

τ
eα(t−s) |F (s,ν(s))−F (s, ν̄(s))| d seγ(τ−t ) (3.1i)

+K
∫ ∞

t
eβ(t−s) |F (s,ν(s))−F (s, ν̄(s))| d seγ(τ−t )

(3.1b)≤
(
K

∫ t

τ
eα(t−s)eγ(s−t ) d s +K

∫ ∞

t
eβ(t−s)eγ(s−t ) d s

)
L ‖ν− ν̄‖+τ,γ

≤
(

K

γ−α + K

β−γ

)
L ‖ν− ν̄‖+τ,γ for all τ≤ t .

To verify that Tτ is well-defined, we observe

|Tτ(ν; x0)(t )|eγ(τ−t ) ≤ |Tτ(0; x0)(t )|eγ(τ−t ) +|Tτ(ν; x0)(t )−Tτ(0; x0)(t )|eγ(τ−t )

(3.1a)≤ |Φ(t ,τ)Q(τ)x0|eγ(τ−t ) +‖Tτ(ν; x0)−Tτ(0; x0)‖+τ,γ

(3.1d)≤ K |x0|+
(

K

γ−α + K

β−γ

)
L ‖ν‖+τ,γ for all τ≤ t

and taking the supremum over t ∈ [τ,∞) implies Tτ(ν; x0) ∈ X +
τ,γ.

(a) Let x0 ∈Rd be arbitrary.
(⇒) If ν ∈ X +

τ,γ is a solution of (S) with Q(τ)ν(τ) = Q(τ)x0, then ν also solves the
linear-inhomogeneous differential equation

ẋ = A(t )x +F (t ,ν(t )) (3.1j)

on [τ,∞), where the inhomogeneous part satisfies
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|F (t ,ν(t ))|eγ(τ−t ) (3.1a)= |F (t ,ν(t ))−F (t ,0)|eγ(τ−t ) (3.1a)≤ L ‖ν‖+τ,γ for all τ≤ t

and is therefore in X +
τ,γ. Then Prop. 2.1.8(a) implies that ν is uniquely determined

and given by the right hand side of (3.1e). So ν satisfies (3.1f).
(⇐) If ν ∈ X +

τ,γ solves the fixed point problem (3.1f), then a direct computation in
(3.1e) yields that ν solves the differential equation (3.1j) and thus also (S). More-
over, from (3.1f) and (3.1e) we have Q(τ)ν(τ) =Q(τ)x0.

(b) Passing over to the least upper bound for t ∈ [τ,∞) in (3.1i) yields

‖Tτ(ν; x0)−Tτ(ν̄; x0)‖+τ,γ ≤ `‖ν− ν̄‖+τ,γ for all ν, ν̄ ∈ X +
τ,γ

and our choice of δ in Hyp. 3.1.1(ii) guarantees ` < 1. Therefore, the contraction
mapping principle implies that there exists a unique fixed point ν∗τ (x0) ∈ X +

τ,γ of
Tτ(·; x0), which moreover satisfies

∥∥ν∗τ (x0)
∥∥+
τ,γ ≤

K

1−` |x0| for all ν ∈ X +
τ,γ.

(c) The fixed point ν∗τ (x0) ∈ X +
τ,γ is independent of γ ∈ [

α+δ,β−δ]
, because

we have the inclusion X +
τ,α+δ ⊆ X +

τ,γ, and thus, every Tτ(·; x0) : X +
τ,γ → X +

τ,γ has
the same fixed point as its restriction Tτ(·; x0)|X +

τ,α+δ
. Using the assumption (3.1a)

and the uniqueness of solutions, we see ϕ(t ;τ,0) ≡ 0 on [τ,∞) and since trivially
ϕ(·;τ,0) ∈ X +

τ,γ holds, the assertion (a) with x0 = 0 implies that ϕ(·;τ,0) solves
the fixed point equation (3.1f). This fixed point, in turn, is unique and so we get
ν∗τ (0) =ϕ(·;τ,0) = 0. Directly from (3.1e) we obtain the identity

ν∗τ (Q(τ)x0) = Tτ(ν∗τ (Q(τ)x0);Q(τ)x0) = Tτ(ν∗τ (Q(τ)x0); x0)

and therefore, ν∗τ (Q(τ)x0) is the unique fixed point of Tτ(·; x0), i.e., we have

ν∗τ (x0) = ν∗τ (Q(τ)x0) for all x ∈Rd . (3.1k)

To prove the Lipschitz estimate (3.1h) consider x0, x̄0 ∈Rd and the corresponding
fixed points ν∗τ (x0),ν∗τ (x̄0) ∈ X +

τ,γ of Tτ(·; x0) and Tτ(·; x̄0), respectively. We have∥∥ν∗τ (x0)−ν∗τ (x̄0)
∥∥+
τ,γ

(3.1f)≤
∥∥Tτ(ν∗τ (x0); x0)−Tτ(ν∗τ (x̄0); x0)

∥∥+
τ,γ+

∥∥Tτ(ν∗τ (x̄0); x0)−Tτ(ν∗τ (x̄0); x̄0)
∥∥+
τ,γ

(3.1g)
≤ `

∥∥ν∗τ (x0)−ν∗τ (x̄0)
∥∥+
τ,γ+

∥∥Tτ(ν∗τ (x̄0); x0)−Tτ(ν∗τ (x̄0); x̄0)
∥∥+
τ,γ

and thus,∥∥ν∗τ (x0)−ν∗τ (x̄0)
∥∥+
τ,γ ≤ 1

1−`
∥∥Tτ(ν∗τ (x̄0); x0)−Tτ(ν∗τ (x̄0); x̄0)

∥∥+
τ,γ

(3.1e)= 1

1−` sup
t∈[τ,∞)

|Φ(t ,τ)Q(τ) (x0 − x̄0)|eγ(τ−t ) (3.1d)≤ K

1−` |x0 − x̄0| .
(3.1l)
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Moreover, directly from (3.1e) and (3.1f) we get the identity

P (·)ν∗τ (x0)
(2.1c)= −

∫ ∞

·
Φ(·, s)Q(s)F (s,ν∗τ (x0)(s))d s

and similarly to the proof of (b) this yields

∥∥P (·)[ν∗τ (x0)−ν∗τ (x̄0)
]∥∥+
τ,γ ≤

K

β−γL
∥∥ν∗τ (x0)−ν∗τ (x̄0)

∥∥+
τ,γ ,

which, together with (3.1l), implies (3.1h). We have established the assertion (c).
(d) The continuity of ν∗τ :Rd → X +

τ,γ is clear due to (3.1l). ut

Having collected the preparations in Lemma 3.1.3, we may now head for a gen-
eral and quantitative version of the stable manifold theorem. It generalizes the
classical theory in two directions: First, it holds for nonautonomous equations.
Second, besides stable and unstable manifolds, we can additionally construct
the whole hierarchy of invariant manifolds including strongly stable/unstable or
center-stable/-unstable manifolds.

Theorem 3.1.4 (pseudo-stable and -unstable integral manifolds). Assume
that Hyp. 3.1.1(i)–(ii) is fulfilled. If we choose 1 ≤ i < n such that(

αi ,βi
)∩Σ(A) =; (3.1m)

and δmax = βi−αi
2 , then the following statements are true:

(a) The pseudo-stable integral manifold

W +
i :=

{
(τ, x0) ∈R×Rd : ϕ(·;τ, x0) ∈ X +

τ,γ for all γ ∈ Γi

}
(3.1n)

is an integral manifold of (S) possessing the representation

W +
i =

{
(τ,ξ+w+

i (τ,ξ)) ∈R×Rd : (τ,ξ) ∈R(Qi )
}

(3.1o)

with a unique continuous mapping w+
i :R×Rd →Rd satisfying

w+
i (τ, x0) = w+

i (τ,Qi (τ)x0) ∈ R(Pi (τ)) for all τ ∈R, x0 ∈Rd (3.1p)

and the invariance equation

Pi (t )ϕ(t ;τ, x0) = w+
i (t ,Qi (t )ϕ(t ;τ, x0)) for all (τ, x0) ∈W +

i (3.1q)

and t ∈R. Furthermore, it holds:
(a1) w+

i (τ,0) ≡ 0 on R,

(a2) w+
i :R×Rd →Rd is continuous and satisfies the Lipschitz estimate
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lip w+
i (τ, ·) ≤ K 2L

δ−2K L
for all τ ∈R, (3.1r)

(a3) if additionally Hyp. 3.1.1(iii) and the gap condition

m+
i αi <βi

holds for some m+
i ∈ {1, . . . ,m}, and if we set

δmax := min

{
βi −αi

2
,
βi −mαi

2m

}
,

then the partial derivatives D j
(2,3)w+

i exist, are continuous up to order

m+
i , and there exist reals M j

s > 0, such that∣∣∣D j
2 w+

i (τ, x0)
∣∣∣≤ M n

s for all 1 ≤ j ≤ m+
i , τ ∈R, x0 ∈Rd ,

(a4) if the differential equation (S) is T -periodic for some T > 0, then
w+

i (·, x0) is T -periodic for all x0 ∈Rd .
(b) The pseudo-unstable integral manifold

W −
i :=

{
(τ, x0) ∈R×Rd : ϕ(·;τ, x0) ∈ X −

τ,γ for all γ ∈ Γ
}

is an integral manifold of (S) possessing the representation

W −
i =

{
(τ,η+w−

i (τ,η)) ∈R×Rd : (τ,η) ∈R(Pi )
}

with a unique mapping w−
i :R×Rd →Rd satisfying

w−
i (τ, x0) = w−

i (τ,Pi (τ)x0) ∈ R(Qi (τ)) for all τ ∈R, x0 ∈Rd

and the invariance equation

Qi (t )ϕ(t ;τ, x0) = w−
i (t ,Pi (t )ϕ(t ;τ, x0)) for all (τ, x0) ∈W −

i , (3.1s)

and t ∈R. Furthermore, it holds:
(b1) w−

i (τ,0) ≡ 0 on R,

(b2) w−
i :R×Rd →Rd is continuous and satisfies the Lipschitz estimate

lip w−
i (τ, ·) ≤ K 2L

δ−2K L
for all τ ∈R,

(b3) if additionally Hyp. 3.1.1(iii) and the gap condition

αi < m−
i βi
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holds for some m−
i ∈ {1, . . . ,m}, and if we set

δmax := min

{
βi −αi

2
,

mβi −αi

2m

}
,

then the partial derivatives D j
(2,3)w− exist, are continuous up to order

m−
i , and there exist reals M j

r > 0, such that∣∣∣D j
2 w−

i (τ, x0)
∣∣∣≤ M j

r for all 1 ≤ j ≤ m−
i , τ ∈R, x0 ∈Rd ,

(b4) if the differential equation (S) is T -periodic for some T > 0, then
w−

i (·, x0) is T -periodic for all x0 ∈Rd .

(c) Under the condition L < δ
6K only the zero solution of (S) is contained both

in W +
i and W −

i , i.e.
W +

i ∩W −
i =R× {0} ,

and hence the zero solution is the only γ-bounded solution of (S) for any
growth rate γ ∈ Γi .

Remark 3.1.5 (gap condition). Under Hyp. 3.1.1(iii) the integral manifolds W +
i

and W −
i are of class C 1. Higher order differentiability is more subtle: If αi ≤ 0, then

the gap condition mαi < βi is always fulfilled and the integral manifolds W +
i are

as smooth as the function F . Dually, for 0 ≤βi one hasαi <βi and also W −
i inherit

its smoothness from F .

Remark 3.1.6 (global stable/unstable manifolds). In the hyperbolic case 0 6∈Σ(A),
say for bi < 0 < ai+1, we can choose 0 ∈ Γi . Then the set W +

i is called the global
stable manifold, while W −

i is the global unstable manifold; both do not depend on
the choice of the growth rate γ ∈ Γi .

• Choosing γ < 0, the global stable manifold W +
i consists of all solutions which

decay exponentially to 0 in forward time. It is as smooth as the nonlinearity F .
• For 0 < γ the global unstable manifold W −

i consists of all solutions which decay
exponentially to 0 for t →−∞. It has the same smoothness as F .

Integral manifolds W +
j , j < i , associated with spectral gaps left of 0 are denoted as

global strongly stable manifolds; they share the smoothness with F . Accordingly,
W −

j , i < j , corresponding to spectral gaps right of 0 are called global strongly un-

stable manifolds.

Proof. Let τ ∈R be arbitrary, but fixed, and let us choose γ ∈ Γi . We keep 1 ≤ i < n
fixed and suppress the dependence on i .

(a) First of all, we want to show that W + is an integral manifold of (S). By
definition, the solution ϕ(·;τ,ξ0) is γ+-bounded for arbitrary pairs of initial val-
ues (τ,ξ0) ∈ W +. The 2-parameter group property (1.2c) implies for any instant
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t0 ∈ [τ,∞) that ϕ(t ; t0,ϕ(t0;τ,ξ0)) ≡ϕ(t ;τ,ξ0) on T+
t0

. Hence ϕ(·; t0,ϕ(t0;τ,ξ0)) is a
γ+-bounded function and this yields (t0,ϕ(t0;τ,ξ0)) ∈W + for t0 ∈ [τ,∞).

For x0 ∈Rd , by Lemma 3.1.3(a), the unique fixed point ν∗τ (x0) ∈ X +
τ,γ of Tτ(·; x0)

is a solution of the differential equation (S) satisfying Q(τ)ν∗τ (x0)(τ) = Q(τ)x0.
Now we define

w+(τ, x0) := P (τ)ν∗τ (x0)(τ) (3.1t)

and evidently have w+(τ, x0) ∈ R(P (τ)). In addition, Lemma 3.1.3(c) implies
w+(τ, x0) = w+(τ,Q(τ)x0) (cf. (3.1k)). We postpone the continuity proof for w+ to
the end of part (a) and verify the representation (3.1o) and the invariance equa-
tion (3.1q) now.

(⊆) Let (τ, x0) ∈W +, i.e.,ϕ(·;τ, x0) is γ+-bounded. Thenϕ(·;τ, x0) trivially satis-
fies Q(τ)ϕ(τ;τ, x0) =Q(τ)x0 and is consequently the unique fixed point of (3.1e),
i.e., we have ϕ(·;τ, x0) = ν∗τ (x0) (see Lemma 3.1.3(a)). This implies

x0 = ν∗τ (x0)(τ) =Q(τ)ν∗τ (x0)(τ)+P (τ)ν∗τ (x0)(τ) =Q(τ)x0 +P (τ)ν∗τ (Q(τ)x0)(τ),

since ν∗τ (x0) = ν∗τ (Q(τ)x0) holds due to Tτ(·; x0) = Tτ(·;Q(τ)x0) (cf. (3.1e)). So, set-
ting ξ :=Q(τ)x0 ∈ R(Q(τ)), we have x0 = ξ+P (τ)ν∗τ (ξ) = ξ+w+(τ,ξ) by (3.1t) and
(3.1o) is verified.

(⊇) Let x0 ∈Rd be of the form x0 = ξ+w+(τ,ξ), ξ ∈ R(Q(τ)). Then

x0
(3.1t)= ξ+P (τ)ν∗τ (ξ)(τ) =Q(τ)ν∗τ (ξ)(τ)+P (τ)ν∗τ (ξ)(τ) = ν∗τ (ξ)(τ)

and therefore, due to the uniqueness of solutions, one arrives at the identity
ϕ(·;τ, x0) =ϕ(·;τ,ν∗τ (ξ)(τ)) = ν∗τ (ξ) ∈ X +

τ,γ.
With (τ,ξ0) ∈W + the invariance of W + implies

ϕ(t ;τ,ξ0) =Q(t )ϕ(t ;τ,ξ0)+w+(t ,Q(t )ϕ(t ;τ,ξ0))

for τ≤ t and multiplication with P (t ) yields (3.1q).
(a1) From Lemma 3.1.3(c) we get w+(τ,0) = P (τ)ν∗τ (0)(τ) = 0 (cf. (3.1t)).
(a2) To prove the claimed Lipschitz estimates consider x0, x̄0 ∈ Rd and corre-

sponding fixed points ν∗τ (x0),ν∗τ (x̄0) ∈ X +
τ,γ of Tτ(·; x0) and Tτ(·; x̄0), respectively.

One gets from Lemma 3.1.3(c)

∣∣w+(τ, x0)−w+(τ, x̄0)
∣∣ (3.1t)=

∣∣P (τ)
[
ν∗τ (x0)(τ)−ν∗τ (x̄0)(τ)

]∣∣ (3.1h)≤ K 2L

δ−2K L
|x0 − x̄0| .

(a3) Due to its technical complexity, we omit the differentiability proof for the
mapping w+. It is based on a “formal differentiation” of the fixed point identity
(3.1f) w.r.t. the variable x0 ∈Rd . Concerning the details, we refer to [PS04].

It remains to show the continuity statement for w+. Thereto, let τ0 ∈R, ξ0 ∈Rd .
Then for arbitrary τ ∈R, x0 ∈Rd we obtain the estimate

∣∣w+(τ, x0)−w+(τ,ξ0)
∣∣ (3.1r)≤ 2K 2L

δ−4K L
|x0 −ξ0|+

∣∣w+(τ,ξ0)−w+(τ0,ξ0)
∣∣
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and to verify the continuity of w+ in (τ0,ξ0), it remains to prove the limit relation

lim
τ→τ0

w+(τ,ξ0) = w+(τ0,ξ0). (3.1u)

We abbreviate φ(τ) := ϕ(τ;τ0,Q(τ0)ξ0 +w+(τ0,ξ0)) and remark that the solution
φ of (S) exists in a neighborhood of τ0. Moreover, as a preparation we have the
estimate (cf. (a1))

∣∣Q(τ0)ξ0 +w+(τ0,ξ0)
∣∣ (3.1d)≤ K |ξ0|+

∣∣w+(τ0,ξ0)−w+(τ0,0)
∣∣ (3.1r)≤

(
K + 2K 2L

δ−4K L

)
|ξ0|

and we therefore obtain
lim
τ→τ0

φ(τ) =φ(τ0). (3.1v)

By definition ofφwe get P (τ0)φ(τ0) = w+(τ0,ξ0), Q(τ0)φ(τ0) =Q(τ0)ξ0 from (3.1t)
and (3.1q) implies P (τ)φ(τ) = w+(τ,Q(τ)φ(τ)). Hence, we arrive at

∣∣w+(τ,ξ0)−w+(τ0,ξ0)
∣∣ (3.1p)≤

∣∣w+(τ,Q(τ)ξ0)−w+(τ,Q(τ)φ(τ))
∣∣

+
∣∣w+(τ,Q(τ)φ(τ))−w+(τ0,ξ0)

∣∣
(3.1r)≤ 2K 3L

δ−4K L

∣∣ξ0 −φ(τ)
∣∣+ ∣∣P (τ)φ(τ)−P (τ0)φ(τ0)

∣∣ ,

and so (3.1v) readily implies the desired limit relation (3.1u), because the invari-
ant projectors P,Q :R→Rd×d are continuous.

(a4) Choose a growth rate γ ∈ Γ and an arbitrary ξ0 ∈ R(Q(τ)). Then the solu-
tion ν :=ϕ(·;τ,ξ0 +w+(τ,ξ0)) of (S) is γ+-bounded. Because of the T -periodicity
of (S), we know that also ν̃ := ν(· −T ) is a γ+-bounded solution. Hence, we have
the inclusion (τ+T, ν̃(τ)) ∈W + and consequently

w+(τ+T,ξ0)
(3.1p)= w+(τ+T,Q(τ)ν(−T +τ+T )) = w+(τ+T,Q(τ+T )ν̃(τ+T ))
(3.1q)= P (τ+T )ν̃(τ+T )

(3.1p)= w+(τ,ξ0),

i.e., we established the T -periodicity of w+(·,ξ0) in case ξ0 ∈ R(Q(τ)). Now the
T -periodicity of w+(·, x0) for general x0 ∈Rd follows from (3.1p).

(b) Since the present part (b) of Thm. 3.1.4 can be proved along the same lines
as part (a), we present only a sketch of the proof. Analogously to (a), for x0 ∈ Rd ,
the γ−-bounded solutions ν the differential equation (S) with P (τ)ν(τ) = P (τ)x0

may be characterized as fixed points of the operator T̄τ : X −
τ,γ×Rd → X −

τ,γ,

T̄τ(ν; x0) :=Φ(·,τ)P (τ)x0 +
∫ ·

τ
Φ(·, s)P (τ)F (s,ν(s))d s

+
∫ ·

−∞
Φ(·, s)Q(τ)F (s,ν(s))d s.
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Here a counterpart to the above Lemma 3.1.3 holds true in the Banach space X −
τ,γ.

It follows from the assumption (3.1c) that T̄τ(·; x0) is a uniform contraction on
X −
τ,γ and if ν∗τ (x0) ∈ X −

τ,γ denotes its unique fixed point we define the mapping

w− : R×Rd → Rd by w−(τ, x0) := Q(τ)ν∗τ (x0)(τ). The claimed properties of w−

can be proved using dual arguments as (a).
(c) Let ν :R→Rd be any γ-bounded solution of (S). By means of Hyp. 3.1.1(ii),

the mapping F (·,ν(·)) is γ-bounded and the unique γ-bounded solution of (3.1j),
which additionally satisfies

sup
t∈R

|ν(t )|eγ(τ−t ) (3.1b)≤ 3K

δ
L sup

t∈R
|ν(t )|eγ(τ−t ).

Using L < δ
6K , we thus obtain ν= 0 and the proof of Thm. 3.1.4 is complete. ut

The above Thm. 3.1.4 states that for each gap in the dichotomy spectrum Σ(A)
there exists a pair of integral manifolds W +

i and W −
i intersecting along the trivial

solution. These integral manifolds are nested, i.e. ordered w.r.t. the set inclusion:

Corollary 3.1.7 (pseudo-stable and -unstable hierarchy). For each 1 ≤ i <
n choose reals αi < βi satisfying (3.1m). If we define δmax := minn−1

i=1
βi−αi

2 ,
then one has

(a) the pseudo-stable hierarchy

R× {0} =: W +
0 ⊆W +

1 ⊆ . . . ⊆W +
n−1 ⊆W +

n :=R×Rd ,

(b) the pseudo-unstable hierarchy

R× {0} =: W −
n ⊆W −

n−1 ⊆ . . . ⊆W −
1 ⊆W −

0 :=R×Rd .

Proof. If we choose γi ∈ Γi for 1 ≤ i < n, then γi < γi+1 holds true. Then the
inclusion W +

i ⊂ W +
i+1 follows from the dynamical characterization (3.1n) and

Rem. 2.1.2(2). Thus, we have shown (a) and assertion (b) follows accordingly. ut

In the linear case of Thm. 2.2.4 we investigated spectral manifolds constructed
as intersection of a pseudo-stable spectral manifold S with an appropriate
pseudo-unstable one U . These integral manifolds persist in our semilinear sit-
uation. Thereto, we define the subspaces

P
j

i :=
{

(τ,ξ) ∈Rd ×Rd : ξ ∈ R(Qi (τ))∩R(P j−1(τ))
}

,

Q
j
i :=

{
(τ,ξ) ∈Rd ×Rd : ξ ∈ R(Pi (τ))+R(Q j−1(τ))

}
.
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Proposition 3.1.8 (intersection of integral manifolds). We assume that
Hyp. 3.1.1(i)–(ii) is fulfilled. For each 1 ≤ i < n choose reals αi < βi satis-

fying (3.1m) and for 1 ≤ j ≤ i < n define δmax := mink∈{i , j−1}
βk−αk

2 . If the
Lipschitz constant L is sufficiently small, then the nonautonomous set

W
j

i :=
{

(τ,ξ) ∈R×Rd

∣∣∣∣∣ there exists a solution φ :R→Rd of (S)
with φ(τ) = ξ ∈Rd and φ ∈ X +

τ,γ,φ ∈ X −
τ,δ

}

is an integral manifold for (S), which is independent of γ ∈ Γi , δ ∈ Γ j−1 and
possesses the representation as graph

W
j

i =W +
i ∩W −

j−1 =
{

(τ,η+w j
i (τ,η)) ∈R×Rd : (τ,η) ∈P

j
i

}
(3.1w)

of a uniquely determined mapping w j
i :R×Rd →Rd with

w j
i (τ,ξ) = w j

i (τ,P j
i (τ)ξ) ∈Q

j
i (τ) for all (τ,ξ) ∈R×Rd . (3.1x)

Furthermore, it holds:

(a) w j
i :R×Rd →Rd is continuous with w j

i (0,η) ≡ 0 on R,

(b) w j
i (τ, ·) is globally Lipschitz,

(c) under additionally Hyp. 3.1.1(iii), and if the gap conditions

m j
i αi <βi , α j−1 < m j

i β j−1

are fulfilled, then the partial derivatives Dk
1 w j

i (τ, ·) exist, are continuous

and globally bounded up to order m j
i ≤ m,

(d) if the differential equation (S) is T -periodic for some T > 0, then w j
i (·, x0)

is T -periodic for all x0 ∈Rd .

Proof. We only provide a sketch of the proof and omit the technical details. Sup-
pose 1 ≤ j ≤ i < N and subdivide the proof into several steps:

(I) Our Thm. 3.1.4 guarantees the existence of two integral manifolds W +
i and

W −
j−1. For sufficiently small L ≥ 0, one sees from Thm. 3.1.4(a2) and (b2) that the

corresponding functions w+
i and w−

j−1 both satisfy

lip2 w+
i ≤ q < 1, lip2 w j−1 ≤ q < 1

for some q ∈ [0,1). Having this at our disposal, for every τ ∈Rwe define the oper-
ator Tτ :Rd ×Rd ×Rd →Rd ×Rd by

Tτ(x, z; y) :=
(
w+

i (τ, z + y), w−
j−1(τ, x + y)

)
. (3.1y)
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Considering y ∈Rd as a fixed parameter, thanks to the estimate∥∥Tτ(x, z; y)−Tτ(x̄, z̄; y)
∥∥ = max

{∥∥w+
i (τ, z + y)−w+

i (τ, z̄ + y)
∥∥ ,∥∥∥w−

j−1(τ, x + y)−w−
j−1(τ, x̄ + y)

∥∥∥}
≤ q

∥∥(
x − x̄, z − z̄

)∥∥ for all x, x̄, z, z̄ ∈Rd ,

the operator Tτ(·, y) : Rd ×Rd → Rd ×Rd is a uniform contraction in τ ∈ R and
y ∈ Rd . Similarly, we deduce from Thm. 3.1.4(a2) and (b2) that lip3 Tτ < ∞ and
the uniform contraction principle ensures that there exists a unique fixed point
Υi , j (τ, y) = (Υ+

i , j ,Υ−
i , j )(τ, y) ∈Rd ×Rd of Tτ(·, y).

(II) Now we infer the representation (3.1w) of W
j

i as graph of a function w j
i

over P
j

i . From Thm. 3.1.4(a) we know that a point (τ, x0) ∈R×Rd is contained in
W +

i , if and only if there exists a ξ0 ∈ R(Qi (τ)) such that x0 = ξ0 +w+
i (τ,ξ0) and ac-

cordingly Qi (τ)x0 = ξ0 +Qi (τ)w+
i (τ, x0) = ξ0. This yields (τ, x0) ∈W +

i if and only if
x0 =Qi (τ)x0+w+

i (τ,Qi (τ)x0). Analogously from Thm. 3.1.4(b) we have the inclu-
sion (τ, x0) ∈ W −

j−1 if and only if x0 = P j−1(τ)x0 +w−
j−1(τ,P j−1(τ)x0). The unique

decomposition x0 = ξ+η+ ζ into ξ ∈ R(Qi (τ)), η ∈ P
j

i (τ), ζ ∈ R(P j−1(τ) leads to
the equivalence

(τ, x0) ∈W
j

i ⇔ x0 =Qi (τ)x0 +w+
i (τ,Qi (τ)x0) and

x0 = P j−1(τ)x0 +w−
j−1(τ,P j−1(τ)x0)

⇔ ζ= w+
i (τ,ξ+η) and ξ= w−

j−1(τ,η+ζ)

(3.1y)⇔ (ξ,ζ) = Tτ(ξ,ζ;η),

i.e. the pair (ξ,ζ) ∈ R(Qi (τ)) × R(P j−1(τ)) is a fixed point of Tτ(·;η); from the
above step (I) it is uniquely determined by Υi , j (τ,η). As a result, if we define

w j
i (τ, x0) := Υ+

i , j (τ,P j
i (τ)x0)+Υ−

i , j (τ,P j
i (τ)x0) for (τ, x0) ∈ R×Rd , then the repre-

sentation (3.1w) holds. Moreover, by construction one has

w j
i (τ,P j

i (τ)x0) = w j
i (τ, x0) = w+

i (τ, x0)+w−
j−1(τ, x0) ∈Q

j
i (τ).

(a) Since the contraction Tτ(·; y) depends continuously on (τ, y) ∈R×Rd , also
its unique fixed point is continuous in these parameters due to the uniform con-
traction principle.

(b) The mapping Tτ(x, z; ·) fulfills a global Lipschitz estimate. This properties
carries over to the fixed point mappingΥi , j and the claim follows.

(c) Due to Thm. 3.1.4(a3) and (b3) the mapping Tτ is of class C m
j
i . By the uni-

form C m-contraction principle, also the fixed point mapping has this property.
(d) follows directly from Thm. 3.1.4(a4) and (b4). ut
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Corollary 3.1.9 (extended hierarchy of integral manifolds). If we define de-

fine δmax := minn−1
i=1

βi−αi
2 , then one has the extended hierarchy

W 1
1 ⊂ W 1

2 ⊂ . . . ⊂ W 1
n−1 ⊂ R×Rd

∪ ∪ ∪
W 2

2 ⊂ . . . ⊂ W 2
n−1 ⊂ W 2

n
∪ ∪

. . .
...

...
∪ ∪

W n−1
n−1 ⊂ W n−1

n
∪

W n
n .

Remark 3.1.10 (classical hierarchy). We suppose that 0 ∈ Σ(A), say 0 ∈ [ai ,bi ],
and obtain intervals Γi−1 ⊆ (−∞,0), Γi ⊆ (0,∞). This spectral splitting yields the
following integral manifolds:

• W 1
i = W +

i is the global center-stable manifold. Thanks to 0 ≤ bi < γi ∈ Γi it
contains all solutions, which are not growing too fast as t →∞ in the sense of
γ+i -boundedness. In particular, all forward bounded (or periodic or constant)
solutions are contained in W +

i .
• W 1

i−1 =W +
i−1 denotes the global stable manifold. Due to the inclusion γi−1 ∈ Γi−1

with γi−1 < ai ≤ 0 it consists of all solutions decaying exponentially as t →∞,
i.e. being γ+i−1-bounded.

• W i
n =W −

i−1 is the global center-unstable manifold. All solutions of (S) which are
not growing too fast as t →−∞ (in the sense of γ−i−1-boundedness) are included
in the center-unstable manifold. This time, all solutions which are bounded in
backward time (or periodic or constant) lie on W −

i−1.

• The global center manifold W i
i = W +

i ∩W −
i−1 consists of solutions both on the

center-stable and -unstable manifold. Particularly, all bounded (or periodic or
homoclinic/heteroclinic) solutions lie on this integral manifold.

• W i+1
n =W −

i is the global unstable manifold. It consists of all solutions decaying
to 0 exponentially as t →−∞ in the sense of γ−i -boundedness mit 0 ≤ bi < γi .

In the autonomous case, thanks to Thm. 3.1.4(a4), (b4) and Prop. 3.1.8, these inte-
gral manifolds reduce to the classical five invariant manifolds.

Proof. The cases i = 1 and j = n have already been shown in Cor. 3.1.7 in form

of the pseudo-stable and -unstable hierarchy W 1
i = W +

i resp. W
j

n = W −
j−1. We

thus restrict to indices 1 < j ≤ i < n. Above all, we choose growth rates γ ∈ Γi ,

δ ∈ Γ j−1 and point out that the sets W
j

i are dynamically characterized using solu-
tions being both γ+- and δ−-bounded. A growth rate γ̄ ∈ Γi+1 satisfies γ < γ̄ and
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Rem. 2.1.2 yields the inclusion X +
τ,γ ⊆ X +

τ,γ̄ guaranteeing W
j

i ⊂W
j

i+1. Analogously,

for growth rates δ̄ ∈ Γ̄ j−2 one has δ̄< δ, X −
τ,δ ⊆ X −

τ,δ̄
and thus W

j
i ⊂W

j−1
i . ut

Theorem 3.1.11 (asymptotic phase). Assume that Hyp. 3.1.1(i)–(ii) is ful-
filled. For 1 < i < n choose reals αi < βi satisfying (3.1m), define δmax :=
βi−αi

2 and choose γ ∈ Γi . If L is sufficiently small, then the following holds:

(a) The pseudo-unstable integral manifold W −
i from Thm. 3.1.4(b) possesses

an asymptotic forward phase, i.e. there exists a mappingπ+
i :R×Rd →Rd

with the property∣∣ϕ(t ;τ,ξ)−ϕ(t ;τ,π+
i (τ,ξ))

∣∣≤C+
i (|ξ|)eγ(t−τ) for all τ≤ t , (3.1z)

where the function C+
i : [0,∞) → [0,∞) maps bounded sets into bounded

sets. Moreover, π+
i (τ, ·) : Rd → W −

i (τ) is a continuous retraction onto the
τ-fiber W −

i (τ), satisfying ϕ(t ;τ, ·)◦π+
i (τ, ·) =π+

i (t , ·)◦ϕ(t ;τ, ·) for all τ≤ t .
(b) The pseudo-stable integral manifold W +

i from Thm. 3.1.4(a) possesses an

asymptotic backward phase, i.e. there exists a mapping π−
i :R×Rd →Rd

with the property∣∣ϕ(t ;τ,ξ)−ϕ(t ;τ,π−
i (τ,ξ))

∣∣≤C−
i (|ξ|)eγ(t−τ) for all t ≤ τ,

where the function C−
i : [0,∞) → [0,∞) maps bounded sets into bounded

sets. Moreover, π−
i (τ, ·) : Rd → W +

i (τ) is a continuous retraction onto the
τ-fiber W +

i (τ) satisfying ϕ(t ;τ, ·)◦π−
i (τ, ·) =π−

i (t , ·)◦ϕ(t ;τ, ·) for all t ≤ τ.

Proof. The proof is relatively involved and therefore omitted. However, it is based
on the constructions of so-called invariant foliations; for details we refer the in-
terested reader to [AW03]. ut

Exercise 3.1.12. Consider the semilinear differential equation (S) in R2 with

A :=
(
α 0
0 β

)
, F (x) :=

(
0 −ε
ε 0

)
with fixed realsα<β and a parameter ε. Discuss the dynamics of ẋ = Ax+F (x) for
different values of ε and relate it to the spectral gap condition (3.1c).

3.2 Local integral manifolds

In this section, we make the first attempt to weaken the global assumptions in
form of Hyp. 3.1.1(ii)–(iii). Thereto, we consider a general nonautonomous ODE
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ẋ = f (t , x) (O)

with a continuous right-hand side f :R×Rd →Rd being of class C m , m ≥ 1, in the
state space variable with continuous partial derivatives D2 f . For simplicity, we
assume that f is defined on the whole set R×Rd . The general solution is denoted
by ϕ(t ;τ,ξ).

We suppose that (O) has a bounded reference solution φ∗ : R → Rd , which
might be a constant, a periodic or a general bounded solution. We are interested
in the behavior of (O) in the vicinity ofφ∗. In particular, we want to provide a local
description of the stable set corresponding to φ∗,

W +
φ∗ :=

{
(τ,ξ) ∈R×Rd

∣∣∣ lim
t→∞

∣∣ϕ(t ;τ,ξ)−φ∗(t )
∣∣= 0

}
,

as well as of the unstable set corresponding to φ∗,

W −
φ∗ :=

{
(τ,ξ) ∈R×Rd

∣∣∣ lim
t→−∞

∣∣ϕ(t ;τ,ξ)−φ∗(t )
∣∣= 0

}
.

For our differential equation (O) we make the following assumptions:

Hypothesis 3.2.1. Let ρ0 > 0, m,n ∈N and suppose that:

(i) The variational equation

ẋ = D2 f (t ,φ∗(t ))x (V )

has the dichotomy spectrum Σ(φ∗) =⋃n
i=1[ai ,bi ] with 1 ≤ n ≤ d.

(ii) The following limit relation holds uniformly in t ∈R,

lim
x→0

∫ 1

0

[
D2 f (t ,φ∗(t )+hx)−D2 f (t ,φ∗(t ))dh

]= 0. (3.2a)

(iii) The partial derivatives Dk
2 f , 1 ≤ k ≤ m are uniformly bounded, i.e. for each

bounded B ⊆Rd one has supt∈R supx∈B

∣∣Dk
2 f (t , x)

∣∣<∞.

Remark 3.2.2. The condition (3.2a) will guarantee (see below) that a nonlinearity
is of order o(x) as x → 0 uniformly in t ∈ R. This can be seen from the mean value
theorem (see [Lan93, p. 341, Thm. 4.2])

f (t , x +φ∗(t ))− f (t ,φ∗(t ))−D2 f (t ,φ∗(t ))x

=
∫ 1

0

[
D2 f (t , x +hφ∗(t ))−D2 f (t ,φ∗(t ))

]
dh x

Before we formulate our first result, a weaker version of the invariance notion
from Def. 1.3.1 is due, which is tailor-made for the things to come. Given a vector
bundle V ⊆R×Rd and an open neighborhood U ⊆R×Rd of φ∗, we say a graph

W :=
{

(τ,ξ+w(τ,ξ)) ∈R×Rd : ξ ∈ V (τ)∩U (τ)
}
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of a given mapping w : V ∩U →Rd is a local integral manifold of eqn. (O), if

(t0, x0) ∈W ⇒ (t ,ϕ(t ; t0, x0)) ∈W

holds for all t as long asϕ(t ; t0, x0) ∈U (t ). In case U =R×Rd we say W is a global
integral manifold of (O), if the above conditions holds for all t ∈R. One speaks of
a C m-integral manifold of (O), provided the partial derivatives Dn

2 w exist and are
continuous for n ∈ {1, . . . ,m}.

Theorem 3.2.3 (local integral manifolds). Under Hyp. 3.2.1 there exist reals
ρ ∈ (0,ρ0), γ0, . . . ,γm ≥ 0 such that for all 1 ≤ i < n the following holds:

(a) Equation (O) has a local C 1-integral manifold

φ∗+W +
i :=φ∗+

{
(τ,η+w+

i (τ,η)) ∈R×Rd : (τ,η) ∈Bρ(0)
}

with a C 1-mapping w+
i : Bρ(0) → Rd satisfying (3.1q) for all τ ∈ R, ξ ∈

Bρ(0). Moreover, for (τ,ξ) ∈Bρ(0) one has:
(a1) w+

i (τ,0) ≡ 0 on R and
∣∣w+

i (τ,ξ)
∣∣≤ ρ,

(a2) limx→0 D2w+
i (t , x) = 0 uniformly in t ∈R,

(a3) under the gap condition
mαi <βi (3.2b)

holds, then φ∗+W +
i is a C m-integral manifold with∣∣Dn
2 w+

i (τ,ξ)
∣∣≤ γn for all 0 ≤ n ≤ m. (3.2c)

(b) Equation (O) has a local C 1-integral manifold

φ∗+W −
i :=φ∗+

{
(τ,η+w−

i (τ,η)) ∈R×Rd : (τ,η) ∈Bρ(0)
}

with a C 1-mapping w−
i : Bρ(0) → Rd satisfying (3.1s) for all τ ∈ R, ξ ∈

Bρ(0). Moreover, for (τ,ξ) ∈Bρ(0) one has:
(b1) w−

i (τ,0) ≡ 0 on R and
∣∣w−

i (τ,ξ)
∣∣≤ ρ,

(b2) limx→0 D2w−
i (t , x) = 0 uniformly in t ∈R,

(b3) under the gap conditionαi < mβi , thenφ∗+W −
i is a C m-integral man-

ifold with ∣∣Dn
2 w−

i (τ,ξ)
∣∣≤ γn for all 0 ≤ n ≤ m.

(c) One has (φ∗+W +
i )∩ (φ∗+W −

i ) =φ∗.

The pseudo-stable and -unstable manifolds φ∗ +W +
i and φ∗ +W −

i intersect
along the solution φ∗. Moreover, due to D2w±

i (τ,0) ≡ 0 on R, they are tangential
to the invariant vector bundles R(Qi ) resp. R(Pi ).
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1 2 t

ϑ(t )

2− 1
s

Fig. 3.1 The bump function from Lemma 3.2.5

Remark 3.2.4. If both (O) and φ∗ are p-periodic, then the integral manifolds W ±
i

are also p-periodic. In particular, for autonomous eqns. (O) and constant solutions
φ∗ the fibers are constant and one calls W +

i (τ) or W −
i (τ) an invariant manifold.

Before we can tackle the proof of Thm. 3.2.3, some preparations on smooth
extensions of functions are due. They address bump functions and provide a kind
of optimality in their Lipschitz constant (cf. Fig. 3.1).

Lemma 3.2.5 (bump functions). For every real s > 1 there exists a function ϑ ∈
C∞(R) such that ϑ(t ) ≡ 1 on (−∞,1], ϑ(t ) ∈ [0,1] for t ∈ [1,2], ϑ(t ) ≡ 0 on [2,∞)
and Dϑ(t ) ∈ [−s,0] for t ∈R, as well as tϑ(t ) ∈ [0, s] for all t ≥ 0.

Proof. For reals r > 0 consider the bump function ωr :R→R,

ωr (t ) :=
{

exp
(− r

1−4t 2

)
for |t | < 1

2 ,
0 for |t | ≥ 1

2

of class C∞ (cf. [AMR88, p. 94]). Then ϑr : R → R, ϑr (t ) := ∫ t
−∞ωr /

∫ ∞
−∞ωr is

an increasing C∞-function with ϑr (t ) = 0 for t ≤ − 1
2 , ϑr (t ) = 1 for t ≥ 1

2 and
the derivative Dϑr (t ) = ωr (t )/

∫ ∞
−∞ωr . From the properties of ωr we see that

mint∈RDϑr (t ) = 0 and m(r ) := maxt∈RDϑr (t ) = exp(−r )/
∫ ∞
−∞ωr . It is not diffi-

cult to prove that m : (0,∞) → R is a strictly increasing continuous function with
limr↘0 m(r ) = 1. Thus, for every s > 1 there exists a r∗ > 0 such that m(r∗) ≤ s,
and therefore Dϑr∗ (t ) ∈ [0, s] for all t ∈ R. In conclusion, the function ϑ given by
ϑ(t ) :=ϑr∗ ( 3

2 − t ) satisfies the assertions.
Yet, it remains the establish the final estimate. By construction, the minimal

slope ofϑ is greater or equal than−s. Due toϑ(2) = 0, this yieldsϑ(t ) ≤−s(t−2) for
all t ∈ [

2− 1
s ,2

]
(see Fig. 3.1). Thus, it is tϑ(t ) = st (2− t ) ≤ 2− 1

s for all t ∈ [
2− 1

s ,2
]

and since also tϑ(t ) ≤ t ≤ 2− 1
s holds for t ∈ [

0,2− 1
s

]
, we have deduced the desired

inequality tϑ(t ) ≤ 2− 1
s for all t ≥ 0. Having this at hand, the elementary estimate

2− 1
s ≤ s, s > 1, yields our claim. ut



3.2 Local integral manifolds 61

Proposition 3.2.6 (cut-off functions). For all reals ρ > 0 and s > 1 there ex-
ists a C m-function χρ : Rd → R such that χρ(x) ≡ 1 for |x| ≤ ρ, χρ(x) ∈ (0,1)
for |x| ∈ (

ρ,2ρ
)
, χρ(x) ≡ 0 for |x| ≥ 2 and

∣∣Dχρ(x)
∣∣ ≤ s

ρ , as well as the inclu-

sion xχρ(x) ∈ B̄sρ(0) for all x ∈Rd .

Proof. Given ρ > 0 we define χρ :Rd →R by χρ(x) :=ϑ( |x|
ρ

)
with a bump function

ϑ from Lemma 3.2.5. In a neighborhood of 0 we have χρ(x) ≡ 1. Outside this set,
by assumption, χρ is the composition of C m-mappings and therefore of class C m .
The bound for the derivative follows from the chain rule yielding∣∣Dχρ(x)

∣∣≤ 1
ρ

∣∣∣Dϑ( |x|
ρ

)∣∣∣ ∣∣∣Dn
( |x|
ρ

)∣∣∣≤ s
ρ for all x ∈Rd

using Lemma 3.2.5. It is a consequence of the final estimate in Lemma 3.2.5 that∣∣χρ(x)x
∣∣= ρϑ(

|x|
ρ

)
|x|
ρ ≤ ρs for all x ∈Rd holds and we are done. ut

Proposition 3.2.7 (C m-extension). If F : R×Rd → Rd is a C m-mapping in
the second variable with

`(r ) := lip2 F |Br (0) <∞ for all r > 0,

then for every s > 1 and ρ > 0 there exists a C m-mapping Fρ : R×Rd → Rd

with the following properties:

(a) Fρ(t , x) = F (t , x) for all t ∈R, x ∈ Bρ(0),
(b) one has the global Lipschitz estimate

lip2 Fρ ≤ (1+2s)`(ρ),

(c) if the derivatives Dn
2 F , n ∈ {0, . . . ,m}, are uniformly bounded, then the

same holds for Fρ .

Proof. For a given s > 1 choose ρ > 0. We define the modification Fρ :R×Rd →Rd

by Fρ(t , y) := F (t ,χρ(x)x), which is of class C m in the second argument and sat-
isfies assertions (a) and (c). In order to establish the remaining claim (b), we
consider the C m-function θρ : Rd → Rd , θρ(x) := χρ(x)x. By the product rule
(cf. [Lan93, p. 336]), Prop. 3.2.6 and Lemma 3.2.5 one has the estimate∣∣Dθρ(x)

∣∣≤ ∣∣Dχρ(x)x
∣∣+ ∣∣χρ(x)

∣∣≤ s
ρ
|x|+

∣∣χρ(x)
∣∣≤ 2s +1 for all x ∈Rd

and thus lipθρ ≤ 2s+1 by the mean value inequality (cf. [Lan93, p. 342, Cor. 4.3]).
For all t ∈R, x, x̄ ∈Rd this yields the Lipschitz estimate
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∣∣≤ `1(sρ)

∣∣θρ(x)−θρ(x̄)
∣∣≤ (1+2s)`1(sρ) |x − x̄| .

ut
We introduce the equation of perturbed motion

ẋ = f (t , x +φ∗(t ))− f (t ,φ∗(t )) (P)

and observe that it has the trivial solution. Note that the behavior of (O) near φ∗

is the same as the behavior of (P) near 0. Moreover, we point out that even if (O)
does not depend on time, then (P) is still nonautonomous as long as φ∗ varies in
time. This emphasizes the role our nonautonomous theory even in the classical
field of autonomous dynamical systems. An equivalent representation of (P) is

ẋ = A(t )x +F (t , x) (3.2d)

with the functions A :R→Rd×d and F :R×Rd →Rd given by

A(t ) := D2 f (t ,φ∗(t )), F (t , x) := f (t , x +φ∗(t ))− f (t ,φ∗(t ))−D2 f (t ,φ∗(t ))x.

Proof of Thm. 3.2.3. Let ρ > 0. Above all, we use Prop. 3.2.7 in order to obtain a
C m-smooth modification Fρ . Due to (3.2a) one has the limit relation

lim
x→0

|D2F (t , x)| = 0 uniformly in t ∈R

and hence limr↘0 lip2 F |Br (0) = 0. For ρ > 0 sufficiently small, by Prop. 3.2.7(b), we
can make also lip2 Fρ as small as we want. Then the modified equation

ẋ = A(t )x +Fρ(t , x) (3.2e)

satisfies the assumptions of Thm. 3.1.4. Thus, there exist global integral manifolds
W̃ ±

i given as graph of a mapping w̃±
i over vector bundles R(Pi ) resp. R(Qi ). Then

the mappings w±
i := w̃±

i |Bρ (0) fulfill the assertions claimed in Thm. 3.2.3. ut
The following example shows that the gap condition (3.2b) is sharp, i.e. the

integral manifold W +
i from Thm. 3.2.3(a) is not of class C m in general, even if f is

a C∞-function.

Example 3.2.8. Given an integer m ≥ 2, let us consider the planar autonomous
differential equation {

ẋ=x
ẏ =my +xm , (3.2f)

with the trivial solution φ∗ = 0. It fulfills the assumptions of Thm. 3.2.3(a) in form
of the dichotomy spectrum Σ(φ∗) = {1,m}. Consequently, there exists an integral
manifold W +

1 ⊆ R×R2 given as graph of a function w+
1 : Bρ(0) → R2 for some

ρ > 0. On the other hand, for every γ ∈R the sets

Wγ :=
{

(ξ,η) ∈ Bρ(0) \ {0} : η= ξm

2 lnξ2 +γξm
}
∪ {0}
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Fig. 3.2 Graphs of the functions wγ from Exam. 3.2.13

contain the origin and are (locally) forward invariant w.r.t. (3.2f), i.e. R×Wγ is a
forward invariant integral manifold. Additionally, each pair (ξ,η) ∈ Bρ(0), ξ 6= 0, is

contained in exactly one of the sets Wγ, namely for γ= η
ξm − lnξ2

2 . Thus, the integral

manifold W +
1 from Thm. 3.2.3(a) has the formR×Wγ∗ for some γ∗ ∈R (see Fig. 3.2).

Every fiber Wγ is graph of a C m−1-function wγ(ξ) = η, but wγ fails to be m-times
continuously differentiable. Note that in the present example the gap condition
α1 < msβ1 is only fulfilled for 1 ≤ ms < m.

Corollary 3.2.9 (invariance equation). The mappings w±
i satisfy the invari-

ance equations

A(τ)w+
i (τ,ξ)+Pi (τ)F (τ,ξ+w+

i (τ,ξ))

= D2w+
i (τ,ξ)

(
A(τ)ξ+Qi (τ)F (τ,ξ+w+

i (τ,ξ))
)+D1w+

i (τ,ξ)

for all τ ∈R, ξ ∈ Bρ(0)∩R(Qi (τ)) and

A(τ)w−
i (τ,ξ)+Qi (τ)F (τ,ξ+w−

i (τ,ξ))

= D2w−
i (τ,ξ)

(
A(τ)ξ+Pi (τ)F (τ,ξ+w−

i (τ,ξ))
)+D1w−

i (τ,ξ)

for all τ ∈R, ξ ∈ Bρ(0)∩R(Pi (τ)).

Proof. See Ex. 3.2.18 ut
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Wu ⊂ Wcu ⊂ R×Rd

∪ ∪
Wc ⊂ Wcs

∪
Ws

W cs

Wcu

Wc

Ws

Wu

Fig. 3.3 Classical hierarchy of invariant manifolds (left) and classical invariant manifolds Wcs

(dotted), Wcu (dashed) and Wu ,Ws ,Wc (right)

Proposition 3.2.10 (local center manifolds). Let m ∈ N and assume that
Hyp. 3.2.1 are satisfied. If (i , j ) is a pair satisfying 1 ≤ j ≤ i < n, then there
exists a ρ ∈ (0,ρ0) such that the intersection

φ∗+W
j

i :=φ∗+W +
i ∩W −

j−1

is a local C 1-integral manifold of (O), representable as graph

W
j

i =
{

(τ,η+w j
i (τ,η)) ∈R×Rd : (τ,η) ∈Bρ(0)

}
of a C 1-mapping w j

i : Bρ(0) →Rd satisfying (3.1x) for all (τ,ξ) ∈Bρ(0). Fur-
thermore, for all (τ,ξ) ∈Bρ(0) it holds:

(a) w j
i (τ,0) = 0 on R and

∣∣∣w j
i (τ,ξ)

∣∣∣≤ ρ for all (τ,ξ) ∈Bρ(0),

(b) limx→0 D2w j
i (t , x) = 0 uniformly in t ∈R,

(c) if additionally the gap conditions m j
i α

m
i < βi and α j−1 < m j

i β j−1 hold,

then φ∗+W
j

i is a local C m
j
i -integral manifold.

Remark 3.2.11 (classical hierarchy). For equations (O) with 0 ∈ Σ(φ∗), for exam-
ple 0 ∈ [ai ,bi ], we get the following classical integral manifolds associated to φ∗:

• Stable manifold φ∗+Ws =φ∗+W 1
i−1

• Center-stable manifold φ∗+Wcs =φ∗+W 1
i

• Center-unstable manifold φ∗+Wcu =φ∗+W i
n
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• Unstable manifold φ∗+Wu =φ∗+W i+1
n

• Center manifold φ∗+Wc :=φ∗+W i
i

These integral manifolds form the classical hierarchy depicted in Fig. 3.3, and Ws ,
Wu inherit their smoothness from (O). As long as solutions stay in the nonautono-
mous set φ∗+Bρ(0) one can describe them asymptotically as in Rem. 3.1.10.

Remark 3.2.12. For a p-periodic eqn. (O) and solutions φ∗ the integral manifolds

W
j

i are also p-periodic. In particular, for autonomous eqns. (O) and constant φ∗

one speaks of invariant manifolds and the above classical special cases are denoted
as stable, center-stable, center-unstable, unstable resp. center manifold.

Proof. The argument is parallel to Thm. 3.2.3 and we omit further details. ut

Next we illustrate that the center-unstable manifolds as postulated above in
Thm. 3.2.3 need not to be uniquely determined.

Example 3.2.13. The 2-dimensional autonomous equation{
ẋ =−x,

ẏ = y2,
(3.2g)

with the trivial solutionφ∗ = 0 fulfills the assumptions of Thm. 3.2.3(b); the dicho-
tomy spectrum reads as Σ(φ∗) = {−1,0}. For every γ ∈R it is easy to verify that

Wγ := {
(τ,ξ,η) ∈R×R× (−∞,1) : ξ= γe1/η for η< 0 and ξ= 0 for η≥ 0

}
is a local integral manifold of (3.2g) in the sense that Wγ is a locally invariant
graph containing the zero solution and being tangential.

We continue with an asymptotic description of the stable and center-stable
manifolds, as well as of their unstable counterparts.

Corollary 3.2.14. Under Hyp. 3.2.1 the following holds:

(a1) If φ−φ∗ decays exponentially in forward time, then there exists a t0 ∈ R
such that (t ,φ(t )) ∈φ∗+Ws for all t ≥ t0,

(a2) there exists a ρ1 ∈ (0,ρ) such that every forward solution of (O) starting in
φ∗+ (Ws ∩Bρ1 (0)) decays exponentially to φ∗ in forward time.

(b1) If φ−φ∗ decays exponentially in backward time, then there exists a t0 ∈R
so that (t ,φ(t )) ∈φ∗+Wu for all t ≤ t0,

(b2) there exists a ρ1 ∈ (0,ρ) such that every backward solution of (O) starting
in φ∗+ (Wu ∩Bρ1 (0)) decays exponentially to φ∗ in backward time.

Proof. By passing over to the equation of perturbed equation (P) we can assume
that φ∗ is the trivial solution of (O).
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(a) We choose 1 ≤ i < n with with bi < 0 ≤ ai+1 and growth rates α,β with

bi <α<β< ai+1,
α+β

2
< 0.

Thus, as in the proof of Thm. 3.2.3(a) there exists a global integral manifold W̃ +

of (3.2e), consisting of forward solutions to (3.2e) in X +
τ,γ with γ< α+β

2 .
(a1) Since the solution φ is exponentially decaying, there exists a δ < 0 such

that φ ∈ X +
τ,δ, τ ∈ R; by an appropriate choice of α,β one has δ ≤ γ. Thus, there

exists an entry time t0 ∈Rwithφ(t ) ∈ Bρ(0) for t ≥ t0. Because the stable manifold
Ws of (O) and W̃ + coincide on Bρ(0), one has (t ,φ(t )) ∈Ws for all t ≥ t0.

(a2) Every initial pair (τ,ξ) ∈Ws∩Bρ(0) is contained in an integral manifold W̃ +

of the modified eqn. (3.2e) and moreover yields a γ+-bounded solution ϕ̃(·;τ,ξ)
of (3.2e). Due to γ < 0 this solution decays exponentially in forward time. Ac-
cordingly, for sufficiently small ρ1 ∈ (0,ρ) one has (t ,ϕ̃(t ;τ,ξ)) ∈ Ws ∩Bρ(0) and
ϕ̃(·;τ,ξ) coincides with a solution of (O) starting in (τ,ξ).

(b) can be shown analogously. ut

Corollary 3.2.15. Under Hyp. 3.2.1 the following holds: If there exists a t0 ∈R
with (t ,φ(t )) ∈Bρ(φ∗) for all

(a) t0 ≤ t , then (t ,φ(t )) ∈φ∗+Wcs for all t0 ≤ t ,
(b) t ≤ t0, then (t ,φ(t )) ∈φ∗+Wcu for all t ≤ t0.

Proof. W.l.o.g. we again suppose that φ∗ is the trivial solution of (O).
(a) First, choose 1 ≤ i < m minimal with 0 ≤ bi and growth rates α,β such that

bi <α<β< ai+1. The proof of Thm. 3.2.3(a) guarantees an integral manifold W̃ +

of the modified system (3.2e). We know that W̃ + consists ofγ+-bounded solutions
for some 0 ≤ γ. If a solution φ : [τ,∞) →Rd of (O) stays in Bρ(0) for all t ≥ t0, then
it also solves (3.2e) and is γ+-bounded. Hence, the solution is contained in W̃ +

for t ≥ t0 and therefore on Wcs = W̃ +∩Bρ(0).
(b) One proceeds analogously. ut
In the remaining, we discuss a canonical application of local integral mani-

folds to stability theory. The simplest situation is given for solutions φ∗ with a
hyperbolic variational equation (V ) with associated dichotomy spectrum Σ(φ∗).

Theorem 3.2.16 (principle of linearized stability). Under Hyp. 3.2.1 the fol-
lowing holds:

(a) If Σ(φ∗) ⊆ (−∞,0), then φ∗ is uniformly asymptotically stable.
(b) If there exists a spectral interval [ai ,bi ] of Σ(φ∗) with 0 < ai , then the so-

lution φ∗ is unstable.
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Proof. W.l.o.g. we can restrict to the equation of perturbed motion (P) in its semi-
linear form (3.2d).

(a) Thanks to our assumption Σ(φ∗) ⊆ (−∞,0) there exist K ≥ 1 and α> 0 such
that the transition operator of (V ) fulfills

|Φ(t , s)| ≤ K e−α(t−s) for all s ≤ t . (3.2h)

Rather than (3.2d) we consider the modified equation

ẋ = A(t )x +Fρ(t , x) (3.2i)

and choose ρ > 0 so small that lip2 Fρ ≤ α
K . Given τ ∈R, ξ ∈Rd the general solution

ϕ̃ of (3.2i) also solves the linear inhomogeneous equation

ẋ = A(t )x +Fρ(t ,ϕ̃(t ;τ,ξ))

and using the variation of constants formula we arrive at

ϕ̃(t ;τ,ξ) =Φ(t ,τ)ξ+
∫ t

τ
Φ(t , s)Fρ(s,ϕ̃(s;τ,ξ))d s for all τ≤ t

Using the estimate (3.2h) this implies

∣∣ϕ̃(t ;τ,ξ)
∣∣ ≤ |Φ(t ,τ)| |ξ|+

∫ t

τ
|Φ(t , s)|

∣∣Fρ(s,ϕ̃(s;τ,ξ))−Fρ(s,0)
∣∣ d s

(3.2h)≤ K e−α(t−τ) |ξ|+K
∫ t

τ
e−α(t−s) ∣∣Fρ(s,ϕ̃(s;τ,ξ))−Fρ(s,0)

∣∣ d s

≤ K e−α(t−τ) |ξ|+K lip2 Fρ
∫ t

τ
e−α(t−s) ∣∣ϕ̃(s;τ,ξ)

∣∣ d s

and consequently

∣∣ϕ̃(t ;τ,ξ)
∣∣eα(t−τ) ≤ K |ξ|+K lip2 Fρ

∫ t

τ

∣∣ϕ̃(s;τ,ξ)
∣∣eα(s−τ) d s for all τ≤ t .

Now the Gronwall inequality applies and leads to∣∣ϕ̃(t ;τ,ξ)
∣∣≤ K |ξ|e(K lip2 Fρ−α)(t−τ) for all τ≤ t ;

our assumptions on ρ yield K lip2 Fρ −α < 0. Hence, the trivial solution to (3.2i)
is uniformly asymptotically stable. Since the general solutions of (3.2i) and (3.2d)
coincide on Bρ(0), the solution φ∗ of (O) inherits this property.

(b) Our assumptions guarantee that the trivial solution to (P) admits an unsta-
ble integral manifold. It contains all solutions leaving a sufficiently small neigh-
borhood of 0 in forward time. ut

In absence of an unstable integral manifold, the above principle of linearized
stability yields (exponential) stability of φ∗. Conversely, if there is an unstable
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manifold, one obtains the instability of φ∗. Between these two cases is the situ-
ation of a nonhyperbolic variational equation (V ), where a center-unstable inte-
gral manifold Wcu exists. Then stability properties are determined by the behavior
on Wcu and therefore by a lower-dimensional equation (O) reduced to φ∗+Wcu :

Theorem 3.2.17 (reduction principle). Suppose Hyp. 3.2.1 is satisfied and
choose 1 ≤ i < n with bi < 0. The solution φ∗ of (O) is stable (uniformly
stable, asymptotically stable, uniformly asymptotically stable, exponentially
stable, or unstable), if and only if the zero solution of the reduced equation

ẏ = A(t )y +Pi (t )F (t , y +w−
i (t , y)) (3.2j)

in R(Pi ) has the respective stability property.

Proof. First, we can restrict to the equation of perturbed motion (P).
Our assumptions guarantee that one can choose γ ∈ Γi with γ≤ 0. In addition,

there exists a pseudo-unstable integral manifold W −
i associated to the trivial solu-

tion of (P); it is graph of a function w−
i defined on a neighborhood Bρ(0) in R(Pi ).

By construction (cf. the proof of Thm. 3.2.3(b)), W −
i is the restriction of global in-

tegral manifold W̃ −
i for the modified eqn. (3.2e) as in the proof of Thm. 3.2.3,

which is graph of a mapping w̃−
i and w−

i = w̃−
i |Bρ (0) with

w̃−
i (t ,0) ≡ 0 on R, lip2 w̃+

i = `<∞. (3.2k)

Thanks to Thm. 3.1.11(a) the integral manifold W −
i has an asymptotic forward

phase π+
i satisfying (3.1z). More precisely, with the constant C+

i (|ξ|) > 0 occurring
in (3.1z) one has

C+
i (|ξ|) =C1 |ξ| ,

∣∣Qi (τ)π+
i (τ,ξ)

∣∣≤C2 |ξ| for all τ ∈R, ξ ∈Rd (3.2l)

with some reals C1,C2 > 0.
(⇒) The reduced eqn. (3.2j) describes the dynamics of (P) on the locally in-

variant pseudo-unstable integral manifold W −
i . This local invariance yields that

stability properties of the zero solution for (P) carry over to (3.2j).
(⇐) Conversely, if the zero solution of the reduced eqn. (3.2j) is unstable, then

by invariance of W −
i , also the zero solution of (P) is unstable.

Now, let ε> 0, τ ∈ R be given. We suppose the zero solution of (3.2j) is stable, i.e.
there exists a δ ∈ (

0,ρ
)

so that∣∣φ0(t )
∣∣< ε

2(1+`)
for all t ≥ τ (3.2m)

and any solution φ0 : [τ,∞) → Rd of (3.2j) with φ0(τ) ∈ Bδ(0)∩R(Pi )(τ). In the
following, let φ : [τ,∞) →Rd be an arbitrary solution of (P) with
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∣∣φ(τ)
∣∣< min

{
ε

3C1
,
δ

2C2

}
,

Due to the asymptotic forward phase from Thm. 3.1.11(a), we establish that there
exists a corresponding solution φ̃0 : [τ,∞) →Rd of the global equation

ẏ = A(t )y +Pi (t )Fρ(t , y +w−
i (t , y))

(cf. (3.2j)) in the pseudo-unstable vector bundle R(Pi ) with

∣∣ϕ̃(t ;τ,φ(τ))− ϕ̃(
t ;τ, φ̃0(τ)+ w̃−

i (τ, φ̃0(τ))
)∣∣ (3.1z)≤ C1

∣∣φ(τ)
∣∣eγ(t−τ) for all τ≤ t ,

where ϕ̃ is the general solution of (3.2e). We have from Thm. 3.1.11(a),

∣∣φ̃0(τ)
∣∣= ∣∣Qi (τ)π+

i (τ,φ(τ))
∣∣ (3.2l)≤ C2

∣∣φ(τ)
∣∣< δ

and thus (3.2m) gives us
∣∣φ̃0(t )

∣∣ < ε

2
(
1+ ˜̀−

i (c)
) for all t ≥ τ. But this yields (note

eγ(t−τ) ≤ 1 for τ≤ t ) with the triangle inequality and Thm. 3.1.4(b2),∣∣ϕ̃(t ;τ,φ(τ))
∣∣ ≤

∣∣ϕ̃(t ;τ,φ(τ))− ϕ̃(
t ;τ,π+

i (τ,φ(τ))
)∣∣+ ∣∣ϕ̃(

t ;τ,π+
i (τ,φ(τ))

)∣∣
≤ C1

∣∣φ(τ)
∣∣eγ(t−τ) +

∣∣φ̃0(t )+ w̃−
i (t , φ̃0(t ))

∣∣
(3.2k)≤ C1

∣∣φ(τ)
∣∣+ (1+`)

∣∣φ̃0(t )
∣∣< ε for all τ≤ t

and 0 is a stable solution of (3.2e). However, since (O) and (3.2e) coincide on the
ball Bρ(0), and due to ϕ̃(t ;τ,φ(τ)) ∈ Bρ(0) for all τ≤ t , it is φ= ϕ̃(·;τ,φ(τ)). Thus,
the zero solution is also stable w.r.t. (P). Keeping in mind that W −

i is uniformly
exponentially attracting (cf. (3.1z)) with constants independent of τ ∈R, a similar
reasoning gives us the assertion on the remaining stability properties. ut

Exercise 3.2.18. Prove Cor. 3.2.9.
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