Delay Equations on Measure Chains: Basics and Linearized Stability

CHRISTIAN PÖTZSCHE¹

Department of Mathematics, University of Augsburg D-86135 Augsburg, Germany E-mail: poetzsche@math.uni-augsburg.de

Abstract We introduce the notion of a dynamic delay equation, which includes differential and difference equations with possibly time-dependent backward delays. After proving a basic global existence and uniqueness theorem for appropriate initial value problems, we derive a criterion for the asymptotic stability of such equations in case of bounded delays.

Keywords Dynamic delay equation, Stability, Time scale, Measure chain

AMS Subject Classification 34K05, 34D20, 39A12

1 Introduction and Preliminaries

In this paper we briefly introduce dynamic equations on measure chains (or time scales), where time-dependent backward delays are present. Our approach provides a framework sufficiently flexible to include ordinary differential and difference equations without delays $(\dot{x}(t) = F(t, x(t)) \text{ for } t \in \mathbb{R}$ and $\Delta x(t) = F(t, x(t))$ for $t \in \mathbb{Z}$, resp.), equations with constant delays $(\dot{x}(t) = F(t, x(t), x(t - r)) \text{ for } t \in \mathbb{R}, r > 0$, and $\Delta x(t) = F(t, x(t), x(t - r))$ for $t, r \in \mathbb{Z}, r > 0$, resp.), as well as equations with proportional delays, like, e.g., the pantograph equation $\dot{x}(t) = A(t)x(t) + B(t)x(qt), q \in (0, 1)$.

We prove an existence and uniqueness theorem for initial value problems of such equations under global Lipschitz conditions, which basically extends [Hil90, Section 5], who considers equations without delays. Section 3 contains sufficient conditions for the exponential decay of solutions for semi-linear equations and bounded delays. On this occasion, the delay term is interpreted as a perturbation of a linear delay-free dynamic equation, since we avoid the use of a general variation of constants formula for linear delay equations.

From now on, \mathbb{Z} stands for the integers, \mathbb{R} for the reals and \mathbb{R}_+ for the nonnegative real numbers. Throughout this paper, Banach spaces \mathcal{X} are all

¹Research supported by the "Graduiertenkolleg: Nichtlineare Probleme in Analysis, Geometrie und Physik" (GRK 283) financed by the DFG and the State of Bavaria.

real or complex and their norm is denoted by $\|\cdot\|$. The closed ball in \mathcal{X} with center 0 and radius r > 0 is given by $\overline{B}_r := \{x \in \mathcal{X} : \|x\| \leq r\}$. If I is a topological space, then $\mathcal{C}(I, \mathcal{X})$ are the continuous functions between I and \mathcal{X} . Finally, we write $D_{(2,3)}f$ for the partial Fréchet derivative of a mapping $f : \mathbb{T} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ w.r.t. the variables in $\mathcal{X} \times \mathcal{X}$, provided it exists.

We also sketch the basic terminology from the calculus on measure chains (cf. [Hil90, BP01]). In all the subsequent considerations we deal with a *measure chain* (\mathbb{T}, \leq, μ) , i.e. a conditionally complete totally ordered set (\mathbb{T}, \leq) (see [Hil90, Axiom 2]) with growth calibration $\mu : \mathbb{T} \times \mathbb{T} \to \mathbb{R}$ (see [Hil90, Axiom 3]). The most intuitive and relevant examples of measure chains are *time scales*, where \mathbb{T} is a canonically ordered closed subset of \mathbb{R} and μ is given by $\mu(t,s) = t - s$. Continuing, $\sigma : \mathbb{T} \to \mathbb{T}$, $\sigma(t) := \inf\{s \in \mathbb{T} : t \prec s\}$ defines the *forward jump operator* and the *graininess* $\mu^* : \mathbb{T} \to \mathbb{R}$ is defined by $\mu^*(t) := \mu(\sigma(t), t)$. If \mathbb{T} has a left-scattered maximum m, we set $\mathbb{T}^{\kappa} := \mathbb{T} \setminus \{m\}$ and $\mathbb{T}^{\kappa} := \mathbb{T}$ otherwise. For $\tau, t \in \mathbb{T}$ we abbreviate $\mathbb{T}^+_{\tau} := \{s \in \mathbb{T} : \tau \preceq s\}$, $\mathbb{T}^-_{\tau} := \{s \in \mathbb{T}, s \preceq \tau\}$ and $[\tau, t]_{\mathbb{T}} := \{s \in \mathbb{T} : \tau \preceq s \preceq t\}$. Any other notation concerning measure chains is taken from [Hil90].

2 Dynamic Delay Equations

Let $\theta : \mathbb{T}^{\kappa} \to \mathbb{T}$ be a nondecreasing function satisfying $\theta(t) \leq t$ for all $t \in \mathbb{T}^{\kappa}$. Then we denote θ as *delay function* and say an equation of the form

$$x^{\Delta}(t) = F(t, x(t), x(\theta(t)))$$
(1)_F

is a dynamic delay equation with right-hand side $F : \mathbb{T}^{\kappa} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X}$. With given $\tau \in \mathbb{T}$, we abbreviate $\mathcal{C}_{\tau}(\theta) := \mathcal{C}([\theta(\tau), \tau]_{\mathbb{T}}, \mathcal{X})$. For $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, a continuous function $\nu : I \to \mathcal{X}$ is said to solve the *initial value problem* (IVP)

$$x^{\Delta}(t) = F(t, x(t), x(\theta(t))), \qquad (\tau, \phi_{\tau}), \qquad (2)$$

if I is a T-interval with $[\theta(\tau), \tau]_{\mathbb{T}} \subseteq I$, $\nu(t) = \phi_{\tau}(t)$ for all $t \in [\theta(\tau), \tau]_{\mathbb{T}}$ and $\nu^{\Delta}(t) = F(t, \nu(t), \nu(\theta(t)))$ for $t \in I$, $\tau \leq t$ holds, where $\nu^{\Delta}(\tau) \in \mathcal{X}$ is understood as right-sided derivative of ν in case of a right-dense $\tau \in \mathbb{T}$. Any solution satisfying the IVP (2) will be denoted by $\varphi(\cdot; \tau, \phi_{\tau})$.

A tool solely important for the proof of Theorem 2.4 is given by means of the mapping F^{τ} : $\mathbb{T}_{\tau}^{-} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X}$, which is defined for a fixed $\tau \in \mathbb{T}^{\kappa}$ by

$$F^{\tau]}(t,x,y) := \begin{cases} F(t,x,y) & \text{for } t \prec \tau, (x,y) \in \mathcal{X} \times \mathcal{X} \\ \lim_{\substack{(s,\xi,\eta) \to (\tau,x,y) \\ s \prec \tau}} F(s,\xi,\eta) & \text{for } t = \tau, (x,y) \in \mathcal{X} \times \mathcal{X} \end{cases}.$$

Lemma 2.1. Suppose $\theta : \mathbb{T}^{\kappa} \to \mathbb{T}$ is a continuous delay function, let I be a \mathbb{T} -interval, $\tau, r \in I$ with $\tau \preceq r$ and define $I_{\tau} := [\theta(\tau), \tau]_{\mathbb{T}} \cup I$. Then a function $\nu : I_{\tau} \to \mathcal{X}$ is a (unique) solution of the IVP (2), if and only if

- (i) $\nu_1 := \nu|_{\mathbb{T}^r_r \cap I_\tau}$ is a (unique) solution of the IVP $(1)_{F^{r]}}$, (τ, ϕ_τ) ,
- (ii) $\nu|_{\mathbb{T}^+_r \cap I_\tau}$ is a (unique) solution of the IVP $(1)_F$, $(r, \nu_1|_{[\theta(r), r]_T})$.

Proof. The proof is similar to [Hil90, Theorem 5.3] and omitted here. \Box

Lemma 2.2. Suppose $\theta : \mathbb{T}^{\kappa} \to \mathbb{T}$ is a continuous delay function and define $I := [a, b]_{\mathbb{T}}$ for $a, b \in \mathbb{T}$, $a \prec b$. Moreover, let $\ell : I \to \mathbb{R}_+$ be rd-continuous,

$$\int_{a}^{b} \ell(s) \,\Delta s < 1 \tag{3}$$

and assume the rd-continuous mapping $F : \mathbb{T}^{\kappa} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ satisfies

$$\|F(t,x,y) - F(t,\bar{x},\bar{y})\| \le \ell(t) \left\| \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix} \right\| \quad \text{for all } x, y, \bar{x}, \bar{y} \in \mathcal{X}$$
(4)

and $t \in I$. Then, for any $\tau \in I$ and any $\phi_{\tau} \in C_{\tau}(\theta)$, the IVP (2) possesses exactly one solution $\nu : [\theta(\tau), \tau]_{\mathbb{T}} \cup I \to \mathcal{X}$.

Proof. Let $\tau \in I$ and $\phi_{\tau} \in \mathbb{C}_{\tau}(\theta)$. We define the T-interval $I_{\tau} := I \cup [\theta(\tau), \tau]_{\mathbb{T}}$ and $\mathbb{C}(I_{\tau}, \mathcal{X})$ is complete w.r.t. the norm $\|\nu\|_{\mathbb{C}(I_{\tau}, \mathcal{X})} := \max_{t \in I_{\tau}} \|\nu(t)\|$. Now consider the operator $\mathcal{T}_{\tau} : \mathbb{C}(I_{\tau}, \mathcal{X}) \to \mathbb{C}(I_{\tau}, \mathcal{X}),$

$$\mathcal{T}_{\tau}(\nu)(t) := \begin{cases} \phi_{\tau}(t) & \text{for } \theta(\tau) \leq t \prec \tau \\ \phi_{\tau}(\tau) + \int_{\tau}^{t} F(s, \nu(s), \nu(\theta(s))) \Delta s & \text{for } \tau \leq t \end{cases}, \quad (5)$$

which is well-defined due to [Hil90, Theorem 4.4]. Then $\nu \in \mathcal{C}(I_{\tau}, \mathcal{X})$ is a fixed point of \mathcal{T}_{τ} , if and only if ν solves the IVP (2).

Because of [Hil90, Theorem 4.3(iii)], and for $\nu, \bar{\nu} \in \mathcal{C}(I_{\tau}, \mathcal{X})$, one obtains

$$\begin{aligned} \|\mathcal{T}_{\tau}(\nu)(t) - \mathcal{T}_{\tau}(\bar{\nu})(t)\| &\stackrel{(5)}{\leq} \int_{\tau}^{t} \left\| F\left(s,\nu(s),\nu(\theta(s))\right) - F\left(s,\bar{\nu}(s),\bar{\nu}(\theta(s))\right) \right\| \Delta s \\ &\stackrel{(4)}{\leq} \int_{\tau}^{t} \ell(s) \left\| \begin{pmatrix} \nu(s) - \bar{\nu}(s) \\ \nu(\theta(s)) - \bar{\nu}(\theta(s)) \end{pmatrix} \right\| \Delta s \\ &\leq \int_{a}^{b} \ell(s) \Delta s \left\| \nu - \bar{\nu} \right\|_{\mathcal{C}(I_{\tau},\mathcal{X})} \quad \text{for all } t \in I_{\tau}, \, \tau \leq t \end{aligned}$$

and by passing over to the least upper bound for $t \in I_{\tau}$, we get

$$\|\mathcal{T}_{\tau}(\nu) - \mathcal{T}_{\tau}(\bar{\nu})\|_{\mathcal{C}(I_{\tau},\mathcal{X})} \leq \int_{a}^{b} \ell(s) \,\Delta s \,\|\nu - \bar{\nu}\|_{\mathcal{C}(I_{\tau},\mathcal{X})} \,.$$

Using (3), we know that \mathcal{T}_{τ} is a contraction on $\mathcal{C}(I_{\tau}, \mathcal{X})$ and the contraction mapping principle yields that \mathcal{T}_{τ} possesses exactly one fixed point ν .

To show, e.g., the continuous dependence of solutions on the initial functions, we need a generalized version of Gronwall's inequality. **Lemma 2.3.** Let $\tau \in \mathbb{T}$, suppose $\theta : \mathbb{T}^{\kappa} \to \mathbb{T}$ is a continuous delay function, $C \geq 0$ and $b_1, b_2 : \mathbb{T}^+_{\tau} \to \mathbb{R}_+, y : \mathbb{T}^+_{\theta(\tau)} \to \mathbb{R}_+$ are rd-continuous. Then

$$y(t) \le C + \int_{\tau}^{t} b_1(s)y(s)\,\Delta s + \int_{\tau}^{t} b_2(s)y(\theta(s))\,\Delta s \quad \text{for all } t \in \mathbb{T}_{\tau}^+ \quad (6)$$

implies $y(t) \leq Ce_{b_1+b_2}(t,\tau)$ for all $t \in \mathbb{T}_{\tau}^+$ with $\tau \leq \theta(t)$.

Proof. The function $z : \mathbb{T}_{\tau}^+ \to \mathbb{R}$, $z(t) := \int_{\tau}^t b_1(s)y(s)\Delta s + \int_{\tau}^t b_2(s)y(\theta(s))\Delta s$ satisfies $z(\tau) = 0$ and is nondecreasing. Furthermore, we have

$$z^{\Delta}(t) \leq b_{1}(t)y(t) + b_{2}(t)y(\theta(t))$$

$$\stackrel{(6)}{\leq} C(b_{1}(t) + b_{2}(t)) + b_{1}(t)z(t) + b_{2}(t)z(\theta(t))$$

$$\leq C(b_{1}(t) + b_{2}(t)) + (b_{1}(t) + b_{2}(t))z(t) \text{ for all } t \in \mathbb{T}_{\tau}^{+}, \tau \leq \theta(t)$$

and [BP01, p. 255, Theorem 6.1] yields

$$z(t) \le C \int_{\tau}^{t} e_{b_1+b_2}(t,\sigma(s))(b_1(s)+b_2(s)) \,\Delta s = C \left[e_{b_1+b_2}(t,\tau) - 1 \right]$$

for all $t \in \mathbb{T}_{\tau}^+$, $\tau \preceq \theta(t)$. Hence the claim follows because of $y(t) \leq C + z(t)$. \Box

Theorem 2.4 (global existence and uniqueness). Suppose $\theta : \mathbb{T}^{\kappa} \to \mathbb{T}$ is a continuous delay function, $L_1, L_2 : \mathbb{T}^{\kappa} \to \mathbb{R}_+$ are rd-continuous, and that the rd-continuous mapping $F : \mathbb{T}^{\kappa} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ satisfies the condition:

. 1

For each $t \in \mathbb{T}^{\kappa}$ there exists a compact \mathbb{T} -neighborhood U_t of t such that

$$\|F^{t]}(s, x, y) - F^{t]}(s, \bar{x}, y)\| \le L_1(t) \|x - \bar{x}\|,$$

$$\|F^{t]}(s, x, y) - F^{t]}(s, x, \bar{y})\| \le L_2(t) \|y - \bar{y}\|$$
(7)

for all $s \in U_t^{\kappa}$, $x, \bar{x}, y, \bar{y} \in \mathcal{X}$ hold.

Then, for any $\tau \in \mathbb{T}^{\kappa}$ and $\phi_{\tau} \in \mathfrak{C}_{\tau}(\theta)$, the IVP (2) admits exactly one solution $\varphi(\cdot; \tau, \phi_{\tau}) : \mathbb{T}^{+}_{\theta(\tau)} \to \mathcal{X}$. Moreover, for $\phi_{\tau}, \bar{\phi}_{\tau} \in \mathfrak{C}_{\tau}(\theta)$ and $t \in \mathbb{T}^{+}_{\tau}$ we have

$$\begin{aligned} \left\|\varphi(t;\tau,\phi_{\tau})-\varphi(t;\tau,\bar{\phi}_{\tau})\right\| & (8) \\ \leq \begin{cases} e_{L_{1}+L_{2}}(t,\tau) \left\|\phi_{\tau}(\tau)-\bar{\phi}_{\tau}(\tau)\right\| & \text{for } \tau \leq \theta(t) \\ e_{L_{1}}(t,\tau) \left(1+\int_{\tau}^{t} L_{2}(s) \Delta s\right) \sup_{s \in [\theta(\tau),\tau]_{\mathbb{T}}} \left\|\phi_{\tau}(s)-\bar{\phi}_{\tau}(s)\right\| & \text{for } \theta(t) \leq \tau \end{aligned}$$

Proof. Let $\tau \in \mathbb{T}^{\kappa}$ and $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$ be given arbitrarily.

(I) To show the existence and uniqueness of solutions, we apply the induction principle (cf. [Hil90, Theorem 1.4(c)] for $r \in (\mathbb{T}^+_{\tau})^{\kappa}$ to the statement:

$$\mathcal{A}(r): \begin{cases} \text{The IVP} \\ x^{\Delta}(t) = F^{r]}(t, x(t), x(\theta(t))), \quad (\tau, \phi_{\tau}) \\ \text{possesses exactly one solution } \nu_{r}: [\theta(\tau), r]_{\mathbb{T}} \to \mathcal{X}. \end{cases}$$
(9)

(*i*): Obviously there exists a unique continuous mapping $\nu_{\tau} : [\theta(\tau), \tau]_{\mathbb{T}} \to \mathcal{X}$ satisfying $\nu_{\tau}(t) = \phi_{\tau}(t)$ for $t \in [\theta(\tau), \tau]_{\mathbb{T}}$ and $\nu_{\tau}^{\Delta}(t) = F^{\tau}(t, \nu_{\tau}(t), \nu_{\tau}(\theta(t)))$ for all $t \in \{\tau\}^{\kappa} = \emptyset$.

(*ii*): Let r be a right-scattered point. Using the induction hypothesis $\mathcal{A}(r)$, the IVP in (9) possesses exactly one solution $\nu_r : [\theta(\tau), r]_{\mathbb{T}} \to \mathcal{X}$. We define its continuous extension $\nu_{\sigma(r)} : [\theta(\tau), \sigma(r)]_{\mathbb{T}} \to \mathcal{X}$ as

$$\nu_{\sigma(r)}(t) := \begin{cases} \nu_r(t) & \text{for } t \in [\theta(\tau), r]_{\mathbb{T}} \\ \nu_r(r) + \mu^*(r) F(r, \nu_r(r), \nu_r(\theta(r))) & \text{for } t = \sigma(r) \end{cases}$$

which, by Lemma 2.1, is the unique solution of the above IVP, since the restriction on $[\theta(\tau), r]_{\mathbb{T}}$ is the unique solution of (9) and the restriction on $[\theta(r), \sigma(r)]_{\mathbb{T}}$ is the unique solution of $(1)_F$, $(r, \nu_r|_{[\theta(r), r]_{\mathbb{T}}})$ on $[\theta(r), \sigma(r)]_{\mathbb{T}}$.

(*iii*): Let r be right-dense. Due to the induction hypothesis $\mathcal{A}(r)$ we have a unique solution ν_r of (9). Let $[a_r, b_r]_{\mathbb{T}} \subseteq U_r$ be a compact \mathbb{T} -neighborhood of r, such that the function $\ell : \mathbb{T}^{\kappa} \to \mathbb{R}_+$, $\ell(t) := \max \{L_1(r), L_2(r)\}$ for all $t \in [a_r, b_r]_{\mathbb{T}}$ from Lemma 2.2 satisfies $\int_{a_r}^{b_r} \ell(s) \Delta s = \ell(r)\mu(b_r, a_r) < 1$. Now Lemma 2.2 guarantees that the IVP $(1)_{F^{s]}}$, $(r, \nu_r|_{[\theta(r), r]_{\mathbb{T}}})$ has exactly one solution $\nu : [\theta(r), s]_{\mathbb{T}} \to \mathcal{X}$ for any $s \in [a_r, b_r]_{\mathbb{T}}$. Because of Lemma 2.1, the function $\nu_s : [\theta(\tau), s]_{\mathbb{T}} \to \mathcal{X}$, defined by

$$\nu_s(t) := \begin{cases} \nu_r(t) & \text{for } t \in [\theta(\tau), r]_{\mathbb{T}} \\ \nu(t) & \text{for } t \in [r, s]_{\mathbb{T}} \end{cases}$$

is the unique solution of (9) for r = s. Hence, the statement $\mathcal{A}(s)$ holds for all $s \in [a_r, b_r]_{\mathbb{T}} \cap \mathbb{T}_r^+$.

(*iv*): Let *r* be left-dense and we choose a \mathbb{T} -interval $[a_r, b_r]_{\mathbb{T}}$ as in (iii). Then there exists a $s \in [a_r, b_r]_{\mathbb{T}}$, $s \prec r$. Using the induction hypothesis $\mathcal{A}(s)$, as well as Lemma 2.2, one shows existence and uniqueness of the solution $\nu_r : [\theta(\tau), r]_{\mathbb{T}} \to \mathcal{X}$ of (9) exactly as in step (iii). Since on every interval $[\theta(\tau), r]_{\mathbb{T}}, \tau \preceq r$, there exists exactly one solution ν_r , there is one on $\mathbb{T}^+_{\theta(\tau)}$.

(II) It remains to prove the estimate (8). Thereto, let $\phi_{\tau}, \bar{\phi}_{\tau} \in \mathcal{C}_{\tau}(\theta)$. The solution $\varphi(\cdot; \tau, \phi_{\tau})$ of $(1)_F$ satisfies the integral equation

$$\varphi(t;\tau,\phi_{\tau}) = \phi_{\tau}(\tau) + \int_{\tau}^{t} F(s,\varphi(s;\tau,\phi_{\tau}),\varphi(\theta(s);\tau,\phi_{\tau})) \Delta s \quad \text{for all } t \in \mathbb{T}_{\tau}^{+},$$

yielding the estimate

$$\begin{aligned} \left\|\varphi(t;\tau,\phi_{\tau})-\varphi(t;\tau,\bar{\phi}_{\tau})\right\| &\stackrel{(7)}{\leq} \left\|\phi_{\tau}(\tau)-\bar{\phi}_{\tau}(\tau)\right\| \\ &+ \int_{\tau}^{t} L_{1}(s) \left\|\varphi(s;\tau,\phi_{\tau})-\varphi(s;\tau,\bar{\phi}_{\tau})\right\| \Delta s \\ &+ \int_{\tau}^{t} L_{2}(s) \left\|\varphi(\theta(s);\tau,\phi_{\tau})-\varphi(\theta(s);\tau,\bar{\phi}_{\tau})\right\| \Delta s \end{aligned}$$

for all $t \in \mathbb{T}_{\tau}^+$, and with Lemma 2.3 we obtain

$$\left|\varphi(t;\tau,\phi_{\tau})-\varphi(t;\tau,\bar{\phi}_{\tau})\right\| \leq e_{L_{1}+L_{2}}(t,\tau)\left\|\phi_{\tau}(\tau)-\bar{\phi}_{\tau}(\tau)\right\|$$

for all $t \in \mathbb{T}_{\tau}^+$, $\tau \preceq \theta(t)$. On the other hand, in case of $\theta(t) \preceq \tau$, one has

$$\begin{aligned} \left\| \varphi(t;\tau,\phi_{\tau}) - \varphi(t;\tau,\phi_{\tau}) \right\| \\ &\leq \left\| \phi_{\tau}(\tau) - \bar{\phi}_{\tau}(\tau) \right\| + \int_{\tau}^{t} L_{2}(s) \left\| \phi_{\tau}(\theta(s)) - \bar{\phi}_{\tau}(\theta(s)) \right\| \Delta s \\ &+ \int_{\tau}^{t} L_{1}(s) \left\| \varphi(s;\tau,\phi_{\tau}) - \varphi(s;\tau,\bar{\phi}_{\tau}) \right\| \Delta s \\ &\leq \left\| \phi_{\tau}(\tau) - \bar{\phi}_{\tau}(\tau) \right\| + \int_{\tau}^{t} L_{2}(s) \Delta s \sup_{s \in [\theta(\tau),\tau]_{T}} \left\| \phi_{\tau}(s) - \bar{\phi}_{\tau}(s) \right\| \\ &+ \int_{\tau}^{t} L_{1}(s) \left\| \varphi(s;\tau,\phi_{\tau}) - \varphi(s;\tau,\bar{\phi}_{\tau}) \right\| \Delta s \end{aligned}$$

and Gronwall's Lemma (cf. [BP01, p. 256, Theorem 6.4]) implies the second inequality in (8). This concludes the present proof. $\hfill\square$

3 Linearized Asymptotic Stability

Throughout this section, let \mathbb{T} be unbounded above. Moreover, $\mathcal{C}^+_{rd}\mathcal{R}(\mathbb{T},\mathbb{R})$ is the set of rd-continuous functions $a:\mathbb{T}\to\mathbb{R}$ with $1+\mu^*(t)a(t)>0$ for $t\in\mathbb{T}$.

Lemma 3.1. Let $\tau \in \mathbb{T}$, $K \geq 1$, $a \in \mathcal{C}^+_{rd} \mathcal{R}(\mathbb{T}, \mathbb{R})$, suppose $\theta : \mathbb{T} \to \mathbb{T}$ is a continuous delay function, $A : \mathbb{T} \to \mathcal{L}(\mathcal{X})$ and $f : \mathbb{T} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ are rd-continuous. Consider the dynamic delay equation

$$x^{\Delta}(t) = A(t)x(t) + f\left(t, x(t), x(\theta(t))\right)$$
(10)_f

under the following assumptions:

(i) The transition operator of $x^{\Delta}(t) = A(t)x(t)$ satisfies

$$\|\Phi_A(t,s)\| \le Ke_a(t,s) \quad \text{for all } \tau \le s \le t, \tag{11}$$

(ii) $f(t,0,0) \equiv 0$ on \mathbb{T} , and there exist reals $L_1, L_2 \geq 0$ such that we have

$$\|f(t, x, y) - f(t, \bar{x}, y)\| \le L_1 \|x - \bar{x}\|, \|f(t, x, y) - f(t, x, \bar{y})\| \le L_2 \|y - \bar{y}\|$$
(12)

for all $t \in \mathbb{T}$, $x, \bar{x}, y, \bar{y} \in \mathcal{X}$.

Then the solution $\varphi(\cdot; \tau, \phi_{\tau})$ of $(10)_f$ satisfies

$$\|\varphi(t;\tau,\phi_{\tau})\| \le Ke_{\bar{a}}(t,\tau) \|\phi_{\tau}(\tau)\| \quad for \ all \ t \in \mathbb{T}_{\tau}^{+}, \ \tau \preceq \theta(t),$$
(13)

initial functions $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, and $\bar{a}(t) := a(t) + K (L_1 + L_2 e_a(\theta(t), t))$.

Proof. Let $\tau \in \mathbb{T}$. Due to our present assumptions, one can apply Theorem 2.4 to the dynamical delay equation $(10)_f$ and consequently all solutions $\varphi(\cdot; \tau, \phi_\tau)$ with $\phi_\tau \in \mathcal{C}_\tau(\theta)$ exist on $\mathbb{T}^+_{\theta(\tau)}$. Furthermore, the variation of constants formula (cf. [Pöt02, p. 56, Satz 1.3.11]) implies the identity

$$\varphi(t;\tau,\phi_{\tau}) = \Phi_A(t,\tau)\phi_{\tau}(\tau) + \int_{\tau}^t \Phi_A(t,\sigma(s))f(s,\varphi(s;\tau,\phi_{\tau}),\varphi(\theta(s);\tau,\phi_{\tau}))\,\Delta s$$

for all $t \in \mathbb{T}_{\tau}^+$, and from $f(t, 0, 0) \equiv 0$ we obtain

$$\begin{aligned} \|\varphi(t;\tau,\phi_{\tau})\| \stackrel{(11)}{\leq} Ke_{a}(t,\tau) \|\phi_{\tau}(\tau)\| \\ &+ K \int_{\tau}^{t} e_{a}(t,\sigma(s)) \|f(s,\varphi(s;\tau,\phi_{\tau}),\varphi(\theta(s);\tau,\phi_{\tau}))\| \Delta s \\ \stackrel{(12)}{\leq} Ke_{a}(t,\tau) \|\phi_{\tau}(\tau)\| + KL_{1} \int_{\tau}^{t} e_{a}(t,\sigma(s)) \|\varphi(s;\tau,\phi_{\tau})\| \Delta s \\ &+ KL_{2} \int_{\tau}^{t} e_{a}(t,\sigma(s)) \|\varphi(\theta(s);\tau,\phi_{\tau})\| \Delta s \quad \text{for all } t \in \mathbb{T}_{\tau}^{+}, \end{aligned}$$

which, in turn, yields (cf. [Hil90, Theorem 6.2])

$$\begin{aligned} \|\varphi(t;\tau,\phi_{\tau})\| e_{a}(\tau,t) &\leq K \|\phi_{\tau}(\tau)\| + \int_{\tau}^{t} \frac{K_{1}L}{1+\mu^{*}(s)a(s)} e_{a}(\tau,s) \|\varphi(s;\tau,\phi_{\tau})\| \Delta s \\ &+ KL_{2} \int_{\tau}^{t} e_{a}(\theta(s),\sigma(s)) e_{a}(\tau,\theta(s)) \|\varphi(\theta(s);\tau,\phi_{\tau})\| \Delta s \end{aligned}$$

for all $t \in \mathbb{T}_{\tau}^+$. Then Lemma 2.3 gives us the desired estimate (13).

Theorem 3.2. Let $\tau \in \mathbb{T}$, suppose $\theta : \mathbb{T} \to \mathbb{T}$ is a continuous delay function, $A : \mathbb{T} \to \mathcal{L}(\mathcal{X})$ is rd-continuous, $F : \mathbb{T} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ is rd-continuous and continuously differentiable w.r.t. the variables in $\mathcal{X} \times \mathcal{X}$. Consider the dynamic delay equation $(10)_f$ under the following assumptions:

- (i) The transition operator of $x^{\Delta}(t) = A(t)x(t)$ satisfies the estimate (11) with $\sup_{s \in \mathbb{T}_{\tau}^+} a(s) < 0$ and $\sup_{s \in \mathbb{T}_{\tau}^+} e_a(\theta(s), s) < \infty$,
- (ii) $f(t,0,0) \equiv 0$ on \mathbb{T} , and we have

$$\lim_{(x,y)\to(0,0)} D_{(2,3)}f(t,x,y) = 0 \quad uniformly \text{ in } t \in \mathbb{T}.$$
 (14)

Then there exists a $\rho > 0$ such that all solutions $\varphi(\cdot, \tau, \phi_{\tau})$ of $(10)_f$ with initial functions $\phi_{\tau} \in C_{\tau}(\theta)$, $\sup_{t \in [\theta(\tau), \tau]_T} \|\phi_{\tau}(t)\| \leq \rho$ exist uniquely on $\mathbb{T}^+_{\theta(\tau)}$ and decay to 0 exponentially.

Proof. Let $\tau \in \mathbb{T}$. Due to hypothesis (i) there exists a L > 0 such that

$$KL\left(1 + \sup_{s \in \mathbb{T}^+_{\tau}} e_a(\theta(s), s)\right) < \inf_{s \in \mathbb{T}^+_{\tau}} (-a(s))$$

$$\tag{15}$$

holds, and the limit relation (14) guarantees that there is a $\rho_1 > 0$ with $\|D_{(2,3)}f(t,x,y)\| \leq \frac{1}{2}L$ for all $t \in \mathbb{T}, x, y \in \bar{B}_{\rho_1}$. Now the mean value inequality implies $\|f(t,x,y) - f(t,\bar{x},\bar{y})\| \leq \frac{1}{2}L \|\binom{x-\bar{x}}{y-\bar{y}}\|$ for $t \in \mathbb{T}, x, \bar{x}, y, \bar{y} \in \bar{B}_{\rho_1}$. Using the radial retraction $R_{\rho}: \mathcal{X} \to \bar{B}_{\rho}$, defined by $R_{\rho}(x) := x$ for $\|x\| \leq \rho$ and $R_{\rho}(x) := \frac{\rho}{\|x\|} x$ for $\|x\| \geq \rho$, it is well-known that the modified mapping $\tilde{f}: \mathbb{T} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X}, \tilde{f}(t,x,y) := f(t, R_{\rho_1}(x), R_{\rho_1}(y))$ coincides with f on the set $\mathbb{T} \times \bar{B}_{\rho_1} \times \bar{B}_{\rho_1}$ and satisfies $\|\tilde{f}(t,x,y) - \tilde{f}(t,\bar{x},\bar{y})\| \leq L \|\binom{x-\bar{x}}{y-\bar{y}}\|$ for all $t \in \mathbb{T}, x, \bar{x}, y, \bar{y} \in \mathcal{X}$. Therefore, from Theorem 2.4 we get that all solutions $\tilde{\varphi}(\cdot; \tau, \phi_{\tau}), \phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, of (10) $_{\tilde{f}}$ exist and are unique on $\mathbb{T}^+_{\theta(\tau)}$. Furthermore, from Lemma 3.1 we have the inequality

$$\|\tilde{\varphi}(t;\tau,\phi_{\tau})\| \stackrel{(13)}{\leq} Ke_{\bar{a}}(t,\tau) \|\phi_{\tau}(\tau)\| \quad \text{for all } t \in \mathbb{T}_{\tau}^{+}, \tau \leq \theta(t)$$
(16)

with $\bar{a}(t) := a(t) + KL(1 + e_a(\theta(t), t))$ and (15) yields $\sup_{s \in \mathbb{T}_{\tau}^+} \bar{a}(s) < 0$. This implies $\|\tilde{\varphi}(t; \tau, \phi_{\tau})\| \leq K \|\phi_{\tau}(\tau)\| \leq \rho_1$ for all $t \in \mathbb{T}_{\tau}^+, \tau \leq \theta(t), \phi_{\tau} \in \bar{B}_{\frac{K}{\rho_1}}$, and from Theorem 2.4 we additionally get

$$\|\tilde{\varphi}(t;\tau,\phi_{\tau})\| \stackrel{(8)}{\leq} e_{L}(t,\tau) \left(1 + \int_{\tau}^{t} L(s) \Delta s\right) \sup_{s \in [\theta(\tau),\tau]_{\mathbb{T}}} \|\phi_{\tau}(s)\|$$

for all $t \in \mathbb{T}_{\tau}^+$, $\theta(t) \leq \tau$, which yields the existence of a $\rho_2 > 0$ such that $\|\tilde{\varphi}(t;\tau,\phi_{\tau})\| \leq \rho_1$ for all $t \in \mathbb{T}_{\tau}^+$, $\phi_{\tau} \in \bar{B}_{\rho_2}$. If we choose $\rho := \min\{\frac{\rho_1}{K},\rho_2\}$, then any solution $\tilde{\varphi}(\cdot;\tau,\phi_{\tau})$ of $(10)_{\tilde{f}}$ with $\phi_{\tau} \in \bar{B}_{\rho}$ is also a solution of $(10)_f$ and together with (16) our assertion follows.

References

- [BP01] M. Bohner and A. Peterson, *Dynamic Equations on Time Scales An Introduction with Applications*, Birkhäuser, Boston, 2001.
- [Hil90] S. Hilger, Analysis on measure chains a unified approach to continuous and discrete calculus, Results in Mathematics 18 (1990), 18–56.
- [Pöt02] C. Pötzsche, Langsame Faserbündel dynamischer Gleichungen auf Maßketten (in german), Logos-Verlag, Berlin, 2002.