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1. INTRODUCTION AND PRELIMINARIES

The calculus on measure chains (or time scales) has originally been developed in
[Hil90] to unify the theory of ordinary differential equations (ODEs)

ẋ = f(t, x) with t ∈ R

and of difference equations (O∆Es)

∆x = f(t, x) with t ∈ N0 or t ∈ Z

within the framework of so-called dynamic equations on time scales

x∆ = f(t, x) with t ∈ T,(1.1)

where T is allowed to be any closed subset of the reals, or more general, an abstract
measure chain, and the derivative x∆(t) reduces to ẋ(t) = dx

dt (t) for T = R, or to the
forward difference ∆x(t) = x(t+1)−x(t) for T = N0, T = Z. Moreover, this flexible
set-up makes it possible to consider dynamic equations on time scales beyond R
or N0, Z, like, e.g., T =

⋃
k∈N0

[k, k + h] with h ≥ 0. Here one is able to model
systems possessing continuous, as well as discrete growth features, simultaneously.
A possible application comes from biology, to describe the behavior of populations
with hibernation periods, or of insect populations laying eggs before dying out over
the winter period and hatching in spring (cf. Example 1.5).

Despite these interesting perspectives, periodic dynamic equations are rarely
studied until now. So the first goal of this paper is to introduce the notion of peri-
odicity on general measure chains. To overcome the lacking algebraic structure on
such sets, one needs so-called translations as a key tool. Having this concept avail-
able, we are in the position to present some existence results for periodic solutions of
periodic dynamic equations on (periodic) measure chains, which turn out to be very
similar to the corresponding well-known results for ODEs (cf., e.g., [Ama95, Far94]).
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Our terminology is as follows. We write Z for the integers, N0 for the non-
negative integers and R for the real field. Throughout this paper, Banach spaces
X are real or complex and their norm is denoted by ‖·‖. L(X ) is the Banach space
of endomorphisms T on X with ‖T‖ := sup‖x‖=1 ‖Tx‖ < ∞, GL(X ) the group of
toplinear isomorphisms on X , IX the identity map on X and X ′ the dual space of X ,
i.e. the linear space of linear bounded functionals on X ; 〈x, x′〉 stands for the duality
pairing of x ∈ X , x′ ∈ X ′ and the dual operator T ′ ∈ L(X ′) of T ∈ L(X ) is given by
〈x, T ′x′〉 = 〈Tx, x′〉 for x ∈ X , x′ ∈ X ′. After all, we write B̄r := {x ∈ X : ‖x‖ ≤ r}
for the closed ball around 0 ∈ X with radius r > 0; Ω◦ denotes the interior and ∂Ω
the boundary of a set Ω ⊆ X .

We also introduce some typical notations from the calculus on measure chains
(cf. [Hil90, BP01]). In all the subsequent considerations we deal with a measure
chain (T,�, µ), i.e. a conditionally complete totally ordered set (T,�) (see [Hil90,
Axiom 2]) with the growth calibration µ : T × T → R (see [Hil90, Axiom 3]), such
that µ(T, τ) ⊆ R, τ ∈ T, is unbounded above. For readers not familiar with these
abstract concepts, the most intuitive and relevant examples of measure chains are
time scales, where T is a canonically ordered closed subset of the reals R and µ is
given by µ(t, s) = t− s. Continuing, σ : T→ T, σ(t) := inf {s ∈ T : t ≺ s} defines
the forward jump operator and the graininess is µ∗ : T → R, µ∗(t) := µ(σ(t), t).
For τ, t ∈ T we abbreviate T+

τ := {s ∈ T : τ � s}, [τ, t]T := {s ∈ T : τ � s � t},
and (half-) open intervals are defined analogously.

Crd(T,X ) denotes the linear space of rd-continuous functions from T to X
and C+

rdR(T,R) := {c ∈ Crd(T,R) : 1 + µ∗(t)c(t) > 0 for t ∈ T} forms the so-called
positively regressive group (cf. [Hil90, Section 7]). Growth rates are functions
a ∈ C+

rdR(T,R) such that inft∈T µ
∗(t)a(t) > −1 and supt∈T µ

∗(t)a(t) < ∞ holds.
Furthermore, we define the relation

a C b :⇔ 0 < inf
t∈T

(b(t)− a(t)) .

A mapping φ : T → X is said to be differentiable (in a point t0 ∈ T), if there
exists a unique derivative φ∆(t0) ∈ X , such that for any ε > 0 the estimate∥∥φ(σ(t0))− φ(t)− µ(σ(t0), t)φ∆(t0)

∥∥ ≤ ε |µ(σ(t0), t)| for t ∈ U

holds in a T-neighborhood U of t0 (see [Hil90, Section 2.4]). The Cauchy integral of
φ is denoted as

∫ t
τ
φ(s) ∆s for τ, t ∈ T, provided it exists (cf. [Hil90, Section 4.3]).

Let T ∈ R be given. A function σT : T→ T is called translation, if the identity
µ(σT (t), t) ≡ T is valid on T. In case, for given T > 0 there exists a translation
σT , then the measure chain (T,�, µ) is denoted as T -periodic and this will be a
standard assumption from now on throughout the present paper. Moreover, we
say a mapping φ : T → X is T -periodic, if φ(σT (t)) ≡ φ(t) holds on T. Thus
the graininess µ∗ is T -periodic in our setting (cf. [Pöt02, p. 3, Korollar 1.1.11(e)]).
Using the differentiation concept for measure chain-valued mappings introduced in
[Pöt02, p. 6, Definition 1.1.14(a)], one can show that σT : T → T is differentiable
with σ∆

T (t) ≡ 1 on T (cf. [Pöt02, p. 6, Korollar 1.1.16]).

Example 1.1. On time scales, translations are of the form σT (t) = t+T . The time
scale R is T -periodic for any real T > 0, and N0 or Z are T -periodic for arbitrary
integers T > 0. Less trivial examples of 1-periodic time scales are sets of the form
T =

⋃
k∈N0

{k + s ∈ R : s ∈ S}, where S ⊆ [0, 1] is closed, nonempty.
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Let Ω be a non-empty, open and connected subset of X . For a non-autonomous
dynamic equation (1.1) with a right-hand side f : T×Ω→ X , we say that a function
ν : I → Ω is a solution of (1.1), if ν∆(t) ∈ X exists and the identity ν∆(t) ≡
f(t, ν(t)) holds on a subset I ⊆ T. For right-hand sides f guaranteeing existence
and uniqueness of solutions in forward time (cf., e.g., [Pöt02, p. 38, Satz 1.2.17(a)]),
as well as their continuous dependence on the initial conditions, let ϕ(t; τ, ξ) denote
the general solution of (1.1), i.e. ϕ(·; τ, ξ) solves (1.1) on T+

τ and satisfies the initial
condition ϕ(τ ; τ, ξ) = ξ for τ ∈ T, ξ ∈ Ω. Finally, we say (1.1), or its right-hand
side, is T -periodic, if f(σT (t), x) ≡ f(t, x) is satisfied on T × Ω. In this situation,
it is easy to see by direct computation using the chain rule (cf. [Pöt02, p. 13,
Satz 1.1.25]) that, if ν is a solution of equation (1.1), then for any integer k ∈ N0,
ν ◦ σkT is also a solution. This observation, in conjunction with the uniqueness of
solutions of initial value problems, implies the identities

ϕ(σT (t);σT (τ), ξ) = ϕ(t; τ, ξ), ϕ(σT (t); τ, ξ) = ϕ(t; τ, ϕ(σT (τ); τ, ξ))(1.2)

for τ, t ∈ T, τ � t, ξ ∈ Ω. Before proceeding, we present an elementary result which
is valid for general periodic systems.

Lemma 1.2. Let τ ∈ T and assume equation (1.1) is T -periodic. Then a solution
ν : T+

τ → Ω of (1.1) is T -periodic, if and only if a t0 ∈ T+
τ exists for which

(1.3) ν(σT (t0)) = ν(t0).

Proof. If ν is a T -periodic solution, then (1.3) obviously holds true. Conversely,
the function ν ◦ σT : T+

τ → Ω is also a solution of (1.1), because the periodicity of
f implies

(ν ◦ σT )∆(t) ≡ ν∆(σT (t))
(1.1)
≡ f

(
σT (t), ν(σT (t))

)
≡ f

(
t, ν(σT (t))

)
on T+

τ

by the chain rule (cf. [Pöt02, p. 13, Satz 1.1.25]). Due to (1.3), we have ν ◦σT (t0) =
ν(t0), and the uniqueness of solutions yields ν ◦ σT = ν, i.e. ν is T -periodic. �

From now on keep a reference instant τ0 ∈ T arbitrarily fixed throughout the
paper and assume that ϕ(·; τ0, ξ) exists (at least) on [τ0, σT (τ0)]T for any ξ ∈ Ω.
Then we denote φT : Ω→ Ω,

φT (ξ) := ϕ(σT (τ0); τ0, ξ)

as time-T -map of (1.1). Because of our assumptions, φT is continuous.

Lemma 1.3 (time-T -map). Assume that equation (1.1) is T -periodic. Then (1.1)
possesses a T -periodic solution, if and only if φT has a fixed point.

Proof. (⇒) Let ν be a T -periodic solution of (1.1). In case ν is defined only on T+
τ

for some τ ∈ T, we extend ν T -periodically on T, and due to the periodicity of f ,
this extension is a solution of (1.1) on T. Now we pick a t0 ∈ T, τ0 � t0, choose
k ∈ N0 so large that t0 � σkT (τ0) and obtain for ξ0 := ϕ(σkT (τ0); t0, ν(t0)) the
fixed point relation

φT (ξ0) = φT
(
ϕ(σkT (τ0); t0, ν(t0))

)
= ϕ

(
σ(k+1)T (τ0);σkT (τ0), ϕ(σkT (τ0); t0, ν(t0))

)
(1.2)
= ϕ(σ(k+1)T (τ0); t0, ν(t0)) = ϕ(σkT (τ0); t0, ν(t0)) = ξ0.

(⇐) If ξ ∈ Ω is a fixed point of φT , then the relation (1.3) is satisfied with
t0 = τ0, ν = ϕ(·; τ0, ξ) and Lemma 1.2 implies the assertion. �
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Theorem 1.4. Let X be finite-dimensional and equation (1.1) be T -periodic. As-
sume that a non-empty, convex, compact subset Ω0 ⊆ Ω exists, for which ξ ∈ Ω0

implies that ϕ(·; τ0, ξ) is defined on [τ0, σT (τ0)]T at least and ϕ(σT (τ0); τ0, ξ) ∈ Ω0.
Then (1.1) possesses a T -periodic solution.

Proof. The assumptions imply that the time-T -map φT of (1.1) is continuous and
maps Ω0 into itself. Since Ω0 and φT satisfy the conditions of Brouwer’s Fixed
Point Theorem (cf., e.g., [Zei93, p. 51, Proposition 2.6]), φT has a fixed point in Ω0

and the assertion follows from Lemma 1.3. �

We illustrate Theorem 1.4 using the following example, which is inspired by the
one-dimensional ODE discussed in [Far94, pp. 154–156, Example 4.1.1].

Example 1.5. Consider an interaction between d ≥ 1, e.g., insect populations.
The life span of each population is given by the interval [k, k + h], k ∈ N0 and
h ∈ (0, 1), which can be interpreted as summer period. Suppose that just before the
populations die out, eggs are laid at time t = k + h and hatched after the winter
period (k + h, k + 1) at time t = k + 1. Hence, we are interested in the time scale

T =
⋃
k∈N0

[k, k + h] .

During the summer, we describe the growth behavior by a generalized logistic model,
while in winter, no interaction between species occurs and the number of eggs re-
mains constant. Precisely, we arrive at a dynamic equation (1.1) with right-hand
side f = (f1, . . . , fd) : T× (0,∞)d → Rd,

(1.4) fi(t, x) :=

{
ri(t)xi

Ki(t)−xi

Ki(t)+
Pd

j=1 cij(t)xj
for t ∈ [k, k + h)

0 for t = k + h
,

with continuous real-valued mappings ri, Ki, cij satisfying 0 < ri(t), 0 ≤ cij(t) for
all t ∈ [0, h), i, j ∈ {1, . . . , d}, and

(1.5) 0 < inf
t∈[0,h)

Ki(t) < sup
t∈[0,h)

Ki(t) for i ∈ {1, . . . , d} .

To describe seasonal changes, say, we moreover assume that the intrinsic growth
rates ri, the carrying capacities Ki and the coupling parameters cij, describing the
interaction between species, are 1-periodic. We are going to show that under these
assumptions, (1.1) has a non-constant 1-periodic solution in the positive orthant
of Rd. Thereto, we abbreviate K−i := inft∈[0,h)Ki(t), K+

i := supt∈[0,h)Ki(t), de-
fine the box Ω0 :=

∏d
i=1

[
K−i ,K

+
i

]
and apply the induction principle (cf. [Hil90,

Theorem 1.4(c)]) to prove that the statement

A(t) : ϕ(s; 0, ξ) ∈ Ω0 for s ∈ [0, t]T
holds true for arbitrary t ∈ T and ξ ∈ Ω0. We write ν(t) := ϕ(t; 0, ξ):
(I) Evidently, A(0) is valid.
(II) Let t ∈ T be right-scattered, i.e. t = k + h for some k ∈ N0. Then (1.4)
immediately implies ν(σ(t)) = ν(t) ∈ Ω0 due to the induction hypothesis.
(III) Let t ∈ T be right-dense, i.e. t ∈ [k, k + h) for some k ∈ N0, and assume
that A(t) holds. In case ν(t) ∈ Ω◦0, the continuity of ν implies that there exists
a T-neighborhood U of t with ν(τ) ∈ Ω0 for all τ ∈ U . In case ν(t) ∈ ∂Ω0,
there exists an i ∈ {1, . . . , d} with νi(t) ∈

{
K−i ,K

+
i

}
. Now νi(t) = K+

i implies
νi(t) ≥ Ki(t), then (1.4) yields ν∆

i (t) ≤ 0 and we have νi(τ) ≤ K+
i for τ in a
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T-neighborhood U of t. Analogously, one obtains νi(τ) ≥ K−i from νi(t) = K−i and
we get ϕ(τ ; 0, ξ) ∈ Ω0 for τ ∈ U .
(IV ) Let t ∈ T be left-dense, i.e. t ∈ (k, k + h] for some k ∈ N0, and assume that
A(τ) holds for all τ ∈ [0, t)T. Then the continuity of ν and the closedness of Ω0

imply ν(t) ∈ Ω0, i.e. A(t) holds.
Since Ω0 is convex and compact, our Theorem 1.4 implies that the dynamic

equation (1.1) (with right-hand side given by (1.4)) has a 1-periodic solution ν∗

such that K−i ≤ ν∗i (t) ≤ K+
i for all t ∈ T, i ∈ {1, . . . , d}. Here the relation (1.5)

guarantees that ν∗ is non-constant.

2. LINEAR DYNAMIC EQUATIONS

Now we are interested in linear homogeneous dynamic equations of the form

(2.1) x∆ = A(t)x,

where the mapping A ∈ Crd(T,L(X )) is assumed to be T -periodic. We denote its
transition operator by ΦA(t, τ) ∈ L(X ), τ � t, i.e. ΦA(·, τ) is the solution of the
initial value problem X∆ = A(t)X, X(τ) = IX in L(X ). From (1.2) we readily get

ΦA(σT (t), σT (τ)) = ΦA(t, τ), Φ(σT (t), τ) = ΦA(t, τ)Φ(σT (τ), τ)(2.2)

for τ, t ∈ T, τ � t. In the present situation, the time-T -map of (2.1) is linear and
given by ΦT := ΦA(σT (τ0), τ0) ∈ L(X ). This operator is called the monodromy
operator of (2.1). For a regressive equation (2.1), i.e. if there exists a τ ∈ T with
IX + µ∗(t)A(t) ∈ GL(X ) for t ∈ [τ, σT (τ)]T, one has ΦA(t, τ) ∈ GL(X ) and (2.2) is
valid for all τ, t ∈ T. Additionally, in this situation [Hil90, Theorem 6.2(ii)] yields

ΦA(σT (t), t) = ΦA(σT (t), σT (τ0))ΦTΦA(τ0, t)
(2.2)
= ΦA(t, τ0)ΦTΦA(τ0, t)

and therefore the spectrum of ΦT does only depend on the system (2.1) and not on
the particular choice of τ0 ∈ T. We call the eigenvalues (the elements of the point
spectrum) of the monodromy operator its characteristic multipliers.

Theorem 2.1 (characteristic multipliers). Consider the linear system (2.1).

(a) If λ is a characteristic multiplier, then there exists a non-trivial solution
ν : T+

τ0 → X of (2.1) satisfying ν(σT (t)) = λν(t) for τ0 � t.
(b) Conversely, if for a non-trivial solution ν of (2.1) one has the relation

(2.3) ν(σT (τ0)) = λν(τ0),

then λ is a characteristic multiplier with corresponding eigenvector ν(τ0) ∈ X .

Proof. (a) Let λ be a characteristic multiplier. Then there exists a x0 6= 0 such that
ΦTx0 = λx0 and the solution ν : T+

τ0 → X , ν(t) := ΦA(t, τ0)x0 of (2.1) satisfies

ν(σT (t)) = ΦA(σT (t), τ0)x0 = ΦA(σT (t), σT (τ0))ΦTx0

(2.2)
= λΦA(t, τ0)x0 = λν(t) for τ0 � t.

(b) Assume the relation (2.3) holds for some non-zero solution ν of (2.1). Since
ν(σT (τ0)) = ΦT ν(τ0), this means [ΦT − λIX ] ν(τ0) = 0 and consequently the point
spectrum of the monodromy operator contains λ. �
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Now we consider linear inhomogeneous dynamic equations of the form

(2.4) x∆ = A(t)x+ h(t),

and the forcing term h : T → X is assumed to be T -periodic and piecewise rd-
continuous (cf. [Pöt02, p. 16]). For ODEs the next result has its origins in [Mas50].

Theorem 2.2 (linear equations). Consider the linear inhomogeneous system (2.4).
(a) If it has a T -periodic solution, then there exists a bounded solution of (2.4).
(b) Conversely, if (2.4) has a bounded solution and if ΦT is a compact operator,

then there exists a T -periodic solution of (2.4).

Proof. Since the assertion (a) is trivial, we only have to verify (b). From Lemma 1.3
we know that (2.4) has a T -periodic solution if and only if there exists a ξ ∈ X
such that

(2.5) ξ = φT (ξ) = ΦT ξ + η

with η :=
∫ σT (τ0)

τ0
ΦA(σT (τ0), σ(s))h(s) ∆s, where we have used the variation of

constants formula (cf. [Pöt02, p. 56, Satz 1.3.11]). Hence it suffices to show that
any solution of (2.4) is unbounded, if one cannot solve (2.5). From a theorem of
Fredholm (cf., e.g., [Zei93, pp. 372–373, Section 8.5]), we obtain that (2.5) is not
solvable, if and only if there exists a x′ ∈ X ′ such that

(2.6) x′ = Φ′Tx
′ and 〈η, x′〉 6= 0.

For an arbitrary solution ν of (2.4) satisfying ν(τ0) = ξ we have

ν(t) = ΦA(t, τ0)ξ +
∫ t

τ0

ΦA(t, σ(s))h(s) ∆s for τ0 � t

and therefore ν(σT (τ0)) = ΦT ξ + η, as well as

ν∆(σkT (t))
(2.4)
= A(σkT (t))ν(σkT (t))+h(σkT (t)) = A(t)ν(σkT (t))+h(t) for k ∈ N0.

Due to the uniqueness of solutions we obtain that νk(t) := ν(σkT (t)) is a solu-
tion of the initial value problem (2.4), x(τ0) = ν(σkT (τ0)). Consequently, (2.5)
gives us νk(σT (τ0)) = ν(σ(k+1)T (τ0)) = ΦT ν(σkT (τ0)) + η and this, in turn, yields
νk(σT (τ0)) = ΦkT ξ +

∑k−1
j=0 ΦjT η by mathematical induction. Using (2.6), we get

〈νk(σT (τ0)), x′〉 =
〈
ξ, [Φ′T ]k x′

〉
+
k−1∑
j=0

〈
η, [Φ′T ]j x′

〉
for k ∈ N0

and because of 〈η, x′〉 6= 0 we have

lim
k→∞

〈ν(σkT (τ0)), x′〉 = lim
k→∞

〈νk(σT (τ0)), x′〉 =∞.

Thus ν is unbounded. �

We close this section with a result about exponentially dichotomous linear dy-
namic equations. We say (2.1) possesses an exponential dichotomy, if there exists
an invariant projector P : T → L(X ) (cf. [Pöt01, Proposition 2.1]) such that the
dichotomy estimates

‖ΦA(t, s)P (s)‖ ≤ K1ea(t, s),
∥∥Φ̄A(s, t) [IX − P (t)]

∥∥ ≤ K2eb(s, t) for s � t
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hold, with reals K1,K2 ≥ 1 and growth rates a, b ∈ C+
rdR(T,R), a C 0 C b. Here

ea(t, s), s, t ∈ T, denotes the real exponential function on T (cf. [Hil90, Section 7])
and Φ̄A(t, s) stands for the extended transition operator of (2.1) (cf. [Pöt01]).

Corollary 2.3. Assume that (2.1) possesses an exponential dichotomy and that
ΦT is compact. Then (2.4) has a T -periodic solution, which is unique on measure
chains unbounded above and below.

Proof. Since (2.1) has an exponential dichotomy, we obtain from [Pöt02, p. 103,
Satz 2.2.4(a)] that there exists a bounded solution of (2.4). Due to Theorem 2.2(b)
this solution is T -periodic. Moreover, [Pöt02, p. 106, Satz 2.2.7] guarantees the
uniqueness on measure chains unbounded above and below. �

3. NON-LINEAR DYNAMIC EQUATIONS

In this section we turn our interest to non-linear dynamic equations of the form

(3.1) x∆ = A(t)x+ g(t, x)

with rd-continuous and T -periodic mappings A : T → L(X ), g : T × X → X .
Assume that the forward solutions of (3.1) are uniquely determined by the initial
conditions and let ϕ denote the general solution of (3.1).

Theorem 3.1 (semi-linear equations). Suppose that IX + µ∗(t)A(t) 6= 0 for all
t ∈ [τ0, σT (τ0)]T, define a(t) := limh↘µ∗(t)

‖IX+hA(t)‖−1
h and we assume that:

(i) The spectrum of ΦT does not contain 1,
(ii) there exists an L ≥ 0 such that

‖g(t, x)− g(t, x̄)‖ ≤ L ‖x− x̄‖ for t ∈ [τ0, σT (τ0)]T , x, x̄ ∈ X

and
∥∥[IX − ΦT ]−1∥∥ [ea+L(σT (τ0), τ0)− ea(σT (τ0), τ0)] < 1.

Then there exists exactly one T -periodic solution of (3.1).

Proof. Because of the variation of constants formula (cf. [Pöt02, p. 56, Satz 1.3.11]),
the time-T -map of (3.1) is given by φT (ξ) = ΦT ξ + F (ξ) with F : X → X ,

F (ξ) :=
∫ σT (τ0)

τ0

ΦA(σT (τ0), σ(s))g(s, ϕ(s; τ0, ξ)) ∆s.

Using the estimates ‖ΦA(t, s)‖ ≤ ea(t, s) for s � t (cf. [Pöt02, p. 69, Satz 1.2.36(a)]),
hypothesis (ii) and [Pöt02, p. 138, Lemma 3.2.5(b)], one obtains∥∥F (ξ)− F (ξ̄)

∥∥ ≤ [ea+L(σT (τ0), τ0)− ea(σT (τ0), τ0)]
∥∥ξ − ξ̄∥∥ for ξ, ξ̄ ∈ X .

Thus our assumptions imply that the operator [IX − ΦT ]−1
F is a contraction and

consequently has a unique fixed point ξ∗ ∈ X due to Banach’s Fixed Point Theorem.
Since ξ∗ is also a fixed point of φT , the assertion follows from Lemma 1.3. �

For ODEs the next result can be found in [Ama95, pp. 327–328, Theorem (22.1)].

Theorem 3.2 (asymptotically linear equations). Let X be finite-dimensional and
we assume that:

(i) 1 is not a characteristic multiplier,
(ii) for all ε > 0 there exists an R > 0 satisfying

(3.2) ‖g(t, x)‖ ≤ ε ‖x‖ for t ∈ [τ0, σT (τ0)]T , ‖x‖ ≥ R.
Then there exists a T -periodic solution of (3.1).
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Proof. We subdivide the proof in two steps:
(I) Due to the periodicity of A we know α := supτ0�s�t�σT (τ0) ‖ΦA(t, s)‖ < ∞

and for any ε > 0 one obtains from (3.2) the existence of a C(ε) > 0 such that

‖g(t, x)‖ ≤ C(ε) + ε ‖x‖ for t ∈ [τ0, σT (τ0)]T , x ∈ X .
Let ξ ∈ X be arbitrary. The variation of constants formula (cf. [Pöt02, p. 56,
Satz 1.3.11]) implies that the solution ϕ(·; τ0, ξ) of (3.1) satisfies

(3.3) ϕ(t; τ0, ξ) = ΦA(t, τ0)ξ +
∫ t

τ0

ΦA(t, σ(s))g(s, ϕ(s; τ0, ξ)) ∆s for τ0 � t,

together with the above estimates this yields

‖ϕ(t; τ0, ξ)‖ ≤ α ‖ξ‖+ αC(ε)T + αε

∫ t

τ0

‖ϕ(s; τ0, ξ)‖ ∆s for t ∈ [τ0, σT (τ0)]T

and Gronwall’s Lemma (cf., e.g., [Pöt02, p. 66, Korollar 1.3.31]) gives us

‖ϕ(t; τ0, ξ)‖ ≤ C̄(ε) + αeαε(σT (τ0), τ0) ‖ξ‖
with C̄(ε) := αeαε(σT (τ0), τ0)TC(ε). Additionally, we get

‖ϕ(t; τ0, ξ)− ΦA(t, τ0)ξ‖
(3.3)

≤ α

∫ t

τ0

(C(ε) + ε ‖ϕ(s; τ0, ξ)‖) ∆s

≤ αTC(ε) + αεT C̄(ε) + αεTeαε(σT (τ0), τ0) ‖ξ‖
and therefore

(3.4) ‖φT (ξ)− ΦA(t, τ0)ξ‖ ≤ αTC(ε) + αεT C̄(ε) + αεTeαε(σT (τ0), τ0) ‖ξ‖ .
(II) Since the space X is finite-dimensional, the spectrum of ΦT consists of

characteristic multipliers. Thus IX − ΦT ∈ GL(X ) and F : X → X ,

F (ξ) := [IX − ΦT ]−1 (φT (ξ)− ΦT ξ)

defines a continuous mapping. From the inequality (3.4) we see that there exists a
ρ > 0 with ‖F (ξ)‖ ≤ ρ+ 1

2 ‖ξ‖ for ξ ∈ X , and consequently f maps the ball B̄2ρ into
itself. Now Brouwer’s Fixed Point Theorem (cf., e.g., [Zei93, p. 51, Proposition 2.6])
implies the existence of a point ξ∗ ∈ B̄2ρ satisfying ξ∗ = F (ξ∗). This relation is
equivalent to ξ∗ = φT (ξ∗) and Lemma 1.3 yields the assertion. �
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