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Institut für Mathematik, Universität Klagenfurt
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Abstract

Scalar difference equation xk+1 = f(xk, xk−d) with delay d ∈ N are
well-motivated from applications e.g. in the life sciences or discretiza-
tions of delay-differential equations. We investigate their global dy-
namics by providing a (nontrivial) Morse decomposition of the global
attractor. Under an appropriate feedback condition on the second vari-
able of f , our basic tool is an integer-valued Lyapunov functional.
Keywords: delay-difference equation; global attractor; Morse decom-
position; discrete Lyapunov functional
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1 Introduction

This paper studies the global dynamics of scalar difference equations

xk+1 = f(xk, xk−d) (1.1)

involving an arbitrary delay d ∈ N, where f fulfills a suitable positive or
negative feedback condition in the second variable. Such problems are of
interest not only as time-discretizations of delay-differential equations, but
they also intrinsically arise in a multitude of models in the life sciences (see
[5, 6] for references). Particularly in the latter applications, much work so
far concentrated on the problem to provide (sufficient) conditions for the
global asymptotic stability of a positive equilibrium of (1.1) (cf. [6, 8, 9]).
Nevertheless, being a discrete time model it is no surprise that much more
complicated dynamics can be expected.
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Under quite natural and frequently met assumptions the delay-difference
equations (1.1) are dissipative. This means their forward dynamics eventu-
ally enters a bounded subset of the state space. Whence, a global attractor
A exists, which contains all bounded entire solutions and therefore all dy-
namically relevant objects, like for instance equilibria, periodic solutions, as
well as homo- or heteroclinics. The dynamics on the attractor itself can
be highly nontrivial due to e.g. a cascade of period doubling bifurcations
and even chaotic dynamics might arise [10]. Beyond the pure existence of
a global attractor, one is rather interested in an as detailed as possible pic-
ture of its interior structure. An adequate tool for this endeavor is a Morse
decomposition of A due to the following reasons:

• It allows to disassemble an attractor into finitely many invariant, com-
pact subsets (the Morse sets) and their connecting orbits,

• the recurrent dynamics in A occurs entirely in the Morse sets,

• outside the Morse sets the dynamics of (1.1) on A is gradient-like.

On the one hand, identifying a nontrivial Morse decomposition of the at-
tractor (along with the connecting orbits) provides a more detailed picture
of the long-term behavior of (1.1), since every solution is attracted by ex-
actly one Morse set. On the other hand, obtaining a Morse decomposition
is a difficult task and requires further tools. In our case, this is an integer-
valued (or discrete) Lyapunov functional, which roughly speaking counts
the number of sign changes and decreases along solutions. This allows to
quantize solutions to (1.1) in terms of their oscillation rates. Such a concept
is not new and actually turned out to be very fruitful to understand the
global behavior of other finite and infinite dimensional dynamical systems.
For instance, discrete Lyapunov functionals are used to obtain convergence
to equilibria in tridiagonal ODEs [21] and scalar parabolic equations [15],
but also a Poincaré–Bendixson theory for a class of ODEs [11] in Rn, n > 2,
reaction-diffusion equations [3] and delay-differential equations [13]. Finally,
a Morse decomposition of global attractors for delay-differential equations
is constructed in [12, 16]. In conclusion, the existence of such a discrete
Lyapunov functional imposes a serious constraint on the possible long-term
behavior of various systems.

All the above applications have in common to address problems in contin-
uous time, that is differential equations. A first approach to tackle difference
equations via discrete Lyapunov functionals is due to Mallet-Paret and Sell
[14]. In showing that such an integer-valued functional V decreases along
forward solutions, they lay the foundations of our present work. Yet, [14] is
primarily motivated by time-discretizations of delay-differential equations,
while we are furthermore interested in applications being time-discrete right
from the beginning by means of models originating e.g. in life sciences. Note
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that [14] prove the decay of V for a larger class of difference equations than
(1.1), which combines (1.1) with (cyclic) tridiagonal systems (see also our
Remark 3.4). Nonetheless, up to our knowledge, this paper is the first con-
tribution using a discrete Lyapunov functional to actually understand the
dynamics of discrete-time models.

Our detailed setting is as follows: The right-hand side f : J2 → J of
(1.1) is assumed to be of class C1 with a closed interval J ⊆ R. Since (1.1)
is equivalent to the first order difference equation

yk+1 = F (yk), F (y(0), . . . , y(d)) :=


y(1)
y(2)

...
f(y(d), y(0))

 , (1.2)

the natural state space for (1.1) is the cartesian product Jd+1 ⊆ Rd+1.
Indeed, the mapping F : Jd+1 → Jd+1 generates a discrete semi-dynamical
system via its iterates F k, k ≥ 0. It is one-to-one, if and only if

f(x, ·) : J → R is injective for all x ∈ J, (1.3)

and F : Jd+1 → Jd+1 is onto, if every f(x, ·) : J → J , x ∈ J , has this
property. An entire solution to (1.2) is a sequence (yk)k∈Z in Jd+1 satisfying
the identity yk+1 ≡ F (yk) on Z, and we speak of an entire solution through
η ∈ Jd+1, provided also y0 = η holds.

Under appropriate conditions on the function f , the equation (1.2) is
dissipative, i.e. there exists a bounded subset A ⊂ Jd+1 (the absorbing set)
such that for every bounded B ⊆ Jd+1 there exists a K = K(B) ≥ 0 with

F k(B) ⊆ A for all k ≥ K.

The global attractor A ⊆ A for (1.2), is a compact, invariant and nonempty
set attracting all bounded B ⊆ Jd+1. In our case, the existence of the global
attractor is equivalent to the existence of a bounded absorbing set [19]. The
global attractor is unique and allows the dynamical characterization

A =
{
ξ ∈ Jd+1 : there is a bounded entire solution of (1.2) through ξ

}
(cf. [19, Lemma 2.18]). It is invariantly connected (cf. [19, Proposition 2.20]).
In case J = R the state space Rd+1 of (1.2) is a Banach space, A is connected
(cf. [19, Prop 2.19]) and contains a fixed point (cf. [19, Theorem 2.29]).

The bounded entire solutions constituting the global attractor A are
uniquely determined under the injectivity condition (1.3) and thus the con-
tinuous bijection F |A : A → A is a homeomorphism on the compact set A.
Hence, the iterates F |kA, k ∈ Z, are a dynamical system on A and for each
ξ ∈ A the corresponding α- and ω-limit sets are denoted by α(ξ), ω(ξ) ⊆ A.
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Figure 1.1: The
mappings f and g
from Example 1.1

In the general, non-invertible case, for a bounded entire solution (yk)k∈Z of
(1.2), we introduce the α-limit set of y, defined by

α(y) = {ξ ∈ A : there exists kn → −∞, such that ykn → ξ, as n→∞}.

Coming to our central notion, following [1], a Morse decomposition of
the global attractor A is a finite ordered collection

M1 <M2 < · · · <Mm

of pairwise disjoint, compact and invariant Morse sets M1, . . . ,Mm ⊆ A
such that for all ξ ∈ A and all bounded entire solution (yk)k∈Z through ξ it
holds that there exist i ≥ j with

(m1) α(y) ⊆Mi and ω(ξ) ⊆Mj ,

(m2) i = j ⇒ ξ ∈Mi (thus, yk ∈Mi for every k ∈ Z).

The connecting orbits constitute the connecting sets

Cij := {ξ ∈ A : α(y) ⊆Mi and ω(ξ) ⊆Mj} for all j < i.

Together with the Morse sets M1, . . . ,Mm they form a partition of the
global attractor A. Moreover, since A includes every limit point of an equa-
tion, due to (m1) indeed the Morse sets contain all limit sets.

A simple illustration is given in the following example:

Example 1.1. Consider the scalar difference equation (without delay)

xk+1 = f(xk), f(x) :=
2x√

1 + 3x2

having the equilibria −1, 0, 1 and the global attractor [−1, 1]. Using graphi-
cal iteration (see Fig. 1.1 (left)) or from the explicit representation fk(x) =

2kx√
1+4k(x2−1)

one readily obtains the Morse sets and connecting sets

M1 = {−1, 1} , M2 = {0} , C21 = (−1, 0) ∪ (0, 1).
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The components of M1 and C21 are invariant; M1 is not minimal. The
slightly modified difference equation (see Fig. 1.1 (right))

xk+1 = g(xk), g(x) :=
−2x√
1 + 3x2

has the same global attractor, Morse and connecting sets. Now the Morse
set M1 is a 2-periodic orbit, while (−1, 0), (0, 1) fail to be invariant.

The paper is organized as follows: In many cases the discrete Lyapunov
functional is applied to a variational equation. This allows to argue that it
decreases along the difference of two solutions. Hence, the next two sections
include both preparatory work and crucial related results on linear difference
equations; for instance Lemma 2.1 provides a description of the eigenval-
ues distribution for the linearized equation. In Section 3 we formulate our
main assumptions, the feedback conditions and introduce an integer-valued
Lyapunov functional, whose properties are given by Proposition 3.2 and
Theorem 3.3. Our main result is Theorem 4.1, which yields a Morse decom-
position of the global attractor of (1.2) (and in turn (1.1)) under appropriate
assumptions on the right-hand side f . Most of the arguments are given in
the negative feedback case, which seems to have more applications and re-
quires slightly more involved proofs. For the convenience of the reader, the
proofs for positive feedback are given in the Appendix. Section 5 contains
applications of the theory, mainly from the life sciences, which underline that
both the positive and negative feedback case are relevant. Finally some open
questions and perspectives are addressed in Section 6.

We conclude with our notation: A discrete interval I is the intersection
of a real interval with the integers and I′ := {k ∈ I : k + 1 ∈ I}. Special
cases are the positive half-axis Z+ := {k ∈ Z : k ≥ 0} and the negative
half-axis Z− := {k ∈ Z : k ≤ 0}.

2 Spectrum of the linearization

Let us consider an autonomous linear delay-difference equation

xk+1 = axk + bxk−d (2.1)

with real coefficients a > 0, b 6= 0. Our further analysis requires a detailed
understanding of the associated characteristic equation

λd+1 − aλd − b = 0, (2.2)

whose solutions occur as complex-conjugated pairs λj , λj , where for real
roots, clearly λj = λj . By convention, suppose that Imλj ≥ 0.
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The subsequent lemma thoroughly describes the distribution of the roots
of (2.2) based on the following sectors of the complex plane:

S+
j :=

{
z ∈ C :

(2j − 1)π

d
< arg z <

2jπ

d+ 1

}
for j ∈ N, j <

d+ 1

2

and

S−j :=

{
z ∈ C :

2jπ

d
< arg z <

(2j + 1)π

d+ 1

}
for j ∈ N0, j <

d

2
.

Lemma 2.1 (Huszár [4]). Let m0 := −dd
(

a
d+1

)d+1
.

(a) If b > 0, then for all j ∈ N, j < d+1
2 , there exists exactly one pair of

characteristic roots λj , λj of (2.2) with λj ∈ S+
j , and all other roots

are real. For even d there exists a unique real root, namely λ+ > 0
and for odd d there exist exactly two real roots, namely λ− < 0 < λ+.

(b) If b < 0, then for all j ∈ N, j < d
2 , there exists exactly one pair of

characteristic roots λj , λj of (2.2), such that λj ∈ S−j .

1) If m0 ≤ b < 0, then all other roots are real. Exactly two of those
are positive and they are denoted by 0 < λ+,2 ≤ λ+,1.

2) If b < m0, then there is also a pair of complex roots λ0, λ0, such
that λ0 ∈ S−0 , and then there exists no positive characteristic root.

3) If d is odd, then there is no negative real root, otherwise there is
exactly one, which is denoted by λ−.

(c) If b 6= 0, and z1 = r1e
iϕ1 and z2 = r2e

iϕ2 are two distinct roots of
(2.2) such that 0 ≤ ϕ1 < ϕ2 ≤ π holds, then r1 > r2.

Note that the above lemma also implies that the only possible multiple
(at most double) root which possibly occurs, is the pair of two positive roots
λ+,1 and λ+,2 which may coincide. All the other roots are simple. We refer
to Figures 2.1 and 2.2, in which the number and sign of the real roots of
(2.2) is presented for all possible cases.

Proof. By means of the variable change λ = ax one transforms the charac-
teristic equation (2.2) into the trinomial equation

xd+1 − xd + p = 0, p := − b
ad+1 .

Then one applies [4, 1. §] to obtain the parts of statements (a) and (b)
concerning the distribution of complex roots. Moreover, according to 8. §
of the same paper there is no multiple complex root. This determines also
the number of real roots (counting multiplicity) in each case. Then apply-
ing Descartes’ sign rule yields immediately our conclusion about real roots.
From [4, 2. §] we readily have statement (c).
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Figure 2.1: Roots of (2.2) (dots) and sectors (grey) from Huszár’s Lemma 2.1
for even delays d
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Figure 2.2: Roots of (2.2) (dots) and sectors (grey) from Huszár’s Lemma 2.1
for odd delays d

3 A Lyapunov functional

Our overall analysis is based on the following assumptions on the right-hand
side f : J × J → J of (1.1):

(H1) f is continuously differentiable and 0 is an inner point of J ;

(H2) D1f(xd, x0) > 0 for all xd, x0 ∈ J ;

moreover there exists a δ∗ ∈ {−1, 1}, fixed from now on, such that:

(H3) δ∗D2f(0, 0) > 0, δ∗f(0, x0)x0 > 0 for all x0 ∈ J \ {0}.

Note that for δ∗ = 1 one speaks of positive feedback, while δ∗ = −1 means
negative feedback in (1.1).

It is central to have an ambient integer-valued Lyapunov functional for a
variational equation along solutions to (1.1) at hand. For sequences (ak)k∈Z,
(bk)k∈Z in R we consider the nonautonomous linear delay-difference equation

xk+1 = akxk + bkxk−d, (3.1)
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as well as the associated first order system

yk+1 = Akyk, Ak :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
bk 0 · · · 0 ak

 , (3.2)

or equivalently, 
yk+1(0)
yk+1(1)

...
yk+1(d− 1)
yk+1(d)

 =


yk(1)
yk(2)

...
yk(d)

akyk(d) + bkyk(0)

 . (3.3)

Remark 3.1. The assumptions (H1)–(H3) allow to write every nonlinear
difference equation (1.1) in the form (3.1) with

ak =

∫ 1

0
D1f(hxk, xk−d) dh, bk =

∫ 1

0
D2f(0, hxk−d) dh.

Moreover, for an entire solution (xk)k∈Z of (1.1), ak > 0 holds for all k ∈ Z
(for which ak is defined), and as bk = f(0, xk−d)/xk−d for any xk−d 6= 0 and
bk = D2f(0, 0) for xk−d = 0, one has δ∗bk > 0 for all k ∈ Z.

Analogously, every equation (1.2) can be rewritten in the form (3.2) with

ak =

∫ 1

0
D1f(hyk(d), yk(0)) dh, bk =

∫ 1

0
D2f(0, hyk(0)) dh, (3.4)

where ak > 0, δ∗bk > 0 hold for all k ∈ Z from the domain of the solution y.

Before proceeding, we abbreviate Rn∗ := Rn \ {0} for n ∈ N. It is crucial
to note that Rd+1

∗ is positively invariant under the matrix (3.2) provided
ak > 0 and δ∗bk > 0 hold on Z. Let us also define the function

sc :
⋃
n∈N0

Rn+1
∗ → N0,

where sc y is the number of sign changes in y = (y(0), y(1), . . . , y(n)) ∈ Rn+1
∗ ,

that is

sc y := max {` ∈ N | ∃ 0 ≤ i0 < · · · < i` ≤ n : y(ij−1)y(ij) < 0 ∀ 1 ≤ j ≤ `} .

Also, by definition, set sc y := 0, if there is no such `. Based on this, we
define the integer-valued functions

V + : Rd+1
∗ → 2N0, V +(y) :=

{
sc y, if sc y is even,

sc y + 1, if sc y is odd,
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and

V − : Rd+1
∗ → 2N0 + 1, V −(y) :=

{
sc y, if sc y is odd,

sc y + 1, if sc y is even.

Finally we introduce the sets R+ resp. R− of regular points via

R± :=

{
y ∈ Rd+1

∣∣∣ y(i) = 0⇒ y(i− 1)y(i+ 1) < 0 for 0 ≤ i ≤ d
with y(d+ 1) := δ∗y(0) and y(−1) := δ∗y(d)

}
for the positive (resp. negative) feedback case.

The subsequent Proposition 3.2 and Theorem 3.3 give some nice prop-
erties of the functionals V ± that will be essential in the proof of our main
result. We state them for both positive and negative feedback, however, we
only present the proofs for the negative feedback case δ∗ = −1. For posi-
tive feedback, the proofs are rather similar to the ones presented below, and
require only straightforward modifications in the arguments (cf. Appendix).

Proposition 3.2. If (yn)n∈N is a sequence in Rd+1
∗ with limit y ∈ Rd+1

∗ ,
then the following statements hold:

(a) V ±(y) ≤ lim infn→∞ V
±(yn),

(b) V ±(y) = limn→∞ V
±(yn), if y ∈ R±.

Proof. (a) follows from the lower semi-continuity of the function sc on Rd+1
∗ .

(b) is shown only in the negative feedback case, since the positive feed-
back case can be handled by straightforward modifications in the argument.

First note that there exists n0 ∈ N such that for n > n0, y
n(j) has the

same sign as y(j), where j ∈ {0, . . . , d} is an index for which y(j) 6= 0.
Moreover, from y ∈ R− it follows that for j ∈ {1, . . . , d− 1} with y(j) = 0,

sgn y(j − 1) = sgn yn(j − 1) = − sgn y(j + 1) = − sgn yn(j + 1) 6= 0

and

sc(y(j − 1), y(j), y(j + 1)) = sc(yn(j − 1), yn(j), yn(j + 1)) = 1

holds for all n > n0. This in turn yields that for n > n0 and 0 ≤ i < j ≤ d
such that y(i) 6= 0 6= y(j) one has

sc(y(i), y(i+ 1), . . . , y(j)) = sc(yn(i), yn(i+ 1), . . . , yn(j)), (3.5)

which in particular means that sc yn = sc y and thus also V −(y) = V −(yn)
hold whenever y(0) 6= 0 6= y(d).

Since y ∈ R− excludes the possibility of y(0) and y(d) both being 0 at
once, there remains the case when exactly one of them is 0. We may assume
y(d) = 0 (the case y(0) = 0 is analogous). Again, by regularity of y we have
that y(0)y(d−1) > 0, which together with (3.5) yields that on the one hand

sc(y(0), y(1), . . . y(d− 1)) = sc(yn(0), yn(1), . . . yn(d− 1))
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holds for n > n0 and on the other hand this number is even, say 2m. It is
now clear that sc y = 2m ≤ sc yn ≤ 2m + 1 and therefore V −(y) = V −(yn)
is satisfied for all n > n0, which completes the proof.

Theorem 3.3. If (yk)k∈I is a solution of (3.2) with ak > 0 and δ∗bk > 0
for all k ∈ I, then

(a) V ±(yk+1) ≤ V ±(yk) holds for any k ∈ I′,

(b) if k ∈ I is such that k+ 4d+ 2 ∈ I and moreover yk 6= 0 and V ±(yk) =
V ±(yk+4d+2) hold, then yk+4d+2 ∈ R±.

According to Remark 3.1 this applies to solutions of (1.2) as well. We
additionally remark that Theorem 3.3 remains valid in the nonautonomous
situation when f depends on k and our assumptions hold for every k ∈ I.

The next proof is valid for any d ∈ N (using notations y(d+ 1) := δ∗y(0)
and y(−1) := δ∗y(d) where necessary in the d = 1 case). However it is
worth mentioning that Theorem 3.3 almost trivially holds for d = 1, and
some parts of the following proof can be omitted even in the case d = 2.

Proof of Theorem 3.3. For better readability, we give the proof for negative
feedback δ∗ = −1, the positive feedback case can be found in the Appendix.

(a) Since the last d components of yk ∈ Rd+1
∗ are the same as the first

d coordinates of yk+1, clearly sc yk+1 ≤ sc yk + 1 holds. Assuming now
to the contrary that V −(yk+1) > V −(yk) holds for some k implies that
sc yk+1 = sc yk + 1 and sc yk is odd. The former combined with ak > 0
yields that yk(0) 6= 0 and the oddness of sc yk implies that the last nonzero
coordinate of yk (say yk(j), 1 ≤ j ≤ d) has the opposite sign as yk(0). We
may assume w.l.o.g. that yk(j) < 0 < yk(0) (the other case is analogous).
In particular this implies yk(d) ≤ 0. Using ak > 0 and bk < 0 one obtains
readily from (3.3) that yk+1(d) = akyk(d) + bkyk(0) is negative. All these
together give

sc yk+1 = sc
(
yk+1(0), yk+1(1), . . . , yk+1(d− 1), yk+1(d)

)
= sc

(
yk(1), yk(2), . . . , yk(d), yk+1(d)

)
≤ sc yk,

where the last inequality is due to sgn yk(j) = sgn yk+1(d). This is a contra-
diction, which proves statement (a).

(b) Before we prove the statement, we need to introduce some auxiliary
notions. Let us say that a component y(j) (0 ≤ j ≤ d) of a vector y ∈ Rd+1

is irregular if y(j) = 0, and y(j − 1)y(j + 1) ≥ 0, where y(−1) := −y(d) and
y(d + 1) := −y(0). Using this terminology, y ∈ R− (i.e. y is regular) holds
if and only if y has no irregular component. Furthermore, we call a vector
(y(i), . . . , y(j)) with 0 ≤ i ≤ j ≤ d an irregular block (of zeros) in y ∈ Rd+1

if y(i) = · · · = y(j) = 0, and moreover it has maximal length in the sense
that either i = 0 or i ≥ 1 and y(i−1) 6= 0 hold, and similarly either j = d or
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j < d and y(j+ 1) 6= 0 hold. The dimension of the block will be regarded as
the length of it. Note also that consecutive zero components are irregular by
definition. The proof of (b) consists of several, yet elementary, steps. From
now on we always assume that V −(yk) = V −(yk+4d+2), which implies, in the
light of statement (a), that V −(yk) = V −(yk+`) holds for all 0 ≤ ` ≤ 4d+ 2.

Step 1. If for some index k, yk+1(j) = 0 is irregular (0 ≤ j < d), then so is
yk(j + 1) = 0 irregular.

This is trivial in case 1 ≤ j ≤ d− 2.
If yk+1(d − 1) = 0 is irregular (i.e. yk+1(d − 1) = 0 and yk+1(d −

2)yk+1(d) ≥ 0 hold), then on the one hand yk(d) = 0 holds and on the
other hand, bk < 0 implies sgn yk+1(d) = − sgn yk(0). Combining this with
yk(d − 1) = yk+1(d − 2) yields sgn(yk(d − 1)yk(d + 1)) = − sgn(yk(d −
1)yk(0)) = sgn(yk+1(d− 2)yk+1(d)), meaning yk(d) is also irregular in yk.

For the case when yk+1(0) = 0 is irregular, assume to the contrary that
yk(1) = 0 is regular, i.e. yk(0)yk(2) < 0. W.l.o.g. we may assume yk(0) <
0 < yk(2). Irregularity of yk+1(0) combined with yk+1(1) = yk(2) > 0 yields
yk+1(d) ≤ 0. Now, from ak > 0 and bk < 0 it follows that yk(d) < 0. These
all together imply that sc yk is an even number, moreover sc yk = sc yk+1+1,
which gives V −(yk) = V −(yk+1) + 2, a contradiction.

Step 2. If yk+1(d) = 0, then there are two possibilities. Either yk(0) =
yk(d) = 0, or yk(0)yk(d) > 0. Assume now that the latter holds and let
0 ≤ j < d be the smallest integer such that yk(j+1) 6= 0. As yk(0)yk(d) > 0,
hence sc yk is even, so V −(yk) = V −(yk+1) holds only if sgn yk(j + 1) =
sgn yk(0), which in turn yields also

sgn yk(j + 1) = sgn yk(d) = sgn yk+1(d− 1) 6= 0. (3.6)

If in addition yk+1(d) = 0 is irregular, then 0 ≥ yk+1(0)yk+1(d − 1) =
yk(1)yk(d) holds, which in the light of (3.6) yields that j 6= 0, or what is
equivalent, yk(1) = 0.

To sum up, if yk+1(d) = 0 is irregular, then either yk(0) = yk(d) = 0 or
there exists some 1 ≤ j ≤ d− 1, such that

yk(0) 6= 0,

yk(1) = · · · = yk(j) = 0,

yk(j + 1) 6= 0,

yk(d) 6= 0,

sgn yk(0) = sgn yk(j + 1) = sgn yk(d)

(3.7)

hold, which in particular means that yk(0) is followed by an irregular block
of zeros of length j ≥ 1.

Step 3. As a consequence of the first two steps, if yk ∈ R− and V −(yk) =
V −(yk+1), then yk+1 ∈ R−. Therefore, in order to prove the statement, it
is sufficient to show that there exists 0 ≤ ` ≤ 4d+ 2 such that yk+` ∈ R−.
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Step 4. Note that if yk(d) = 0 and yk 6= 0 ∈ Rd+1, then since aj > 0 for all
j ≥ k, there exists k + 1 ≤ k1 ≤ k + d such that yk1(d) 6= 0. Thus we may
assume that k1, k ≤ k1 ≤ k + d is such that yk1(d) 6= 0.

Step 5. This in particular implies that yk1(d) is regular. The rest of the
vector yk1 may contain several irregular blocks, which are separated by at
least one regular coordinate from each other. The coordinate yk1(0) may
also be zero, or even irregular.

Next we will study how the irregular blocks of yk1+d+1 can be described
by the irregular blocks of yk1 . Let us use notation k2 = k1 + d+ 1.

Step 5.1. If there exists 1 ≤ j ≤ d so that yk1(0) = · · · = yk1(j − 1) =
0 and yk1(j) 6= 0, then, as aj > 0 for all j ≥ k, sgn yk1+j(d) = · · · =
sgn yk1+j(d − j) = sgn yk1(d) holds, and consequently one has sgn yk2(0) =
· · · = sgn yk2(j − 1) = sgn yk1(d) 6= 0.

Step 5.2. If yk1(i) = · · · = yk1(j) = 0 is an irregular block with 1 ≤ i <
j < d such that yk1(i−1)yk1(j+1) < 0, then for k′ = k1 + i−1 one has that
yk′(1) = · · · = yk′(j− i+1) = 0 and yk′(0)yk′(j− i+2) < 0 hold. Due to the
argument seen in Step 2, and that neither yk′(d) = yk′(0) = 0, nor (3.7) holds
(with k = k′), we obtain that yk′+1(d) is regular, which implies in this case
that it is also nonzero. Going a bit further, to k′′ = k′+j−i+2 = k1+j+1,
one infers that sgn yk′′(d) = · · · = sgn yk′′(d − j + i − 1) 6= 0. Then it
is straightforward that sgn yk2(i) = · · · = sgn yk2(j) 6= 0 holds. Observe
that in case i = j, yk1(i) = 0 would not be irregular due to assumption
yk1(i− 1)yk1(i+ 1) < 0.

Step 5.3. Thus it remains to consider the case when yk1(i) = · · · = yk1(j) =
0 is an irregular block with 1 ≤ i ≤ j < d such that yk1(i− 1)yk1(j+ 1) > 0.
Choosing k′ = k1 + i − 1 just as in the previous step one obtains yk′(1) =
· · · = yk′(j − i+ 1) = 0 and yk′(0)yk′(j − i+ 2) > 0.

Now there are two possibilities. Either yk′+1(d) 6= 0 and then we have
the same situation as in Step 5.2, i.e. sgn yk2(i) = · · · = sgn yk2(j) 6= 0, or
yk′+1(d) = 0. In the latter case one can easily see that sgn yk2(i−1) = · · · =
sgn yk2(j) = 0, moreover, if i ≥ 2, then yk2(i− 2)yk2(j + 1) < 0 holds. Note
that the index of the last components of the corresponding irregular blocks
in yk1 and yk2 coincide (it is j).

Step 6. Conversely, Steps 1, 2 and 5 combined show that if yk2 has an
irregular block, whose last component is at index j (with 0 ≤ j < d), i.e.
yk2(j) = 0 is irregular and yk2(j + 1) 6= 0, then yk1(j) = 0 is irregular and
yk1(j + 1) 6= 0.

Our aim is to apply the arguments presented in Step 5 now for yk3 , where
k3 is to be defined soon. For this reason we need to distinguish two cases
with respect to the regularity of yk2(d).

If it is regular, then it may be zero or nonzero. If it is nonzero, then
Step 5 shows that all irregular blocks of yk2 are of the type considered in

12



Steps 5.1 and 5.2 (now with k2 instead of k1). If yk2(d) = 0, then from its
regularity it follows that yk2(0) 6= 0, so all irregular blocks of zeros are of
the type studied in Step 5.2. Note that in that step we did not use that
yk1(d) 6= 0. For regular yk2(d) let us define k3 = k2.

If yk2(d) = 0 is irregular, then yk2−1(0) = yk1(d) 6= 0 implies that (3.7)
holds with k = k2 − 1 and some 1 ≤ j ≤ d− 1. Then for k3 = k2 + j + 1 ≤
k2 + d one infers that yk3(d) 6= 0, and all irregular blocks are of the types
handled in Steps 5.1 and 5.2.

Applying now the arguments of Step 5.1 and 5.2 for yk3 instead of yk1
we obtain that, for k4 = k3 + d + 1, yk4(i) is regular for all 0 ≤ i < d.
We claim that the last coordinate yk4(d) is also regular. Arguing by way of
contradiction, if yk4(d) is irregular, then according to Step 2 there are two
possibilities: either yk4−1(0) = yk4−1(d) = 0 or (3.7) holds for k = k4 − 1.
In the former case yk4(d − 1) = yk4(d) = 0 are both irregular, which is
a contradiction. If the latter holds, then yk4−1(1) = 0 is irregular and
yk4−1(0) 6= 0, thus from Step 1 we obtain that yk3+1(d) = yk4−1−(d−1)(d) = 0
is also irregular and yk3+1(d− 1) = yk4−1(0) 6= 0. Thus, (3.7) must hold for
k = k3, as well, which contradicts the fact that every irregular block of yk3
is of the types seen in Step 5.1 and 5.2. This proves that yk4(d) is regular.

Thus, we proved that yk4 ∈ R− is regular for some 0 ≤ k4 ≤ k + 4d+ 2.
From Step 3 we obtain that yk+4d+2 ∈ R−.

Assertion (a) of Theorem 3.3 is also true, if we extend V ± into the origin
as V +(0) = 0 resp. V −(0) = 1. In this case we may also allow ak ≥ 0 and
δ∗bk ≥ 0 instead of strict inequalities. The proof of this slightly modified
statement is essentially identical to the one presented above.

Remark 3.4. With the modified assumptions, Theorem 3.3 (a) is a special
case of a general result by Mallet-Paret and Sell [14, Theorem 2.1]. Yet,
there are two reasons for presenting an independent proof: First, our simpler
situation allows a much shorter argument. Second, in the more general
setting of [14] extra (smallness) conditions on the sequences ak and bk are
necessary. As their motivation was to give the Lyapunov property for time-
discretization of delay-differential equations and tridiagonal ODEs, those
extra conditions were always met for sufficiently small step-sizes. However,
our motivation comes not only from time-discretization of continuous-time
equations, therefore it is important that we can omit such extra conditions.

4 The Morse decomposition

From now on, we suppose that the conditions (H1)–(H3) are fulfilled. Fur-
thermore, (1.2) is assumed to possess a global attractor A.

If a := D1f(0, 0) and b := D2f(0, 0), then (H1)–(H3) imply a, δ∗b > 0.
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Throughout this section we will treat the positive and negative feedback
cases in a parallel way. Both statements and their proofs are formulated
in this manner. The only exception in this regard is the proof of Proposi-
tion 4.2, whose positive feedback case is postponed to the Appendix.

Before stating our main theorem we introduce some notations concerning
the linearization of equation (1.2), which becomes

yk+1 = Ayk, A :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
b 0 · · · 0 a

 , (4.1)

or what is equivalent,
yk+1(0)
yk+1(1)

...
yk+1(d− 1)
yk+1(d)

 =


yk(1)
yk(2)

...
yk(d)

ayk(d) + byk(0)

 . (4.2)

Denote by M∗ the number of eigenvalues (counting multiplicities) of A with
absolute values strictly greater than 1. Moreover, let

N∗+ :=

{
M∗, if 0 is hyperbolic or M∗ = 0,

M∗ + 1, otherwise,

and

N∗− :=

{
M∗, if 0 is hyperbolic or M∗ = 1,

M∗ + 1, otherwise.

Our main result is the next theorem:

Theorem 4.1 (Morse decomposition). If (1.2) has a global attractor A and
the assumptions (H1)–(H3) hold, then the following collection of sets is a
Morse decomposition of A:

Mn =
{
ξ ∈ A \ {0} : (1.2) has a bounded entire solution (yk)k∈Z

through ξ with V ±(yk) ≡ n on Z and 0 /∈ α(y) ∪ ω(ξ)
}
,

MN∗±
=
{
ξ ∈ A \ {0} : (1.2) has a bounded entire solution (yk)k∈Z

through ξ with V ±(yk) ≡ N∗± on Z
}
∪ {0}

for 0 ≤ n ≤ d+ 1, n ∈ 2N0 \ {N∗+} (resp. n ∈ (2N0 + 1) \ {N∗−}).
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Note that due to definitions of V ± and N∗±, MN∗±
6= {0} can only occur

if the origin is non-hyperbolic or N∗± = d + 1, and d is odd (resp. even) in
the positive (resp. negative) feedback case.

The proof of Theorem 4.1 is based on several tools, whose logical struc-
ture is borrowed from [16]. However, there are certain differences: For
instance, the finite dimensional state space of (1.2) allows to simplify vari-
ous arguments based on the Arzelà–Ascoli theorem. Another simplification
in our finite dimensional setting is the nonexistence of superexponentially
decaying solutions established in Lemma 4.5. On the flip side, the non-
connectedness of orbits gives rise to technical difficulties in some arguments.

The next two results play a significant role in the sequel and show how
bounded solutions (on either of the half-axes) can be characterized with the
aid of N∗± and functional V ±. Although they correspond to continuous time
results in [16, 12], we give a detailed proof.

Proposition 4.2.

(a) If (yk)k≤0 is a nontrivial, bounded solution of (4.1) in Rd+1, then
V ±(yk) ≤ N∗± for all k ≤ 0.

(b) If (yk)k≥0 is a nontrivial, bounded solution of (4.1) in Rd+1, then
V ±(yk) ≥ N∗± for all k ≥ 0.

Proof. We present only the proof (a) in the negative feedback case, i.e. when
(H1)–(H3) with δ∗ = −1 hold. The proof of (b) is analogous. The proof for
the positive feedback case is also rather similar, but simpler, as there are
less cases for the distribution of eigenvalues of (4.1) (cf. Lemma 2.1).

The eigenvalues of (4.1) are precisely the solutions of the characteristic
equation (2.2). If M∗ is equal to 0, 1 or d+ 1, then the statement is trivial.
Otherwise, according to Lemma 2.1, M∗ is an even number, say M∗ =
2n′ + 2, where 0 ≤ n′ ≤ d−2

2 .
We use the notations and ordering for eigenvalues introduced in

Lemma 2.1. For a non-real eigenvalue λj = rje
iϕj ∈ S−j (with ϕj ∈ (0, π),

j ∈ Z+, j <
d
2) any linear combination of the real eigensolutions corre-

sponding to λj can be written in the form cjzj , where cj ∈ R and

zj,k =


zj,k(0)
zj,k(1)

...
zj,k(d− 1)
zj,k(d)

 =


rkj sin(kϕj + ωj)

rk+1
j sin((k + 1)ϕj + ωj)

...

rk+d−1j sin((k + d− 1)ϕj + ωj)

rk+dj sin((k + d)ϕj + ωj)

 (4.3)

with some ωj ∈ [0, 2π). From ϕj ∈ (0, π) it is clear that sc zj,k equals the
number of sign changes the sine function has on the interval (kϕj + ωj ,
(k + d)ϕj + ωj). According to the definition of the sector S−j , the length of
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this interval is dϕj ∈ (2jπ, d
d+1(2j + 1)π). Now, from the definition of V −

we obtain that V −(zj,k) = 2j + 1 for all k ∈ Z−.
As for the eigensolutions corresponding to real eigenvalues, let us first

recall that determined by the value of b, either there are exactly two positive
eigenvalues of (4.1) (λ+,2 ≤ λ+,1), and in that case there is no eigenvalue in
the sector S−0 , or there are no positive eigenvalues and there exists a pair of
complex eigenvalues λ0, λ0, where λ0 ∈ S−0 . In the former case let z10 , z20 and

z30 be defined by z10,k(j) = λk+j+,1 , z20,k(j) = λk+j+,2 and z30,k(j) = (k+ j)λk+j+,2 for
all k ∈ Z− and j ∈ Z+, j ≤ d, respectively. Clearly, for any i = 1, 2, 3 and
for all k ∈ Z−, k < −d, every component of zi0,k has the same sign, and in

particular V −(zi0,k) = 1 for all k < −d. Concerning negative eigenvalues, if
d is even, say d = 2` for some ` ∈ N, then any eigensolution corresponding
to the unique negative eigenvalue −r` := λ− < 0 can be written in the form
c`z`, where c` ∈ R and z`,k(j) = (−r`)k+j for all k ∈ Z− and j ∈ Z+, j ≤ d.
Obviously sc z`,k = d and therefore also V −(z`,k) = d + 1 = 2` + 1 hold for
all k ∈ Z−. According to Lemma 2.1 there are no other real eigenvalues.

First, let us consider the hyperbolic case. Assume that M∗ = 2n′ + 2
for some integer 0 ≤ n′ ≤ d−2

2 . Then N∗− = M∗ = 2n′ + 2. Let y be an
arbitrary solution of (4.2) which is bounded in backward time. This means
that there exist an integer 0 ≤ n ≤ n′ and appropriate constants ωj ∈ [0, 2π),
c0,1, c0,2, c0,3, cj ∈ R with j = 0, . . . , n, such that

y =

3∑
j=1

c0,jz
j
0 +

n∑
j=0

cjzj , (4.4)

where those coefficients are understood to be automatically set to zero, that
correspond to eigensolutions which do not exist in the given case (e.g. there
exists no positive eigenvalue).

We claim that V −(yk) ≤ V −(zn,k) = 2n+ 1 < 2n′+ 2 = N∗− holds for all
k ≤ k1, where k1 is to be defined soon. Then by monotonicity of V − (proved
in Theorem 3.3) we get statement (a). If c0, . . . , cn are all zeros, then the
claim trivially holds. Otherwise we may assume w.l.o.g. that cn 6= 0.

If c0 6= 0, then there are no positive eigenvalues of (4.1), so the first sum
in (4.4) is zero, and we readily obtain that for n = 0, V −(yk) = V −(zn,k) =
1 < 2n′ + 2 = N∗− holds.

Thus we may assume n ≥ 1. From Lemma 2.1 one can easily obtain that
there exists ϑn > 0, sufficiently small, such that the inequalities

ϑn < min
{π − ϕn

2
,
ϕn
2

}
(4.5)

dϕn + 2ϑn < (2n+ 1)π and (4.6)

2nπ < dϕn − 2ϑn (4.7)
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hold. Moreover, by the Lemma 2.1 (c) we can choose k0 < 0 so small that

n−1∑
j=0

|cj |rkj + |c0,1|λk+,1 + |c0,2|λk+,2 + |kc0,3|λk+,2 < |cn|rkn sinϑn (4.8)

holds for all k ≤ k0. Let k1 = k0 − d.
For simplicity, let us say that the `-th component of zn,k, i.e. zn,k(`) =

rkn sin((k + `)ϕn + ωn) is small if | sin((k + `)ϕn + ωn)| ≤ sinϑn, otherwise
the component will be said to be big. Inequality (4.8) yields that if zn,k(`)
is big for some ` = 0, 1, . . . , d and k ≤ k1, then sgn yk(`) = sgn zn,k(`) 6= 0
holds. Note that inequality (4.5) guarantees that there is no k ≤ k1 and
component 0 ≤ ` < d such that zn,k(`) and zn,k(` + 1) are both small.
Similarly, (4.6)–(4.7) imply that zn,k(0) and zn,k(d) cannot be small at the
same time. Moreover, by (4.5) one obtains that if zn,k(`) is small for some
k ≤ k1 and ` ∈ {1, . . . , d− 1}, then sgn zn,k(`− 1) = − sgn zn,k(`+ 1).

Combining them means that, if k ≤ k1 and zn,k(0) and zn,k(d) are both
big, sc yk = sc zn,k holds, and V −(yk) = V −(zn,k) = 2n+ 1 < N∗− follows.

There remains the case, when exactly one of zn,k(0) and zn,k(d) is small.
W.l.o.g. we may assume that zn,k(d) is small, zn,k(0) is big and positive.
Then, as zn,k(d− 1) is also big,

sc(yk(0), . . . , yk(d− 1)) = sc(zn,k(0), . . . , zn,k(d− 1))

follows. Thus either V −(yk) ≤ V −(zn,k) holds or sc yk = sc zn,k + 1 is even.
We show that the latter case leads to contradiction. Should it hold, then
yk(0) and zn,k(0) would be both positive, yk(d − 1) and zn,k(d − 1) would
be both negative, while yk(d) > 0 and zn,k(d) ≤ 0. Now, since zn,k(d) ≤ 0 is
small, ((k+ d)ϕn +ωn) ∈ (−ϑn, 0]∪ [π, π+ϑn) mod 2π holds. On the other
hand from zn,k(d−1) < 0 and (4.5) it follows that ((k+d)ϕn+ωn) ∈ (−ϑn, 0]
mod 2π, which implies by inequalities (4.6) and (4.7) that zn,k(0) < 0. This
is a contradiction, so our proof is complete for the hyperbolic case.

If the origin is non-hyperbolic, and M∗ ≥ 2, then N∗− = M∗+1. Keeping
our notations from above, there is a pair of eigenvalues λn′+1, λn′+1 on the
unit circle, or −1 is a simple eigenvalue (if d is even and M∗ = d). In the
latter case, statement (a) of the lemma is trivial. In the former case all
backward bounded solutions of (4.2) can be written as (4.4), this time with
n ≤ n′ + 1, and an argument similar to the one applied in the hyperbolic
case shows that V −(yk) = 2n+ 1 ≤ 2n′ + 3 = N∗− for all k ∈ Z−.

Proposition 4.3. There exists an open neighborhood U ⊆ Jd+1 of 0, such
that for all nontrivial solutions (yk)k∈Z in Rd+1 of the nonlinear equation
(1.2) the following statements hold:

(a) If yk ∈ U ∩ A for all k ≤ 0, then V ±(yk) ≤ N∗± for all k ∈ Z.

(b) If yk ∈ U ∩ A for all k ≥ 0, then V ±(yk) ≥ N∗± for all k ∈ Z.
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Proof. The proof relies mainly on Proposition 4.2. We only prove statement
(a), since the proof of part (b) is analogous.

We argue by way of contradiction. If the statement is not true, then there
exists a sequence of nontrivial, bounded entire solutions yn : Z → Jd+1 of
equation (1.2) such that supk≤0 ‖ynk‖ → 0, as n → ∞ and V ±(ynkn) > N∗±
holds for some kn ∈ Z.

Since yn is bounded, there exists an integer jn ≤ kn, such that ‖ynk‖ <
2‖ynjn‖ holds for all integers n ∈ Z+ and k ≤ kn.

As equation (1.2) is autonomous and V ± is monotone non-increasing, we
may assume w.l.o.g. that jn = 0 for all n ∈ Z+. Recall that equation (1.2)
can be written in the form (3.2), (3.4) and set

znk :=
1

‖yn0 ‖
ynk .

Keeping the notations of Remark 3.1, yn is a bounded entire solution of
(3.2),(3.4) for all n ∈ Z+, where y,A, a and b should be replaced throughout
by yn, An, an and bn, respectively. From the linearity of equation (3.2) one
obtains that zn is an entire solution of

znk+1 = Ankz
n
k for all n ∈ Z+.

By definition, ‖znk ‖ ≤ 2 holds for all n ∈ Z+, so by the Cantor diag-
onalization argument, there exists a subsequence (n`)

∞
`=0 and a bounded

sequence (zk)
0
k=−∞ such that zn`

k → zk, as `→∞, for all integers k ≤ 0.
On the other hand, by our assumptions, for any fixed integer k ≤ 0,

yn`
k → 0, as ` → ∞. Thus an`

k → a = D1f(0, 0) and bn`
k → b = D2f(0, 0)

hold as `→∞.
It follows then that (zk)k≤0 is a bounded solution of the linear equation

zk+1 = Azk,

where A is defined by (4.1), moreover it is nontrivial, since ‖z0‖ = ‖zn0 ‖ = 1
for all n ∈ Z+. Thus Proposition 4.2 can be applied to obtain that V ±(zk) ≤
N∗± holds for all k ≤ 0. Furthermore, Theorem 3.3 (b) yields that there exists
k1 ≤ 0 such that zk ∈ R± for all k ≤ k1. Finally, since zn`

k1
→ zk1 , as `→∞,

it follows from Proposition 3.2 (b) that

lim
`→∞

V ±(zn`
k1

) = V ±(zk1) ≤ N∗±,

contradicting our assumption N∗± < V ±(yn`
k ) = V ±(zn`

k ) for all k ≤ 0.

From the Proposition 4.3 we immediately infer the next result.

Corollary 4.4. The following holds for solutions of (1.2):

(a) If N∗± > 1, then there exists no heteroclinic solution towards the trivial
solution.
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(b) If there exists a homoclinic solution (ỹk)k∈Z, then V ±(ỹk) ≡ N∗± on Z.

(c) In particular, if the trivial solution is hyperbolic, then there exists no
heteroclinic solution in the positive feedback case, while in case of neg-
ative feedback it may only exist if M∗ = N∗− = 1.

Proof. (a) Fixed-points y∗ 6= 0 of (1.2) have equal, nonzero components,
so V ±(y∗) ≤ 1 and y∗ ∈ R±. Assume now to the contrary that (ỹk)k∈Z is
an entire solution with limk→∞ ỹk = 0 and limk→−∞ ỹk = y∗. Then from
Proposition 3.2 (b) we get limk→−∞ V

±(ỹk) ≤ 1, while Proposition 4.3 (b)
yields limk→∞ V

±(ỹk) ≥ N∗± > 1, a contradiction to Proposition 3.3 (a).
(b) This follows immediately from Propositions 4.3 and 3.3 (a).
(c) Assume the trivial solution is hyperbolic. If M∗ equals 0 or d+1, then

the statement holds trivially since either the local unstable or the local stable
manifold is trivial. Except the case of negative feedback with M∗ = N∗− = 1,
N∗± = M∗ is an odd (resp. even) number in the positive (resp. negative)
feedback case. Now, recall that V ± takes on only even (resp. odd) values,
then apply (b) to conclude the proof.

The next technical lemma shows that solutions of (1.2) can neither grow
nor decrease faster than exponentially in some neighborhood of the origin.

Lemma 4.5. Let (yk)k∈I be a solution of (3.2). If ã1, b̃0 and b̃1 are positive
reals with 0 < ak < ã1 and b̃0 < |bk| < b̃1 for all k ∈ I, then there exist
positive constants c and C (that may depend on ã1, b̃0 and b̃1) such that

c‖yk‖ ≤ ‖yk+1‖ ≤ C‖yk‖ if k ∈ I′.

Proof. Without loss of generality we may use the ‖ · ‖1-norm. Since Ak is
invertible for all ak 6= 0 6= bk, and

‖yk+1‖1 ≤ ‖Ak‖1‖yk‖1 = max{1 + |ak|, |bk|}‖yk‖1,
and

‖yk+1‖1 ≥
‖yk‖1
‖A−1k ‖1

= min

{
|bk|,

|bk|
|bk|+ ak

}
‖yk‖1,

thus

c := min

{
b̃0,

b̃0

b̃0 + ã1

}
and C := max{1 + ã1, b̃1}

are appropriate choices.

Remark 4.6. From the above proof and the C1-smoothness of f it is clear
that for any solution (yk)k∈I of (3.2), (3.4) on some discrete interval I and
any compact set K ⊂ Rd+1, there exists C > 0, such that yk ∈ K for
some k ∈ I implies ‖yk+1‖ ≤ C‖yk‖. Moreover, if K is a sufficiently small
neighborhood of 0, then there exists also c > 0 such that c‖yk‖ ≤ ‖yk+1‖.
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We combine the next three lemmas with Proposition 4.3 in order to prove
that the family of sets Mn fulfills the “Morse properties” (m1) and (m2).

Lemma 4.7. Suppose that (yk)k∈Z is a bounded entire solution of (1.2)
through ξ ∈ A.

(a) If limk→∞ V
±(yk) = N , then V ±(η) = N for any η ∈ ω(ξ) \ {0}.

(b) If limk→−∞ V
±(yk) = K, then V ±(η) = K for any η ∈ α(y) \ {0}.

Proof. We only prove statement (a), since (b) can be shown analogously.
For an arbitrary η ∈ ω(ξ)\{0}, there exist a monotone sequence kn →∞,

as n → ∞, such that ykn → η, and – by the invariance of ω(ξ) \ {0} –
there exists a bounded entire solution z of (1.2) such that z0 = η and
zk ∈ ω(ξ) \ {0} holds for all k ∈ Z. By Theorem 3.3 (b), there exist integers
`1 < 0 < `2 such that z`1 and z`2 both belong to R±. Since z`1 ∈ ω(ξ) \ {0},
there exists a monotone sequence k′n →∞, as n→∞, such that yk′n → z`1 ,
and from the continuity of the right-hand side of equation (1.2) one infers
that ykn+`2 → z`2 , as n→∞.

Combining these with Proposition 3.2 (b) and with the assumption
limk→∞ V

±(yk) = N we get that

V ±(z`1) = lim
n→∞

V ±(yk′n) = N = lim
n→∞

V ±(ykn+`2) = V ±(z`2).

Using that V ± is non-increasing and that `1 < 0 < `2, and z0 = η hold,
V ±(η) = N is established.

Lemma 4.8. Suppose that (yk)k∈Z is a bounded entire solution of (1.2)
through ξ ∈ A.

(a) If limk→∞ V
±(yk) 6= N∗±, then either ω(ξ) = {0} or 0 /∈ ω(ξ).

(b) If limk→−∞ V
±(yk) 6= N∗±, then either α(y) = {0} or 0 /∈ α(y).

Proof. Again, we only prove part (a). Let us assume that 0 ∈ ω(ξ), but
ω(ξ) 6= {0}, furthermore, let U be defined as in Proposition 4.3. Then there
exists U1, an open neighborhood of 0 in A such that U1 ⊂ U and ω(ξ) 6⊆ U1.
This, together with 0 ∈ ω(ξ) imply that yk enters and leaves U1 infinitely
many times as k →∞. Thus there exist positive integer sequences kn, σn, τn
(n ≥ 0), such that

ykn → 0 and kn →∞, as n→∞,
kn + τn < kn+1 − σn+1 − 1,

yk ∈ U1, if kn − σn ≤ k ≤ kn + τn,

and

ykn−σn−1, ykn+τn+1 /∈ U1
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hold for all n ≥ 0. By Remark 4.6 we get τn →∞ and σn →∞, as n→∞.
Now, let

znk = ykn−σn+k and wnk = ykn+τn+k for k ∈ Z.

Using the compactness ofA and applying a Cantor diagonalization argument
one obtains that there exist a subsequence (n`)`∈N0 and bounded entire
solutions (zk) and (wk) of (1.2), such that zn`

k → zk and wn`
k → wk hold for

all k ∈ Z, as ` → ∞. Solutions z and w are nontrivial, since both z−1 and
w1 are from A \ U1. On the other hand, zk ∈ U1 ⊂ U and w−k ∈ U1 ⊂ U
hold for k ∈ Z+. Thus by Proposition 4.3 it follows that

V ±(wk) ≤ N∗± ≤ V ±(zk) for all k ∈ Z. (4.9)

Observe that z0 = lim`→∞ ykn`
−σn`

, hence z0 ∈ ω(ξ) \ {0}, and similarly
w0 ∈ ω(ξ) \ {0}. Then, from Lemma 4.7 it follows that

V ±(z0) = V ±(w0) = lim
k→∞

V ±(yk).

This combined with (4.9) (for k = 0) leads to limk→∞ V
±(yk) = N∗±.

Lemma 4.9. Suppose that (yk)k∈Z is a bounded entire solution of (1.2)
through ξ ∈ A \ {0}.

(a) If N := limk→∞ V
±(yk) 6= N∗±, then either ω(ξ) = {0} or ω(ξ) ⊆MN .

(b) If K := limk→−∞ V
±(yk) 6= N∗±, then either α(y) = {0} or α(y) ⊆MK .

Proof. In order to prove assertion (a), let us assume that ω(ξ) 6= {0} and
that N := limk→∞ V

±(yk) 6= N∗±. According to Lemma 4.8, 0 /∈ ω(ξ). Let
η ∈ ω(ξ) be arbitrarily chosen, then using the invariance of ω(ξ), there exists
a bounded entire solution (zk), such that z0 = η and zk ∈ ω(ξ) holds for all
k ∈ Z. From compactness of ω(ξ), α(z) ∪ ω(η) ⊆ ω(ξ) follows. This implies
that 0 /∈ α(z)∪ω(η). On the other hand, zk ∈ ω(ξ) and Lemma 4.7 together
ensure that V ±(zk) = N for all k ∈ Z, meaning that η ∈MN holds.

The proof of statement (b) is analogous.

The next lemma is a step towards the compactness proof of Morse sets.

Lemma 4.10. For every N ∈ 2N0 \ N∗+ (resp. N ∈ (2N0 + 1) \ N∗−) there

exists an open neighborhood Ũ in A of the origin, such that MN ∩ Ũ = ∅.

Proof. Assume to the contrary that there is a non-negative even (resp. odd)
N 6= N∗± and a sequence (ξn)n≥0 in MN such that ξn → 0 as n → ∞.
For each n ≥ 0 let yn be a bounded entire solution such that yn0 = ξn,
0 /∈ α(yn) ∪ ω(ξn) and V ±(ynk ) = N hold for all k ∈ Z.

We claim that ω(ξn) cannot be a subset of U , where U is from Proposi-
tion 4.3. To see this, suppose that ω(ξn) ⊆ U . Let η ∈ ω(ξn). By invariance
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of ω(ξn) there exist a bounded entire solution (zk) through ξn, such that
zk ∈ ω(ξn) ⊆ U holds for all k ∈ Z. Thus Porposition 4.3 implies that
V ±(zk) = N∗± holds for all k ∈ Z. However, V ±(η) = N should also hold by
Lemma 4.8, which is a contradiction, so ω(ξn) 6⊆ U for all n ≥ 0.

Assume for definiteness that N > N∗±. Since limn→∞ ξ
n = 0, there exists

a series of non-negative integers (σn)n∈N0 , such that

ynk ∈ U for 0 ≤ k ≤ σn and ynσn+1 /∈ U

holds for all n ≥ 0. By Remark 4.6, it follows that σn → ∞, as n → ∞.
Letting znk := ynk+σn for all k ∈ Z and applying a Cantor diagonalization
argument one obtains that there is subsequence (zn`)`∈N0 and an entire
solution (zk) of (1.2) such that zn`

k → zk holds for all k ∈ Z, as ` → ∞.
Solution (zk) is nontrivial because z1 /∈ U . On the other hand, zk ∈ U holds
for all k ≤ 0, so Proposition 4.3 yields that V ±(zk) ≤ N∗± holds for all k ∈ Z.

Finally, Theorem 3.3 (b) ensures that there exists some k′ > 0, so that
zk′ ∈ R±. As yn`

σn`
+k′ = zn`

k′ → zk′ (`→∞), we obtain

N = lim
`→∞

V ±(yn`
σn`

+k′) = V ±(zk′) ≤ N∗±

from Proposition 3.2 (b), which is a contradiction that proves our statement.
The proof for the case N < N∗± is analogous.

Lemma 4.11. The set MN is closed for all N ∈ 2N0 ∪ {N∗+} (resp. all
N ∈ (2N0 + 1) ∪ {N∗−}).

Proof. Let (ξn)n≥0 be a sequence in MN for some N ∈ 2N0 ∪ {N∗+} (resp.
N ∈ (2N0 + 1)∪{N∗−}), such that limn→∞ ξ

n = ξ for some ξ ∈ A. We claim
that ξ ∈MN .

If ξ = 0, then Lemma 4.10 yields that N = N∗±. By definition of MN∗±
,

0 ∈MN∗±
also holds, so the statement is proved in this particular case.

Assume now that ξ 6= 0. By definition ofMN and using ξn ∈MN , there
exist bounded entire solutions (ynk ) of (1.2), such that yn0 = ξn, ynk ∈ MN

and V ±(ynk ) = N hold for all n ≥ 0 and k ∈ Z. The compactness of A and
a Cantor diagonalization argument leads to a subsequence (yn`)`∈N, and a
solution (yk)k∈Z of (1.2), so that yn`

k → yk holds for every k ∈ Z, as `→∞.
Necessarily, y0 = ξ holds. This combined with the compactness of A

yields that yk ∈ A \ {0} for all k ∈ Z. Applying Theorem 3.3 (b) we obtain
integers `1 < 0 < `2 such that y`1 and y`2 are from R±, and that

V ±(y`1) = lim
k→−∞

V ±(yk), and V ±(y`2) = lim
k→∞

V ±(yk) (4.10)

hold. On the other hand, yn`
`1
→ y`1 and yn`

`2
→ y`2 hold as ` → ∞, so

Proposition 3.2 (b) assures that V ±(y`1) = V ±(y`2) = N . This combined
with (4.10) yields that V ±(yk) = N for all k ∈ Z. In case N = N∗±, ξ ∈MN
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is readily established. Otherwise, it remains to prove that 0 /∈ α(y) ∪ ω(ξ).
In this case Lemma 4.10 gives an open neighborhood Ũ of 0 in A, such that
ynk ∈ A \ Ũ holds for all k ∈ Z and n ∈ N0. Hence,

yk ∈ A \ Ũ = A \ Ũ

holds for all k ∈ Z, which leads to α(y) ∪ ω(ξ) ⊆ A \ Ũ . This shows that
0 /∈ α(y) ∪ ω(ξ) and completes the proof.

Now, we are finally in the position to prove our main theorem.

Proof of Theorem 4.1. By definition, the sets Mn are pairwise disjoint
and invariant. Since A is compact, Lemma 4.11 yields that Mn is compact
for all possible n.

It remains to prove that these sets fulfill the “Morse properties” (m1)
and (m2), i.e. for all ξ ∈ A and any bounded entire solution (yk)k∈Z for
which y0 = ξ holds, there exist i ≥ j with α(y) ⊆Mi and ω(ξ) ⊆Mj , and
in case i = j, then ξ ∈Mi (thus, yk ∈Mi for every k ∈ Z).

In order to show this, let ξ ∈ A \ {0} be arbitrary (the statement is
trivial for ξ = 0), and (yk)k∈Z be a bounded entire solution of (1.2) for
which y0 = ξ holds. Furthermore, define

N := lim
k→∞

V ±(yk) and K := lim
k→−∞

V ±(yk).

Note that from monotonicity of V ± we get that N ≤ K.
First, observe that if N = N∗±, then ω(ξ) ⊆MN∗±

. In order to prove this,
choose η ∈ ω(ξ) arbitrarily. If η = 0, then η ∈MN∗±

holds by definition, thus

we may assume now that η 6= 0. By Lemma 4.7 we obtain that V ±(η) = N∗±.
Moreover, by the invariance of ω(ξ) \ {0} there exists an entire solution (zk)
in ω(ξ) \ {0}, such that z0 = η. Thus Lemma 4.7 yields that V ±(zk) = N∗±
for all k ∈ Z, meaning that η ∈MN∗±

holds.
A similar argument can be applied to prove that K = N∗± implies that

α(y) ⊆MN∗±
holds.

We will distinguish four cases in terms of the values of N and K.

Case 1. If N = K = N∗±, then α(y) ∪ ω(ξ) ⊆ MN∗±
holds by our pre-

vious observation. Moreover, from the monotonicity of V ± it follows that
V ±(yk) ≡ N∗± on Z. This implies ξ ∈MN∗±

, thus both (m1) and (m2) hold.

Case 2. N = N∗± < K. As already shown, ω(ξ) ⊆MN∗±
holds in this case.

Moreover, observe that α(y) 6= {0}. Otherwise Proposition 4.3 would
imply V ±(yk) ≤ N∗± for k ∈ Z, and thus K ≤ N∗± = N , which is impossible.

Therefore, Lemma 4.9 can be applied to obtain α(y) ⊆MK , so property
(m1) is fulfilled. Note that (m2) holds automatically, since the two Morse
sets in question, i.e. MN∗±

and MK , are different.
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Case 3. A similar argument applies in the case when N < N∗± = K.

Case 4. If N 6= N∗± 6= K, then Lemma 4.9 yields that either ω(ξ) = {0} or
ω(ξ) ⊆ MN . Similarly, either α(y) = {0} or α(y) ⊆ MK holds. Note that
ω(ξ) and α(y) cannot be both {0} in this case, because then Proposition 4.3
would imply V ±(yk) ≡ N∗± on Z, contradicting assumption N 6= N∗± 6= K.

If ω(ξ) 6= {0} 6= α(y), then Lemma 4.9 yields that ω(ξ) ⊆ MN and
α(y) ⊆MK hold, so (m1) is fulfilled. If K = N , then their definition imply
that V ±(yk) = N = K for all k ∈ Z. Since the limit sets are now also
assumed to be nontrivial, thus Lemma 4.8 ensures that 0 /∈ α(y) ∪ ω(ξ),
thus yk ∈MN also holds for all k ∈ Z. This establishes property (m2).

If ω(ξ) = {0} 6= α(y), then ω(ξ) ⊆ MN∗±
holds by definition. Further-

more, Proposition 4.3 implies that V ±(yk) ≥ N∗± holds for all k ∈ Z, and
consequently N∗± < N ≤ K. On the other hand Lemma 4.9 yields that
α(y) ⊆MK , so (m1) holds. Property (m2) is fulfilled automatically.

An analogous argument applies for the case when ω(ξ) 6= {0} = α(y). We
have taken all possible cases into consideration, so our proof is complete.

5 Applications

Since the existence of a global attractor is assumed in Theorem 4.1, we begin
with a condition for dissipativity:

Lemma 5.1. Suppose A ∈ Rd×d and H : Rd → Rd satisfy:

(i) There exist reals a ∈ (0, 1), K ≥ 1 with
∥∥Ak∥∥ ≤ Kak for all k ∈ Z+,

(ii) there exist reals β0, β1 ≥ 0 so that ‖H(y)‖ ≤ β0+β1 ‖y‖ for all y ∈ Rd.

If β1 ∈ [0, 1−aK ) and R > Kβ0
1−a−Kβ1 , then BR(0) is an absorbing set for

yk+1 = Ayk +H(yk). (5.1)

Proof. Due to the variation of constants formula (cf. [18, p. 100, Theo-
rem 3.1.16(a)]) the semigroup induced by (5.1) satisfies

φ(k; ξ) := Akξ +

k−1∑
l=0

Ak−l−1H(φ(l; ξ)) for all k ∈ Z+

and our assumptions yield

‖φ(k; ξ)‖
(i)

≤ Kak ‖ξ‖+K
k−1∑
l=0

ak−l−1 ‖H(φ(l; ξ))‖

(ii)

≤ Kak ‖ξ‖+Kβ0

k−1∑
l=0

ak−l−1 +Kβ1

k−1∑
l=0

ak−l−1 ‖φ(l; ξ)‖
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for k ∈ Z+. With the formula for the geometric series in mind, this implies

‖φ(k; ξ)‖
ak

≤ K ‖ξ‖+
Kβ0
1− a

(a−k − 1) +
Kβ1
a

k−1∑
l=0

‖φ(l; ξ)‖
al

for all k ∈ Z+,

using the Grönwall inequality [18, p. 348, Proposition A.2.1(a)] we obtain

‖φ(k; ξ)‖ ≤ K(a+Kβ1)
k ‖ξ‖+ Kβ0

1− a−Kβ1

(
1− (a+Kβ1)

k
)

for all k ∈ Z+

and a+Kβ1 ∈ [0, 1) leads to lim supk→∞ ‖φ(t; ξ)‖ ≤ Kβ0
1−a−Kβ1 .

5.1 Life sciences

Applications from the life sciences typically require solutions with values in
R+ := [0,∞). We thus present some dissipative delay-difference equations

xk+1 = f0(xk, xk−d) (5.2)

with C1-right-hand side f0 : R+ × R+ → R+ fitting into our setting. They
commonly have a unique equilibrium x∗ > 0. Hence, the shifted equation

xk+1 = f(xk, xk−d), f(x, y) := f0(x+ x∗, y + x∗)− x∗

with f : J×J → J and the closed interval J := [−x∗,∞) possesses the trivial
equilibrium. Under dissipativity conditions on (5.2) we obtain absorbing sets
of the form [0, R]d+1 with R > R0 for some R0 > 0 and consequently global
attractors A ⊆ [−x∗, R − x∗]

d+1 for (1.2). For brevity, let us introduce
x∗ := (x∗, . . . , x∗) ∈ Rd+1 .

In the literature often sufficient conditions for global asymptotic stability
of x∗ are given (cf., for example [9, 8]). In this case, only one Morse setMN∗±
is obtained from Theorem 4.1. Let us consequently list several dissipative
difference equations that fulfill the assumptions of our main theorem, i.e.
(H1)–(H3), and indicate bifurcations which lead to more complex dynamics
and possibly Morse sets.

Throughout, suppose that α ∈ (0, 1), β > 0.

5.1.1 Clarke-type models

Given a C1-function h : R+ → R+ we denote difference equations

xk+1 = αxk + h(xk−d) (5.3)

as Clarke’s delayed recruitment models. For such problems with h ∈ C3 it
was recently shown in [5] that even if the Schwarzian

Sh(x) :=
h′′′(x)

h′(x)
− 3

2

(
h′′(x)

h′(x)

)2

25



h x∗ R0 GAS

(5.4) - β
1−α p ≤ 1

(5.6) for p < 1
(
α+β−1
1−α

)1/p βη
1+ηp−β1η
αd(1−α)−β1

1− α < β < 1−α
1−α1+d

(5.6) for p = 1 α+β−1
1−α

β
1−α 1− α < β < 1−α

1−α1+d

(5.7) W ( β
1−α) β

1−α
β

1−α ≤ e

Table 5.1: Clarke-type models (5.3): Sufficient conditions for global asymp-
totic stability of the equilibrium x∗ > 0

is negative, supercritical Neimark–Sacker bifurcations can occur. Thus, an
invariant circle around the nontrivial equilibrium contributes to A.

For bounded functions h one obtains the following result on dissipativity.

Proposition 5.2 (dissipativity for (5.3), cf. [17]). If there exists a K+ ≥ 0
such that h(x) ≤ K+ for all x ∈ R+, then (5.3) is dissipative and A = [0, R]

is absorbing for every R > K+

1−α .

Example 5.3 (Mackey–Glass equation I). Let p > 0. For the Mackey–Glass
equation (5.3) one considers

h(x) =
β

1 + xp
(5.4)

and the injectivity condition (1.3) holds. Moreover, Sh(x) < 0 is true on the
interval (0,∞). There exists a unique equilibrium x∗ > 0 and Proposition 5.2
guarantees the absorbing set specified in Tab. 5.1. Shifting x∗ into the origin
yields a right-hand side

f(x, y) = α(x+ x∗) +
β

1 + (y + x∗)p
− x∗ = αx+

β

1 + (y + x∗)p
− β

1 + xp∗
,

which satisfies (H1)–(H3) (negative feedback) with a = α, b = − βpxp−1
∗

(1+xp∗)2
< 0

and a global attractor A consisting of entire solutions being uniquely defined
in backward time.

Our next example requires some dissipativity criterion which applies even
though h is unbounded.

Proposition 5.4 (dissipativity for (5.3)). Let β0, β1 ≥ 0 be reals satisfying
0 ≤ β1 ≤ αd(1− α). If h : R+ → R+ fulfills

h(x) ≤ β0 + β1x for all x ∈ R+, (5.5)

then (5.3) is dissipative and A = [0, R] is absorbing for every R > β0
αd(1−α)−β1

.
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Proof. We equip Rd+1 with the max-norm and formulate (5.3) as first order
system (5.1) in Rd+1. Then it is not difficult to see the relations

‖Ak‖ ≤ α−dak for all k ∈ Z+, ‖H(y)‖ ≤ β + β1 ‖y‖ for all y ∈ Rd+1
+

with a := α and Lemma 5.1 implies the assertion.

Example 5.5 (Mackey–Glass equation II). Let p ∈ (0, 1]. A further differ-
ence equation attributed to Mackey and Glass is of the form (5.3) with

h(x) =
βx

1 + xp
(5.6)

and the injectivity condition (1.3) holds. On the one hand, due to [9, Theo-
rem 2] the trivial solution is globally asymptotically stable for α+β < 1. On
the other hand, for α+ β > 1 there bifurcates a unique positive equilibrium
x∗ given in Tab. 5.1.

• For p < 1 choose β1 ∈ (0, αd(1−α)) and from h′(y) = β(1+(1−p)yp)
(1+yp)2

→ 0

as y → ∞ there is an η > 0 such that h′(η) = β1. Hence, (5.5) holds

with β0 = h(η)− β1η > 0 and Proposition 5.4 yields R > h(η)−β1η
αd(1−α)−β1

.

• For p = 1 the bounded function y 7→ βy
1+y is strictly increasing to β,

we derive from Proposition 5.2 that R > β
1−α .

The resulting right-hand side f(x, y) = αx+ β(y+x∗)
1+(y+x∗)p

− βx∗
1+xp∗

fulfills (H1)–

(H3) (positive feedback) and a = α, b = β 1+(1−p)xp∗
(1+xp∗)2

> 0. Whence, a global

attractor A containing the equilibria −x∗, 0 exists and consists of bounded
entire solutions being unique in backward time.

Example 5.6 (Wazewska–Lasota equation). Let W denote the Lambert-
W-function. We investigate (5.3) with

h(x) = βe−x. (5.7)

Note that (1.3) holds, as well as a negative Schwarzian Sh. Moreover, one
observes a subcritical flip bifurcation in the equation xk+1 = αxk + h(xk)
for critical parameters α such that 1+α

1−α = W ( β
1−α). Using Proposition 5.2

we obtain a concrete absorbing set from Tab. 5.1, which also lists the unique
positive equilibrium x∗ > 0. The right-hand side

f(x, y) := α(x+ x∗) + βe−(xk−d+x∗) − x∗ = αx+ (1− α)W
( β
1−α

)
(e−y − 1)

fulfills (H1)–(H3) (negative feedback) with a = α, b = −βe−x∗ < 0 and a
global attractor A containing unique backward solutions.
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F x∗ GAS

(5.9) 1−α
β 1− α < 3d+4

2(d+1)2

(5.10) β β < 3d+4
2(d+1)2

Table 5.2: Hutchinson-type models (5.8): Sufficient conditions for global
asymptotic stability of the equilibrium x∗ > 0 due to [8, Proposition 4]

5.1.2 Models of Hutchinson-type

Let F : R+ → (0,∞) be of class C1. Delay-difference equations

xk+1 = xkF (xk−d) (5.8)

are said to be of Hutchinson type.

Example 5.7 (Pielou equation). The equation (5.8) with

F (x) =
1

α+ βx
(5.9)

is dissipative by [7, Theorem 3.1]. Its unique equilibrium x∗ > 0 is asymptot-
ically stable for cos dπ

2d+1 >
1−α
2 . A sufficient condition for global asymptotic

stability is given in Tab. 5.2. Both above sufficient conditions for asymptotic
stability fail for large delays, but when dd

(d+1)d+1 < 1−α, nontrivial solutions

oscillate about x∗ (see [6, pp. 68–69, Theorem 3.4.2(c)]). Furthermore, the
shifted equation with

f(x, y) :=
x+ (α− 1)y

1 + βy

fulfills (H1)–(H3) (negative feedback) with a = 1, b = α−1 < 0 and a global
attractor A containing the equilibria −x∗, 0.

Example 5.8 (Ricker equation). For delayed Ricker equations (5.8) with

F (x) = eβ−x (5.10)

dissipativity was shown in [22, Theorem 3.1] for a more general equation. A
sufficient condition for global asymptotic stability of the nontrivial equilib-
rium is given in Tab. 5.2. Moreover, the shifted equation with

f(x, y) := (x+ β)e−y − β (5.11)

fulfills (H1)–(H3) (negative feedback) with a = 1, b = −β < 0 and a global
attractor A ⊆ [−x∗, R− x∗]d+1 containing the fixed points −x∗, 0.
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Example 5.9 (nonempty Morse sets). Let d = mp for some m, p ∈ N,
p ≥ 2. We utilize the simple observation that x̃p is a p-periodic solution of
equation (1.1) if and only if it is a p-periodic solution of the corresponding
undelayed equation xk+1 = f(xk, xk).

It is well known that the undelayed Ricker equation xk+1 = xke
β−xk

admits a 2-periodic solution if and only if β > 2, and that this solution
oscillates about x∗ = β (see [20, Proposition 3]). Now, let us fix β > 2.
Then there exists (x̃2k)k∈Z, a 2-periodic solution of (5.10) for any even d.
Thus the corresponding first order, d + 1 dimensional equation (1.2) with
(5.11) has a 2-periodic solution (ỹ2k)k∈Z, moreover, from the oscillation of
(x̃2k)k∈Z follows immediately that V −(ỹ2k) ≡ d+ 1 holds on Z. In particular,
the corresponding Morse set Md+1 contains a 2-periodic orbit. Note that
in this case d+ 1 = N∗− holds, meaning that MN∗−

is nontrivial.
Now assume that β > 1 + ln 9 and let d = 3m for some m ∈ N. Then

according to [20, Proposition 5] and the comment subsequent to it, there
exists a 3-periodic solution (x̃3k)k∈Z of xk+1 = xke

β−xk (by Šarkovs′kĭı’s
Theorem [23], also n-periodic solutions exist for any n ∈ N). It is easy to
see that (x̃3k)k∈Z oscillates about x∗ = β. Then one readily obtains that the
corresponding d+ 1 dimensional equation (1.2) with (5.11) has a 3-periodic
solution (ỹ3k)k∈Z, for which V −(ỹ3k) ≡ 2m + 1 holds on Z, and thus the
corresponding Morse set M2m+1 contains a 3-periodic orbit.

As a consequence, if β > 1 + ln 9 and d = 6n for some n ∈ N, then the
Morse setM6n+1 =MN∗−

is nontrivial andM4n+1 is nonempty for the d+1
dimensional Ricker map (1.2) with (5.11).

Note that although one can similarly find oscillatory n-periodic solutions
for nm + 1 dimensional Ricker maps with β > 1 + ln 9, it is nontrivial to
determine the number of sign changes they have on one period, and therefore
it is not clear in which Morse set they are contained.

The above example is closely related to the topic of the first open problem
presented in Section 6.

5.2 Discretizations

We consider the scalar retarded delay-differential equation

ẋ(t) = g(x(t), x(t− r)) (5.12)

with a continuously differentiable right-hand side g : R× R→ R and delay
r > 0. Its forward Euler discretization of stepsize r

d , d ∈ N, becomes

xk+1 = f(xk, xk−d), f(ξ, η) := ξ + r
dg(ξ, η) (5.13)

and is of the form (1.1) with J = R.
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The Krisztin–Walther equation ẋ(t) = −ax(t) + h(x(t − r)) is a special
case with a C1-function h : R→ R satisfying

a 6= h′(0),

{
h((0,∞)) ⊆ (0,∞) and h((−∞, 0)) ⊆ (−∞, 0), or

h((0,∞)) ⊆ (−∞, 0) and h((−∞, 0)) ⊆ (0,∞).

In this situation, the discretization is of Clarke-type

xk+1 = (1− a rd)xk + r
dh(xk−d), (5.14)

whenever a rd < 1 holds.

Proposition 5.10 (dissipativity, cf. [17]). If there exist K−,K+ ≥ 0 such
that −K− ≤ h(x) ≤ K+ for x ∈ R, then (5.14) is dissipative and every
A = [R−, R+] with R+ > K+ and R− < −K− is an absorbing set.

As a prototype for equations (5.14) we study

Example 5.11. Let J = R and α ∈ (0, 1), β ∈ R \ {0}. Consider the
delay-difference equation

xk+1 = αxk + β tanh(xk−d), (5.15)

which according to [9, Theorem 2] has a globally asymptotically stable trivial
solution for α + |β| < 1. The injectivity condition (1.3) holds and using

Proposition 5.10 we see that [−R,R] is an absorbing set when R > |β|
1−α and

the backward solutions on the global attractor of (5.15) are unique. One
has positive feedback for β > 0, negative feedback for β < 0 and it is

a = α, b = β.

In case β
1−α ∈ (0, 1] there exists the unique fixed point 0, while for β

1−α > 1
a symmetric pair of fixed points x− < 0 < x+ bifurcates. In the positive
feedback case, note that shifting (5.15) into one of the nontrivial equilibria
x± might yield another Morse decomposition.

6 Perspectives

We conclude this paper with raising some open questions and indicating
possible future research directions:

• Which Morse sets are nonempty? First note that the Morse setMN∗±
is obviously nonempty, as the trivial solution is contained in it. In Ex-
ample 5.9 we showed one possible method which can provide nonempty
Morse sets different fromMN∗±

. However it seems a challenging prob-
lem whether it can be shown (maybe under further assumptions on
(1.1)) that Mn 6= ∅ holds for all n < N∗±, as it was proved by Mallet-
Paret in the continuous time case with negative feedback [12].
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• Using a generalization of Huszár’s Lemma 2.1 by Egerváry [2], there is
hope that similar results can be shown for delay-difference equations

xk+1 = f(xk−m, xk−d),

with coprime m+ 1, d+ 1.

• It would be interesting to obtain a Morse decomposition in the general
setting of [14] and in particular for tridiagonal equations.

• Finally, what can be said in the nonautonomous case?
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Appendix A Proofs for positive feedback

Proof of Theorem 3.2. First note that there exists n0 ∈ N such that for
n > n0, y

n(j) has the same sign as y(j), where j ∈ {0, . . . , d} is an index for
which y(j) 6= 0. Moreover, from y ∈ R+ it follows that for j ∈ {1, . . . , d−1}
with y(j) = 0,

sgn y(j − 1) = sgn yn(j − 1) = − sgn y(j + 1) = − sgn yn(j + 1) 6= 0

and

sc(y(j − 1), y(j), y(j + 1)) = sc(yn(j − 1), yn(j), yn(j + 1)) = 1

holds for all n > n0. This in turn yields that for n > n0 and 0 ≤ i < j ≤ d
such that y(i) 6= 0 6= y(j) one has

sc(y(i), y(i+ 1), . . . , y(j)) = sc(yn(i), yn(i+ 1), . . . , yn(j)), (A.1)

which in particular means that sc yn = sc y and thus also V +(y) = V +(yn)
hold whenever y(0) 6= 0 6= y(d).

Since y ∈ R+ excludes the possibility of y(0) and y(d) both being 0 at
once, there remains the case when exactly one of them is 0. We may assume
y(d) = 0 (the case y(0) = 0 is analogous). Again, by regularity of y we have
that y(0)y(d−1) < 0, which together with (A.1) yields that on the one hand

sc(y(0), y(1), . . . , y(d− 1)) = sc(yn(0), yn(1), . . . , yn(d− 1))

holds for n > n0 and on the other hand this number is odd, say 2m+1. It is
now clear that sc y = 2m+1 ≤ sc yn ≤ 2m+2 and therefore V +(y) = V +(yn)
holds for all n > n0, which completes the proof.
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Proof of Theorem 3.3. (a) Since the last d components of yk ∈ Rd+1
∗ are

the same as the first d coordinates of yk+1, clearly sc yk+1 ≤ sc yk + 1 holds.
Assuming now to the contrary that V +(yk+1) > V +(yk) holds for some k
implies that sc yk+1 = sc yk +1 and sc yk is even. The former combined with
ak > 0 yields yk(0) 6= 0 and the evenness of sc yk implies that the last nonzero
coordinate of yk (say yk(j), 0 ≤ j ≤ d) has the same sign as yk(0). We may
assume w.l.o.g. that they are both positive (the negative case is analogous).
In particular this implies yk(d) ≥ 0. Using now the positivity of both ak
and bk one obtains readily from (3.3) that yk+1(d) = akyk(d) + bkyk(0) is
also positive. All these together give

sc yk+1 = sc
(
yk+1(0), yk+1(1), . . . , yk+1(d− 1), yk+1(d)

)
= sc

(
yk(1), yk(2), . . . , yk(d), yk+1(d)

)
≤ sc yk,

where the last inequality is due to sgn yk(j) = sgn yk+1(d). This is a contra-
diction, which proves statement (a).

(b) Before proving the statement, we need to introduce some auxiliary
notions. Let us say that a component y(j) (0 ≤ j ≤ d) of a vector y ∈ Rd+1

is irregular if y(j) = 0, and y(j − 1)y(j + 1) ≥ 0, where y(−1) := y(d) and
y(d + 1) := y(0). Using this terminology, y ∈ R+ (i.e. y is regular) holds
if and only if y has no irregular component. Furthermore, we call a vector
(y(i), . . . , y(j)) with 0 ≤ i ≤ j ≤ d an irregular block (of zeros) in y ∈ Rd+1,
if y(i) = · · · = y(j) = 0, and moreover it has maximal length in the sense
that either i = 0 or i ≥ 1 and y(i − 1) 6= 0 hold, and similarly either j = d
or j < d and y(j+ 1) 6= 0 hold. The dimension of the block will be regarded
as the length of it. Note also that consecutive zero components are irregular
by definition.

The proof of statement (b) consists of several, yet elementary, steps.
From now on we shall always assume that V +(yk) = V +(yk+4d+2), which

implies, in the light of statement (a), that V +(yk) = V +(yk+`) holds for all
0 ≤ ` ≤ 4d+ 2.

Step 1. If for some k, yk+1(j) = 0 is irregular (0 ≤ j < d), then so is
yk(j + 1) = 0 irregular.

This is trivial in case 1 ≤ j ≤ d− 2.
If yk+1(d − 1) = 0 is irregular (i.e. yk+1(d − 1) = 0 and yk+1(d −

2)yk+1(d) ≥ 0), then on the one hand yk(d) = 0 holds and on the other hand,
bk > 0 yields that sgn yk+1(d) = sgn yk(0). Combining this with yk(d− 1) =
yk+1(d−2) yields that sgn(yk(d−1)yk(0)) = sgn(yk+1(d−2)yk+1(d)), mean-
ing that yk(d) is also irregular in yk.

For the case when yk+1(0) = 0 is irregular, assume to the contrary that
yk(1) = 0 is regular, i.e. yk(0)yk(2) < 0. W.l.o.g. we may assume yk(0) <
0 < yk(2). Irregularity of yk+1(0) combined with yk+1(1) = yk(2) > 0 yields
yk+1(d) ≥ 0. Now, from ak > 0 and bk > 0 it follows that yk(d) > 0. These
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all together imply that sc yk is an odd number, moreover sc yk = sc yk+1 +1,
which gives V +(yk) = V +(yk+1) + 2, a contradiction.

Step 2. If yk+1(d) = 0, then there are two possibilities. Either yk(0) =
yk(d) = 0, or yk(0)yk(d) < 0. Assume now that the latter holds and let
0 ≤ j < d be the smallest integer such that yk(j+1) 6= 0. As yk(0)yk(d) < 0,
hence sc yk is odd, so V +(yk) = V +(yk+1) holds only if sgn yk(j + 1) =
sgn yk(0), which in turn yields also

sgn yk(j + 1) = − sgn yk(d) = − sgn yk+1(d− 1) 6= 0. (A.2)

If in addition yk+1(d) = 0 is irregular, then 0 ≤ yk+1(0)yk+1(d − 1) =
yk(1)yk(d) holds, which in the light of (A.2) yields that j 6= 0, or what is
equivalent, yk(1) = 0.

To sum up, if yk+1(d) = 0 is irregular, then either yk(0) = yk(d) = 0 or
there exists some 1 ≤ j ≤ d− 2, such that

yk(0) 6= 0,

yk(1) = · · · = yk(j) = 0,

yk(j + 1) 6= 0,

yk(d) 6= 0,

sgn yk(0) = sgn yk(j + 1) = − sgn yk(d)

(A.3)

hold, which in particular means that yk(0) is followed by an irregular block
of zeros of length j ≥ 1.

Step 3. As a result of the first two steps, if yk ∈ R+ and V +(yk) =
V +(yk+1), then yk+1 ∈ R+. Therefore, in order to prove the statement, it
is sufficient to show that there exists 0 ≤ ` ≤ 4d+ 2 such that yk+` ∈ R+.

Steps 4–6 are identical to the corresponding ones presented for negative
feedback and the same argument shows that yk+4d+2 ∈ R+.

Proof of Theorem 4.2. The eigenvalues of (4.1) are precisely the solu-
tions of the characteristic equation (2.2). If M∗ is equal to 0 or d+ 1, then
the statement is trivial. Otherwise, according to Lemma 2.1, M∗ is an odd
number, say M∗ = 2n′ + 1, where 0 ≤ n′ ≤ d−1

2 .
We use the notations and ordering for eigenvalues introduced in

Lemma 2.1. For a non-real eigenvalue λj = rje
iϕj ∈ S+

j (with ϕj ∈ (0, π),

j ∈ N, j < d+1
2 ) any linear combination of the real eigensolutions corre-

sponding to λj can be written in the form cjzj , where cj ∈ R and

zj,k =


zj,k(0)
zj,k(1)

...
zj,k(d− 1)
zj,k(d)

 =


rkj sin(kϕj + ωj)

rk+1
j sin((k + 1)ϕj + ωj)

...

rk+d−1j sin((k + d− 1)ϕj + ωj)

rk+dj sin((k + d)ϕj + ωj)

 (A.4)
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with some ωj ∈ [0, 2π). From ϕj ∈ (0, π) it is clear that sc zj,k equals the
number of sign changes the sine function has on the interval (kϕj +ωj , (k+
d)ϕj + ωj). According to the definition of the sector S+

j , the length of this

interval is dϕj ∈ ((2j − 1)π, d
d+12jπ). Now, from the definition of V + we

obtain that V +(zj,k) = 2j for all k ∈ Z−.
As for the eigensolutions corresponding to real eigenvalues, any eigenso-

lution corresponding to the leading positive eigenvalue r0 := λ+ > 0 can be
written in the form c0z0, where c0 ∈ R and z0,k(j) = rk+j0 for all k ∈ Z−
and j ∈ Z+, j ≤ d. Clearly, every component of z0,k has the same sign for
any k ∈ Z− and in particular V +(z0,k) = 0 for all k ∈ Z−. Similarly, if d is
odd, say d = 2` − 1 for some ` ∈ N, then any eigensolution corresponding
to the unique negative eigenvalue −r` := λ− < 0 can be written in the form
c`z`, where c` ∈ R and z`,k(j) = (−r`)k+j for all k ∈ Z− and j ∈ Z+, j ≤ d.
Obviously sc z`,k = d and therefore also V +(z`,k) = d + 1 = 2` hold for all
k ∈ Z−. According to Lemma 2.1 there are no other real eigenvalues.

First, let us consider the hyperbolic case. Assume that M∗ = 2n′ + 1
for some integer 0 ≤ n′ ≤ d−1

2 . Then N∗+ = M∗ = 2n′ + 1. Let y be an
arbitrary solution of (4.2) which is bounded in backward time. This means
that there exist an integer 0 ≤ n ≤ n′ and appropriate constants c0, cj ∈ R
and ωj ∈ [0, 2π) for j = 1, . . . , n with cn 6= 0, such that

y =
n∑
j=0

cjzj .

We will show that V +(yk) ≤ V +(zn,k) = 2n < 2n′ + 1 = N∗+ holds for
all k ≤ k1, where k1 is to be defined soon. Then by monotonicity of V +

(proved in Theorem 3.3) we get statement (a).
Case n = 0 is trivial, thus we may assume n ≥ 1. From Lemma 2.1 one

can easily obtain that there exists ϑn > 0, sufficiently small, such that

ϑn < min
{π − ϕn

2
,
ϕn
2

}
(A.5)

dϕn + 2ϑn < 2nπ and (A.6)

(2n− 1)π < dϕn − 2ϑn (A.7)

hold. Moreover, by the same lemma we have |rn| < |rj | for any 0 ≤ j < n,
so we may choose k0 < 0 so small that

nrkn−1 max
0≤j≤n−1

|cj | < |cn|rkn sinϑn (A.8)

holds for all k ≤ k0. Let k1 = k0 − d.
For simplicity, let us say that the `-th component of zn,k, i.e. zn,k(`) =

rkn sin((k + `)ϕn + ωn) is small if | sin((k + `)ϕn + ωn)| ≤ sinϑn, otherwise
the component will be said to be big. Inequality (A.8) yields that if zn,k(`)
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is big for some ` = 0, 1, . . . , d, then sgn yk(`) = sgn zn,k(`) 6= 0 holds for
all k ≤ k1. Note that inequality (A.5) guarantees that there is no k ≤ k1
and component 0 ≤ ` < d such that zn,k(`) and zn,k(` + 1) are both small.
Similarly, (A.6)–(A.7) imply that zn,k(0) and zn,k(d) cannot be small at the
same time. Moreover, by (A.5) one obtains that if zn,k(`) is small for some
k ≤ k1 and ` ∈ {1, . . . , d− 1}, then sgn zn,k(`− 1) = − sgn zn,k(`+ 1).

All these together mean that, if k ≤ k1 and zn,k(0) and zn,k(d) are both
big, sc yk = sc zn,k holds, and V +(yk) = V +(zn,k) = 2n < N∗+ follows.

There remains the case, when exactly one of zn,k(0) and zn,k(d) is small.
W.l.o.g. we assume that zn,k(d) is small, zn,k(0) is big and positive. Then, as
zn,k(d− 1) is also big, sc(yk(0), . . . , yk(d− 1)) = sc(zn,k(0), . . . , zn,k(d− 1))
follows. Thus either V +(yk) ≤ V +(zn,k) holds or sc yk = sc zn,k + 1 is
odd. We show that the latter case leads to contradiction. Should it hold,
then yk(0), yk(d − 1), zn,k(0) and zn,k(d − 1) would be all positive, while
yk(d) < 0 and zn,k(d) ≥ 0. Now, since zn,k(d) ≥ 0 is small, ((k+d)ϕn+ωn) ∈
[0, ϑn)∪ (π− ϑn, π] mod 2π holds. On the other hand, from zn,k(d− 1) > 0
and (A.5) it follows that ((k+d)ϕn+ωn) ∈ (π−ϑn, π] mod 2π, which implies
by inequalities (A.6) and (A.7) that zn,k(0) < 0. This is a contradiction, so
our proof is complete for the hyperbolic case.

If the origin is non-hyperbolic, and M∗ ≥ 1, then N∗+ = M∗+1. Keeping
our notations from above, there is a pair of eigenvalues λn′+1, λn′+1 on the
unit circle, or −1 is a simple eigenvalue (if d is odd and M∗ = d). In the
latter case, statement (a) of the lemma is trivial. In the former case all
solutions of (4.2) that are bounded in backward time can be written in the
form y =

∑n
j=0 cjzj , where n ≤ n′ + 1, cj ∈ R, cn 6= 0, and zj are of the

form (A.4). Now, the same argument presented in the hyperbolic case can
be applied to prove that V +(yk) = 2n ≤ 2n′ + 2 = N∗+ for all k ∈ Z−.
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[19] Geneviève Raugel. Global attractors in partial differential equations. In
Handbook of dynamical systems, Vol. 2, pages 885–982. North-Holland,
Amsterdam, 2002.

[20] George Seifert. On an interval map associated with a delay logistic
equation with discontinuous delays. Delay Differential Equations and
Dynamical Systems, pages 243–249, 1991.

[21] John Smillie. Competitive and cooperative tridiagonal systems of dif-
ferential equations. SIAM J. Math. Anal., 15(3):530–534, 1984.

[22] Hong-Rui Sun and Wan-Tong Li. Qualitative analysis of a discrete
logistic equation with several delays. Appl. Math. Comput., 147(2):515–
525, 2004.
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