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Abstract

In this note we prove a chain rule for mappings on abstract measure chains and
apply our result to deduce an invariance principle for non-autonomous dynamic
equations.
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In the qualitative theory of dynamical systems there are plenty of applica-
tions of the chain rule, ranging from Lyapunov’s Direct Method and LaSalle’s
Invariance Principle to invariance equations for integral manifolds. Beyond
the case of ordinary differential equations, the so-called “Calculus on Measure
Chains” (cf. Hilger [2]) provides additionally a useful insight into the transition
between the continuous and the discrete case. In this note we prove a chain
rule for mappings defined on measure chains and state LaSalle’s Invariance
Principle for non-autonomous dynamic equations as an application.

Our chain rule already appeared in the thesis Keller [3, p. 6, Folgerung 1.2.9],
but with a proof only valid on time scales, i.e. closed subsets of R. The chain
rule stated in Lakshmikantham, Sivasundaram & Kaymakgalan [5, pp. 17-18,
Theorem 1.2.3(iv)] is true solely in right-dense points, with the consequence
that Sections 3.4, 4.5 and 4.9 of this monograph become questionable. Fi-
nally the scope of our result is different from the chain rule recently given
in Ahlbrandt, Bohner & Ridenhour [1, Theorem 2.7]. We essentially consider
Banach space-valued mappings and Fréchet-derivatives, while Ahlbrandt et
al. examine time scale-valued mappings using their new concept of so-called
“alpha derivatives.”

Throughout this note let (T, =<, u) be a measure chain with forward jump
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operator o, graininess p*, and X', ) denote arbitrary Banach spaces. L(X;))
is the space of linear and continuous operators between X and ). Since no
confusion should arise, we always write ||-|| for the norms on this spaces. To
introduce partial derivatives of a mapping f : Tx X — Y, for zy € X fixed, we
denote the delta derivative of t — f(t,20) by Ay f(+,x0), and for fixed ¢y € T,
we denote the Fréchet-derivative of x — f(to,z) by Daf(to,-), provided the
derivatives exist.

Theorem 1 (Chain Rule): For some fized to € T%, let g : T — X,
f:TxX —Y be mappings such that g, f(-,9(to)) are differentiable in
to, and let U C T be a neighborhood of to such that f(t,-) is differen-
tiable for t € U U{o(ty)}, Dof(o(ty),-) is continuous on the line segment
{g(to) + hu*(to) g™ (te) € X : h €0, 1]} and Dy f is continuous in (to, g(to)).
Then also the composition mapping F : T — Y, F(t) := f(t, g(t)) is differen-
tiable in ty with derivative

F2(to) = Aif(to, (to)) + [/01 Dy f (o(to), 9(to) + hys* (t0) g (to)) dh] 9% (to)-

Remark 2: (1) In case of a right-dense point t, we have p*(t)) = 0 and
the Chain Rule possesses the expected form F2(ty) = Ajf(to, g(to)) +
Dy f(to, 9(t0)) 9> (to). This is not true in right-scattered points. To show this,
consider the time scale T = 7Z, the Banach spaces X = )Y = R and the
functions g¢(t) := ¢, f(z) := 22. Here we have (f o g)*(ty) = 2ty + 1, but
Df(g(t0))g™ (to) = 2to for any to € T.

(2) The Chain Rule stated in Theorem 1 remains true, if the domain of
f(o(t),+) is an — or the closure of an — open set in X', which contains

the line segment {g(to) + hpt(to)g®(te) € X : h €10, 1]}

Proof. We arrange the proof in three steps and begin with some elementary
preparations:

(I) First of all one can choose a neighborhood Uy C U of ¢y such that
(1) W (to) < |ult, o(to))|  for t € Up.

This is trivial (with Uy = U) in a right-dense point ty, but it also holds
(with Uy ={t € U : t < 0(ty)}) in a right-scattered ¢y by the properties of the
growth calibration u (cf. Hilger [2, Axiom 3]).

(IT) We abbreviate ®(t,h) := Dof(t,g(to) + hlg(t) — g(to)]) and show the
existence of a real constant C' = C(ty) > 0 with

) ll®(o(to), h) — @(to, )| < Cp(t, o(to))| for t € Uy, h € 0,1].

Again only the case of a right-scattered t; needs further argumentation: For



that purpose, ® (%o, -) has the constant value D, f(to, g(t9)) € L(X;)) and the
mapping ®(o(ty),-) : [0,1] = L(X;Y) is bounded, since by assumption it is
a continuous function on the compact domain [0, 1]. This immediately yields
the estimate

1B(o(to), h) — B(to, B)|| < Ch*(to) L Clut, o(to))|  for t € Uy, h € [0,1]

with C 1= L (suppe o, |9 (0(to), k)| + [ Daf (to, g(ta)|])-

(III) During this main step of the proof, remember the well-known identity
g(o(to)) — g(te) = p*(to)g™(to) (cf. Hilger [2, Theorem 2.5(v)]). Given & > 0
arbitrarily, we choose €1,e5 > 0 so small that

@) e (1 +C+ /01 @(a(to),h)th) ver (o422 (0)]) <

Since we assumed the differentiability of g and f(-, g(o)) in ¢y, there exists a
neighborhood U; C Uy of ty with

(4) lg(t) — g(to)]| <1,
(5) |9() = glo(t0)) — u(t, o(te)) g™ (to)| <1 u(t, o (k)]
(6) [1£(t, g(to)) — F(olte), g(to)) — p(t, o (to)) Ar £ (to, g(to))|| &1 |t o (to))]

for t € Uy, where the first inequality (4) holds, because g is a continuous
function in ¢y (cf. Hilger [2, Theorem 2.5(iii)]). Consequently by the triangle
inequality it is

(7) Nlg(t) = a(to)ll < |la(t) = glo(to)) — nlt, o(t0))g” (to)|
+ [l o) In(t, o (t0))] + llg (0 (0)) — g(t0)]
2 (o1 + 2 w)]) 1t o t0))] + 9 )] (1)

2 (e + 202 (t0)]) It o) for t € U,

On the other hand the mappings g and Dy f : Tx X — L(X;)) are continuous
in ¢ty and (o, g(to)), respectively, and hence there exists another neighborhood
UQ Q U of t() with

(8) |1®(t, h) — D(tg, h)|| < eo fort e Us, h€]0,1].

After the considerations above, we can deduce the estimate



7 (0) = Flotto) - utt, (1)) [ 3010, 9(00)) + [ @), B)h g 10)]
<|f( g(to)) f( (to) g(to)) — p(t, o(te)) A1 f(to, g(to)) |l

H/ 9(t) — g(to) — u(t, to)gA(to)]
Hftg ) = £(t.9(t0)) — [ ((t0). 9(0(t0))) — F(o(t0). g(t0)]
— [ @), W [gf0) — g(t0) |

and the Mean Value Theorem (cf. Lang [6, p. 341, Theorem 4.2]) leads to

70 = Fo(t0) = it (1)) [0 (10,9(00) + [ @), W 6> ()]
<5, 9(00) = Flotto), (ts)) = (710 211 90|
+| [ @(otto). man] [9) - (o tto)) - nit,o(t0))g* 1)

+ /Ol[q)( h) — (o (to), b)) dh [g(t) — g(to)]

S“f(ta (tO)) ( ( ) (to)) (t O'(to))Al (t07 ( ))“
+| [ (ot myan| o(0) = gtotta) - utt.otta)e* )]
n /Ol[é(t,h)— ®(to, h ]th lg(t) — g(to)l
+] [ 19060, ) = 2o (t0), ) ] 9 0) — g(00)]

The terms of the sum on the right-hand side of the above inequality now can
be estimated using (6), (5), as well as (8), (7) and (2),(4), which gives us

7(0) = Plotto) - utt,0(10)) [ 8110, 0)) + [ @(0(t0), B)h g*(0)]|
<[ei (140 | [ @(ot0), Wan]) +2 (51 + 2> m@hMudmn
(3)
2e (2, t0)
whenever t € U; NU,, and by the definition of ®(o (%), h) this establishes our
chain rule. O

As an application of the Chain Rule from Theorem 1 we will prove a version of
LaSalle’s Invariance Principle (cf. LaSalle [7,8]) for non-autonomous dynamic
equations. Henceforth, let (T, <, 1) be unbounded above. We follow closely to
the considerations in Knobloch & Kappel [4, pp. 137ff] for finite-dimensional
ODEs.



First of all, a point £ € X is called an w-limit point of a function A : T — X, if
there exists a sequence (fx)ren in T with the properties limg_, o p(tg, to) = 0o
(for one and hence every to € T) and limy_, o A(Zx) = €. The set of all w-limit
points is denoted as w-limit set w(A\) C X. Now consider the dynamic equation

(9) z® = f(t,x)

with an rd-continuous right-hand side f : T x X — X, as defined in Hilger |2,
Section 5.2]. For convenience, (9) should possess solutions existing in forward
time. If 2 C X is an open set, a mapping V : T x  — R with continuous
partial derivatives is called a Lyapunov function of (9), if the following holds:

(V1) For each closed and bounded subset B C X, the function V' is bounded
below on the set {(t,a:) €eTxX:2€B ﬂﬁ},

(V3) in each right-scattered point ¢+ € T and for any z €  the line segment
{z+ hu*(t)f(t,z) € X : h €][0,1]} is contained in €,

(V3) the so-called derivative of V with respect to (9), VA : T x Q - R,

VAt z) == AV () + [/01 DoV (o(t),x + hu*(t) f(t,z)) dh| f(t, )

fulfills V2(t,z) < —W(z) for a non-negative and continuous function
W:Q—R

This definition is slightly differing from the usual one to shorten our explana-
tions.

Theorem 3 (Invariance Principle): Let V : T x Q — R be a Lyapunov
function of (9) and assume that for every bounded subset M C ) the function
f is bounded on T x M. Then an arbitrary solution A of (9), which exists in
Q on an interval unbounded to the right, fulfills w(\) C W=({0}).

Proof. W.l.o.g. we assume w(\) # () and let us consider a fixed w-limit point
¢ € w(A). We proceed indirectly and suppose W (£) > 0. Since W is continuous,
there exists a closed and bounded neighborhood N C X of £ such that

(10) W(x)2@>0 forz € NNQ.

Now choose ¢ > 0 so small that B,.(£) C N. By assumption f is bounded on
T x (2N N) and there exists a real v > 0 with H)\A(t)H = ||f(t,A@))]| <, if
A(t) € By.(€). Now choose a t, € T such that A(t,) € B.(£) and we obtain

(11) IA(t) = A(t)|| <& for 0 < p(t,t,) <

2o

because otherwise there would exist a t* € T, 0 < u(t",t,) < = with the
properties ||[A(t) — A(t.)|| < e for t, <t < ¢* and ||A(t*) — A(t+)|| > €. Hence



the Mean Value Theorem on measure chains (cf. Hilger [2, Corollary 3.3])
would imply the contradiction

e < A(T) = Alt)|| < sup
b <E<t*

N0 (1) < ymler, 1) <.

Concluding we get the estimate

(1)
[AGE) =&l < MA@ =A@+ [IAE) = £]] <o foros< u(t, ) < %

Since £ € w(A) there exists a sequence (tg)gen in T with limy_, o tx = 0o (in the
sense above) and limy_,., A(tx) = £. Now, by passing over to a subsequence,
we can assume

(12) /\(tk) S Bs(g): % < /L(tk_H, tk) for k eN

and this implies for the function v(¢) := V' (¢, A(¢)) by Theorem 1 and (V3)

A = VAL AWD) < W) € V&

for 0 < p(t, ty) < —, k € N.

€
~
Because of v2(¢) < 0, i.e. Lyapunov functions decrease along solutions, this
yields

@ W) e
berr) = 0lte) = / H(s)As < A(s) As < — ¢
v( k+1) U( k) 23 v (8) 5= 0<pu(s,te)<% ° (S) = 2 v
for k € N and consequently using “telescope summation”
n—1 W .
(13)  v(te) = v(t) + 3 [W(tesr) — v(te)] < v(t) — (R — 1) 2(5);
k=1

for n € N. Thus for sufficiently large n € N we have A(t,) € N and we
can make v(t,) € R arbitrarily negative by (13), but since N was closed and
bounded, by assumption (Vi) the set {V (., A(t,))},cn is bounded below; this
contradiction proves Theorem 3. O
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