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Abstract

Invariant fiber bundles are the generalization of invariant manifolds from classical dis-
crete or continuous dynamical systems to non-autonomous dynamic equations on measure
chains. In this paper we present a self-contained proof of their existence and smoothness.
Our main result generalizes the so-called “Hadamard-Perron-Theorem” for hyperbolic finite-
dimensional diffeomorphisms to pseudo-hyperbolic time-dependent non-regressive dynamic
equations in Banach spaces. The proof of their smoothness uses a fixed point theorem of
Vanderbauwhede-Van Gils.
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1 Introduction

Since the days of Poincaré, Hadamard, Lyapunov and Perron invariant manifolds have played
an eminent role in the theory of dynamical systems. A particularly prominent example in this
subject is the “Stable-Manifold-Theorem”, which is also known as the Theorem of Hadamard-
Perron. It states that the domain of attraction of a hyperbolic rest point can be locally repre-
sented as a graph over an algebraic eigenspace of the corresponding linearized system. Meanwhile
this basic result has been generalized in various directions and because the present paper is not
a survey article, we do not even try to summarize all the related literature and refer simply to
the references given in [2, 4, 5, 9, 11, 15].

The primary objective of this paper is to unify the two results Aulbach & Wanner [4, Theorem
4.1] (i.e. its special case of ODEs) and Aulbach [2, Theorem 4.1] within the so-called “Calculus
on Measure Chains” developed e.g. in Hilger [8]. Both [4] and [2] contain a very general
version of the “Stable-Manifold-Theorem” for non-autonomous infinite-dimensional equations
with a pseudo-hyperbolic linear part. The first article deals with Carathéodory type differential
equations, in particular ordinary differential equations (ODEs), while the latter one treats non-
invertible difference equations (O∆Es) in Banach spaces. The basic notion hereby is the concept
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of an invariant fiber bundle which is an appropriate pendant to the invariant manifolds in a
non-autonomous setting. However, our construction of the invariant fiber bundles is different
from [4, 2], being rather a direct adaptation from Siegmund [15] and Aulbach, Pötzsche &
Siegmund [5], which allows an accessible approach to prove their smoothness using a theorem
by Vanderbauwhede & Van Gils [16]. Again the literature on the smoothness of invariant
manifolds is vast and therefore we refer to the references given in [5, 9, 11, 15].

Our main result (Theorem 4.9) applies to non-autonomous, non-regressive dynamic equations in
Banach spaces on nearly arbitrary measure chains, with a pseudo-hyperbolic linear part where
the growth rates are not assumed to be constant. It guarantees the existence and C1-smoothness
of so-called “pseudo-stable” and “pseudo-unstable fiber bundles” and additionally a higher order
smoothness in a weakened hyperbolic sense. So far there are only three other contributions to
the theory of invariant manifolds for dynamic equations on measure chains or time scales (closed
subsets of the real line), respectively. Hilger [10, Theorem 4.1] shows the existence of a “center
fiber bundle” (in our terminology) for non-autonomous systems on measure chains. A rigorous
proof of the smoothness of generalized center manifolds for autonomous dynamic equations on
homogeneous time scales can be found in Hilger [9]. Finally the thesis Keller [11] deals with
classical stable, unstable and center invariant fiber bundles and their smoothness for dynamic
equations on arbitrary time scales. As an introduction to dynamic equations on measure chains
we recommend Hilger [8] or Bohner & Peterson [6, Section 8.1].

2 Preliminaries

First, N is the set of positive integers, N0 := N∪{0} and R the real field. Throughout this paper
Banach spaces X ,Y are all real or complex and their norms are denoted by ‖·‖X , ‖·‖Y or simply
by ‖·‖. Ln(X ;Y) is the Banach space of n-linear continuous operators from X n to Y for n ∈ N,
L0(X ;Y) := Y, Ln(X ) := Ln(X ;X ), L(X ;Y) := L1(X ;Y), L(X ) := L1(X ) and IX the identity
map on X . On the cartesian product X × Y we always use the norm

‖(x, y)‖X×Y := max
{
‖x‖X , ‖y‖Y

}
(2.1)

and write Π1 : X × Y → X and Π2 : X × Y → Y for the projections on the first and second
component, respectively. We say that a linear subspace X1 ⊆ X is continuously embedded into
X if the embedding operator J : X1 → X , Jx := x is continuous and in this case we use the

notation X1
J
↪→ X . The ball in X with center x ∈ X and radius ε > 0 is denoted by Bε(x). We

write Df for the Fréchet derivative of a mapping f and if f depends differentiable on e.g. two
variables, then the partial derivatives are denoted by D1f and D2f , respectively.

We also introduce some notions which are specific to the calculus on measure chains. In all
the subsequent considerations we deal with a measure chain (T,�, µ) unbounded above and
below, i.e. a conditionally complete totally ordered set (T,�) (see Hilger [8, Axiom 2]) with
the growth calibration µ : T× T→ R (see [8, Axiom 3]), such that the set µ(T, τ) ⊆ R, τ ∈ T,
is unbounded above and below. In addition ρ+ : T → T, ρ+(t) := inf {s ∈ T : t ≺ s} defines
the forward jump operator and the graininess µ∗ : T→ R, µ∗(t) := µ(ρ+(t), t) is assumed to be
bounded from now on. For τ, t ∈ T we define

[τ, t]T := {s ∈ T : τ � s � t} , T+
τ := {s ∈ T : τ � s} , T−τ := {s ∈ T : s � τ} ,

where (half-) open T-intervals are given analogously. Crd(I,L(X )) denotes the rd-continuous
and CrdR(I,L(X )) the rd-continuous, regressive functions from a T-interval I to L(X ). Recall
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that C+
rdR(T,R) := {c ∈ CrdR(T,R) : 1 + µ∗(t)a(t) > 0 for t ∈ T} forms the so-called regressive

module with respect to the algebraic operations

(a⊕ b)(t) := a(t) + b(t) + µ∗(t)a(t)b(t), (n� a)(t) := lim
h↘µ∗(t)

(1 + ha(t))n − 1
h

for t ∈ T, integers n and a, b ∈ C+
rdR(T,R). Growth rates are functions a ∈ C+

rdR(T,R) such that
1 + inft∈T µ

∗(t)a(t) > 0 and supt∈T µ
∗(t)a(t) <∞ holds. Moreover we define the relations

a C b :⇔ 0 < bb− ac := inf
t∈T

(b(t)− a(t)), a E b :⇔ 0 ≤ bb− ac ,

and ea(t, s) ∈ R stands for the real exponential function on T (see [8, Section 7]). A mapping
φ : T→ X is said to be differentiable (at t0 ∈ T), if there exists a unique derivative φ∆(t0) ∈ X ,
such that for any ε > 0 the estimate∥∥φ(ρ+(t0))− φ(t)− µ(ρ+(t0), t)φ∆(t0)

∥∥ ≤ ε |µ(ρ+(t0), t)| for t ∈ U

holds in a neighborhood U ⊆ T of t0 (see [8, Section 2.4]). We write ∆1s : T × X → Y for
the partial derivative w.r.t. the first variable of a mapping s : T × X → Y, provided it exists.
If φ : T → X possesses an antiderivative, i.e. a differentiable mapping Φ : T → X such that
Φ∆(t) ≡ φ(t) on T, then the Cauchy integral of φ is defined to be∫ t

τ
φ(s) ∆s := Φ(t)− Φ(τ) for τ, t ∈ T.

Any φ ∈ Crd(T,X ) has an antiderivative (see [8, Theorem 4.4]). For a dynamic equation

x∆ = f(t, x) (2.2)

with a right-hand side f : T × X → X guaranteeing existence and uniqueness of solutions in
forward time (e.g. Pötzsche [14, p. 38, Satz 1.2.7(a)]), let λ(t; τ, ξ) denote the general solution,
i.e. λ(·; τ, ξ) solves (2.2) on T+

τ ∩ I and satisfies the initial condition λ(τ ; τ, ξ) = ξ for τ ∈ I,
ξ ∈ X . It fulfills the cocycle property

λ(t; s, λ(s; τ, ξ)) = λ(t; τ, ξ) for τ, s, t ∈ I, τ � s � t (2.3)

and ξ ∈ X . Given A ∈ Crd(T,L(X )), the transition operator ΦA(t, τ) ∈ L(X ), τ � t, of a
linear dynamic equation x∆ = A(t)x is the solution of the operator-valued initial value problem
X∆ = A(t)X, X(τ) = IX in L(X ). If A is regressive then ΦA(t, τ) is defined for all τ, t ∈ T.

3 Quasibounded functions

In this section we introduce the so-called quasiboundedness which is a convenient notion de-
scribing exponential growth of functions.

Definition 3.1: For a function c ∈ C+
rdR(T,R), a fixed time τ0 ∈ T, a Banach space X , a

T-interval I and a rd-continuous function λ : I → X we say that

(a) λ is c+-quasibounded if I = T+
τ0 and if ‖λ‖+τ,c := supt∈T+

τ
‖λ(t)‖ e	c(t, τ) <∞ for τ ∈ T+

τ0,
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(b) λ is c−-quasibounded if I = T−τ0 and if ‖λ‖−τ,c := supt∈T−τ ‖λ(t)‖ e	c(t, τ) <∞ for τ ∈ T−τ0,

(c) λ is c±-quasibounded if I = T and if ‖λ‖±τ,c := supt∈T ‖λ(t)‖ e	c(t, τ) <∞ for τ ∈ T.

By B+
τ,c(X ),B−τ,c(X ) and B±c (X ) we denote the sets of all c+-, c−- and c±-quasibounded functions

λ : I → X , respectively.

Obviously B+
τ,c(X ),B−τ,c(X ) and B±c (X ) are non-empty and using Hilger [8, Theorem 4.1(iii)],

the following result is immediate:

Lemma 3.2: For any c ∈ C+
rdR(T,R), τ ∈ T, the sets B+

τ,c(X ),B−τ,c(X ) and B±c (X ) are Banach
spaces with the norms ‖·‖+τ,c, ‖·‖

−
τ,c and ‖·‖±τ,c, respectively.

We state the next lemma only in forward time. It will simplify our differential calculus.

Lemma 3.3: For functions c, d ∈ C+
rdR(T,R) with c E d, n ∈ N, τ ∈ T and Banach spaces X ,Y

the following statements are valid:

(a) The Banach spaces B+
τ,c(X )×B+

τ,c(Y) and B+
τ,c(X ×Y) are isometrically isomorphic, and

thus they can be identified,

(b) we have B+
τ,c(X )

Jdc
↪→ B+

τ,d(X ), and the embedding operator Jdc : B+
τ,c(X )→ B+

τ,d(X ) satisfies∥∥∥Jdc ∥∥∥L(B+
τ,c(X );B+

τ,d(X ))
≤ 1, (3.1)

(c) the spaces B+
τ,d	n�c(Ln(X )) and Ln(B+

τ,c(X ); B+
τ,d(X )) are isometrically isomorphic by

means of the isomorphism Jn : B+
τ,d	n�c(Ln(X ))→ Ln(B+

τ,c(X ); B+
τ,d(X )),(

(JnΛ)(λ1, . . . , λn)
)
(t) := Λ(t)λ1(t) · · ·λn(t) for t ∈ T+

τ

for any Λ ∈ B+
τ,d	n�c(Ln(X )) and λ1, . . . , λn ∈ B+

τ,c(X ).

Proof. We show only the assertion (c). At first Jn is a homomorphism. With arbitrary functions
Λ ∈ B+

τ,d	n�c(Ln(X )) and λ1, . . . , λn ∈ B+
τ,c(X ) we obtain the estimate

‖Λ(t)λ1(t) · . . . · λn(t)‖ e	d(t, τ) ≤ ‖Λ(t)‖Ln(X ) e	d⊕n�c(t, τ)
n∏
k=1

‖λk(t)‖ e	c(t, τ) ≤

≤ ‖Λ‖+τ,d	n�c
n∏
k=1

‖λk‖+τ,c for t ∈ T+
τ .

Thus the continuity of Jn follows from

‖JnΛ‖Ln(B+
τ,c(X );B+

τ,d(X )) = sup
‖λl‖+τ,c≤1,

l∈{1,...,n}

‖(JnΛ)λ1 · · ·λn‖+τ,d ≤ ‖Λ‖
+
τ,d	n�c . (3.2)

Otherwise, the inverse J−1
n : Ln(B+

τ,c(X ); B+
τ,d(X ))→ B+

τ,d	n�c(Ln(X )) of Jn is given by(
J−1
n Λ̄

)
(t)λ1(t) · · ·λn(t) :=

(
Λ̄λ1 · · ·λn

)
(t) for t ∈ T+

τ
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for any Λ̄ ∈ Ln(B+
τ,c(X ); B+

τ,d(X )) and λ1, . . . , λn ∈ B+
τ,c(X ). By the open mapping theorem

(e.g. Lang [12, p. 388, Corollary 1.4]) J−1
n is continuous and it remains to show that it is non-

expanding. To this purpose we choose n points x1, . . . , xn ∈ X \ {0} arbitrarily with ‖xl‖ ≤ 1,
l ∈ {1, . . . , n} and define functions λl(t) := ec(t, τ)xl. Obviously ‖λl‖+τ,c ≤ 1 and hence∥∥(J−1

n Λ̄
)
(t)x1 · · ·xn

∥∥ e	d⊕n�c(t, τ) =
∥∥(Λ̄λ1 · · ·λn

)
(t)
∥∥ e	d(t, τ) ≤

∥∥Λ̄λ1 · · ·λn
∥∥+

τ,d
≤

≤
∥∥Λ̄
∥∥
Ln(B+

τ,c(X );B+
τ,d(X ))

for t ∈ T+
τ .

Now this implies
∥∥(J−1

n Λ̄
)
(t)
∥∥
Ln(X )

e	d⊕n�c(t, τ) ≤
∥∥Λ̄
∥∥
Ln(B+

τ,c(X );B+
τ,d(X ))

for all t ∈ T+
τ and

hence
∥∥J−1

n Λ̄
∥∥+

τ,d	n�c ≤
∥∥Λ̄
∥∥
Ln(B+

τ,c(X );B+
τ,d(X ))

. Therefore Jn is an isometry.

Lemma 3.4: Consider functions c ∈ C+
rdR(T,R), a time τ ∈ T, Banach spaces X ,Y and a

mapping f ∈ Cm(X ,B+
τ,c(Y)) for some m ∈ N0. Then

(
f(·)

)
(t) ∈ Cm(X ,Y) for every t ∈ T+

τ .

Proof. Let t ∈ T+
τ be fixed. Then the evaluation map evt : B+

τ,c(Y) → Y, evt(λ) := λ(t) is
a continuous homomorphism and hence of class C∞. It follows from the usual chain rule for
Fréchet derivatives that the composition

(
f(·)

)
(t) = evt ◦ f has the same smoothness as f .

4 Construction of invariant fiber bundles

We begin this section by stating our frequently used main assumptions.
Hypothesis 4.1: Suppose the T-interval I is unbounded above and X , Y are Banach spaces.
Let us consider the system of non-autonomous dynamic equations{

x∆ =A(t)x+ F (t, x, y)

y∆ =B(t)y +G(t, x, y)
, (4.1)

where A ∈ Crd(I,L(X )), B ∈ CrdR(I,L(Y)) and the rd-continuous mappings F : I×X×Y → X ,
G : I × X × Y → Y are m-times, m ∈ N, continuously differentiable with respect to (x, y).
Moreover we assume:

(i) Hypothesis on the linear part: The evolution operators ΦA and ΦB satisfy for all s, t ∈ I
the dichotomy estimates

‖ΦA(t, s)‖ ≤ K1ea(t, s) for s � t, ‖ΦB(t, s)‖ ≤ K2eb(t, s) for t � s, (4.2)

with real constants K1,K2 ≥ 1 and a, b ∈ C+
rdR(T,R) with a C b.

(ii) Hypothesis on the perturbation: The identities

F (t, 0, 0) ≡ 0, G(t, 0, 0) ≡ 0 on I, (4.3)

hold and the partial derivatives of F and G are globally bounded, i.e. for all n ∈ {1, . . . ,m}
we have

|F |n := sup
(t,x,y)∈I×X×Y

∥∥∥Dn
(2,3)F (t, x, y)

∥∥∥
Ln(X×Y;X )

<∞,

|G|n := sup
(t,x,y)∈I×X×Y

∥∥∥Dn
(2,3)G(t, x, y)

∥∥∥
Ln(X×Y;Y)

<∞.
(4.4)



6 4 CONSTRUCTION OF INVARIANT FIBER BUNDLES

(iii) Hypothesis on higher order smoothness (if m ≥ 2): The partial derivatives of F and G
are uniformly continuous: For any ε > 0 there exists an δ > 0 such that for all t ∈ I and
(x0, y0) ∈ X × Y we have∥∥∥Dm

(2,3)(F,G)(t, x, y)−Dm
(2,3)(F,G)(t, x0, y0)

∥∥∥
Lm(X×Y)

< ε for (x, y) ∈ Bδ(x0, y0).

Remark 4.2: (1) It is an immediate consequence of the mean value theorem (see e.g. Lang
[12, p. 341, Theorem 4.2]) and Hypothesis 4.1(ii) that the partial derivatives Dn−1

(2,3)F , Dn−1
(2,3)G

are globally Lipschitz continuous (with constants |F |n, |G|n, respectively) for n ∈ {1, . . . ,m},
and hence Hypothesis 4.1(iii) also holds for Dn

(2,3)F , Dn
(2,3)G, with n ∈ {0, . . . ,m}. Nevertheless,

Hypothesis 4.1(iii) is of technical nature and is only needed for m ≥ 2.

(2) In a Hilbert space Z and for a mapping R : I × Z → Z with globally bounded derivatives
Dn

2R, n ∈ {1, . . . ,m}, any system of the form z∆ = C(t)z +R(t, z) can be transformed into the
“decoupled” equation (4.1) if C ∈ CrdR(I,L(X )) possesses an exponential dichotomy. This can
be shown using methods from Aulbach & Pötzsche [3] via a Lyapunov transformation.

In the sequel we define two linear and two non-linear operators on spaces of quasibounded
functions and derive their basic properties concerning continuity and differentiability. This
allows to characterize the quasibounded solutions of (4.1) as fixed points of an equation based
on these operators.

Lemma 4.3 (the operator Sτ ): We assume I = T+
τ0, τ0 ∈ T, in Hypothesis 4.1 and choose any

c ∈ C+
rdR(T,R), a E c. Then for every τ ∈ T+

τ0 the operator Sτ : X → B+
τ,c(X × Y),(

Sτ ξ
)
(t) :=

(
ΦA(t, τ)ξ, 0

)
for t ∈ T+

τ ,

is linear and continuous with
‖Sτ‖L(X ;B+

τ,c(X×Y)) ≤ K1. (4.5)

Proof. The linearity of Sτ is evident. Furthermore, by Hilger [8, Theorem 7.4] for any ξ ∈ X
we get the estimate∥∥(Sτξ)(t)∥∥ e	c(t, τ) ≤ ‖ΦA(t, τ)‖ ‖ξ‖ e	c(t, τ)

(4.2)

≤ K1 ‖ξ‖ for t ∈ T+
τ ,

hence ‖Sτξ‖+τ,c ≤ K1 ‖ξ‖, and Sτξ is well-defined, continuous and (4.5) holds.

Lemma 4.4 (the operator Kτ ): We assume I = T+
τ0, τ0 ∈ T, in Hypothesis 4.1(i) and choose

an arbitrary growth rate c ∈ C+
rdR(T,R), a C c C b. Then for any τ ∈ T+

τ0 the operator
Kτ : B+

τ,c(X × Y)→ B+
τ,c(X × Y),

(
Kτ (ν, υ)

)
(t) :=

(∫ t

τ
ΦA(t, ρ+(s))ν(s) ∆s, −

∫ ∞
t

ΦB(t, ρ+(s))υ(s) ∆s
)

for t ∈ T+
τ ,

is linear and continuous with

‖Kτ‖L(B+
τ,c(X×Y)) ≤ max

{
K1

bc− ac
,

K2

bb− cc

}
. (4.6)

In particular we have

‖Π2Kτ (ν, υ)‖+τ,c ≤
K2

bb− cc
‖υ‖+τ,c for (ν, υ) ∈ B+

τ,c(X × Y). (4.7)



7

Proof. Obviously Kτ is linear. Now choose any pair (ν, υ) ∈ B+
τ,c(X × Y). Then, by the vari-

ation of constants formula, which can be shown to be valid in forward time without assum-
ing regressivity (see Pötzsche [14, p. 56, Satz 1.3.11]), the inhomogeneous dynamic equation
x∆ = A(t)x + ν(t) has the solution ν̃ := Π1Kτ (ν, υ) : T+

τ → X , satisfying the initial condition
x(τ) = 0. Due to Pötzsche [13, Theorem 2(a)] the function ν̃ is c+-quasibounded and we
get ‖Π1Kτ (ν, υ)‖+τ,c = ‖ν̃‖+τ,c ≤

K1
bc−ac ‖ν‖

+
τ,c. Similarly Pötzsche [13, Theorem 4(b)] implies

that the linear system y∆ = B(t)y + υ(t) has exactly one c+-quasibounded solution, namely
υ̃ := Π2Kτ (ν, υ) : T+

τ → Y, and this solution satisfies the estimate ‖Π2Kτ (ν, υ)‖+τ,c = ‖υ̃‖+τ,c ≤
K2
bb−cc ‖υ‖

+
τ,c, which is identical with inequality (4.7). Finally we get∥∥(Kτ (ν, υ)

)
(t)
∥∥ e	c(t, τ)

(2.1)
= max {‖ν̃(t)‖ e	c(t, τ), ‖υ̃(t)‖ e	c(t, τ)} ≤

≤ max
{

K1

bc− ac
‖ν‖+τ,c ,

K2

bb− cc
‖υ‖+τ,c

}
≤

(2.1)

≤ max
{

K1

bc− ac
,

K2

bb− cc

}
‖(ν, υ)‖+τ,c for t ∈ T+

τ .

Passing to the least upper bound over t ∈ T+
τ we finally obtain the estimate ‖Kτ (ν, υ)‖+τ,c ≤

max
{

K1
bc−ac ,

K2
bb−cc

}
‖(ν, υ)‖+τ,c and hence the continuity of Kτ , as well as the estimate (4.6).

The two operators Sτ and Kτ given in Lemmas 4.3 and 4.4 are continuous homomorphisms and
hence continuously differentiable. The non-linear mapping G, which we define next, does not
have this property in general. This operator describes the composition of the non-linearities F
and G with quasibounded functions and is a special case of a so-called substitution operator.

Lemma 4.5 (the operator G): We assume I = T+
τ0, τ0 ∈ T in Hypothesis 4.1(ii), choose

c ∈ C+
rdR(T,R) and τ ∈ T+

τ0. Then the non-linear operator G : B+
τ,c(X × Y)→ B+

τ,c(X × Y),(
G(ν, υ)

)
(t) :=

(
F (t, ν(t), υ(t)), G(t, ν(t), υ(t))

)
for t ∈ T+

τ ,

has the following properties:

(a) G(0, 0) = (0, 0) ∈ B+
τ,c(X × Y),

(b) G is globally Lipschitzian with

‖G(ν, υ)− G(ν̄, ῡ)‖+τ,c ≤ max {|F |1 , |G|1} ‖(ν, υ)− (ν̄, ῡ)‖+τ,c (4.8)

for all (ν, υ), (ν̄, ῡ) ∈ B+
τ,c(X × Y).

Proof. (a) As a result of (4.3) in Hypothesis 4.1(ii) we obtain statement (a).

(b) For arbitrary (ν, υ), (ν̄, ῡ) ∈ B+
τ,c(X × Y) it follows from the mean value theorem that∥∥(G(ν, υ)

)
(t)−

(
G(ν̄, ῡ)

)
(t)
∥∥ e	c(t, τ) ≤

(4.4)

≤ max {|F |1 ‖(ν, υ)(t)− (ν̄, ῡ)(t)‖ e	c(t, τ), |G|1 ‖(ν, υ)(t)− (ν̄, ῡ)(t)‖ e	c(t, τ)} ≤
≤ max {|F |1 , |G|1} ‖(ν, υ)− (ν̄, ῡ)‖+τ,c for t ∈ T+

τ .

The Lipschitz condition (4.8) is obtained by taking the least upper bound over t ∈ T+
τ in the

above estimate. Setting (ν̄, ῡ) := (0, 0) together with statement (a) implies that the operator G
is well-defined, i.e. G(ν, υ) ∈ B+

τ,c(X × Y).
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Lemma 4.6 (the operator G(n)): We assume I = T+
τ0, τ0 ∈ T in Hypothesis 4.1, choose integers

n ∈ {1, . . . ,m}, τ ∈ T+
τ0, functions c ∈ C+

rdR(T,R) and growth rates d ∈ C+
rdR(T,R) such that

c E d and n� c E d. Then the operator G(n) : B+
τ,c(X × Y)→ B+

τ,d	n�c(Ln(X × Y)),(
G(n)(ν, υ)

)
(t) := Dn

(2,3)(F,G)(t, ν(t), υ(t)) for t ∈ T+
τ ,

has the following properties:

(a) It is well-defined and globally bounded with∥∥∥G(n)(ν, υ)
∥∥∥+

τ,d	n�c
≤ max {|F |n , |G|n} for (ν, υ) ∈ B+

τ,c(X × Y), (4.9)

(b) for c C d and n = 1 the operator G(1) is continuous,

(c) for c E 0 and m ≥ 2 the operator G(n) is continuous as well.

Proof. (a) For arbitrary functions (ν, υ) ∈ B+
τ,c(X × Y) we get (cf. Hilger [8, Theorem 7.4])∥∥∥(G(n)(ν, υ)

)
(t)
∥∥∥
Ln(X×Y)

e	d⊕n�c(t, τ) ≤
∥∥∥Dn

(2,3)(F,G)(t, ν(t), υ(t))
∥∥∥
Ln(X×Y)

≤

(4.4)

≤ max {|F |n , |G|n} for t ∈ T+
τ ,

since 0 E d	 n� c. Therefore we have G(n)(ν, υ) ∈ B+
τ,d	n�c(Ln(X × Y)) and (4.9) holds.

(b) To prove the continuity of G(1) under the assumption c C d, n = 1 we choose ε > 0 and
(ν0, υ0) ∈ B+

τ,c(X × Y) arbitrarily, but fixed. Since c C d, there exists a T ∈ (τ,∞)T with
2 max {|F |1 , |G|1} ec	d(T, τ) < ε

2 . Using the triangle inequality we get∥∥∥(G(1)(ν, υ)
)
(t)−

(
G(1)(ν0, υ0)

)
(t)
∥∥∥ e	d⊕c(t, τ) ≤

≤
(∥∥D(2,3)(F,G)(t, ν(t), υ(t))

∥∥+
∥∥D(2,3)(F,G)(t, ν0(t), υ0(t))

∥∥) e	d⊕c(t, τ) ≤
(4.4)

≤ 2 max {|F |1 , |G|1} e	d⊕c(T, τ) <
ε

2
for t ∈ (T,∞)T

and for all (ν, υ) ∈ B+
τ,c(X × Y). Since the partial derivative D(2,3)(F,G) is continuous, there

exists a constant δ1 = δ1(ε) > 0 such that for (ν, υ) ∈ B+
τ,c(X × Y) the estimate

‖(ν, υ)(t)− (ν0, υ0)(t)‖ < δ1 for t ∈ [τ, T ]T

implies ∥∥∥(G(1)(ν, υ)
)
(t)−

(
G(1)(ν0, υ0)

)
(t)
∥∥∥ < ε

2
for t ∈ [τ, T ]T .

Besides, using Hilger [8, Theorem 7.4] again, one gets

‖(ν, υ)(t)− (ν0, υ0)(t)‖ ≤ ec(t, τ) ‖(ν, υ)− (ν0, υ0)‖+τ,c ≤
≤ max {1, ec(T, τ)} ‖(ν, υ)− (ν0, υ0)‖+τ,c < δ1 for t ∈ [τ, T ]T ,

for every (ν, υ) ∈ B+
τ,c(X ×Y) with ‖(ν, υ)− (ν0, υ0)‖+τ,c < δ2 := δ1

max{1,ec(T,τ)} . For such pairs of
c+-quasibounded functions (ν, υ) ∈ Bδ2(ν0, υ0) one has∥∥∥(G(1)(ν, υ)

)
−
(
G(1)(ν0, υ0)

)∥∥∥+

τ,d	c
=
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= sup
t∈T+

τ

∥∥∥(G(1)(ν, υ)
)
(t)−

(
G(1)(ν0, υ0)

)
(t)
∥∥∥ e	d⊕c(t, τ) ≤

≤ max

{
sup

t∈[τ,T ]T

∥∥∥(G(1)(ν, υ)
)
(t)−

(
G(1)(ν0, υ0)

)
(t)
∥∥∥ ,

sup
T≺t

∥∥∥(G(1)(ν, υ)
)
(t)−

(
G(1)(ν0, υ0)

)
(t)
∥∥∥ e	d⊕c(t, τ)

}
≤ ε

2
< ε.

This proves the continuity of the operator G(1).

(c) Choose ε > 0 and (ν0, υ0) ∈ B+
τ,c(X × Y) arbitrarily to prove the continuity of G(n) in case

c E 0 and m ≥ 2. By means of Hypothesis 4.1(iii) and the definition of the operator G(n) there
exists an δ = δ(ε) > 0 such that the estimate ‖(ν, υ)(t)− (ν0, υ0)(t)‖ < δ for all t ∈ T+

τ implies∥∥∥(G(n)(ν, υ)
)
(t)−

(
G(n)(ν0, υ0)

)
(t)
∥∥∥
Ln(X×Y)

e	d⊕n�c(t, τ) ≤

≤
∥∥∥(G(n)(ν, υ)

)
(t)−

(
G(n)(ν0, υ0)

)
(t)
∥∥∥
Ln(X×Y)

<
ε

2
for t ∈ T+

τ

for arbitrary (ν, υ) ∈ B+
τ,c(X × Y), since 0 E d	 n� c. Moreover we get

‖(ν, υ)(t)− (ν0, υ0)(t)‖ ≤ ec(t, τ) ‖(ν, υ)− (ν0, υ0)‖+τ,c ≤
≤ ‖(ν, υ)− (ν0, υ0)‖+τ,c for t ∈ T+

τ .

Taking (ν, υ) ∈ Bδ(ν0, υ0) ⊆ B+
τ,c(X × Y) our assertion follows because we have∥∥∥G(n)(ν, υ)− G(n)(ν0, υ0)

∥∥∥+

τ,d	n�c
=

= sup
t∈T+

τ

∥∥∥(G(n)(ν, υ)
)
(t)−

(
G(n)(ν0, υ0)

)
(t)
∥∥∥
Ln(X×Y)

e	d⊕n�c(t, τ) ≤ ε

2
< ε.

Therefore Lemma 4.6 is proved.

Now the question arises whether the assumption c C d in statement (b) of Lemma 4.6 is of a
purely technical nature. In fact, one cannot get rid of it because c+-quasibounded functions can
be unbounded. An example which demonstrates that the non-linear operator G(1) may not be
continuous for 0 C c = d can be found in Aulbach, Pötzsche & Siegmund [5, Example 4.7]
for difference equations.

Next we investigate the differentiability of G. It will turn out that not only the smoothness of
the mappings F and G is essential but also the particular choice of the spaces of quasibounded
functions as domain and range of G. The mappings G(n) seem to be a good choice as candidates
for the derivatives of the substitution operator G since they are defined with the aid of the
derivatives of the mappings (F,G).

Lemma 4.7 (continuous differentiability of G): We assume I = T+
τ0, τ0 ∈ T in Hypothesis 4.1,

choose functions c ∈ C+
rdR(T,R) and growth rates d ∈ C+

rdR(T,R) with c E d and a time τ ∈ T+
τ0.

Then the operator G(0) := Jdc G : B+
τ,c(X × Y)→ B+

τ,d(X × Y) has the following properties:

(a) For c C d it is continuously differentiable,

(b) for c E 0 and m ≥ 2 it is m-times continuously differentiable.
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In any case and for any n ∈ {1, . . . ,m} the derivatives are given by

DnG(0) = JnG(n) : B+
τ,c(X × Y)→ Ln(B+

τ,c(X × Y); B+
τ,d(X × Y)), (4.10)

and they are globally bounded with∥∥∥(DnG(0)
)
(ν, υ)

∥∥∥
Ln(B+

τ,c(X×Y);B+
τ,d(X×Y))

≤ max {|F |n , |G|n} for (ν, υ) ∈ B+
τ,c(X × Y).

Proof. We start with some preparations. To this end consider two arbitrary functions
(ν, υ), (ν0, υ0) ∈ B+

τ,c(X × Y). Now we keep the pair (ν0, υ0) fixed and define the functions
rn : B+

τ,c(X × Y)→ [0,∞) for n ∈ {1, . . . ,m− 1} by

rn(ν, υ) := sup
h∈[0,1]

∥∥∥G(n)(ν0 + hν, υ0 + hυ)− G(n)(ν0, υ0)
∥∥∥+

τ,d	n�c
.

By Lemma 3.3(c), G(n)(ν0, υ0) can be considered as a mapping in B+
τ,d	n�c(Ln(X × Y)) as well

as a n-linear mapping in Ln(B+
τ,c(X × Y); B+

τ,d(X × Y)). The mean value theorem implies for
n ∈ {0, . . . ,m− 1} the estimate∥∥∥∥G(n)(ν0 + ν, υ0 + υ)− G(n)(ν0, υ0)− G(n+1)(ν0, υ0)

(
ν
υ

)∥∥∥∥+

τ,d	n�c
=

= sup
t∈T+

τ

∥∥∥∥Dn
(2,3)(F,G)(t, ν0(t) + ν(t), υ0(t) + υ(t))−Dn

(2,3)(F,G)(t, ν0(t), υ0(t))−

−Dn+1
(2,3)(F,G)(t, ν0(t), υ0(t))

(
ν(t)
υ(t)

)∥∥∥∥
Ln(X×Y)

e	d⊕n�c(t, τ) =

= sup
t∈T+

τ

∥∥∥∥(∫ 1

0
Dn+1

(2,3)(F,G)(t, ν0(t) + hν(t), υ0(t) + hυ(t)) dh
)(

ν(t)
υ(t)

)
−

− Dn+1
(2,3)(t, ν0(t), υ0(t))

(
ν(t)
υ(t)

)∥∥∥∥
Ln(X×Y)

e	d⊕n�c(t, τ) ≤

≤ sup
t∈T+

τ

∫ 1

0

∥∥∥Dn+1
(2,3)(F,G)(t, ν0(t) + hν(t), υ0(t) + hυ(t))−

− Dn+1
(2,3)(F,G)(t, ν0(t), υ0(t))

∥∥∥
Ln+1(X×Y)

dhe	d⊕(n+1)�c(t, τ) ‖(ν(t), υ(t))‖ e	c(t, τ).

Estimating the integral we get∥∥∥∥G(n)(ν0 + ν, υ0 + υ)− G(n)(ν0, υ0)− G(n+1)(ν0, υ0)
(
ν
υ

)∥∥∥∥+

τ,d	n�c
≤

≤ sup
t∈T+

τ

sup
h∈[0,1]

∥∥∥Dn+1
(2,3)(F,G)(t, ν0(t) + hν(t), υ0(t) + hυ(t))−

− Dn+1
(2,3)(F,G)(t, ν0(t), υ0(t))

∥∥∥
Ln+1(X×Y)

e	d⊕(n+1)�c(t, τ) ‖(ν(t), υ(t))‖ e	c(t, τ) ≤

≤ sup
h∈[0,1]

∥∥∥G(n+1)(ν0 + hν, υ0 + hυ)− G(n+1)(ν0, υ0)
∥∥∥+

τ,d	(n+1)�c
‖(ν, υ)‖+τ,c =

= rn+1(ν, υ) ‖(ν, υ)‖+τ,c .
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(a) In case c C d the operator G(1) : B+
τ,c(X × Y)→ L(B+

τ,c(X × Y); B+
τ,d(X × Y)) is continuous

by Lemma 4.6(b), hence the function r1 is well-defined and we get lim(ν,υ)→(0,0) r1(ν, υ) = 0.
Now the above estimate for n = 0 shows the differentiability of G(0) = Jdc G in any point
(ν0, υ0) ∈ B+

τ,c(X × Y) with continuous derivative G(1).

(b) For functions c E 0 and integers m ≥ 2, n ∈ {0, . . . ,m− 1} obviously (n+ 1)� c E d holds.
Therefore the operators G(n+1) : B+

τ,c(X ×Y)→ Ln+1(B+
τ,c(X ×Y); B+

τ,d(X ×Y)) are continuous
by Lemma 4.6(c), the functions rn+1 are well-defined and fulfill lim(ν,υ)→(0,0) rn+1(ν, υ) = 0.
Furthermore the above estimate shows again that each mapping G(n) : B+

τ,c(X × Y) →
Ln(B+

τ,c(X × Y); B+
τ,d(X × Y)) is differentiable and has the continuous derivative G(n+1). Now

the assertion follows by mathematical induction. Finally we get the estimate∥∥∥(DnG(0)
)
(ν, υ)

∥∥∥
Ln(B+

τ,c(X×Y);B+
τ,d(X×Y))

≤

(4.10)

≤ ‖Jn‖L(B+
τ,d	n�c(Ln(X×Y));Ln(B+

τ,c(X×Y);B+
τ,d(X×Y)))

∥∥∥G(n)(ν, υ)
∥∥∥+

τ,d	n�c
≤

(3.2)

≤
∥∥∥G(n)(ν, υ)

∥∥∥+

τ,d	n�c

(4.9)

≤ max {|F |n , |G|n} for n ∈ {1, . . . ,m} ,

and the proof of Lemma 4.7 is complete.

We already pointed out above that for 0 C c = d the continuity of the operator G(1) may be lost.
In fact, one cannot even expect the differentiability of the operator G = G(0). Nonlinearities
demonstrating this can be found in Siegmund [15, pp. 35–38] (ODEs) or Aulbach, Pötzsche
& Siegmund [5] (O∆Es).

In the previous last lemmas we investigated the linear operators Sτ , Kτ and the more subtle sub-
stitution operator G. With the help of these mappings we can now characterize the quasibounded
solutions of the dynamic equation (4.1) quite easily as fixed points.

Lemma 4.8 (solutions in B+
τ,c(X × Y) as fixed points): Let us assume I = T+

τ0, τ0 ∈ T in
Hypothesis 4.1, choose growth rates c ∈ C+

rdR(T,R), a C c C b, τ ∈ T+
τ0 and a vector ξ ∈ X .

Then for the operator Tτ : B+
τ,c(X × Y)×X → B+

τ,c(X × Y),

Tτ (ν, υ; ξ) := Sτξ +KτG(ν, υ), (4.11)

the following two statements are equivalent:

(a) (ν∗, υ∗) ∈ B+
τ,c(X × Y) is a solution of the dynamic equation (4.1) with ν∗(τ) = ξ,

(b) (ν∗, υ∗) ∈ B+
τ,c(X × Y) is a solution of the equation

(ν∗, υ∗) = Tτ (ν∗, υ∗; ξ). (4.12)

Proof. Lemmas 4.3, 4.4 and 4.5 imply that Tτ is well-defined and may be written explicitly as

(
Tτ (ν∗, υ∗; ξ)

)
(t) =

(
ΦA(t, τ)ξ +

∫ t

τ
ΦA(t, ρ+(s))F (s, ν∗(s), υ∗(s)) ∆s,

−
∫ ∞
t

ΦB(t, ρ+(s))G(s, ν∗(s), υ∗(s))
)
.
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(a) ⇒ (b) The function ν∗ is also a solution of the linear inhomogeneous equation

x∆ = A(t)x+ F (t, ν∗(t), υ∗(t)) (4.13)

with the initial condition x(τ) = ξ. By the variation of constant formula it is given by
Π1Tτ (ν∗, υ∗; ξ). Additionally using the mean value theorem we get

‖G(t, ν∗(t), υ∗(t))‖ e	c(t, τ)
(4.3)
= ‖G(t, ν∗(t), υ∗(t))−G(t, 0, 0)‖ e	c(t, τ) ≤

(4.4)

≤ |G|1 ‖(ν
∗, υ∗)‖+τ,c for t ∈ T+

τ ,

and hence the inhomogeneous part of equation

y∆ = B(t)y +G(t, ν∗(t), υ∗(t)) (4.14)

is c+-quasibounded. With the aid of Pötzsche [13, Theorem 4(b)] one can show that the
function υ∗ is the only c+-quasibounded solution of (4.14) and has the claimed form.

(b)⇒ (a) If (ν∗, υ∗) ∈ B+
τ,c(X ×Y) is a solution of the fixed point problem (4.12), the function ν∗

has to be the (unique) solution of the dynamic equation (4.13) with ν∗(τ) = ξ by the variation
of constant formula. Furthermore Pötzsche [13, Theorem 4(b)] again implies that the function
υ∗ is a solution of the linear system (4.14) in B+

τ,c(Y).

Having all preparatory results at hand, we may now head for our main theorem. As mentioned
in the introduction, invariant fiber bundles are generalizations of invariant manifolds to non-
autonomous equations. In order to be more precise we call a subset S of the extended state
space I×X ×Y an invariant fiber bundle if for any triple (τ, ξ, η) ∈ S one has (t, λ(t; τ, ξ, η)) ∈ S
for all t ∈ I, τ � t, where λ denotes the general solution of (4.1).

Theorem 4.9 (pseudo-stable and -unstable fiber bundles): We assume Hypothesis 4.1 with
some m ∈ N, and let the global Lipschitz constants |F |1 and |G|1 satisfy the estimate

0 ≤ max {|F |1 , |G|1} <
bb− ac

2 max {K1,K2}
. (4.15)

In addition we choose a fixed real number σ ∈
(

max {K1,K2}max {|F |1 , |G|1} ,
bb−ac

2

]
and let

λ denote the general solution of (4.1). Then the following statements are true:

(a) In case I = T+
τ0, τ0 ∈ T, there exists a uniquely determined continuous mapping s : I×X →

Y whose graph S := {(τ, ξ, s(τ, ξ)) : τ ∈ I, ξ ∈ X} can be characterized dynamically for any
growth rate c ∈ C+

rdR(T,R), a+ σ E c E b− σ as

S =
{

(τ, ξ, η) ∈ I ×X × Y : λ(·; τ, ξ, η) ∈ B+
τ,c(X × Y)

}
. (4.16)

Furthermore we have

(a1) s(τ, 0) ≡ 0 on I,

(a2) s : I × X → Y is continuously differentiable in its second argument with globally
bounded derivative

‖D2s(τ, ξ)‖ ≤
K1K2 max {|F |1 , |G|1}

σ −max {K1,K2}max {|F |1 , |G|1}
for (τ, ξ) ∈ I ×X (4.17)

and s(·, ξ) : X → Y is rd-continuously differentiable for any ξ ∈ X ,
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(a3) provided that a + σ E 0, then Dm
2 s : I × X → Lm(X ;Y) exists, is continuous and

globally bounded,

(a4) the graph S ⊆ I × X × Y is an invariant fiber bundle of (4.1) and s : I × X → Y
satisfies the invariance equation

∆1s(τ, ξ) = B(τ)s(τ, ξ) +G(τ, ξ, s(τ, ξ))− (4.18)

−
∫ 1

0
D2s

(
ρ+(τ), ξ + hµ∗(τ) [A(τ)ξ + F (τ, ξ, s(τ, ξ))]

)
dh [A(τ)ξ + F (τ, ξ, s(τ, ξ))]

for all τ ∈ I, ξ ∈ X .

S is called the pseudo-stable fiber bundle of (4.1).

(b) In case I = T there exists a uniquely determined continuous mapping r : I×Y → X whose
graph R := {(τ, r(τ, η), η) : τ ∈ I, η ∈ Y} can be characterized dynamically for any growth
rate c ∈ C+

rdR(T,R), a+ σ E c E b− σ as

R =
{

(τ, ξ, η) ∈ I ×X × Y : λ(·; τ, ξ, η) ∈ B−τ,c(X × Y)
}
. (4.19)

Furthermore we have

(b1) r(τ, 0) ≡ 0 on I,

(b2) r : I × Y → X is continuously differentiable in its second argument with globally
bounded derivative

‖D2r(τ, η)‖ ≤
K1K2 max {|F |1 , |G|1}

σ −max {K1,K2}max {|F |1 , |G|1}
for (τ, η) ∈ I × Y

and r(·, η) : I → X is rd-continuously differentiable for any η ∈ Y,

(b3) provided that 0 E b − σ, then Dm
2 r : I × Y → Lm(Y;X ) exists, is continuous and

globally bounded,

(b4) the graph R ⊆ I × X × Y is an invariant fiber bundle of (4.1) and r : I × Y → X
satisfies the invariance equation

∆1r(τ, η) = A(τ)r(τ, η) + F (τ, r(τ, η), η)−

−
∫ 1

0
D2r

(
ρ+(τ), η + hµ∗(τ) [B(τ)η +G(τ, r(τ, η), η)]

)
dh [B(τ)η +G(τ, r(τ, η), η)]

for all τ ∈ I, η ∈ Y.

R is called the pseudo-unstable fiber bundle of (4.1).

(c) In case I = T only the zero solution of equation (4.1) is contained both in S and R,
i.e. S ∩ R = T × {0} × {0}, and hence the zero solution is the only c±-quasibounded
solution of (4.1) for any growth rate c ∈ C+

rdR(T,R), a+ σ E c E b− σ.

Remark 4.10: (1) It is easy to see that the existence of suitable values for σ follows from
assumption (4.15). Since we have 0 < σ ≤ bb−ac2 there exist functions c ∈ C+

rdR(T,R) such that
a+ σ E c E b− σ and in addition a+ σ, b− σ are positively regressive.

(2) Since we have not assumed the regressivity of the dynamic equation (4.1) one has to interpret
the dynamical characterization (4.19) of the pseudo-unstable fiber bundle R as follows: A point
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(τ, ξ, η) ∈ I × X × Y is contained in R if and only if there exists a c−-quasibounded solution
λ(·; τ, ξ, η) : I → X × Y of (4.1) satisfying the initial condition x(τ) = ξ, y(τ) = η. In this case
the solution λ(·; τ, ξ, η) is uniquely determined.

(3) The assumption of global boundedness of the derivatives in (4.4) can be replaced by the global
Lipschitz continuity of F and G. If this is done the mappings s and r defining the invariant fiber
bundles S and R are also only globally Lipschitz continuous with respect to ξ ∈ X and η ∈ Y
(uniformly in τ ∈ I), respectively. This result can be easily derived by slight modifications in
the subsequent proof of Theorem 4.9.

(4) By means of cut-off-functions we can deduce a theorem on locally invariant C1-fiber bundles
for equation (4.1) from the above Theorem 4.9. The essential fact here is that one can replace
the strong assumption of the existence of |F |1 , |G|1 <∞ and (4.15) by

lim
(x,y)→(0,0)

D(2,3)(F,G)(t, x, y) = 0 uniformly in t ∈ I.

The detailed construction can be found in many references (cf. e.g. Vanderbauwhede & Van
Gils [16]) for autonomous equations and it is easily lifted to our non-autonomous setting.
Nonetheless, it is worth mentioning that although C∞-cut-off-functions always exist in Hilbert
spaces, in general infinite-dimensional Banach spaces even C1-cut-off-functions may fail to exist
(cf. Abraham, Marsden & Ratiu [1, p. 273, Lemma 4.2.13]).

(5) If the mappings F and G are m-times continuously differentiable in their variables (x, y) ∈
X × Y with globally bounded derivatives Dn

(2,3)F and Dn
(2,3)G for n ∈ {1, . . . ,m} then one

would expect the same degree of smoothness for the invariant fiber bundles S and R. For
this to be true the growth rates a C b have to satisfy a so-called Gap-Condition m � a C b
or a C m � b, respectively. Such a generalization of Theorem 4.9 can be found for ordinary
differential equations in Siegmund [15, p. 73, Satz 8.1]. For difference equations and dynamic
equations it will be shown in forthcoming papers. Our Theorem 4.9 at least provides higher
order smoothness under the following conditions:

• For a C b E 0 the pseudo-stable fiber bundle S is of class Cm.

• For 0 E a C b the pseudo-unstable fiber bundle R is of class Cm.

• In the hyperbolic case a C 0 C b and under the additional assumption

0 ≤ max {|F |1 , |G|1} <
min {b−ac , bbc}
max {K1,K2}

one can always choose a real number σ ∈
(

max {K1,K2}max {|F |1 , |G|1} ,
bb−ac

2

]
such

that a+ σ E 0 E b− σ. In this case S and R are as smooth as the right-hand side of the
dynamic equation (4.1) and they are called the stable fiber bundle and the unstable fiber
bundle of (4.1), respectively.

However the paper Aulbach, Pötzsche & Siegmund [5, Example 4.13] contains an example
of an autonomous difference equations where the pseudo-unstable fiber bundle R is not C2, even
though the nonlinearities F and G are C∞-mappings.

Proof (of Theorem 4.9): (a) By λ = (λ1, λ2) we denote the general solution of the dynamic
equation (4.1). We show first that for any pair (τ, ξ) ∈ I×X there exists exactly one s(τ, ξ) ∈ Y
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such that λ(·; τ, ξ, s(τ, ξ)) ∈ B+
τ,c(X × Y) for every c ∈ C+

rdR(T,R), a + σ E c E b − σ. Then
the mapping s : I × X → Y defines the invariant fiber bundle S. Now for c ∈ C+

rdR(T,R),
a+ σ E c E b− σ we obtain the estimate

max
{

K1

bc− ac
,

K2

bb− cc

}
max {|F |1 , |G|1} ≤

max {K1,K2}
σ

max {|F |1 , |G|1} =: L. (4.20)

Due to assumption (4.15) we immediately get L ∈ [0, 1) and hence the operator Tτ : B+
τ,c(X ×

Y) × X → B+
τ,c(X × Y) defined in Lemma 4.8 is a uniform contraction in ξ ∈ X , since for any

(ν, υ), (ν̄, ῡ) ∈ B+
τ,c(X × Y) and ξ ∈ X we have the estimate

‖Tτ (ν, υ; ξ)− Tτ (ν̄, ῡ; ξ)‖+τ,c
(4.11)

=
∥∥Kτ(G(ν, υ)− G(ν̄, ῡ)

)∥∥+

τ,c
≤

(4.6)

≤ max
{

K1

bc− ac
,

K2

bb− cc

}
‖G(ν, υ)− G(ν̄, ῡ)‖+τ,c ≤ (4.21)

(4.8)

≤ max
{

K1

bc− ac
,

K2

bb− cc

}
max {|F |1 , |G|1} ‖(ν, υ)− (ν̄, ῡ)‖+τ,c ≤

(4.20)

≤ L ‖(ν, υ)− (ν̄, ῡ)‖+τ,c .

Consequently Banach’s fixed point theorem (e.g Lang [12, p. 360, Lemma 1.1]) guarantees the
unique existence of a fixed point (ν∗τ (ξ), υ∗τ (ξ)) ∈ B+

τ,c(X × Y) of Tτ (·; ξ). This fixed point is
independent of the growth rate c ∈ C+

rdR(T,R), a + σ E c E b − σ because with Lemma 3.3(b)
we have B+

τ,a+σ(X ×Y) ⊆ B+
τ,c(X ×Y) and every operator Tτ (·; ξ) : B+

τ,c(X ×Y)→ B+
τ,c(X ×Y)

has the same fixed point as the restriction Tτ (·; ξ)
∣∣
B+
τ,a+σ(X×Y)

. Formally we can write

Jca+σ(ν∗τ (ξ), υ∗τ (ξ)) ≡ (ν∗τ (ξ), υ∗τ (ξ)) ≡ Tτ (ν∗τ (ξ), υ∗τ (ξ); ξ) on X . (4.22)

By means of Lemma 4.8 the fixed point (ν∗τ (ξ), υ∗τ (ξ)) is a solution of equation (4.1) with(
ν∗τ (ξ)

)
(τ) = ξ. Now we define s(τ, ξ) :=

(
υ∗τ (ξ)

)
(τ) and have to prove (4.16).

(⊆) Due to of the uniqueness of solutions (cf. Pötzsche [14, p. 38, Satz 1.2.7(a)]) we obtain
the identity λ(·; τ, ξ, s(τ, ξ)) = (ν∗τ (ξ), υ∗τ (ξ)) and therefore λ(·; τ, ξ, s(τ, ξ)) ∈ B+

τ,c(X × Y).
(⊇) On the other hand the function λ(·; τ, ξ, η) is a c+-quasibounded solution of the dy-
namic equation (4.1) with λ1(τ ; τ, ξ, η) = ξ, and with Lemma 4.8 it is the unique solution
of the fixed point problem (4.12). So we obtain (λ1, λ2)(·; τ, ξ, η) = (ν∗τ (ξ), υ∗τ (ξ)) and, hence,
η =

(
υ∗τ (ξ)

)
(τ) = s(τ, ξ).

(a1) Using Hypothesis 4.1(ii) we have λ(t; τ, 0, 0) ≡ (0, 0) on T+
τ and since this zero solution is

obviously c+-quasibounded, the identity

s(τ, 0) ≡
(
υ∗τ (0)

)
(τ) ≡ λ2(τ ; τ, 0, 0)

(4.3)
≡ 0 on I

follows from the uniqueness statement proved before.

(a2) In this step we initially examine the continuous differentiability of the mapping s(τ, ·) :
X → Y defining the invariant fiber bundle S. The primary tool in this endeavor is Theorem 5.1
from the appendix whose assumptions we check now. To obtain the notation from Theorem 5.1
we declare for any c ∈ C+

rdR(T,R), a+ σ C c E b− σ, the Banach spaces X0 := B+
τ,a+σ(X × Y),

X1 := B+
τ,c(X × Y), A := X and consider the operator Tτ . Due to Lemma 3.3(b) we have the
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continuous embedding B+
τ,a+σ(X × Y)

Jca+σ
↪→ B+

τ,c(X × Y). By means of of relation (4.21) the
operator Tτ : B+

τ,a+σ(X × Y)×X → B+
τ,a+σ(X × Y) satisfies a uniform Lipschitz condition

‖Tτ (ν, υ; ξ)− Tτ (ν̄, ῡ; ξ)‖+τ,a+σ ≤ L ‖(ν, υ)− (ν̄, ῡ)‖+τ,a+σ

for arbitrary pairs (ν, υ), (ν̄, ῡ) ∈ B+
τ,a+σ(X ×Y) and ξ ∈ X . We define the substitution operator

G(1)
1 : B+

τ,a+σ(X ×Y)→ B+
τ,0(L(X ×Y)) by G(1)

1 (ν, υ) := G(1)(ν, υ); one should keep in mind the
range of G(1) in Lemma 4.6. Now the embedded mapping Jca+σTτ is continuously differentiable
with respect to (ν, υ). This follows from the identity

D(1,2)(J
c
a+σTτ )(ν, υ; ξ)

(4.11)
≡ D

(
Jca+σKτG

)
(ν, υ) ≡ D

(
KτJca+σG

)
(ν, υ) ≡

≡ KτD
(
Jca+σG

)
(ν, υ) ≡

(4.10)
≡ KτJ1G(1)(ν, υ) ∈ L(B+

τ,a+σ(X × Y); B+
τ,c(X × Y))

and Lemma 4.7. It is obvious that the two linear operators Kτ ∈ L(B+
τ,a+σ(X × Y)) and

Kτ ∈ L(B+
τ,c(X × Y)), respectively, and Jca+σ commute; the continuous homomorphism Kτ and

the differential operator D commute because of Lang [12, p. 339, Corollary 3.2]. Furthermore,
we have

D(1,2)(J
c
a+σTτ )(ν, υ; ξ) ≡ Jca+σKτJ1G(1)

1 (ν, υ) ≡ KτJ1G(1)(ν, υ)Jca+σ,

and hence relation (5.1) is verified for the (not necessarily continuous) operators

T (1)
1 := KτJ1G(1)

1 : B+
τ,a+σ(X × Y)→ L(B+

τ,a+σ(X × Y)),

T (1) := KτJ1G(1) : B+
τ,a+σ(X × Y)→ L(B+

τ,c(X × Y)).

Since Tτ is linear in ξ, it is differentiable and the derivative is given by

D3Tτ (ν, υ; ξ)
(4.11)
≡ Sτ ∈ L(X ; B+

τ,a+σ(X × Y));

obviously D3Tτ is continuous and hence Tτ is continuously differentiable with respect to the
parameter ξ ∈ X . After all, for any pair (ν, υ) ∈ B+

τ,a+σ(X × Y) we have the estimate

∥∥∥T (1)
1 (ν, υ)

∥∥∥
L(B+

τ,a+σ(X×Y))

(4.6)

≤ max
{
K1

σ
,

K2

bb− ac − σ

}∥∥∥J1G(1)
1 (ν, υ)

∥∥∥
L(B+

τ,a+σ(X×Y))
≤

(3.2)

≤ max
{
K1

σ
,

K2

bb− ac − σ

}∥∥∥G(1)
1 (ν, υ)

∥∥∥+

τ,1
≤

(4.9)

≤ max
{
K1

σ
,

K2

bb− ac − σ

}
max {|F |1 , |G|1}

(4.20)

≤ L

as well as
∥∥T (1)(ν, υ)

∥∥
L(B+

τ,c(X×Y))
≤ L. From Theorem 5.1 the mapping Jca+συ

∗
τ = υ∗τ : X →

B+
τ,c(Y) has to be of class C1. Using Lemma 3.4 we also know that s(τ, ·) =

(
υ∗τ (·)

)
(τ) : X → Y is,

for any fixed τ ∈ I, a continuously differentiable mapping. Next we prove the estimate (4.17). To
this end we consider ξ, ξ̄ ∈ X and the corresponding fixed points (ν∗τ (ξ), υ∗τ (ξ)), (ν∗τ (ξ̄), υ∗τ (ξ̄)) ∈
B+
τ,c(X ×Y) of Tτ (·; ξ) and Tτ (·; ξ̄). For growth rates c ∈ C+

rdR(T,R), a+ σ E c E b− σ we have∥∥(ν∗τ (ξ), υ∗τ (ξ))− (ν∗τ (ξ̄), υ∗τ (ξ̄))
∥∥+

τ,c
≤
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(4.22)

≤
∥∥Tτ (ν∗τ (ξ), υ∗τ (ξ); ξ)− Tτ (ν∗τ (ξ̄), υ∗τ (ξ̄); ξ)

∥∥+

τ,c
+

+
∥∥Tτ (ν∗τ (ξ̄), υ∗τ (ξ̄); ξ)− Tτ (ν∗τ (ξ̄), υ∗τ (ξ̄); ξ̄)

∥∥+

τ,c
≤

(4.21)

≤ max {K1,K2}
σ

max {|F |1 , |G|1}
∥∥(ν∗τ (ξ), υ∗τ (ξ))− (ν∗τ (ξ̄), υ∗τ (ξ̄))

∥∥+

τ,c
+

+
∥∥Tτ (ν∗τ (ξ̄), υ∗τ (ξ̄); ξ)− Tτ (ν∗τ (ξ̄), υ∗τ (ξ̄); ξ̄)

∥∥+

τ,c
,

consequently, ∥∥(ν∗τ (ξ), υ∗τ (ξ))− (ν∗τ (ξ̄), υ∗τ (ξ̄))
∥∥+

τ,c
≤

≤ σ

σ −max {K1,K2}max {|F |1 , |G|1}
·

·
∥∥Tτ (ν∗τ (ξ̄), υ∗τ (ξ̄); ξ)− Tτ (ν∗τ (ξ̄), υ∗τ (ξ̄); ξ̄)

∥∥+

τ,c
= (4.23)

(4.11)
=

σ

σ −max {K1,K2}max {|F |1 , |G|1}
∥∥Sτ (ξ − ξ̄)

∥∥+

τ,c
≤

(4.5)

≤ σK1

σ −max {K1,K2}max {|F |1 , |G|1}
∥∥ξ − ξ̄∥∥ .

Finally, the mapping s(τ, ·) : X → Y is globally Lipschitzian uniformly in τ ∈ I because∥∥s(τ, ξ)− s(τ, ξ̄)∥∥ =
∥∥(υ∗τ (ξ)

)
(τ)−

(
υ∗τ (ξ̄)

)
(τ)
∥∥ ≤ ∥∥υ∗τ (ξ)− υ∗τ (ξ̄)

∥∥+

τ,c
=

=
∥∥Π2

(
Tτ (ν∗τ (ξ), υ∗τ (ξ); ξ)− Tτ (ν∗τ (ξ̄), υ∗τ (ξ̄); ξ̄)

)∥∥+

τ,c
=

(4.11)
=

∥∥Π2

(
Kτ
(
G(ν∗τ (ξ), υ∗τ (ξ))− G(ν∗τ (ξ̄), υ∗τ (ξ̄))

))∥∥+

τ,c
≤

(4.7)

≤ K2

bb− cc
∥∥G(ν∗τ (ξ), υ∗τ (ξ))− G(ν∗τ (ξ̄), υ∗τ (ξ̄))

∥∥+

τ,c
≤

(4.8)

≤
K2 max {|F |1 , |G|1}

σ

∥∥(ν∗τ (ξ), υ∗τ (ξ))− (ν∗τ (ξ̄), υ∗τ (ξ̄))
∥∥+

τ,c
≤

(4.23)

≤
K1K2 max {|F |1 , |G|1}

σ −max {K1,K2}max {|F |1 , |G|1}
∥∥ξ − ξ̄∥∥ .

Since differentiable and globally Lipschitz continuous mappings (here with Lipschitz constant

L0 :=
K1K2 max{|F |1,|G|1}

σ−max{K1,K2}max{|F |1,|G|1}
) have a derivative which is bounded by L0, the estimate (4.17)

follows. Finally the continuity of s : I × Y → Y and of the derivative D2s : I × X → Y result
from Pötzsche [14, p. 139, Lemma 3.1.3(a)].

(a3) We are going to show now that s(τ, ·) : X → Y is m-times continuously differentiable under
the assumption a+ σ E 0. Thereby we do not have to use the whole embedding procedure, but
rather may use the well-known uniform contraction principle (see e.g. Chow & Hale [7, p. 25,
Theorem 2.2]), applied to the uniform contraction Tτ : B+

τ,c(X ×Y)×X → B+
τ,c(X ×Y). We may

choose c E 0 and m ≥ 2 here. Using the chain rule and by setting c = d in Lemma 4.6(c), we see
that Tτ (·; ξ) : B+

τ,c(X ×Y)→ B+
τ,c(X ×Y), ξ ∈ X , is m-times continuously differentiable with the

derivative Dm
(1,2)Tτ (ν, υ; ξ) = KτJmG(m)(ν, υ). On the other hand, Tτ (ν, υ; ·) : X → B+

τ,c(X ×Y),
(ν, υ) ∈ B+

τ,c(X × Y) is a linear continuous mapping and consequently C∞ with identically
vanishing derivatives of order m ≥ 2. For this reason Tτ is m-times continuously differentiable
and with the aid of the uniform contraction principle the fixed-point mapping (ν∗τ , υ

∗
τ ) : X →
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B+
τ,c(X ×Y) is of the class Cm as well. Using Lemma 3.4 again, for arbitrarily fixed times τ ∈ I,

the mapping s(τ, ·) =
(
υ∗τ (·)

)
(τ) : X → Y is m-times continuously differentiable and Pötzsche

[14, p. 139, Lemma 3.1.3(a)] implies the continuity of Dm
2 s : I × X → Lm(X ;Y). To show the

global boundedness of the derivatives we differentiate the identity

(ν∗τ (ξ), υ∗τ (ξ)) = Sτξ +KτG(ν∗τ (ξ), υ∗τ (ξ)) on X

with respect to ξ ∈ X by using the higher order chain rule (see Abraham, Marsden & Ratiu
[1, pp. 96–97]). Then mathematical induction and Lemma 4.6 lead to the assertion, since the
derivatives DnG, n ∈ {1, . . . ,m}, are globally bounded and Kτ is also continuous.

(a4) So far the proof has established the fact that the function λ(·; τ, ξ, η) is c+-quasibounded
for arbitrary pairs of initial values (τ, ξ, η) ∈ S. The cocycle property (2.3) now implies for any
time t0 ∈ T+

τ that

λ(t; t0, λ(t0; τ, ξ, η))
(2.3)
≡ λ(t; τ, ξ, η) on T+

t0
.

Hence also λ(·; t0, λ(t0; τ, ξ, η)) is a c+-quasibounded function and additionally this yields
(t0, λ(t0; τ, ξ, η)) ∈ S for any t0 ∈ T+

τ . The invariance equation (4.18) is a consequence of
Pötzsche [14, p. 139, Lemma 3.1.3(b)].

(b) Since part (b) of the theorem can be proved along the same lines as part (a) we present only
a sketch of the proof. Analogously to Lemma 4.8, for initial values η ∈ Y, the c−-quasibounded
solutions of (4.1) may be characterized as the fixed points of a mapping T̄τ : B−τ,c(X ×Y)×Y →
B−τ,c(X × Y),(

T̄τ (ν∗, υ∗; η)
)
(t) :=

(∫ t

−∞
ΦA(t, ρ+(s))F (s, ν∗(s), υ∗(s)) ∆s,

ΦB(t, τ)η +
∫ t

τ
ΦB(t, ρ+(s))G(s, ν∗(s), υ∗(s)) ∆s

)
.

Furthermore, T̄τ can be decomposed into two linear operators and a substitution operator, as we
have done for Tτ in relation (4.11). Now counterparts to our preparatory Lemmas 4.3, 4.4, 4.5, 4.6
and 4.7 hold true in the Banach spaces B−τ,c(X ×Y). Note that in order to prove the counterpart
of Lemma 4.4 (on the linear operator Kτ ) one has to use Pötzsche [13, Theorem 2(b), Theorem
4(a)] for c−-quasibounded perturbations and solutions. It follows from the assumption (4.15)
that T̄τ is a contraction on B−τ,c(X × Y) and if (ν∗τ (η), υ∗τ (η)) ∈ B−τ,c(X × Y) denotes its unique
fixed point we define the mapping r : I×Y → X by r(τ, η) :=

(
ν∗τ (η)

)
(τ). The claimed properties

of r can be proved using the same arguments as in step (a).

(c) Let (ν, υ) : T→ X×Y be an arbitrary solution of (4.1) in B±c (X×Y). By means of Hypothesis
4.1(ii), the mapping G(·, ν(·), υ(·)) is c±-quasibounded and as a consequence of Pötzsche [13,
Theorem 2(c)] ν is the unique c±-quasibounded solution of x∆ = A(t)x+ F (t, ν(t), υ(t)), which
additionally satisfies the estimate

‖ν‖±τ,c ≤
K1

bc− ac
‖F (·, ν(·), υ(·))‖±τ,c

(4.4)

≤
K1 |F |1
bc− ac

‖(ν, υ)‖±τ,c
(4.20)

≤ L ‖(ν, υ)‖±τ,c . (4.24)

A dual argument using Pötzsche [13, Theorem 4(c)] applied to the linear dynamic equation
y∆ = B(t)y +G(t, ν(t), υ(t)) leads to ‖υ‖±τ,c ≤ L ‖(ν, υ)‖±τ,c and together with (4.24) this yields

‖(ν, υ)‖±τ,c
(2.1)

≤ L ‖(ν, υ)‖±τ,c .

We therefore obtain (ν, υ) = (0, 0) because of L < 1 and the proof of Theorem 4.9 is complete.
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5 Appendix

Since the substitution operators under consideration (see Lemma 4.5) become differentiable only
after composition with certain embeddings, we present here an appropriate fixed point theorem
to keep the paper self-contained. It goes back to Vanderbauwhede & Van Gils [16].

Theorem 5.1 (contractions between embedded Banach spaces): Consider three Banach spaces
X0,X1 and A with a continuous embedding

X0
J
↪→ X1.

Furthermore the operator T : X0 ×A → X0 is assumed to satisfy the following assumptions:

(i) There exists a constant L ∈ [0, 1) with

‖T (x;α)− T (x̄;α)‖ ≤ L ‖x− x̄‖ for x, x̄ ∈ X0, α ∈ A,

(ii) JT : X0 × A → X1 has a continuous partial derivative D1(JT ) : X0 × A → L(X0;X1),
where

D1(JT )(x;α) ≡ JT (1)
1 (x;α) ≡ T (1)(x;α)J on X0 ×A (5.1)

for certain operators T (1)
1 : X0 ×A → L(X0) and T (1) : X0 ×A → L(X1),

(iii) T has a continuous partial derivative D2T : X0 ×A → L(A;X0),

(iv) T (1)
1 and T (1) are bounded by the constant L defined above, i.e.∥∥∥T (1)

1 (x;α)
∥∥∥
L(X0)

≤ L,
∥∥∥T (1)(x;α)

∥∥∥
L(X1)

≤ L for (x, α) ∈ X0 ×A.

Then for arbitrary parameter values α ∈ A the operator T (·;α) has exactly one fixed point
x∗(α) ∈ X0, i.e. there exists a mapping x∗ : A → X0 with the property T (x∗(α);α) ≡ x∗(α) on
A. Additionally x∗ is Lipschitz continuous and Jx∗ : A → X1 is continuously differentiable with
derivative D

(
Jx∗

)
(α) = JT (α), where T (α) ∈ L(A;X0) is the unique fixed point of the linear

operator equation T = T (1)
1 (x∗(α);α)T +D2T (x∗(α);α).

Proof. Theorem 5.1 follows from Vanderbauwhede & Van Gils [16, Theorem 3] as well as
from Hilger [9, Theorem 6.1].
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