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1 Introduction and preliminaries

It is well-known that the exponential stability of linear difference or differential
equations is robust under sufficiently small perturbations. With regard to this,
the present paper has two main goals:

• We can unify the corresponding results for ordinary differential equa-
tions (ODEs) and difference equations (O∆Es) within the calculus on
measure chains or time scales (cf. [BP01, Hil88, Hil90]).

• Exponential stability is weakened to a certain exponential boundedness
of solutions, namely the so-called quasiboundedness (see Definition 1).

However, the two results of this paper (Theorems 2 and 4) are originally and
basically designed as tools to construct invariant manifolds using a Lyapunov-
Perron technique, and an application on general measure chains can be found
in [Pöt03], while ODEs and O∆Es are considered in, e.g., [AW96] and [Aul98,
APS02], respectively. Indeed the Theorems 2 and 4 carry a certain technical
amount in such situations. Related constructions for dynamic equations are
provided in [Hil96, Theorem 3.1] and [Kel99, p. 41, Satz 3.2.7, pp. 42–43,

1Research supported by the “Graduiertenkolleg: Nichtlineare Probleme in Analysis,
Geometrie und Physik” (GRK 283) financed by the Deutsche Forschungsgemeinschaft and
the State of Bavaria.



Satz 3.2.8]. Both references consider linear regressive equations, while we
allow nonlinear perturbations and try to avoid regressivity as far as possible.
The general nonlinear case on homogeneous measure chains, i.e., when the
graininess µ∗ (cf. [Hil90, Section 2.3]) is constant, is treated in [Hil88, pp. 62–
63, Satz 10.1, p. 71, Satz 10.3]. Apart from this, our approach has its roots
in [Aul87], where finite-dimensional ODEs have been considered; for non-
autonomous O∆Es see [Aul95].
Concerning our notation, R is the real field. Throughout this paper Banach
spaces X ,Y are all real or complex and their norm is denoted by ‖·‖. L(X ) is
the Banach algebra of linear continuous endomorphisms on X and IX the iden-
tity mapping on X . We also introduce some notions which are specific to the
calculus on measure chains. In all the subsequent considerations we deal with
a measure chain (T,�, µ) unbounded above and below with bounded graini-
ness µ∗, the forward jump operator σ : T→ T and with τ ∈ T we write T+

τ :=
{s ∈ T : τ � s}, T−τ := {s ∈ T : s � τ}. χT+

τ
: T→ {0, 1} is the characteristic

function of T+
τ . Crd(I,L(X )) denotes the rd-continuous and CrdR(I,L(X ))

the rd-continuous, regressive mappings from a T-interval I into L(X ). Recall
that C+

rdR(I,R) := {a ∈ CrdR(I,R) : 1 + µ∗(t)a(t) > 0 for t ∈ I} forms the
so-called positively regressive group with respect to the addition (a⊕ b)(t) :=
a(t) + b(t) + µ∗(t)a(t)b(t) for t ∈ I and a, b ∈ C+

rdR(I,R). An element
a ∈ C+

rdR(I,R) is denoted as a growth rate, if supt∈I µ∗(t)a(t) < ∞ holds.
Moreover we define the relations a C b :⇔ 0 < bb− ac := inft∈I(b(t) − a(t))
and ea(t, s) ∈ R stands for the real exponential function on T (cf. [Hil90,
Section 7]).
Given A ∈ Crd(T,L(X )), the transition operator ΦA(t, τ) ∈ L(X ), τ � t, of
a linear dynamic equation x∆ = A(t)x is the solution of the operator-valued
initial value problem X∆ = A(t)X, X(τ) = IX in L(X ) and if A is regressive
then ΦA(t, τ) is defined for all τ, t ∈ T. The partial derivative of ΦA(t, τ) with
respect to the first variable is denoted by ∆1ΦA(t, τ).
To bring these preliminaries to an end we introduce the so-called quasibound-
edness which is a handy notion describing exponential growth of functions.
For a further motivation see [AW96, Section 3].

Definition 1. For a growth rate c ∈ C+
rdR(T,R), τ0 ∈ T, a Banach space X ,

a T-interval I and a rd-continuous function λ : I → X we say that λ is

(a) c+-quasibounded if I = T+
τ0 and ‖λ‖+τ,c := supt∈T+

τ
‖λ(t)‖ e	c(t, τ) <∞

for τ ∈ T+
τ0 ,

(b) c−-quasibounded if I = T−τ0 and ‖λ‖−τ,c := supt∈T−τ ‖λ(t)‖ e	c(t, τ) <∞
for τ ∈ T−τ0 ,

(c) c±-quasibounded if I = T and ‖λ‖±τ,c := supt∈T ‖λ(t)‖ e	c(t, τ) <∞ for
τ ∈ T.

With B+
τ,c(X ),B−τ,c(X ) and B±c (X ) we denote the sets of all c+-, c−- and

c±-quasibounded functions λ : I → X , respectively.



Obviously the three sets B+
τ,c(X ),B−τ,c(X ) and B±c (X ) are non-empty and

using [Hil90, Theorem 4.1(iii)] one can show that they define Banach spaces
(cf. [Pöt02, p. 76, Lemma 1.4.3]).

2 Perturbation results

After the above preparations we can tackle the problem of the existence and
uniqueness of quasibounded solutions in forward and backward time, respec-
tively. We begin with dynamic equations where the linear part is not neces-
sarily regressive. For difference equations see [Aul98, Lemma 3.3, Lemma 3.2]
and [AW96, Lemma 3.2, Lemma 3.4] for Carathéodory differential equations.

Theorem 2. Assume that K1 ≥ 1, L1,M ≥ 0, a ∈ C+
rdR(I,R) is a growth

rate, I denotes some closed T-interval, X is a Banach space and P a topo-
logical space satisfying the first axiom of countability. Let us consider the
parameter dependent dynamic equation

x∆ = A(t)x+ F (t, x, p) + f(t, p), (1)

where A ∈ Crd(I,L(X )) and F : I × X × P → X , f : I × P → X are
rd-continuous mappings satisfying

‖ΦA(t, s)‖ ≤ K1ea(t, s) for s, t ∈ I, s � t, (2)
F (t, 0, p) = 0 for t ∈ I, p ∈ P, (3)

‖F (t, x, p)− F (t, x̄, p)‖ ≤ L1 ‖x− x̄‖ for t ∈ I, x, x̄ ∈ X , p ∈ P. (4)

Then for every growth rate c ∈ C+
rdR(I,R), a + K1L1 C c and τ ∈ I we get

the following:

(a) Supposed I is unbounded above and f(·, p) ∈ B+
τ,c(X ), p ∈ P, allows the

estimate ‖f(·, p)‖+τ,c ≤M for p ∈ P, then every solution ν(·, p) : I → X ,
p ∈ P, of (1) is c+-quasibounded with

‖ν(·, p)‖+τ,c ≤ K1 ‖ν(τ, p)‖+
K1M

bc− a−K1L1c
for p ∈ P. (5)

Moreover, the mapping ν : I × P → X is continuous.

(b) Supposed I is unbounded below and f(·, p) ∈ B−τ,c(X ), p ∈ P, allows the
estimate ‖f(·, p)‖−τ,c ≤ M for p ∈ P, then there exists exactly one c−-
quasibounded solution ν∗(·, p) : I → X , p ∈ P, of (1), which furthermore
satisfies

‖ν∗(·, p)‖−τ,c ≤
K1M

bc− a−K1L1c
for p ∈ P. (6)

Moreover, the mapping ν∗ : I × P → X is continuous.



(c) Supposed I = T and f(·, p) ∈ B±c (X ), p ∈ P, allows the estimate
‖f(·, p)‖±τ,c ≤ M for p ∈ P, then there exists exactly one c±-quasi-
bounded solution ν∗(·, p) : T → X , p ∈ P, of (1), which furthermore
satisfies

‖ν∗(·, p)‖±τ,c ≤
K1M

bc− a−K1L1c
for p ∈ P.

Moreover, the mapping ν∗ : T× P → X is continuous.

Remark 3. A version of Theorem 2 for parameter independent dynamic
equations, where the linear part x∆ = A(t)x is allowed to possess an expo-
nential dichotomy, can be found in [Pöt01, Theorem 3.4] (for assertion (a))
and [Pöt02, p. 111, Satz 2.2.12] (for assertion (c)). Hence we can weaken the
assumption (2) and the corresponding remark applies to Theorem 4 also.

Proof. Let τ ∈ T and the growth rate c ∈ C+
rdR(I,R), a+K1L1 C c, be given

arbitrarily. It is easy to see that the subsequently quoted results from [Hil88,
Hil90] are valid in forward time (t ∈ T+

τ ) without assuming regressivity of the
dynamic equation (1).
(a) All solutions of (1) starting at time τ ∈ T exist throughout the T-interval
T+
τ according to [Hil90, Theorem 5.7]. If ν : T+

τ × P → X denotes such an
arbitrary solution of (1) then the variation of constants formula (cf. [Hil90,
Theorem 6.4(ii)]) yields

ν(t, p) = ΦA(t, τ)ν(τ, p) +
∫ t

τ

ΦA(t, σ(s)) [F (s, ν(s, p), p) + f(s, p)] ∆s

for t ∈ T+
τ , p ∈ P and with (2), (3) as well as (4) we obtain the estimate

‖ν(t, p)‖ e	a(t, τ)

≤ K1 ‖ν(τ, p)‖+K1

∫ t

τ

ea(τ, σ(s)) ‖F (s, ν(s, p), p)− F (s, 0, p)‖ ∆s

+K1

∫ t

τ

ea(τ, σ(s)) ‖f(s, p)‖ ∆s

≤ K1 ‖ν(τ, p)‖+K1L1

∫ t

τ

ea(τ, σ(s)) ‖ν(s, p)‖ ∆s

+K1

∫ t

τ

ea(τ, σ(s))ec(s, τ) ‖f(s, p)‖ e	c(s, τ) ∆s

≤ K1 ‖ν(τ, p)‖+
∫ t

τ

K1L1

1 + µ∗(s)a(s)
‖ν(s, p)‖ e	a(s, τ) ∆s

+K1M

∫ t

τ

ea(τ, σ(s))ec(s, τ) ∆s

for t ∈ T+
τ and parameters p ∈ P. Now Gronwall’s Lemma (cf. [Hil88, p. 49,



Satz 7.2]) leads to

‖ν(t, p)‖ e	a(t, τ)

≤ ea0(t, τ)
[
K1 ‖ν(τ, p)‖+K1M

∫ t

τ

ea+K1L1(τ, σ(s))ec(s, τ) ∆s
]

≤ ea0(t, τ)
[
K1 ‖ν(τ, p)‖+

K1M

bc− a−K1L1c
(
ec	(a+K1L1)(t, τ)− 1

)]
for t ∈ T+

τ , p ∈ P, where we have abbreviated a0(t) := K1L1
1+µ∗(s)a(s) and

used [Pöt01, Lemma 3.1] to evaluate the integral. Finally, multiplying both
sides of the above estimate by ea	c(t, τ) > 0 we get

‖ν(t, p)‖ e	c(t, τ)

≤ K1ea⊕a0	c(t, τ) ‖ν(τ, p)‖+
K1M

bc− a−K1L1c
(1− ea0⊕a	c(t, τ))

≤ K1 ‖ν(τ, p)‖+
K1M

bc− a−K1L1c
for t ∈ T+

τ , p ∈ P

with the aid of [Hil90, Theorem 7.4]. This means that ν(·, p) : T+
τ → X , p ∈ P,

is c+-quasibounded and satisfies (5). The continuity of ν : T+
τ ×P → X follows

from [Hil88, p. 51, Satz 7.4].
(b) We subdivide the proof of statement (b) into four steps.
Step 1 – Claim: The zero solution of the linear homogeneous equation

x∆ = A(t)x (7)

is the only solution of (7) in B−τ,c(X ).
Because the system (7) evidently possesses an exponential dichotomy on T−τ
with the invariant projector P (t) ≡ IX by (2), we can apply [Pöt01, Corol-
lary 2.11(b)] to prove that any c−-quasibounded solution ν : T−τ → X of (7)
vanishes identically.
Step 2 – Claim: There exists exactly one c−-quasibounded solution ν∗(·, p) :
T−τ → X , p ∈ P, of the linear inhomogeneous equation

x∆ = A(t)x+ f(t, p), (8)

which furthermore satisfies

‖ν∗(·, p)‖−τ,c ≤
K1M

bc− ac
for p ∈ P. (9)

Above all the function ν∗ : T−τ ×P → X , ν∗(t, p) :=
∫ t
−∞ΦA(t, σ(s))f(s, p) ∆s

is well-defined, since the integrand is rd-continuous (in s) and the estimate

‖ν∗(t, p)‖ e	c(t, τ) ≤
∫ t

−∞
‖ΦA(t, σ(s))‖ ‖f(s, p)‖ ∆se	c(t, τ)

(2)

≤ K1

∫ t

−∞
ea(t, σ(s))ec(s, τ) ∆se	c(t, τ) ‖f(·, p)‖+τ,c ≤

K1M

bc− ac



for t ∈ T−τ holds true, where the improper integral has been evaluated us-
ing [Pöt01, Lemma 3.1]. Additionally the inclusion ν∗(·, p) ∈ B−τ,c(X ), p ∈ P,
yields by passing over to the least upper bound over t ∈ T−τ . The derivative
of ν∗ with respect to t ∈ T−τ is given by

ν∆
∗ (t, p) ≡ f(t, p) +

∫ t

−∞
∆1ΦA(t, σ(s))f(s, p) ∆s ≡ A(t)ν∗(t, p) + f(t, p)

on T−τ , and the integral has been differentiated using a result dual to [Pöt01,
Lemma 4.2]. Therefore ν∗(·, p), p ∈ P, is a c−-quasibounded solution of (8)
satisfying the estimate (9). Finally the uniqueness statement immediately
results from Step 1, because the difference of two c−-quasibounded solutions
of (8) is a c−-quasibounded solution of (7) and consequently identically van-
ishing. In order to prove the continuity of the mapping ν∗ : T−τ × P → X ,
let the pair (t0, p0) ∈ T−τ ×P be arbitrarily fixed and consider the alternative
representation

ν∗(t, p) =
∫ τ

−∞
χT−t

(s)ΦA(t, σ(s))f(s, p) ∆s for t ∈ T−τ , p ∈ P.

As (t, p)→ (t0, p0) the integrand converges to χT−t0
(s)ΦA(t0, σ(s))f(s, p0) for

all s ∈ T−τ and the inequality∥∥∥χT−t
(s)ΦA(t, σ(s))f(s, p)

∥∥∥ (2)

≤K1ea(t, σ(s))ec(s, τ) ‖f(·, p0)‖−τ,c

≤K1Mea(t, σ(s))ec(s, τ) for σ(s) � t
(10)

is valid. Because of a C c we can use [Pöt01, Lemma 3.1] to evaluate the
integral from −∞ to τ over the right hand side of the estimate (10), and
we may apply Lebesgue’s dominated convergence theorem (cf. [Nei01, p. 161,
Satz 313]) to get the convergence lim(t,p)→(t0,p0) ν∗(t, p) = ν∗(t0, p0), which
proves the desired continuity of ν∗ : T−τ × P → X .
Step 3 – Claim: There exists exactly one c−-quasibounded solution ν∗(·, p) :
T−τ → X , p ∈ P, of the semi-linear equation (1), which moreover satisfies (6).
In order to set up the framework of Banach’s fixed point theorem we define
the sets

B :=

ν : T−τ × P → X

∣∣∣∣∣∣
ν : T−τ × P → X is continuous,
ν(·, p) ∈ B−τ,c(X ) for all p ∈ P,

supp∈P ‖ν(·, p)‖−τ,c <∞

 ,

which are readily seen to be Banach spaces equipped with the norm ‖ν‖−,0τ,c :=
supp∈P ‖ν(·, p)‖−τ,c. As to the construction of an appropriate contraction op-
erator on B we choose any ν ∈ B and consider the linear inhomogeneous
dynamic equation

x∆ = A(t)x+ F (t, ν(t, p), p) + f(t, p). (11)



Since (3) and (4) imply the estimate

‖F (t, ν(t, p), p) + f(t, p)‖ e	c(t, τ)
≤ L1 ‖ν(t, p)‖ e	c(t, τ) + ‖f(t, p)‖ e	c(t, τ) (12)

≤ L1 ‖ν(·, p)‖−τ,c + ‖f(·, p)‖−τ,c ≤ L1 ‖ν‖−,0τ,c +M for t ∈ T−τ , p ∈ P,

we may apply Step 2 of the present proof to equation (11). Hence there exists
a continuous mapping ν∗ : T−τ × P → X such that the function ν∗(·, p) is the
unique c−-quasibounded solution of (11) to the parameter value p ∈ P, and
for arbitrary p ∈ P we get the estimate

‖ν∗(·, p)‖−τ,c
(9)

≤ K1

bc− ac

(
L1 ‖ν‖−,0τ,c +M

)
for p ∈ P,

which shows the inclusion ν∗ ∈ B. Now we are defining the designated con-
traction mapping T : B→ B, ν 7→ ν∗. Then (12) implies the estimate

‖(T ν)(·, p)‖−τ,c ≤
K1

bc− ac

[
L1 ‖ν(·, p)‖−τ,c + ‖f(·, p)‖−τ,c

]
(13)

for p ∈ P, ν ∈ B. Now we claim that the mapping T : B → B actually is
a contraction. In order to verify this, let ν, ν̄ ∈ B be arbitrary. Then the
difference (T ν − T ν̄)(·, p), p ∈ P, is a c−-quasibounded solution of the linear
inhomogeneous system

x∆ = A(t)x+ F (t, ν(t, p), p)− F (t, ν̄(t, p), p) (14)

for every parameter p ∈ P and similar to equation (11) also (14) satisfies all
the assumptions of Step 2. Consequently, (4) implies

‖(T ν − T ν̄)(·, p)‖−τ,c ≤
K1L1

bc− ac
‖(ν − ν̄)(·, p)‖−τ,c ≤

K1L1

bc− ac
‖ν − ν̄‖0,−τ,c

for p ∈ P, and we therefore get ‖T ν − T ν̄‖0,−τ,c ≤
K1L1
bc−ac ‖ν − ν̄‖

0,−
τ,c . According

to the assumptions we have a+K1L1 C c, which is sufficient for 0 ≤ K1L1
bc−ac < 1.

Thus T is a contraction and Banach’s fixed point theorem implies a unique
fixed point ν̄∗ ∈ B. Applying this fixed point argument to the dynamic
equation (1), it is immediately seen that ν̄∗ is a c−-quasibounded solution of
(1). Because of ν̄∗ ∈ B the mapping ν̄∗ : T−τ × P → X is continuous. In
order to conclude the proof of Step 3 we only have to verify the estimate (6).
Since ν̄∗ is a fixed point of T together with (13) yields ‖(T ν)(·, p)‖−τ,c ≤
K1L1
bc−ac ‖ν(·, p)‖−τ,c + K1L1

bc−ac ‖f(·, p)‖−τ,c for p ∈ P and from this we get (6).
Step 4: For an arbitrary T-interval I which is unbounded below, Step 3
guarantees the unique existence of the c−-quasibounded solution ντ (·, p) :
T−τ → X , p ∈ P, of (1) for every τ ∈ I and ντ is continuous. Defining
ν∗ : I×P → X as ν∗(t, p) := νt(t, p) it is easy to see that ν∗ is continuous and



has all the properties claimed in Theorem 2(b). Just note that for all p ∈ P
and τ1, τ2, t ∈ T, τ1 � τ2 � t we have ντ1(t, p) = ντ2(t, p).
(c) The proof of statement (c) follows along the lines of the Steps 1 to 3 above.
One only has to replace the T-interval T−τ by T and the c−-quasiboundedness
by c±-quasibounded functions.

Now we study dynamic equations where the unperturbed system is assumed
to possess quasibounded solutions in backward time. Hence we have to make
the hypothesis of its regressivity. Additionally a smallness condition on the
Lipschitz constant for the nonlinear perturbation is involved. The next re-
sult is similar to [Aul98, Lemma 3.5, Lemma 3.4] and [AW96, Lemma 3.6,
Lemma 3.7].

Theorem 4. Assume that K2 ≥ 1, L2,M ≥ 0, b ∈ C+
rdR(I,R) is a growth

rate, I denotes some closed T-interval, Y is a Banach space and P a topo-
logical space satisfying the first axiom of countability. Let us consider the
parameter dependent dynamic equation

y∆ = B(t)y +G(t, y, p) + g(t, p), (15)

where B ∈ CrdR(I,L(Y)) and G : I × Y × P → Y, g : I × P → Y are
rd-continuous mappings satisfying

‖ΦB(t, s)‖ ≤ K2eb(t, s) for s, t ∈ I, t � s, (16)
G(t, 0, p) = 0 for t ∈ I, p ∈ P,

‖G(t, y, p)−G(t, ȳ, p)‖ ≤ L2 ‖y − ȳ‖ for t ∈ I, y, ȳ ∈ Y, p ∈ P. (17)

Then for every growth rate d ∈ C+
rdR(I,R), d C b −K2L2 and τ ∈ I we get

the following:

(a) Supposed I is unbounded below,

µ∗(t) [K2L2 − b(t)] < 1 for t ∈ I (18)

and g(·, p) ∈ B−τ,d(Y), p ∈ P, allows the estimate ‖g(·, p)‖−τ,d ≤ M for
p ∈ P, then every solution υ(·, p) : I → Y, p ∈ P, of (15) is d−-quasi-
bounded with

‖υ(·, p)‖−τ,d ≤ K2 ‖υ(τ, p)‖+
K2M

bb− d+K2L2c
for p ∈ P.

Moreover, the mapping υ : I × P → Y is continuous.

(b) Supposed I is unbounded above and g(·, p) ∈ B+
τ,d(Y), p ∈ P, allows

the estimate ‖g(·, p)‖+τ,d ≤ M for p ∈ P, then there exists exactly one
d+-quasibounded solution υ∗(·, p) : I → Y, p ∈ P, of (15), which fur-
thermore satisfies

‖υ∗(·, p)‖+τ,d ≤
K2M

bb− d+K2L2c
for p ∈ P.



Moreover, the mapping υ∗ : I × P → Y is continuous.

(c) Supposed I = T and g(·, p) ∈ B±d (Y), p ∈ P, allows the estimate
‖g(·, p)‖±τ,d ≤ M for p ∈ P, then there exists exactly one d±-quasi-
bounded solution υ∗(·, p) : T → Y, p ∈ P, of (15), which furthermore
satisfies

‖υ∗(·, p)‖±τ,d ≤
K2M

bb− d+K2L2c
for p ∈ P.

Moreover, the mapping υ∗ : T× P → Y is continuous.

Proof. Since the argumentation is dual to Theorem 2 we only give a very
rough sketch of the proof. To begin, we prove that the right-hand side of (15)
is regressive under the assumption (18). To this end let t ∈ I be arbitrary.
According to the assumptions, the coefficient operator B is regressive and due
to the estimates (17) and∥∥∥[IY + µ∗(t)B(t)]−1

∥∥∥ = ‖ΦB(t, σ(t))‖
(16)

≤ K2eb(t, σ(t)) =
K2

1 + µ∗(t)b(t)

for t ∈ I, we obtain that IY + µ∗(t)B(t) + µ∗(t)G(t, ·, p) + g(t, p) : Y → Y is
a bijective mapping (cf. (18) and [Aul98, Corollary 6.2]). Therefore equation
(15) is regressive and consequently solutions exist and are unique in backward
time (t ∈ T−τ ).
(a) This part of the proof resembles the proof of Theorem 2(a). Hereby growth
rates occurring in the Gronwall estimates are positively regressive because of
the assumption (18).
(b) One also proceeds in four steps. Above all the zero solution is the
unique d+-quasibounded solution of y∆ = B(t)y, which follows from [Pöt01,
Corollary 2.11(a)], since the above equation trivially possesses an exponen-
tial dichotomy on T+

τ with the invariant projector P (t) ≡ 0. We define
υ∗ : T+

τ × P → Y, υ∗(t, p) := −
∫∞
t

ΦB(t, σ(s))g(s, p) ∆s as the unique d+-
quasibounded solution of y∆ = A(t)x + g(t, p). The well-definedness and
the solution property can be verified using [Pöt01, Lemma 3.2] and [Pöt01,
Lemma 4.2], respectively. Finally a fixed point argument similar to Step 3
gives us the general assertion.
(c) One can verify the statement (c) along the lines of (b). Here one has to
replace the T-interval T+

τ by T and the d+-quasiboundedness by d±-quasi-
bounded functions.
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type differential equations in Banach spaces, in Six Lectures on Dy-
namical Systems, B. Aulbach and F. Colonius, eds., World Scientific,
Singapore, 1996, pp. 45–119.
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