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Pullback convergence has been investigated in numerous papers as an appropriate attraction
concept for nonautonomous problems. However, in this note it is illustrated through some sim-
ple examples that pullback attractors do not give a complete picture of asymptotic behaviour
when the nonautonomous dynamical systems that they generate are formulated as processes.
It is then shown how the problem can be resolved by using a skew product formulation of the
nonautonomous dynamical systems when the state space of the driving system is compact.
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1. Introduction

Consider a nonautonomous difference equation

xk+1 = fk(xk) (1)

on a metric space (X, d) with continuous mappings fk : X → X, k ∈ Z.
The above difference equation (1) generates a discrete time nonautonomous dy-

namical system described by a discrete time process or two-parameter semigroup
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ϕ : {(k, `, x) ∈ Z× Z×X : ` ≤ k} → X, which satisfies

ϕ(k, `, x) =

{
fk−1 ◦ · · · ◦ f`(x) : ` < k,

x : ` = k.

Invariant sets and pullback attractors for processes are introduced and discussed
in section 2 and the limitations of pullback attractors for processes are indicated
through some examples in section 3. In particular, the examples show how the
forward asymptotic behaviour is not always captured by the pullback attractors of
processes. Finally, in subsection 4.2 it is shown how this behaviour is included in
the dynamics of the system when formulated as skew product flows.

For arbitrary nonempty sets A, B ⊂ X and x ∈ X, define the distance of x to
A by dist(x,A) := inf {d(x, y) : y ∈ A} and the Hausdorff semi-distance of A and
B by dist(A,B) := sup {d(x,B) : x ∈ A}.

2. Invariant sets and pullback attractors for processes

An attractor of a discrete time process ϕ on a metric space (X, d) consists of a
family A = {Ak : k ∈ Z} of nonempty compact subsets of X rather than a single
set as in autonomous dynamical systems (cf. [1]). The reader is referred to [5, 6, 8]
for motivation and details.

A family A = {Ak : k ∈ Z} of nonempty compact subsets of X is said to be
ϕ-invariant if

ϕ(k, `, A`) = Ak for all ` ≤ k,

which is equivalent to

Ak+1 = fk(Ak) for all k ∈ Z.

An entire solution of a process ϕ is a sequence χ = {χk}k∈Z such that

ϕ(k, `, χ`) = χk for all ` ≤ k,

which is equivalent to χk+1 = fk(χk) for all k ∈ Z. An entire sequence χ = {χk}k∈Z

is a ϕ-invariant set consisting of singleton sets Ak = {χk}, k ∈ Z.
In general, a ϕ-invariant set consists of entire solutions. This is essentially due

to the fact that processes are onto between the components sets. The backward
solutions, however, need not be uniquely determined, since the mappings fk are
usually not assumed to be one-to-one.

Proposition 2.1 . A family A = {Ak : k ∈ Z} is ϕ-invariant if and only if for
every pair κ ∈ Z and x ∈ Aκ there exists an entire solution χ such that χκ = x
and χk ∈ Ak for all k ∈ Z. The entire solution χ is uniquely determined, provided
every mapping

fk : X → X is one-to-one for all k ∈ Z. (2)

Proof . (⇒) Let A be ϕ-invariant and choose x ∈ Aκ. For k ≥ κ, define the sequence
χk := ϕ(k, κ, x). Then the ϕ-invariance of A yields χk ∈ Ak. On the other hand,
Aκ = ϕ(κ, k,Ak) for k ≤ κ, so there exists a sequence xk ∈ Ak with x = ϕ(κ, k, xk)
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and xk = ϕ(k, k − 1, xk−1) for all k < κ. Hence define χk := xk for k < κ and χ
becomes an entire solution with the desired properties. Under (2) the sequence xk
is given uniquely.

(⇐) Suppose for arbitrary κ ∈ Z and x ∈ Aκ there is an entire solution χ
satisfying χκ = x and χk ∈ Ak for all k ∈ Z. Hence ϕ(k, κ, x) = ϕ(k, κ, χκ) =
χk ∈ Ak holds for all k ≥ κ. From this ones concludes that fk(Ak) ⊆ Ak+1. The
remaining inclusion fk(Ak) ⊇ Ak+1 follows from the fact that x = ϕ(κ, k, χk) ∈
ϕ(κ, k,Ak) for k ≤ κ. �

Definition 2.2 . A ϕ-invariant family A = {Ak : k ∈ Z} of nonempty uniformly
bounded compact subsets of X is called a pullback attractor if

lim
n→∞

dist (ϕ(k, k − n,B), Ak) = 0 for all k ∈ Z (3)

and all bounded subsets B of X.

Pullback attraction is essentially a concept of attraction for the past of the sys-
tem. In the next example, due to |λ+| > 1, different solutions diverge when time
is positive. Specifically, the behaviour of the system on Z+

0 := {0, 1, 2, . . .} has no
influence on pullback attractivity.

Example 2.3 Consider the linear difference equation

xk+1 = λkxk, λk :=

λ+, k ≥ 0

λ−, k < 0
(4)

with λ−, λ+ ∈ R satisfying 0 < |λ−| < 1 < |λ+|, which generates the process

ϕ(k, `, x) =


λk−`+ x for 0 ≤ ` ≤ k,

λk+λ
−`
− x for ` ≤ 0 ≤ k,

λk−`− x for ` ≤ k ≤ 0.

The family of sets A with Ak ≡ {0} for all k ∈ Z is obviously ϕ-invariant and also
pullback attracting, since for any bounded subset B ⊆ [−R,R] for some R > 0

0 ≤ dist(ϕ(k, k − n,B), Ak) ≤ dist(ϕ(k, k − n, [−R,R]), {0})

≤ R |λ−|n


∣∣∣λ+

λ−

∣∣∣k for k ≥ 0,

1 for k < 0

−−−→
n→∞

0 for all k ∈ Z.

As pointed out above, the pullback attraction concept reflects the dynamical
behaviour in the past and does not necessarily imply forward convergence, which
is the appropriate concept for the future dynamics. Example 2.3 shows that

lim
k→∞

dist(ϕ(k, `, x), Ak) = 0 ⇐⇒ x = 0 for all ` ∈ Z,

i.e., there is no forward convergence towards A.
The assumption that pullback attractors are uniformly bounded in the above

definition ensures that they are uniquely determined.
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Example 2.4 Discard the uniform boundedness assumption in Definition 2.2 and
consider the process ϕ from the above Example 2.3. Given an arbitrary γ ∈ R, it
is easy to see that

χγk := γ

{
λk+ for k ≥ 0,

λk− for k < 0

defines an entire solution for equation (4). Hence, the families {0 : k ∈ Z} and
χγ := {χγk : k ∈ Z} are invariant, as well as their union Aγ := {{0, χγk} : k ∈ Z}.
In Example 2.3 it was shown that {0 : k ∈ Z} attracts uniformly bounded sets
and the definition of the Hausdorff semidistance guarantees that also Aγ has this
property (cf. (3)). Since all members Aγk = {0, χγk}, k ∈ Z, of the family Aγ are
compact (in fact finite), each Aγ would be a pullback attractor for ϕ, among which
A0 is the unique uniformly bounded pullback attractor.

Since pullback attractors are uniformly bounded (by definition), they can be
characterized by the bounded entire solutions of the process.

Proposition 2.5 . A pullback attractor A = {Ak : k ∈ Z} admits the dynamical
characterization: for each κ ∈ Z

x ∈ Aκ ⇔ there exists a bounded entire solution χ with χκ = x.

It is therefore uniquely determined.

Proof . For the implication (⇒) pick κ ∈ Z and x ∈ Aκ arbitrarily. Then due to
the ϕ-invariance of the pullback attractor A, Proposition 2.1 provides the existence
of an entire solution χ with χκ = x and χk ∈ Ak for each k ∈ Z. Moreover, ϕ is
bounded since the component sets of the pullback attractor are uniformly bounded.

For the converse implication (⇐), if there exists a bounded entire solution χ to
equation (1), then the set of points Bχ := {χk : k ∈ Z} is bounded in X. Since A
pullback attracts bounded subsets of X, it follows that

0 ≤ dist(χk, Ak) ≤ lim
n→∞

dist(ϕ(k, k − n,Bχ), Ak) = 0 for all k ∈ Z,

so χk ∈ Ak. �

3. Limitations

The limitations of pullback attraction are illustrated in this section through some
examples, which show that pullback attractors do not capture the complete dy-
namics of nonautonomous systems defined through processes.

First consider the autonomous scalar difference equation

xk+1 =
λxk

1 + |xk|
(5)

depending on a real parameter λ > 0. Its zero solution x̄ = 0 exhibits a pitchfork
bifurcation at λ = 1, and one obtains the following global behaviour (see Figure 1):

• If λ ≤ 1, then x̄ = 0 is the only fixed point, it is globally asymptotically stable
and is thus the global attractor of the autonomous dynamical system generated
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by the difference equation (5).

• If λ > 1, then there exist in addition two nontrivial fixed points x± := ±(λ− 1).
The trivial solution x̄ = 0 is an unstable steady state solution and the symmetric
interval A = [x−, x+] is the global attractor.
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Figure 1. Trajectories of the autonomous difference equation (5) with λ = 0.5 (left) and λ = 1.5 (right)

3.1 Piecewise autonomous equation

Consider now the piecewise autonomous equation

xk+1 =
λkxk

1 + |xk|
, λk :=

{
λ, k ≥ 0,

λ−1, k < 0
(6)

for some λ > 1, which corresponds to a switch between the two autonomous prob-
lems (5) at k = 0.

Due to Proposition 2.5 the pullback attractor A of the resulting nonautonomous
system has component sets Ak ≡ {0} for all k ∈ Z corresponding to the zero
entire solution. Note that the trivial fixed point x̄ = 0 is “asymptotically stable”
for k < 0 and then “unstable” for k ≥ 0. Moreover the interval [x−, x+] is like a
global attractor for the whole equation on Z, but it is not really one since it is not
invariant or minimal for k < 0.

The nonautonomous difference equation (6) is asymptotic autonomous in both
directions, but the pullback attractor does not reflect the full limiting dynamics
(see Figure 2 (left)), in particular in the forwards time direction.

If the λk do not switch from one constant to another, but increase monotonically,
e.g. such as λk = 1 + 0.9k

1+|k| , then the dynamics is similar, although the limiting

dynamics is not so obvious from the equations. See Fig. 2 (left).

3.2 Fully nonautonomous equation

Now let {λk}k∈Z be a monotonically increasing sequence with limk→±∞ λk = λ̄±1

for λ̄ > 1. The nonautonomous problem

xk+1 = fk(xk) :=
λkxk

1 + |xk|
. (7)
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Figure 2. Trajectories of the piecewise autonomous difference equation (6) with λ = 1.5 (left) and the

asymptotically autonomous difference equation (7) with λk = 1 + 0.9k
1+|k| (right)

is asymptotically autonomous in both directions with the limiting systems given
in the previous subsection.

Its pullback attractor A has component sets Ak ≡ {0} for all k ∈ Z corresponding
to the zero entire solution, which is the only bounded entire solution. As above,
the trivial solution x̄ = 0 is “asymptotically stable” for k < 0 and then “unstable”
for k ≥ 0. However the forward limit points for nonzero solutions are ±(λ̄ − 1),
both of which are not solutions at all. In particular, they are not entire solutions,
so cannot belong to an attractor, forward or pullback, since these consist of entire
solutions. See Figure 2 (right).

4. Resolution of the problem

The problem arises in part due to the use of the process formulation of the nonau-
tonomous dynamical system. Pullback attraction alone does not characterize fully
the bounded limiting behaviour of a nonautonomous system formulated as a pro-
cess. In fact, something in addition like nonautonomous limit sets [6, 8], limiting
equations [2] or asymptotic invariant sets [3] and eventual asymptotic stability [4]
or a mixture of these ideas is needed to complete the picture. However, this varies
from example to example and is somewhat ad hoc.

4.1 Resolution in terms of processes

The examples above show that a pullback attractor only reflects the limiting be-
haviour for k → −∞. A description for k →∞, however, is possible if one considers
future attractors in addition to pullback attractors.

Here, a (global) future or forward attractor of (1) is given by an invariant nonau-
tonomous set A ⊂ Z × X which attracts all uniformly bounded nonautonomous
sets in forward time. More precisely, a forward attractor fulfills

lim
n→∞

dist (ϕ(n, k,B), An) = 0

for all k ∈ Z and all bounded subsets B of X.
However, pullback and forward attractors are completely different objects. For

instance, an analogue to Corollary 2.5 does not hold for future attractors. This
follows from a modified version of Example 2.3.
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Example 4.1 Consider the linear difference equation

xk+1 = akxk, ak :=

{
α+, k ≥ 0,

α−, k < 0,

generating the process

ϕ(k, κ, ξ) =


αk−κ+ ξ for 0 ≤ κ ≤ k,
αk+α

−κ
− ξ for κ ≤ 0 ≤ k,

αk−κ− ξ for κ ≤ k ≤ 0

with α−, α+ ∈ R satisfying 0 < |α+| < 1 < |α−|. It is easy to see that every entire
solution of this system is uniformly bounded and a forward attractor.

For this reason, forward attractors are intrinsically nonunique, which makes it
more difficult to deal with them. However, they are necessary to describe and
understand the full dynamics of the system. A detailed discussion of the interplay
between pullback and forward attractors can be found in [10].

The problem is also resolved if one considers uniform attractors. These are essen-
tially pullback attractors (or forward attractors), where the attraction is uniform
in time, i.e., the limit relation in (3) is uniform w.r.t. k ∈ Z. Uniform attractors
are both pullback and forward attractors and are able to describe attractivity for
both the past and the future of the system.

4.2 Resolution of the problem through skew product flows

A more elegant way to resolve the problem is to consider the discrete skew product
flow formalism of a nonautonomous dynamical system (cf. [11]). This includes an
autonomous dynamical system as a driving mechanism, which is responsible for
the temporal change in the dynamics of the nonautonomous difference equation.
Moreover, it includes the dynamics of the asymptotically autonomous difference
equations above and their limiting autonomous systems.

Definition 4.2 . A skew product flow (θ, φ) is defined in terms of a cocycle mapping
φ on a state space X, which is driven by an autonomous dynamical system θ acting
on a base space P , where (P, dP ) is a metric space with metric dP . Specifically, the
dynamical system θ on P is a group of homeomorphisms {θn}n∈Z under composition
on P with the properties that

• θ0(p) = p for all p ∈ P ,

• θk+`(p) = θ`(θk(p)) for all k, ` ∈ Z and p ∈ P ,

• the mapping p 7→ θk(p) is continuous for each k ∈ Z,

and the cocycle mapping φ : Z+
0 × P ×X → X satisfies

• φ(0, p, x) = x for all p ∈ P and x ∈ X,

• φ(k + `, p, x) = φ(`, θk(p), φ(k, p, x)) for all k, ` ∈ Z+
0 , p ∈ P and x ∈ X,

• the mapping (p, x) 7→ φ(k, p, x) is continuous for each k ∈ Z.

The word “skew” in skew product is due to the skew or triangular nature of
the dependence of the components on the product space P ×X with the driving
system on the “base” space independent of the cocycle system on X, but affecting
its evolution.
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A family A = {Ap : p ∈ P} of compact subsets of X is said to be φ-invariant if

φ(k, p,Ap) = Aθk(p) for all k ∈ Z+
0 , p ∈ P.

An entire solution of a skew product flow is a sequence χ = {χp}p∈P such that

φ(k, p, χp) = χθk(p) for all k ∈ Z+
0 , p ∈ P,

and is thus an example of a φ-invariant family consisting of singleton sets.

Definition 4.3 . A φ-invariant family A = {Ap : p ∈ P} of uniformly bounded
compact subsets of X is called a pullback attractor of a skew product flow (θ, φ)
on P ×X if

lim
n→∞

dist (φ(n, θ−n(p), B), Ap) = 0 for all p ∈ P (8)

and all bounded subsets B of X.

The counterpart of the crucial Proposition 2.5 holds for skew product flows too,
i.e., the pullback attractor consists of all the bounded entire solutions of the system.

A process ϕ admits a formulation as a skew product flow with P = Z, the time
shift θ`(k) := k + ` and the cocycle mapping φ(`, k, x) : = ϕ(k + `, k, x) for ` ≥ 0
and x ∈ X. Here P is a locally compact space.

The real advantage of the somewhat more complicated skew product flow
formulation of nonautonomous dynamical systems occurs when P is compact.
Then ∪p∈PAp is precompact and its closure includes the possible limiting future
behaviour of the system [6]. In fact,

lim
n→∞

dist
(
φ(n, p, x),∪p∈PAp

)
= 0 for all p ∈ P, x ∈ X. (9)

The nonautonomous difference equation (7) as a skew product flow

The nonautonomous difference equation (7) can be formulated as a skew product
flow with the driving system defined in terms of the shift operator θ on the space
of bi-infinite sequences

ΛL = {λ = {λk}k∈Z : λk ∈ [0, L] for all k ∈ Z} ,

for some L > 1, which is a compact metric space with the metric

dΛL

(
λ(1), λ(2)

)
:=
∑
k∈Z

2−|k|
∣∣∣λ(1)
k − λ

(2)
k

∣∣∣ .
This is coupled with a cocycle state space mapping with values xk = φ(k, λ, x0)
generated by the difference equation (7) with a given coefficient sequence λ.

For the sequence λ used in (7), the limit of the shifted sequences θn(λ) in the
above metric as n → ∞ is λ∗+ with all components equal to λ̄, while the limit as
n → −∞ is λ∗− with all components equal to λ̄−1.
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The pullback attractor of the corresponding skew product flow (θ, φ) consists of
compact subsets Aλ of R for each λ ∈ ΛL. It is easy to see that Aλ = {0} for any
λ with components λk < 1 for k ≤ 0, which includes the constant sequence λ∗−
as well as the switched sequence in (7). On the other hand, Aλ∗

+
= [−λ̄, λ̄]. Here

∪λ∈ΛLAλ is precompact, so contains all future limiting dynamics.

The pullback attractor of the skew product flow includes that of the process for
a given bi-infinite coefficient sequence, but also includes its forward asymptotic
limits and much more. The coefficient sequence set ΛL includes all possibilities, in
fact, far more than may be of interest in particular situation. If one is interested
in the dynamics of a process corresponding to a specific λ̂ ∈ ΛL, then it would
suffice to consider the skew product flow with respect to the driving system on the
smaller space Λλ̂ defined as the hull of this sequence, i.e., the set of accumulation

points of the set {θnλ̂ : n ∈ Z} in the metric space (ΛL, dΛL). In particular, if λ̂
is the specific sequence in (7), then ∪λ∈Λλ̂Aλ = Aλ∗

+
= [−λ̄, λ̄] contains all future

limiting dynamics, i.e.,

lim
n→∞

dist
(
φ(n, λ, x), [−λ̄, λ̄]

)
= 0 for all x ∈ X.

The example described by nonautonomous difference equation (7) is asymptot-
ically autonomous with Λλ = {λ∗±} ∪ {θnλ : n ∈ Z}. The forward limit points
±(λ̄ − 1) of the process generated by (7), which were not steady states of the
process, are now locally asymptotic steady states of the skew product flow with
base space P = Λ̄ consisting of the single constant sequence λk ≡ λ̄, when the
skew product system is interpreted as an autonomous semidynamical system on
the product space P ×X.

More generally, the skew product flow formalism includes the asymptotically
periodic case as well as more general forms of asymptotic recurrence.

5. Conclusion

The asymptotic behaviour or nonautonomous dynamical systems is considerably
more complicated than that of autonomous dynamical systems [1, 6]. In the liter-
ature there are now various concepts of nonautonomous attractors including the
pullback attractor, which is convenient since, unlike forward attraction, pullback
attraction provides a means for actually constructing the components subsets of
the pullback attraction. However, pullback attraction is essentially a concept of
attraction for the past of the system and does not necessarily provide information
about the future asymptotic behaviour of the system, which can be considerably
more complicated, see the monographs [6, 8, 9] and the papers [5, 10] for more
information.

The process formulation of a nonautonomous dynamical system is simpler and
more intuitive than the skew product flow formulation. However, in itself, it often
does not provide complete information about the future asymptotic behaviour of
the system, as the above examples show. In contrast, this information is built into
the skew product flow formulation when the state space P of the driving system is
compact. Essentially, the skew product flow already includes the limiting dynamics
and no further ad hoc methods are needed to determine it. The compactness of
the space state P of the driving system is a restriction, but nevertheless holds for
a very wide class of nonautonomous systems [7].
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