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ABSTRACT. In order to determine the dynamics of nonautonomous equations
both their forward and pullback behavior need to be understood. For this reason
we provide sufficient criteria for the existence of such attracting invariant sets
in a general setting of nonautonomous difference equations in metric spaces. In
addition it is shown that both forward and pullback attractors, as well as forward
limit sets persist and that the latter two notions even converge under perturba-
tion. As concrete application, we study integrodifference equation under spatial
discretization of collocation type.

1. INTRODUCTION

1.1. Perturbation of attractors. Obtaining a precise insight into the structure of
a global attractor can be seen as the holy grail in the field of dissipative dynamical
systems. This compact, invariant set attracting each bounded subset of the state
space contains all equilibria, periodic solutions, homo- or heteroclinic connections
and overall the essential dynamics. In general the structure of a global attractor can
be rather complex and therefore it is no surprise that such objects behave sensitively
w.r.t. perturbations and parameter variations [11]. However, under mild conditions
global attractors are upper-semicontinuous in parameters. Criteria for lower semi-
continuity and hence for full continuity in the Hausdorff metric are much harder
to prove and often involve conditions being difficult to verify. Nevertheless it was
shown in [16] that global attractors are at least continuous on a residual subset of
the parameter space.

For nonautonomous dynamical systems [3, 5, 25, 28] the range of possible long
term behaviors, as well as the theory of attractors is understandably more involved.
For instance, in order to obtain a full picture of the dynamics it might be neces-
sary to consider different attractor concepts simultaneously. Although the notion
of a pullback attractor shares several properties of the global attractor it is easy
to construct systems with totally different forward dynamics but sharing the same
pullback attractor [24]. This deficit stimulated the development of forward attrac-
tors [23]. While a perturbation theory for pullback attractors can be found in [3, 5]
and their continuity on a residual set is due to [17], related results for forward
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attractors are sparse, which might be due to their nonuniqueness and recent ori-
gin. An exception is [27] addressing the upper-semicontinuity of forward limit sets
under time discretizations of finite-dimensional nonautonomous ODEs.

Indeed, particularly important classes of perturbations originate in numerical
analysis, when an equation generating a dynamical system is discretized. It actually
is a key topic in Numerical Dynamics [37] to determine how attractors behave
under discretization. This research was initiated in [21] for temporal discretizations
of autonomous ODEs in Rd, extensions to pullback attractors of nonautonomous
ODEs can be found in [6], and related results for semiflows generated by PDEs are
due to [12, 22] and [36].

Forward attractors and limit sets of discrete time nonautonomous dynamical
systems in infinite dimensions were constructed and studied in [18] providing a
theoretical foundation. As a continuation, this paper addresses the persistence of
forward attractors and establishes the upper-semicontinuity of forward limit sets
under perturbations. Remaining in the setting of [18] our criteria are formulated
for abstract difference equations in metric spaces. We believe that they apply to a
wide range of evolutionary equations and their spatial discretizations. Neverthe-
less, although convergence under perturbation is proven, at this level of generality
we are not able to establish a particular convergence rate without imposing further
assumptions.

1.2. Integrodifference equations and spatial discretization. As concrete appli-
cation serve nonautonomous integrodifference equations (short IDEs)

ut+1 =

∫
Ω
ft(·, y, ut(y)) dy (I0)

(see Sect. 3). Such recursions in infinite-dimensional spaces originally stem from
population genetics but gained popularity as models for the dispersal of species in
theoretical ecology over the last decades [29, 30]. Recently also nonautonomous
models were studied in [4, 19], which clearly motivates our general approach.

The several approaches to spatially discretize IDEs are based on related tech-
niques for nonlinear integral equations [1]. Among them, in Sect. 3 we focus
on collocation methods approximating continuous functions on a compact habi-
tat. As concrete collocation spaces we exemplify splines of different order. In
this framework we provide conditions that pullback and forward attractors, as well
as forward limit sets persist under collocation, and establish convergence of pull-
back attractors and forward limit sets for increasingly more accurate discretiza-
tions. Convergence rates could not be derived using our proof techniques, but we
experimentally demonstrate in Sect. 4 that quadratic convergence under piecewise
linear collocation is preserved. We close with a construction of forward limit sets
for asymptotically autonomous spatial Ricker equations.

1.3. Notation. Let R+ := [0,∞). A discrete interval I is the intersection of a real
interval with the integers Z, I′ := {t ∈ I : t+ 1 ∈ I} and in particular

I+τ := {t ∈ I : τ ≤ t} , I−τ := {t ∈ I : t ≤ τ} for τ ∈ Z,

as well as N0 := {0, 1, 2, . . .}.
On a given metric space (X, d), A denotes the closure of a subset A ⊆ X ,

Br(x) := {y ∈ X : d(x, y) < r} is the open ball with center x ∈ X and radius
r > 0, and B̄r(x) its closure. We write distA(x) := infa∈A d(x, a) for the distance
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of a point x ∈ X to a subset A ⊆ X and Br(A) := {x ∈ X : distA(x) < r} for
its r-neighborhood. The Hausdorff semidistance of bounded and closed subsets
A,B ⊆ X is defined as

dist (A,B) := sup
a∈A

distB(a),

and, with a further closed and bounded subset C ⊆ X , one has the properties

dist (A,B) ≤ dist (A,C) + dist (C,B) . (1.1)

A mapping F : X → X is called bounded, if it maps bounded subsets of X into
bounded sets and globally bounded, if F(X) is bounded. A completely continuous
map F is continuous and maps bounded sets into relatively compact sets.

Beyond this general terminology, we need to introduce terms commonly used in
the area of nonautonomous dynamics [25]: A subset A ⊆ I × X with nonempty
fibers A(t) := {x ∈ X : (t, x) ∈ A}, t ∈ I, is called nonautonomous set. A
nonautonomous set A is said to have some topological property if each fiber A(t),
t ∈ I, has this property. Furthermore, one speaks of a bounded nonautonomous set
A, if there exists real R > 0 and a point x0 ∈ X such that A(t) ⊆ BR(x0) holds
for all t ∈ I. If I is unbounded above, then we define

lim sup
t→∞

A(t) :=
⋂
τ∈I

⋃
τ≤t
A(t).

2. NONAUTONOMOUS DIFFERENCE EQUATIONS AND ATTRACTORS

Let (X, d) be a complete metric space and Ut 6= ∅, t ∈ I′, be closed subsets of
X . We consider nonautonomous difference equations

ut+1 = Ft(ut) (∆)

having continuous right-hand sides Ft : Ut → X , t ∈ I′.
Given an initial time τ ∈ I, a forward solution (φt)τ≤t to (∆) is a sequence

satisfying φt ∈ Ut and φt+1 = Ft(φt) for all τ ≤ t, t ∈ I′, whilst an entire solution
(φt)t∈I meets the same identity for all t ∈ I′. The general solution ϕ(·; τ, uτ ) of
(∆) is the unique forward solution starting at τ ∈ I in the initial state uτ ∈ Uτ , i.e.

ϕ(t; τ, uτ ) :=

{
Ft−1 ◦ . . . ◦ Fτ (uτ ), τ < t,

uτ , τ = t,
(2.1)

as long as the iterates stay in Ut.
From now on, assume that Ft(Ut) ⊆ Ut+1 holds for all t ∈ I′ and abbreviate

U := {(t, u) ∈ I×X : u ∈ Ut} .

Then ϕ satisfies the process (or two-parameter semi-group) property

ϕ(t; s, ϕ(s; τ, u)) = ϕ(t; τ, u) for all τ ≤ s ≤ t, u ∈ Uτ .

A nonautonomous set A ⊆ U is said to be positively or negatively invariant, if

Ft (A(t)) ⊆ A(t+ 1), A(t+ 1) ⊆ Ft (A(t)) for all t ∈ I′

holds, respectively. Accordingly, an invariant set A is both positively and nega-
tively invariant, that is Ft (A(t)) = A(t+ 1) for all t ∈ I′.
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A bounded nonautonomous setA ⊆ U is called absorbing, if for each τ ∈ I and
bounded B ⊆ U , there is an absorption time T = T (τ,B) ∈ N such that

ϕ(t; τ,B(τ)) ⊆ A(t) for all t, τ ∈ I, t− τ ≥ T.
In addition, for pullback and forward absorbing sets, the present time t and the
initial time τ work similarly to those in the properties of pullback and forward at-
traction (one notion of time is fixed and the other tends to infinity or minus infinity,
cf. [25, pp. 44–45, Def. 3.3]).

2.1. Pullback attractors. Let a discrete interval I be unbounded below. A pull-
back attractor A∗ ⊆ U of (∆) is a compact and invariant nonautonomous set,
which pullback attracts bounded sets B ⊆ U , i.e.

lim
s→∞

dist (ϕ(τ ; τ − s,B(τ − s)),A∗(τ)) = 0 for all τ ∈ I.

With comprehensive information on pullback attractors given in [3, 5, 25, 33],
our existence condition for pullback attractors is based on the following notion:
A difference equation (∆) is called pullback asymptotically compact, if for every
τ ∈ I, every sequence (sk)k∈N in N with sk → ∞ as k → ∞ and every bounded
sequence (ak)k∈N with ak ∈ U(τ − sk), the sequence (ϕ(τ ; τ − sk, ak))k∈N in
U(τ) has a convergent subsequence.

Theorem 2.1 (Existence of pullback attractors, cf. [33, p. 19, Thm. 1.3.9]). Sup-
pose a difference equation (∆) has a pullback absorbing set A. If (∆) is pullback
asymptotically compact, then it possesses a unique pullback attractor A∗ ⊆ A.

The importance of pullback attractors is due to their following dynamical char-
acterization (see [33, p. 17, Cor. 1.3.4])

A∗ =

{
(t, u) ∈ U :

there exists a bounded entire
solution φ to (∆) with φτ = u

}
(2.2)

motivating that pullback attractors are a suitable nonautonomous extension of global
attractors [3, p. 20, Thm. 1.9] of autonomous difference equations.

2.2. Forward dynamics. On a discrete interval I unbounded above, we assume
the right-hand sides Ft : U → U , t ∈ I, of (∆) act on and map into a common
closed subset U 6= ∅ of X . A forward attractor A+ ⊆ U of (∆) is a compact and
invariant nonautonomous set, which forward attracts bounded sets B ⊆ U , i.e.

lim
s→∞

dist
(
ϕ(τ + s; τ,B(τ)),A+(τ + s)

)
= 0 for all τ ∈ I.

In contrast to pullback attractors A∗, forward attractors A+ need not to be unique
(cf. [26, Sect. 4]) and further properties are given in [7, 18, 23, 25, 26]. Not surpris-
ingly, the existence of forward attractors is based on suitable compactness proper-
ties. For nonautonomous sets A ⊆ U , a difference equation (∆) is called

• A-asymptotically compact, if there exists a nonempty, compact set K ⊆ U
such that K forward attracts A(τ), i.e.,

lim
s→∞

dist (ϕ(τ + s; τ,A(τ)),K) = 0 for all τ ∈ I,

• stronglyA-asymptotically compact, if there exists a nonempty, compact set
K ⊆ U such that every sequence ((sk, τk))k∈N in N × I with sk → ∞,
τk →∞ as k →∞ yields

lim
k→∞

dist (ϕ(τk + sk; τk,A(τk)),K) = 0.
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For positively invariant setsA, strongA-asymptotic compactness impliesA-asymp-
totic compactness (cf. [18, Rem. 4.1]).

In preparation of our next results, let us introduce a set ΩA ⊆ U as

ΩA(τ) :=
⋂
0≤s

⋃
s≤t

ϕ(τ + t; τ,A(τ)) for all τ ∈ I

and the forward limit set for the dynamics of (∆) starting from ΩA is

ω+
A :=

⋃
τ∈I

ΩA(τ) ⊆ U.

Theorem 2.2 (Forward limit sets, cf. [18, Thm. 4.6]). Suppose a difference equa-
tion (∆) has a bounded and positively invariant set A. If (∆) is A-asymptotically
compact with a compact K ⊆ U , then its forward limit set ω+

A ⊆ K is nonempty,
compact and forward attracts A.

In comparison to Thm. 2.1 a result guaranteeing the existence of forward attrac-
tors is more involved. It requires the assumption I = Z and to introduce a further
set A? ⊆ U by its fibers

A?(τ) :=
⋂
0≤s

ϕ(τ ; τ − s,A(τ − s)) for all τ ∈ Z.

Theorem 2.3 (Forward attractors). Let I = Z. Suppose a difference equation (∆)
has a closed, forward absorbing and positively invariant set A. If (∆) is pullback
asymptotically compact, stronglyA-asymptotically compact with compact K ⊆ U
and

(i) for every sequence ((sk, τk))k∈N in N × Z with τk → ∞ as k → ∞ one
has

lim
k→∞

dist (ϕ(τk + sk; τk,K),K) = 0,

(ii) for all ε > 0 and S ∈ N, there exists a δ > 0 such that for all τ ∈ Z one
has the implication

u, v ∈ A(τ) ∪K,
d(u, v) < δ

}
⇒ max

0<s≤S
d(ϕ(τ + s; τ, u), ϕ(τ + s; τ, v)) < ε,

(iii) ω+
A = lim supt→∞A?(t), i.e. the forward limit sets for the dynamics start-

ing from ΩA and from within A? coincide
hold, then A? ⊆ A is a forward attractor of (∆).

Remark 2.4. (1) A situation, where an assumption such as (i) trivially holds, is
when the compact set K ⊆ U is positively invariant w.r.t. (∆).

(2) The assumption (ii) can be interpreted as uniform continuity of every map-
ping ϕ(τ + s; τ, ·) on A(τ) ∪K and finite discrete intervals [τ, τ + s] ∩ Z, τ ∈ I,
0 < s ≤ S. Hence, if we assume that there exists a bounded B ⊆ U satisfying⋃

s∈N0

(A(τ + s) ∪ ϕ(τ + s; τ,K)) ⊆ B for all τ ∈ Z,

and a Lipschitz condition with uniform constant ` ≥ 0 for each Ft : U → U , t ∈ I,
on B, then d(ϕ(τ +s; τ, u), ϕ(τ +s; τ, v)) ≤ `sd(u, v) for all u, v ∈ B. From this
we obtain that (ii) holds true.
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Proof. Invariance, being nonempty and compactness ofA? ⊆ A are established in
[18, Prop. 3.1], while the forward attraction is due to [18, Cor. 4.19]. �

2.3. Perturbation of attractors. Rather than sticking to a single problem (∆), we
now proceed to families of nonautonomous difference equations

ut+1 = Fnt (ut) (∆n)

having continuous right-hand sides Fnt : Ut → X , t ∈ I′, which are parameterized
by n ∈ N0. The general solution of (∆n) is denoted by ϕn.

For n ∈ N the difference equations (∆n) may describe perturbations (concretely,
numerical discretizations with accuracy increasing in n) of an initial problem (∆0).
Hence, a crucial concept allowing us to compare the behavior of solutions to (∆n),
n ∈ N, to the solutions of (∆0) is the local error

ent (u) := d(Fnt (u),Ft(u)).

We say the difference equations (∆n), n ∈ N, are convergent, if there exists a
convergence function Γ : R+ → R+ satisfying limρ↘0 Γ(ρ) = 0 such that for
every bounded B ⊆ Ut, there exists a C(B) ≥ 0 with

sup
u∈B

ent (u) ≤ C(B)Γ( 1
n) for all t ∈ I′, n ∈ N. (2.3)

One speaks of a convergence rate µ > 0, if Γ(ρ) = ρµ.
The following result determines how the local error evolves over time. It is

crucial in order to apply our perturbation results in Thm. 2.6 and 2.7:

Proposition 2.5 (Global discretization error). Let τ, T ∈ I with τ ≤ T be fixed,
u ∈ Uτ and B ⊆ U be a bounded nonautonomous set such that

ϕ0(t; τ, u) ∈ B(t) for all τ ≤ t ≤ T. (2.4)

If the difference equations (∆n), n ∈ N, are convergent and for every t ∈ I′ and
bounded B ⊆ X there exists a real `t(B) ≥ 0 such that

d(Fnt (u),Fnt (v)) ≤ `t(B)d(u, v) for all n ∈ N, u, v ∈ Ut ∩B, (2.5)

then for every ρ > 0 there exists an N0 ∈ N such that for all n ≥ N0 one has the
inclusion ϕn(t; τ, u) ∈ Bρ(B(t)) and the global discretization error

d(ϕn(t; τ, u), ϕ0(t; τ, u)) ≤ Γ
(

1
n

) t−1∑
l1=τ

C(B(l1))
t−1∏

l2=l1+1

`l2
(
Bρ(B(l2))

)
(2.6)

for all τ ≤ t ≤ T .

Proof. Let ρ > 0 and choose (τ, u) ∈ B, τ ≤ T . By induction over t ≥ τ we
establish the existence of a N0 = N0(T ) ∈ N such that both (2.6) and

ϕn(t; τ, u) ∈ Bρ(B(t)) for all τ ≤ t ≤ T, n ≥ N0 (2.7)

hold. This is trivially true for t = τ . Assume that (2.6)–(2.7) are satisfied for some
fixed t < T and set xt := d(ϕn(t; τ, u), ϕ0(t; τ, u)). Using the triangle inequality,

xt+1

(2.1)
≤ d

(
Fnt (ϕn(t; τ, u)︸ ︷︷ ︸

(2.7)
∈ Bρ(B(t))

),Fnt (ϕ0(t; τ, u)︸ ︷︷ ︸
(2.4)
∈ B(t)

)
)

+ ent (ϕ0(t; τ, u))
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(2.5)
≤ `t

(
Bρ(B(t))

)
xt + ent (ϕ0(t; τ, u)︸ ︷︷ ︸

(2.4)
∈ B(t)

)

(2.3)
≤ `t

(
Bρ(B(t))

)
xt + C(B(t))Γ( 1

n)

(2.6)
≤ `t

(
Bρ(B(t))

)
Γ( 1

n)

t−1∑
l1=τ

C(B(l1))

t−1∏
l2=l1+1

`l2
(
Bρ(B(l2))

)
+ C(B(t))Γ( 1

n)

= Γ( 1
n)

t∑
l1=τ

C(B(l1))
t∏

l2=l1+1

`l2
(
Bρ(B(l2))

)
results. For a sufficiently large N0 it holds d(ϕn(t + 1; τ, u), ϕ0(t + 1; τ, u)) < ρ
and the desired inclusion ϕn(t+ 1; τ, u) ∈ Bρ(B(t+ 1)) results. �

Rather than providing suitable conditions on (∆n) guaranteeing that the exis-
tence of a pullback attractor A∗0 for (∆0) implies that also the perturbations (∆n),
n ∈ N, have pullback attractors A∗n (persistence), on the present abstract level we
simply assume that such attractors A∗n, n ∈ N0, do exist. Then the next result is a
discrete time version of [3, p. 152, Thm. 7.13].

Theorem 2.6 (Upper-semicontinuity of pullback attractors). Let I be unbounded
below. If each difference equation (∆n), n ∈ N0, has a pullback attractor A∗n and

(i)
⋃
n∈N0

A∗n(τ) is relatively compact for every τ ∈ I,
(ii)

⋃
n∈N0

⋃
s≤τ A∗n(s) is bounded for every τ ∈ I,

(iii) (convergence condition) for all ε > 0, S ∈ N and every compact K ⊆ X
there exists an n0 ∈ N such that for all τ ∈ I one has the implication

n > n0 ⇒ max
0<s≤S

sup
u∈Uτ−s∩K

d(ϕn(τ ; τ − s, u), ϕ0(τ ; τ − s, u)) < ε

hold, then limn→∞maxt∈I dist (A∗n(t),A∗0(t)) = 0 for every bounded I ⊆ I.

Proof. Let n ∈ N0. Recall from (2.2) that each fiber A∗n(t) ⊆ U(t), t ∈ I, consists
of initial values for a bounded entire solutions φn to (∆n). The proof is then divided
into two claims.

(I) Claim: There is a bounded entire solution φ0 to (∆0) and a subsequence
(φnk)k∈N of (φn)n∈N such that φ0

t ∈ A∗0(t) for all t ∈ I and (φnk)k∈N converges
to φ0 uniformly on bounded subintervals of I.

In fact, (φnτ )n∈N can be seen as sequence in
⋃
n∈N0

A∗n(τ) with τ ∈ I. Combin-
ing this with the fact from (i) that

⋃
n∈N0

A∗n(τ) is compact yields the existence of
an infinite subsetN0 ⊆ N so that the subsequence (φnτ )n∈N0

of (φnτ )n∈N converges
to a limit uτ ∈

⋃
n∈N0

A∗n(τ). If we set φ0
t := ϕ0(t; τ, uτ ) for each t ∈ I+τ , then

(φn)n∈N0
converges to φ0 uniformly on bounded subintervals of I+τ due to (iii).

Now by mathematical induction, we suppose that there exists a bounded for-
ward solution (φ0

t )s≤t, s ≤ τ , to (∆0) as well as infinite subsets Ns ⊂ Ns−1 such
that (φn)n∈Ns converges to φ0 uniformly in bounded subintervals of I+s . Simi-
larly to the above, since the sequence

(
φns−1

)
n∈Ns is contained in the compact set⋃

n∈N0
A∗n(s− 1), there is an infinite subset Ns+1 ⊂ Ns so that the subsequence
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φns−1

)
n∈Ns+1

of
(
φns−1

)
n∈Ns is convergent to us−1 ∈

⋃
n∈N0

A∗n(s− 1). There-
fore, (φ0

t )s−1≤t is a bounded solution to (∆0) and again by (iii), the sequence
(φn)n∈Ns+1

converges to φ0 uniformly in bounded subintervals of I+s−1.
Repeating this procedure eventually results in a bounded entire solution φ0 to

the equation (∆0) and thus, φ0
t ∈ A∗0(t) for each t ∈ I due to (ii). Moreover, each

sequence (φnt )n∈N in A∗n(t) has a uniformly convergent subsequence (φnst )ns∈Ns
converging to the limit φ0

t ∈ A∗0(t) for each t ∈ I as ns is the s-th element of
Ns ⊆ N, s ∈ N. This completes the proof of the first claim.

(II) Claim: limn→∞ dist (A∗n(t),A∗0(t)) = 0 for all t ∈ I.
By means of contradiction, assume the limit in the claim fails for some instant
t ∈ I, i.e. there are ε0 > 0 and n0 ∈ N such that dist

(
A∗n0

(t),A∗0(t)
)
≥ ε0

holds. Because A∗n0
(t) is compact, there exists a bounded entire solution φn0 with

φn0
t ∈ A∗n0

(t) so that distA∗0(t)(φ
n0
t ) ≥ ε0, a contradiction to claim (I) as for every

bounded entire solution φn, the values φnt ∈ A∗n(t) have a convergent subsequence
with limit in A∗0(t).

Because bounded subsets I ⊆ I are finite, the assertion follows from (II). �

In contrast, a related result addressing the forward dynamics inherently yields
the existence of limit sets:

Theorem 2.7 (Upper-semicontinuity of forward limit sets). Let I be unbounded
above. Suppose a bounded set A ⊆ U is positively invariant for every difference
equation (∆n), n ∈ N0. If each (∆n), n ∈ N0, is strongly A-asymptotically com-
pact with a compact Kn ⊆ U , then its forward limit set ω+

A,n ⊆ Kn is nonempty,
compact and forward attracts A. If K :=

⋃
n∈N0

Kn and moreover

(i) ω+
A,0 attracts K uniformly in τ ∈ I, i.e.,

lim
s→∞

sup
τ∈I

dist
(
ϕ0(τ + s; τ,K), ω+

A,0

)
= 0,

(ii) for every sequence ((sk, τk))k∈N in N× I with τk →∞ as k →∞ one has

lim
k→∞

dist (ϕn(τk + sk; τk,Kn),Kn) = 0 for all n ∈ N0,

(iii) for all ε > 0, S ∈ N and n ∈ N0, there exists a δ > 0 such that for all
τ ∈ I one has the implication

u, v ∈ A(τ) ∪Kn,
d(u, v) < δ

}
⇒ max

0<s≤S
d(ϕn(τ + s; τ, u), ϕn(τ + s; τ, v)) < ε,

(iv) (convergence condition) for all ε > 0, S ∈ N, there exists an n0 ∈ N such
that for all τ ∈ I one has the implication

u ∈ A(τ) ∪K,
n > n0

}
⇒ max

0<s≤S
d(ϕn(τ + s; τ, u), ϕ0(τ + s; τ, u)) < ε

hold, then limn→∞ dist
(
ω+
A,n, ω

+
A,0

)
= 0.

Proof. To begin with, recall from Thm. 2.2 that each (∆n), n ∈ N0, has a nonempty,
compact, forward limit set ω+

A,n ⊆ Kn. Moreover, thanks to [18, Thm. 4.10], ω+
A,n

is asymptotically negatively invariant, i.e., for all u ∈ ω+
A,n, ε > 0 and T > 0,

there is an integer Sε satisfying τ + Sε − T ∈ I and a point uε ∈ ω+
A,n such that

d(ϕn(τ + Sε; τ + Sε − T, uε), u) < ε for all τ ∈ I, n ∈ N0.
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In order to establish limn→∞ dist
(

(ω+
A,n, ω

+
A,0)

)
= 0 we proceed by contradic-

tion. Assume that the above limit does not hold. Then there is a sequence (nj)j∈N
in N satisfying nj →∞ as j →∞ and an ε0 > 0 such that

4ε0 ≤ dist
(
ω+
A,nj , ω

+
A,0

)
for all j ∈ N.

By the compactness of ω+
A,nj , the supremum in the definition of dist

(
ω+
A,nj , ω

+
A,0

)
is attained and so is the existence of a point wj ∈ ω+

A,nj that satisfies

4ε0 ≤ dist
(
ω+
A,nj , ω

+
A,0

)
= distω+

A,0
(wj). (2.8)

On the other hand, from (i), there is a time T0 ∈ N such that

dist
(
ϕ0(τ + s; τ,K), ω+

A,0

)
< ε0 for all s ≥ T0, τ ∈ I. (2.9)

Since T0 > 0 and wj ∈ ω+
A,nj , the asymptotic negative invariance of ω+

A,nj yields
that there is an s0 = s0(ε0) ∈ I with t0 := τ + s0, a τ0 := t0 − T0 ∈ I and a
uj = uj(nj , T0) ∈ ω+

A,nj ⊆ Knj so that

d (wj , ϕ
nj (t0; τ0, uj)) < ε0.

Now notice that as uj ∈ A(τ0)∪K, with integersN = N(ε0, T0) > 0 independent
of τ0 and nj ∈ Z+

N , our assumption (iv) yields

d(ϕnj (t0; τ0, uj), ϕ
0(t0; τ0, uj)) < ε0,

as well as (2.9) results in

distω+
A,0

(ϕ0(t0; τ0, uj)) < dist
(
ϕ0(t0; τ0,K), ω+

A,0

)
< ε0.

Combining the last three inequalities, we obtain

distω+
A,0

(wj) ≤ d (wj , ϕ
nj (t0; τ0, uj)) + d

(
ϕnj (t0; τ0, uj), ϕ

0(t0; τ0, uj)
)

+ distω+
A,0

(ϕ0(t0; τ0, uj)) < ε0 + ε0 + ε0 = 3ε0,

a contradiction to (2.8). The proof is done. �

3. INTEGRODIFFERENCE EQUATIONS UNDER DISCRETIZATIONS

In this Section we apply our abstract perturbation theory for general difference
equations (∆0) to nonautonomous integrodifference equations. They are recur-
sions of the form

ut+1 =

∫
Ω
ft(·, y, ut(y)) dy, (I0)

where Ω ⊂ Rκ is assumed to be nonempty and compact. As state space for (I0)
we consider an ambient subset of the Rd-valued continuous functions over Ω, ab-
breviated by Cd and equipped with the maximum norm ‖u‖ := maxx∈Ω |u(x)|.
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3.1. Basics and collocation. Throughout we suppose the following standing as-
sumption in order to obtain well-definedness for (I0):

Hypothesis. Suppose for all t ∈ I′ that a subset Zt ⊆ Rd is nonempty and closed,
while a kernel function ft : Ω× Ω× Zt → Rd is continuous and satisfies
(H1) there exist αt, βt : Ω2 → R+ measurable in the second argument with

at := sup
x∈Ω

∫
Ω
αt(x, y) dy <∞, bt := sup

x∈Ω

∫
Ω
βt(x, y) dy <∞

and

|ft(x, y, z)| ≤ βt(x, y) + αt(x, y)|z| for all x, y ∈ Ω, z ∈ Zt, (3.1)

(H2)
∫

Ω ft(x, y, u(y)) dy ∈ Zt+1 for all x ∈ Ω and u ∈ Ut with

Ut := {u ∈ Cd : u(x) ∈ Zt for all x ∈ Ω} .
The continuity of the kernel functions ft guarantees that the Urysohn operators

Ft : Ut → Cd, Ft(u) :=

∫
Ω
ft(·, y, u(y)) dy (3.2)

are completely continuous on the closed sets Ut (cf. [31, 35]). Furthermore, Hy-
pothesis (H2) ensures the inclusion Ft(Ut) ⊆ Ut+1 for all t ∈ I′. In particular, (I0)
is a special case of (∆0) in the metric space X = Cd, d(u, v) = ‖u− v‖.

In order to simulate IDEs (I0) on a computer, finite-dimensional approximations
of their right-hand sides (3.2) and of their state space Cd are due. For this purpose,
choose linearly independent functions φ1, . . . , φdn ∈ C1 yielding an ansatz space
Xn := span {φ1, . . . , φdn} of finite dimension dn. With a projector πn ∈ L(C1)
onto the space Xn it is clear that

Πn ∈ L(Cd), Πn(uj)
d
j=1 := (πnuj)

d
j=1

is a projector onto the Cartesian product Xd
n. Supplementing this, for convenience

we define Π0 := idCd . In the following, we impose the following stability assump-
tion (cf. [10, p. 50, Def. 4.8]):

Hypothesis. (H3) The projections Πn are uniformly bounded, i.e.

p := sup
n∈N
‖Πn‖ ∈ [1,∞), (3.3)

(H4) ΠnUt ⊆ Ut for all n ∈ N and t ∈ I′.
A collocation method is a spatial discretization of (I0) of the form

ut+1 = Fnt (ut), Fnt := ΠnFt : Ut → Xd
n. (In)

Thanks to (H4) these difference equations are well-defined and fit into the general
framework of (∆n), n ∈ N. Based on Hypothesis (H1) we next identify absorbing
sets for IDEs (I0) and their spatial discretizations.

Proposition 3.1 (Absorbing sets for (In)). Let ρ > 1 and suppose (H1–H4) hold.
(a) If I is unbounded below, and for all τ ∈ I one has

lim
s→∞

τ−1∏
l=τ−s

pal = 0, Rτ := p
τ−1∑

l1=−∞
bl1

τ−1∏
l2=l1+1

pal2 ∈ (0,∞) (3.4)

and supτ∈IRτ < ∞, then A := {(τ, u) ∈ U : ‖u‖ ≤ ρRτ} is pullback
absorbing for each collocation discretization (In), n ∈ N0.
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(b) If I is unbounded above, and for all τ ∈ I one has

lim
s→∞

τ+s−1∏
l=τ

pal = 0, Rτ := p lim
t→∞

t−1∑
l1=τ

bl1

t−1∏
l2=l1+1

pal2 ∈ (0,∞) (3.5)

and supτ∈IRτ < ∞, then A := {(τ, u) ∈ U : ‖u‖ ≤ ρRτ} is forward
absorbing for each collocation discretization (In), n ∈ N0.

Remark 3.2. (1) When dealing with the initial equation (I0), i.e. in case n = 0,
one can choose p = 1.

(2) If the reals at =: a, bt =: b obtained from the linear growth assumption (3.1)
are constant in time, then the condition a ∈ [0, 1

p) implies that both the pullback
and forward absorbing sets have constant fibers

A =
{

(t, u) ∈ U : ‖u‖ ≤ ρpb
1−pa

}
.

In particular, for constant functions αt(x, y) ≡: α, βt(x, y) ≡: β in (3.1), then
a = αµκ(Ω), b = βµκ(Ω), where µκ(Ω) > 0 is the Lebesgue measure of Ω ⊂ Rκ.

Proof. Let t ∈ I′, u ∈ Ut and n ∈ N0. For every x ∈ Ω we obtain

|Fnt (u)(x)|
(3.3)
≤ p |Ft(u)(x)|

(I0)
≤ p

∫
Ω
|ft(x, y, u(y))| dy

(3.1)
≤ p

∫
Ω
βt(x, y) dy + p

∫
Ω
αt(x, y) |u(y)| dy ≤ pbt + pat ‖u‖

and passing to the supremum over x ∈ Ω yields ‖Ft(u)‖ ≤ pbt + pat ‖u‖. Then
both assertions (a) and (b) for (In) result from [18, Prop. 3.2 resp. 4.16], where the
condition supτ∈IRτ <∞ guarantees boundedness of A. �

Hypothesis. (H5) For every t ∈ I′ and r > 0, there exists a function λt : Ω ×
Ω→ R+ measurable in the second argument with

|ft(x, y, z)− ft(x, y, z̄)| ≤ λt(x, y) |z − z̄| for all z, z̄ ∈ Zt ∩ B̄r(0) (3.6)

and x, y ∈ Ω, where `t(r) := supx∈Ω

∫
Ω λt(x, y) dy <∞.

Lemma 3.3. Suppose (H1–H3) and (H5) hold. For each t ∈ I′ and r > 0 one has
the Lipschitz estimate

‖Fnt (u)− Fnt (ū)‖ ≤ p`t(r) ‖u− ū‖ for all n ∈ N0, u, ū ∈ Ut ∩ B̄r(0). (3.7)

Proof. Using (3.3) the claim results from [35, Cor. B.6]. �

The local discretization error in collocation discretizations (In) depends on the
smoothness of the image functions Ft(u) : Ω → Rd. Thereto, given a subspace
X(Ω) ⊂ Cd one denotes a right-hand side (3.2) as X(Ω)-smoothing, if Ft(u) ∈
X(Ω) for all t ∈ I′ and u ∈ Ut. For instance, convolution kernels yield that Ft(u)
have a higher order smoothness than the ft itself (cf. [9, pp. 50ff, Sect. 3.4]).

Note that for collocation methods based on polynomial interpolation the stability
condition (3.3) fails even with Chebyshev nodes as collocation points (see [10,
p. 52]). Nevertheless, the stability condition (3.3) holds when working with spline
functions as basis of Xn. For this purpose, we restrict to Ω = [a, b], choose a grid

a =: x0 < x1 < . . . < xn := b (3.8)
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and abbreviate hn := maxn−1
j=0 (xj+1 − xj), hn := minn−1

j=0 (xj+1 − xj). Beyond
that assume that the grid (3.8) is extended to a strictly increasing sequence (xj)j∈Z.

Let βlj : R → R+, j ∈ Z, denote the B-splines of degree l ∈ N introduced e.g.
in [14, pp. 242ff] and consider the subspaces

Xn := span
{
βl−l, . . . , β

l
n−1

}
⊂ C[a, b].

Example 3.4 (linear splines). TheB-splines β1
j : R→ [0, 1],−1 ≤ j ≤ n (the hat

functions), form a basis of the ansatz space consisting of piecewise linear functions
Xn ⊂ C[a, b] having dimension dn = n+ 1. The spline projections

πnu :=

n∑
j=0

u(xj)β
1
j−1

fulfill to the interpolation conditions (πnu)(xj) = u(xj), 0 ≤ j ≤ n, satisfy
‖πn‖ = 1 (see [2, p. 450]), hence p = 1 in (3.3), and the error estimate [14, p. 275]

‖u− πnu‖ ≤ h
2
n
8

∥∥u′′∥∥ for all n ∈ N, u ∈ C2[a, b].

Consequently, if (I0) is C2[a, b]d-smoothing, then an application to (In) yields

ent (u) ≤ h
2
n
8

∥∥Ft(u)′′
∥∥ for all t ∈ I′, u ∈ Ut (3.9)

for the local discretization error. The same quadratic convergence also holds, when
multidimensional piecewise linear interpolation is used on domains Ω ⊂ Rκ (see
[35, Sect. 3.1.3]).

Example 3.5 (quadratic splines). Given a grid (3.8) we introduce the n+ 2 collo-
cation points

ξ0 := a, ξj :=
xj+xj−1

2 for all 0 ≤ j ≤ n, ξn+1 =:b.

Then the quadratic splines β2
j : R → [0, 1], −2 ≤ j ≤ n, yield an ansatz space

Xn ⊂ C1[a, b] of dimension dn = n + 2, where the interpolation conditions
(πnu)(ξj) = u(ξj), 0 ≤ j ≤ n + 1, result in a projection πn : C[a, b] → Xn

satisfying ‖πn‖ ≤ 2 (cf. [20, Cor. 3.2]), thus p = 2 in (3.3) and

‖u− πnu‖ ≤ h
3
n

24

∥∥u(3)
∥∥ for all n ∈ N, u ∈ C3[a, b]

as interpolation error (see [8, Thm. 6]). Hence, for C3[a, b]d-smoothing equations
(I0) the local discretization error becomes

ent (u) ≤ h
3
n

24

∥∥Ft(u)(3)
∥∥ for all t ∈ I′, u ∈ Ut.

Example 3.6 (cubic splines). The cubic splines β3
j : R → [0, 1], −3 ≤ j ≤ n,

establish an ansatz space Xn ⊂ C2[a, b] of dimension dn = n+ 3. Supplementing
the interpolation conditions (πnu)(xj) = u(xj), 0 ≤ j ≤ n, by Hermite boundary
conditions

(πnu)′′(a) = u′′(a), (πnu)′′(b) = u′′(b)
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leads to a projection πn : C[a, b]→ Xn with ‖πn‖ ≤ 1+ 3
2
hn
hn

(cf. [32, Thm. 3.1]).

Whence, p := 1 + 3
2 supn∈N

hn
hn

< ∞ implies stability. Furthermore, the interpo-
lation error becomes

‖u− πnu‖ ≤ 5h
4
n

384

∥∥u(4)
∥∥ for all n ∈ N, u ∈ C4[a, b]

(see [13, Thm. 4]). In case (I0) is C4[a, b]-smoothing one obtains

ent (u) ≤ 5h
4
n

384

∥∥Ft(u)(4)
∥∥ for all t ∈ I′, u ∈ Ut

as local discretization error.

In conclusion, collocation methods (In), n ∈ N, based on splines having the
order l ∈ {1, 2, 3} are convergent, provided

• limn→∞ hn = 0 and
• the derivatives Ft(·)(l+1) : Ut → C[a, b]d are bounded functions, that is,

they map bounded subsets of Ut to bounded sets uniformly in t ∈ I′.

3.2. Pullback attractors. Let I be unbounded below. An immediate consequence
of Prop. 3.1 is

Corollary 3.7. The pullback absorbing set A ⊆ U from Prop. 3.1(a) is positively
invariant for every (In), n ∈ N0.

Proof. Let n ∈ N0, τ ∈ I′ and u ∈ u ∩ B̄ρRτ (0). Thanks to (H2) and (H4) it
remains to establish the inclusion Fnτ (u) ⊆ B̄ρRτ+1(0). Thereto, we obtain as in
the proof of Prop. 3.1 that

‖Fnτ (u)‖ ≤ pbτ + paτ ‖u‖ ≤ pbτ + ρpaτRτ .

In combination with

Rτ+1
(3.4)
= p

τ∑
l1=−∞

bl1

τ∏
l2=l1+1

pal2 = paτp

τ−1∑
l1=−∞

bl1

τ−1∏
l2=l1+1

pal2 + pbτ

τ∏
l2=τ+1

pal2

(3.4)
= paτRτ + pbτ

this implies ‖Fnτ (u)‖ ≤ ρRτ+1 + p(1− ρ)bτ ≤ ρRτ+1. This is the assertion. �

Theorem 3.8 (Pullback attractors for (In)). Let (H1–H4) and the limit relations
(3.4) hold for all τ ∈ I. If supτ∈IRτ < ∞, then every (In), n ∈ N0, has a
pullback attractor A∗n ⊆ I × Cd. If Ft : Ut → Ut+1 maps bounded subsets of Ut
into bounded sets uniformly in t ∈ I′ and moreover

(i) (H5) is satisfied with `(r) := supt∈I′ `t(r) <∞ for all r > 0,
(ii) the collocation discretizations (In), n ∈ N, are convergent

hold, then limn→∞maxt∈I dist (A∗n(t),A∗0(t)) = 0 on each bounded I ⊆ I.

Proof. Let ρ > 1. We apply Thm. 2.1 and 2.6 to the difference equations (In),
n ∈ N0, in the space X = Cd equipped with the metric d(u, v) := ‖u− v‖.

By Prop. 3.1(a) the nonautonomous set A := {(τ, u) ∈ U : ‖u‖ ≤ ρRτ} is
pullback absorbing for each (In), n ∈ N0. Furthermore, since the right-hand
sides Ft : Ut → Cd of (I0) are completely continuous, also their discretizations
Fnt = ΠnFt share this property for all t ∈ I′ and n ∈ N. Therefore, (In) is pullback
asymptotically compact (see [33, p. 13, Cor. 1.2.22]) and Thm. 2.1 guarantees that
every IDE (In), n ∈ N0, has a pullback attractor A∗n with the claimed properties.
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We verify the assumptions of Thm. 2.6:
ad (i): By the Arzelà-Ascoli theorem [15, p. 44, Thm. 3.3] we have to show

that the union
⋃
n∈N0

A∗n(t) is bounded and equicontinuous for all t ∈ I. Since
boundedness is a consequence of the inclusion

⋃
n∈N0

A∗n(t) ⊆ A(t), it remains
to establish the equicontinuity. Let n ∈ N0. Since pullback attractors A∗n are
invariant, one has

A∗n(t+ 1) = Fnt (A∗n(t)) ⊆ Fnt (A(t)) for all t ∈ I′

and consequently,
⋃
n∈N0

A∗n(t + 1) ⊆
⋃
n∈N0

Fnt (A(t)) for all t ∈ I′. Because
the subsets of equicontinuous sets are equicontinuous again, it suffices to establish
equicontinuity of the union

⋃
n∈N0

Fnt (A(t)) for any t ∈ I′.
Thereto, let ε > 0. Because (In), n ∈ N, is assumed to be convergent, there

exists an N ∈ N such that

ent (u) = ‖Fnt (u)− F0
t (u)‖ < ε

4 for all u ∈ A(t), n ≥ N.

On the other hand, the image F0
t (A(t)) due to [15, p. 43, Prop. 3.1] is even uni-

formly equicontinuous, i.e., there exists a δ > 0 such that

|x− y| < δ ⇒ |F0
t (u)(x)− F0

t (u)(y)| < ε
4 for all x, y ∈ Ω.

Combining both inequalities above, in case |x− y| < δ it results from the triangle
inequality that

|Fnt (u)(x)− Fnt (u)(y)| ≤ |Fnt (u)(x)− F0
t (u)(x)|+ |F0

t (u)(x)− F0
t (u)(y)|

≤ ε
2 + ε

4 < ε for all u ∈ A(t), n ≥ N.

This yields that F0
t (A(t))∪

⋃
n≥N Fnt (A(t)) is equicontinuous and additionally in-

cluding the finitely many relatively compact sets Fnt (A(t)), 1 ≤ n < N , preserves
equicontinuity. As a result, every

⋃
n∈N0

A∗n(t), t ∈ I, is relatively compact.
ad (ii): Due to

⋃
n∈N0

⋃
s≤tA∗n(s) ⊆ A(t) for all t ∈ I we obtain the claim.

ad (iii): In order to apply Prop. 2.5 we note our assumption (H5) and Lemma 3.3
imply that for each r > 0 there exists a `(r) ≥ 0 such that

‖Fnt (u)− Fnt (v)‖ ≤ p`(r) ‖u− v‖ for all n ∈ N, t ∈ I′

and u, v ∈ Ut ∩ B̄r(0). Hence, the collocation discretizations (In) fulfill (2.5).
Now let ε > 0, τ ∈ I′, S ∈ N and K ⊆ Cd be compact. Given u ∈ Uτ−s ∩ K
choose a nonautonomous set B ⊆ U such that

ϕ0(τ ; τ − s, u) ∈ B(τ) for all 0 < s ≤ S.

Because, by assumption, Ft : Ut → Ut+1 maps bounded subsets of Ut into
bounded sets uniformly in t ∈ I′, the set B can be chosen to be bounded. Hence,
there exists a r > 0 such that B(t) ⊆ B̄r(0) for all t ∈ I. Now choose ρ > r and
due to Prop. 2.5 there exists an N0 ∈ N such that

∥∥ϕn(τ ; τ − s, u)− ϕ0(τ ; τ − s, u)
∥∥ (2.6)
≤ Γ

(
1
n

) τ−1∑
l1=τ−s

C(B(l1))

τ−1∏
l2=l1+1

p`(ρ)

≤Γ
(

1
n

)
C(B̄r(0))

τ−1∑
l1=τ−s

τ−1∏
l2=l1+1

p`(ρ)
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for all 0 < s ≤ S and n > N0. It is easy to see that the right-hand side in the
above estimate does not depend on τ ∈ I′. Since our convergence assumption (ii)
ensures limn→∞ Γ( 1

n) = 0, there exists an n0 ≥ N0 such that n > n0 implies∥∥ϕn(τ ; τ − s, u)− ϕ0(τ ; τ − s, u)
∥∥ < ε for all u ∈ Uτ−s ∩K, 0 < s ≤ S.

This finally verifies Thm. 2.6(iii). �

3.3. Forward dynamics. Let all nonempty, closed Z :≡ Zt be time-invariant
yielding the constant domains U :≡ Ut on a discrete interval I unbounded above.

The forward dynamics counterpart to Cor. 3.7 has a slightly different structure:

Corollary 3.9. The forward absorbing set A ⊆ U from Prop. 3.1(b) has constant
fibers, i.e. there exists a R > 0 with R = Rτ for all τ ∈ I. Moreover, in case

pbτ ≤ ρR(1− paτ ) for all τ ∈ I (3.10)

the nonautonomous set A is positively invariant for every (In), n ∈ N0.

Proof. Above all, for τ, t ∈ I we define rτ (t) := p
∑t−1

l1=τ bl1
∏t−1
l2=l1+1 pal2 and

passing to the limit t→∞ in

rτ (t) = p
t−1∑

l1=τ+1

bl1

t−1∏
l2=l1+1

pal2 + pbτ

t−1∏
l2=τ+1

pal2 = rτ+1(t) + pbτ

t−1∏
l2=τ+1

pal2

implies that Rτ = Rτ+1 due to (3.5). With R := Rτ and u ∈ u ∩ B̄ρR(0) we
obtain as in the proof of Cor. 3.7 that ‖Fnτ (u)‖ ≤ pbτ + ρpaτR for all n ∈ N0 and
therefore (3.10) yields the assertion. �

Theorem 3.10 (Forward limit sets for (In)). Suppose (H1–H4), the limit relations
(3.5) and (3.10) hold for all τ ∈ I yielding the nonautonomous set A ⊆ U from
Prop. 3.1(b). If each (In) is strongly A-asymptotically compact with a compact
Kn ⊆ U , n ∈ N0, then its forward limit set ω+

A,n ⊆ Kn is nonempty, compact and
forward attracts A. If moreover K :=

⋃
n∈N0

Kn is bounded, Ft : U → U maps
bounded subsets of U into bounded sets uniformly in t ∈ I and

(i) ω+
A,0 attracts K uniformly in τ ∈ I, i.e.,

lim
s→∞

sup
τ∈I

dist
(
ϕ0(τ + s; τ,K), ω+

A,0

)
= 0,

(ii) for every sequence ((sk, τk))k∈N in N× I with τk →∞ as k →∞ one has

lim
k→∞

dist (ϕn(τk + sk; τk,Kn),Kn) = 0 for all n ∈ N0,

(iii) (H5) is satisfied with `(r) := supt∈I `t(r) <∞ for all r > 0,
(iv) the collocation discretizations (In), n ∈ N, are convergent

hold, then limn→∞ dist
(
ω+
A,n, ω

+
A,0

)
= 0.

Proof. We aim to apply Thm. 2.7 to (In), n ∈ N0. Above all, it results from the
above Cor. 3.9 that A is forward absorbing and positively invariant for each (In).
Then Thm. 2.7 yields the existence of forward limit sets ω+

A,n with the claimed
properties for all n ∈ N0.

It remains to show that the assumptions (iii) and (iv) of Thm. 2.7 hold.
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ad (iii): Choose r > 0 so large that A(τ) ∪ K ⊆ B̄r(0) holds for all τ ∈ I,
which is possible due to the boundedness of A and K. By assumption, it results
inductively from Lemma 3.3 that

‖ϕn(τ + s; τ, u)− ϕn(τ + s; τ, v)‖ ≤ (p`(r))s ‖u− v‖ for all n ∈ N0, s ∈ N
and τ ∈ I, u, v ∈ A(τ) ∪ Kn. Let ε > 0 and S ∈ N be arbitrarily given. If we
choose δ := min0<s≤S

ε
`(r)s > 0, then ‖u− v‖ < δ readily leads to the estimate

‖ϕn(τ + s; τ, u)− ϕn(τ + s; τ, v)‖ < ε for 0 < s ≤ S, which implies (iii).
ad (iv): Let ε > 0, S ∈ N and τ ∈ I. As in the proof of Thm. 3.8 one shows that

the Lipschitz estimate (2.4) holds in our present setting with the (local) Lipschitz
constant p`(r). For u ∈ A(τ) ∪K choose a bounded nonautonomous set B ⊆ U
so large that ϕ0(t; τ, u) ∈ B(t) for all τ ≤ t ≤ τ + S; since Ft is assumed to
be bounded uniformly in t ∈ I the nonautonomous set B can be chosen to be
independent of τ ∈ I. Furthermore, choose r > 0 so large that B(t) ⊆ B̄r(0) for
all τ ≤ t ≤ τ + S. For ρ > r, then Prop. 2.5 implies that there is an N0 ∈ N with∥∥ϕn(τ + s; τ, u)− ϕ0(τ + s; τ, u)

∥∥ (2.6)
≤ Γ

(
1
n

) τ+s−1∑
l1=τ

C(B(l1))

τ+s−1∏
l2=l1+1

`(ρ)

≤Γ
(

1
n

)
C(B̄r(0))

τ+s−1∑
l1=τ

τ+s−1∏
l2=l1+1

`(ρ)

for all 0 < s ≤ S and n > N0. Note that the right-hand side of this inequality does
not depend on τ ∈ I. Consequently, our convergence condition limn→∞ Γ( 1

n) = 0
implies that there exists an n0 ≥ N0 such that n > n0 implies∥∥ϕn(τ + s; τ, u)− ϕ0(τ + s; τ, u)

∥∥ < ε for all u ∈ A(τ) ∩K, 0 < s ≤ S
and therefore Thm. 2.7(iii) is verified. �

Theorem 3.11 (Persistence of forward attractors for (In)). Let I = Z. Suppose
(H1–H4), the limit relations (3.5) and (3.10) hold for all τ ∈ Z yielding the non-
autonomous setA ⊆ U from Prop. 3.1(b). If each (In) is stronglyA-asymptotically
compact with a compact Kn ⊆ U , n ∈ N0, and

(i) for every sequence ((sk, τk))k∈N in N × Z with τk → ∞ as k → ∞ one
has

lim
k→∞

dist (ϕn(τk + sk; τk,Kn),Kn) = 0 for all n ∈ N0,

(ii) (H5) is satisfied with `(r) := supt∈I `t(r) <∞ for all r > 0,
(iii) the forward limit sets ω+

A,n of (In) satisfy

ω+
A,n = lim sup

t→∞
A∗n(t) for all n ∈ N0

with A?n(t) :=
⋂

0≤s ϕ
n(t; t− s,A(t− s)) for all t ∈ Z

hold, then every (In), n ∈ N0, has A?n ⊆ A as a forward attractor.

Proof. Let n ∈ N0. We verify that (In) satisfies the assumptions of Thm. 2.3. First
of all, Cor. 3.9 ensures that the closed set A is forward absorbing and positively
invariant w.r.t. (In). Because each Ft : U → Cd is completely continuous, also
the discretizations Fnt = ΠnFt have this property for all t ∈ Z. Therefore, (In)
is pullback asymptotically compact (see [33, p. 13, Cor. 1.2.22]). Our assumption
(i) yields that (In) fulfills the assumption in Thm. 2.3(i). As in the above proof of
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z

gα(z)

0

1

1

FIGURE 1. Shape of generalized Bev-
erton-Holt functions gα(z) := z

1+zα

for α = 1
2 (dashed), α = 1 (solid) and

α = 2 (dash dotted)

Thm. 3.10 one shows that also Thm. 2.3(ii) holds for (In). Finally, (iii) ensures that
finally the assumption in Thm. 2.3(iii) is satisfied for (In). �

4. ILLUSTRATIONS

Let I be a discrete interval and Ω ⊂ Rκ be a compact habitat. We are discussing
IDEs defined on the (closed) cone

U = C+(Ω) := {u ∈ C(Ω) : 0 ≤ u(x) for all x ∈ Ω}
of nonnegative continuous functions.

4.1. Pullback attractors for generalized Beverton-Holt equations. Consider
the scalar nonautonomous IDE

ut+1 = Ft(ut), Ft(u) :=

∫
Ω
kt(·, y)

γt(y)u(y)

1 + u(y)α
dy (4.1)

depending on a parameter α > 0 with continuous kernels kt : Ω2 → R+ and
integrable growth rates γt : Ω→ R+, t ∈ I′.

The nonlinearity in this Hammerstein IDE is given by the family of generalized
Beverton-Holt functions gα : R+ → R+, gα(z) := z

1+zα , whose behavior depends
on α > 0 (see Fig. 1). All these growth functions have in common to be glob-
ally Lipschitz with constant 1. Consequently, in order to fulfill the assumptions
of Lemma 3.3 we choose λt(x, y) := kt(x, y)γt(y) guaranteeing even a global
Lipschitz estimate in (3.7) with

`t := sup
x∈Ω

∫
Ω
kt(x, y)γt(y) dy for all t ∈ I′.

In order to establish that the generalized Beverton-Holt equation (4.1) is dissipative
using Prop. 3.1, we suppose that (`t)t∈I′ is bounded and proceed as follows:

• For α ∈ (0, 1) the function gα is unbounded and its tangent in a point
(ζ, gα(ζ)) for ζ > 0 reads as

z 7→ 1+(1−α)ζα

(1+ζα)2
(z − ζ) + ζ

1+ζα = αζ1+α

(1+ζα)2
+ 1+(1−α)ζα

(1+ζα)2
z.

Concerning the estimate (3.1) this allows us to choose

αt(x, y) := 1+(1−α)ζα

(1+ζα)2
kt(x, y)γt(y), βt(x, y) := αζ1+α

(1+ζα)2
kt(x, y)γt(y)

and consequently

at = 1+(1−α)ζα

(1+ζα)2
`t, bt = αζ1+α

(1+ζα)2
`t.
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FIGURE 2. Sequences of sets containing functions in the fibers
A∗n(t), 0 ≤ t ≤ 10, for α ∈

{
1
2 , 1
}

, respectively from left to right.

If ζ > 0 is chosen so large that
1+(1−α)ζα

(1+ζα)2
lim sup
t→−∞

`t < 1 on I unbounded below,

then (4.1) is pullback dissipative, while
1+(1−α)ζα

(1+ζα)2
lim sup
t→∞

`t < 1 on I unbounded above

yields forward dissipativity of the Beverton-Holt equation (4.1).
• For α ≥ 1, the function gα is globally bounded with

sup
z≥0

gα(z) = 1
α(α− 1)1− 1

α

and therefore in (3.1) we can choose

αt(x, y) :≡ 0, βt(x, y) := 1
α(α− 1)1− 1

αkt(x, y)γt(y),

which results in

at ≡ 0, bt = 1
α(α− 1)1− 1

α `t.

Consequently, the IDE (4.1) is both forward and pullback dissipative.
Now let I be unbounded below. In any case, we conclude from Thm. 2.1 that
the nonautonomous Beverton-Holt equation (4.1) has a pullback attractor A∗0. In
particular, for parameters α ∈ (0, 1] the growth function gα is strictly increasing
and therefore the right-hand sides of (4.1) are order-preserving. This means that
for all u, v ∈ U the implication

u(x) ≤ v(x) ⇒ Fnt (u)(x) ≤ Ft(v)(x) for all t ∈ I′, x ∈ Ω

holds. Given a sequence (ξt)t∈I in C+(Ω) we introduce the order intervals

[0, ξ] := {(t, v) ∈ I× C(Ω) : 0 ≤ v(x) ≤ ξt(x) for all x ∈ Ω} ⊆ I× C+(Ω)

and obtain from [34, Prop. 8] that the pullback attractor A∗0 of (4.1) satisfies the
inclusion A∗0 ⊆ [0, ξ0] with a bounded entire solution (ξ0

t )t∈I to (4.1). This entire
solution is contained in A∗0 due to the characterization (2.2). In addition, ξ0 is the
pullback limit for all sequences starting from ’above’ ξ0 (cf. [34, Prop. 8]).

Based on Thm. 3.8 also stable collocation discretizations (In), n ∈ N, of the
generalized Beverton-Holt equation (4.1) possess pullback attractors A∗n. In order
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n α = 1
2 α = 1

16 2.112614126300029 2.100856100109834
32 2.055209004601208 2.051123510423984
64 2.026777868073563 2.025681916479720

128 2.013096435137189 2.012865860858589
256 2.006536458546063 2.006433295172438
512 2.003256451919377 2.003220576642864

1024 2.001624177537549 2.001610772707442
TABLE 1. Values of the approximate convergence rates c(n) for
n ∈

{
24, . . . , 210

}
nodes and parameters α ∈

{
1
2 , 1, 2

}
.

to illustrate convergence of the pullback attractorsA∗n toA∗0 as n→∞, we restrict
to habitats Ω = [a, b] and piecewise linear splines from Ex. 3.4 having the nodes
xj := a+j b−an , 0 ≤ j ≤ n, for all n ∈ N. This results in the spatial discretizations

ut+1 = Fnt (ut), Fnt (u) =
n∑
j=0

∫
Ω
kt(xj , y)

γt(y)u(y)

1 + u(y)α
dyβ1

j−1. (4.2)

In particular, p = 1 and hn = b−a
n for all n ∈ N and for appropriate kernels kt one

obtains the convergence rate 2 from (3.9).
Spatial discretization using piecewise linear functions guarantees that also the

right-hand sides Fnt : U → Xn, t ∈ I′, are order preserving for α ∈ (0, 1]. Thus,
[34, Prop. 8] applies to (4.2) as well, and ensures that its pullback attractors fulfill
A∗n ⊆ [0, ξn] with bounded entire solutions (ξnt )t∈I to (4.2) in A∗n.

On this basis, in order to quantify convergence rates of the Hausdorff distances
dist (A∗n(t),A∗0(t)) between the fibers of the pullback attractors to (4.2) and A∗0
guaranteed by Thm. 3.8, we make use the entire solutions ξn and approximate the
rates of their convergence to ξ0 as n → ∞. For this purpose, choose the habi-
tat Ω = [−3, 3], the Laplace kernel kt(x, y) := δt

2 e
−δt|x−y| yielding C2[−3, 3]-

smoothness in the right-hand side of (4.1) for the almost periodic dispersal rates
δt := 2 + sin( t3), the growth rates γt(x) := 3 − sin( tx5 ) and n = 4096. In order
to evaluate the remaining integrals in (4.2) we apply the trapezoidal rule and the
functions ξnt are approximated as pullback limits ϕn(t; t−s, ξ), t ∈ I, with s := 15

and upper solutions ξ. Then the sequence c(n) := log2
‖ξn−ξ2n‖
‖ξ2n−ξ4n‖ approximates the

desired convergence rates for ξn to ξ0 given large values of n. This results in the
values listed in Tab. 1 which where illustrated in Fig. 3, respectively. Clearly, the
rate 2 (cf. Ex. 3.4) is preserved.

4.2. Forward limit sets for asymptotically autonomous Ricker equations. Con-
sider the scalar nonautonomous IDE

ut+1 = Ft(ut), Ft(u) := γt

∫
Ω
k(·, y)ut(y)e−ut(y) dy + b (4.3)

with a continuous kernel k : Ω × Ω → R+, an inhomogeneity b ∈ C+(Ω) and a
bounded sequence of growth rates (γt)t∈I in R+. For the Ricker growth function
g : R+ → R+, g(z) := ze−z it is elementary to show

|g(z)| ≤ 1
e , |g(z)− g(z̄)| ≤ 1

e2
|z − z̄| for all z, z̄ ∈ R+.
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FIGURE 3. Development of the averaged error ‖ξn − ξ2n‖ for
n ∈

{
24, . . . , 210

}
nodes and parameters α ∈

{
1
2 , 1, 2

}
.

Given this, on intervals I unbounded below it is not difficult to establish that (4.3)
has a pullback attractor. However, we are interested in the forward dynamics of
(4.3) under discretization. For this purpose, let us suppose that I is bounded below,
but unbounded above. Moreover, it is crucial to assume that (4.3) is asymptotically
autonomous in the sense that the coefficient sequence (γt)t∈I converges exponen-
tially. In order to be more precise, let us assume that there exist reals γ > 0 and
K̃0, K̃1 ≥ 1 such that the following holds with k0 := supx∈Ω

∫
Ω k(x, y) dy:

• K̃0 := sups≤t
∏t−1
l=s

γl
γ <∞ and γk0 < 1,

• |γt − γ| ≤ K̃1(k0γ)t, which implies limt→∞ γt = γ,
• k0 supt∈I γt <

e2

1+e2
1−k0γ
K̃0

.

As a result, it is shown in [18, Exam. 5.6] that the autonomous limit equation

ut+1 = F(ut), F(u) := γ

∫
Ω
k(·, y)ut(y)e−ut(y) dy + b (4.4)

has a singleton global attractor A∗ = {u∗} and for any bounded set A ⊆ C+(Ω)
absorbing for (4.4) the forward limit set of (4.3) arising from A := I × A is just
ω+
A,0 = {u∗}.
In addition, it can be shown using [18, Thm. 4.14] that for every bounded subset

B ⊆ C+(Ω) one has the limit relation

lim
s→∞

sup
b∈B

∥∥ϕ0(τ + s; τ, b)− Fs(b)
∥∥ = 0 uniformly in τ ∈ I;

for this I needs to be bounded below. Consequently, passing to the least upper
bound over b ∈ B in the inequality

inf
a∈B

∥∥ϕ0(τ + s; τ, b)− Fs(a)
∥∥ ≤ ∥∥ϕ0(τ + s; τ, b)− Fs(b)

∥∥ for all b ∈ B

leads to the limit relation

0 ≤ dist
(
ϕ0(τ + s; τ,B),Fs(B)

)
≤ sup

b∈B

∥∥ϕ0(τ + s; τ, b)− Fs(b)
∥∥ −−−→

s→∞
0

uniformly in the initial time τ ∈ I. Since the global attractor A∗ of (4.4) attracts
bounded subsets B ⊆ X , one therefore arrives at

dist
(
ϕ0(τ + s; τ,B), ω+

A,0

)
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(1.1)
≤ dist

(
ϕ0(τ + s; τ,B),Fs(B)

)
+ dist

(
Fs(B), ω+

A,0

)
= dist

(
ϕ0(τ + s; τ,B),Fs(B)

)
+ dist (Fs(B), A∗) −−−→

s→∞
0 (4.5)

uniformly in τ ∈ I.
Along with the asymptotically autonomous Ricker equation (4.3) we now turn

to their convergent collocation discretizations (In), n ∈ N, satisfying (H3–H4).
With the abbreviations

R := pk0
e sup

t∈I
γt, bn := πnb ∈ Xn

one can show that the nonautonomous set

A :=
{

(t, x) ∈ U : u ∈
⋃
n∈N0

Fnt∗(U ∩BR(bn))
}
, t∗ :=

{
t− 1, t > min I,
t, t = min I

is bounded, compact, positively invariant and forward absorbing w.r.t. every (In),
n ∈ N0, with absorption time 2. In particular, each fiber A(t), t ∈ I, is compact,
since every Fnt∗(U ∩BR(bn)) is relatively compact and (In), n ∈ N, is convergent.

The above exponential convergence assumption for (γt)t∈I implies that the union⋃
t∈I F

n
t (U ∩BR(bn)) is relatively compact. Thanks to the Lipschitz estimate

‖Fnt (u)− Fnt (v)‖ ≤ pk0
e2

sup
t∈I

γt ‖u− v‖ for all n ∈ N0, t ∈ I, u, v ∈ U,

we can apply [18, Thm. 5.5] in order to obtain that the forward limit sets ω+
A,n of

(In), n ∈ N, are asymptotically negatively invariant (cf. the proof of Thm. 2.7).
Because K :=

⋃
n∈N0

Kn with Kn :=
⋃
t∈I F

n
t (U ∩BR(bn)) is bounded, we

obtain from the uniform limit relation (4.5) established above that the assumption
in Thm. 3.10(i) is satisfied. Combining this with the asymptotic negative invariance
of each ω+

A,n, n ∈ N0, we conclude as in Thm. 3.10 that the forward limit sets of
the collocation discretizations (In), n ∈ N, fulfill

lim
n→∞

dist
(
ω+
A,n, ω

+
A,0

)
= lim

n→∞
sup

a∈ω+
A,n

‖a− u∗‖ = 0.
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