Delay Equations on Measure Chains: Basics and Linearized Stability

CHRISTIAN PÖTZSCHE ${ }^{1}$
Department of Mathematics, University of Augsburg
D-86135 Augsburg, Germany
E-mail: poetzsche@math.uni-augsburg.de

Abstract

We introduce the notion of a dynamic delay equation, which includes differential and difference equations with possibly time-dependent backward delays. After proving a basic global existence and uniqueness theorem for appropriate initial value problems, we derive a criterion for the asymptotic stability of such equations in case of bounded delays.

Keywords Dynamic delay equation, Stability, Time scale, Measure chain
AMS Subject Classification 34K05, 34D20, 39A12

1 Introduction and Preliminaries

In this paper we briefly introduce dynamic equations on measure chains (or time scales), where time-dependent backward delays are present. Our approach provides a framework sufficiently flexible to include ordinary differential and difference equations without delays $(\dot{x}(t)=F(t, x(t))$ for $t \in \mathbb{R}$ and $\Delta x(t)=F(t, x(t))$ for $t \in \mathbb{Z}$, resp.), equations with constant delays $(\dot{x}(t)=F(t, x(t), x(t-r))$ for $t \in \mathbb{R}, r>0$, and $\Delta x(t)=F(t, x(t), x(t-r))$ for $t, r \in \mathbb{Z}, r>0$, resp.), as well as equations with proportional delays, like, e.g., the pantograph equation $\dot{x}(t)=A(t) x(t)+B(t) x(q t), q \in(0,1)$.

We prove an existence and uniqueness theorem for initial value problems of such equations under global Lipschitz conditions, which basically extends [Hil90, Section 5], who considers equations without delays. Section 3 contains sufficient conditions for the exponential decay of solutions for semi-linear equations and bounded delays. On this occasion, the delay term is interpreted as a perturbation of a linear delay-free dynamic equation, since we avoid the use of a general variation of constants formula for linear delay equations.

From now on, \mathbb{Z} stands for the integers, \mathbb{R} for the reals and \mathbb{R}_{+}for the nonnegative real numbers. Throughout this paper, Banach spaces \mathcal{X} are all

[^0]real or complex and their norm is denoted by $\|\cdot\|$. The closed ball in \mathcal{X} with center 0 and radius $r>0$ is given by $\bar{B}_{r}:=\{x \in \mathcal{X}:\|x\| \leq r\}$. If I is a topological space, then $\mathcal{C}(I, \mathcal{X})$ are the continuous functions between I and \mathcal{X}. Finally, we write $D_{(2,3)} f$ for the partial Fréchet derivative of a mapping $f: \mathbb{T} \times \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ w.r.t. the variables in $\mathcal{X} \times \mathcal{X}$, provided it exists.

We also sketch the basic terminology from the calculus on measure chains (cf. [Hil90, BP01]). In all the subsequent considerations we deal with a measure chain (\mathbb{T}, \preceq, μ), i.e. a conditionally complete totally ordered set (\mathbb{T}, \preceq) (see [Hil90, Axiom 2]) with growth calibration $\mu: \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ (see [Hil90, Axiom 3]). The most intuitive and relevant examples of measure chains are time scales, where \mathbb{T} is a canonically ordered closed subset of \mathbb{R} and μ is given by $\mu(t, s)=t-s$. Continuing, $\sigma: \mathbb{T} \rightarrow \mathbb{T}, \sigma(t):=\inf \{s \in \mathbb{T}: t \prec s\}$ defines the forward jump operator and the graininess $\mu^{*}: \mathbb{T} \rightarrow \mathbb{R}$ is defined by $\mu^{*}(t):=\mu(\sigma(t), t)$. If \mathbb{T} has a left-scattered maximum m, we set $\mathbb{T}^{\kappa}:=\mathbb{T} \backslash\{m\}$ and $\mathbb{T}^{\kappa}:=\mathbb{T}$ otherwise. For $\tau, t \in \mathbb{T}$ we abbreviate $\mathbb{T}_{\tau}^{+}:=\{s \in \mathbb{T}: \tau \preceq s\}$, $\mathbb{T}_{\tau}^{-}:=\{s \in \mathbb{T}, s \preceq \tau\}$ and $[\tau, t]_{\mathbb{T}}:=\{s \in \mathbb{T}: \tau \preceq s \preceq t\}$. Any other notation concerning measure chains is taken from [Hil90].

2 Dynamic Delay Equations

Let $\theta: \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ be a nondecreasing function satisfying $\theta(t) \preceq t$ for all $t \in \mathbb{T}^{\kappa}$. Then we denote θ as delay function and say an equation of the form

$$
\begin{equation*}
x^{\Delta}(t)=F(t, x(t), x(\theta(t))) \tag{1}
\end{equation*}
$$

is a dynamic delay equation with right-hand side $F: \mathbb{T}^{\kappa} \times \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$. With given $\tau \in \mathbb{T}$, we abbreviate $\mathcal{C}_{\tau}(\theta):=\mathcal{C}\left([\theta(\tau), \tau]_{\mathbb{T}}, \mathcal{X}\right)$. For $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, a continuous function $\nu: I \rightarrow \mathcal{X}$ is said to solve the initial value problem (IVP)

$$
\begin{equation*}
x^{\Delta}(t)=F(t, x(t), x(\theta(t))), \quad\left(\tau, \phi_{\tau}\right) \tag{2}
\end{equation*}
$$

if I is a \mathbb{T}-interval with $[\theta(\tau), \tau]_{\mathbb{T}} \subseteq I, \nu(t)=\phi_{\tau}(t)$ for all $t \in[\theta(\tau), \tau]_{\mathbb{T}}$ and $\nu^{\Delta}(t)=F(t, \nu(t), \nu(\theta(t)))$ for $t \in I, \tau \preceq t$ holds, where $\nu^{\Delta}(\tau) \in \mathcal{X}$ is understood as right-sided derivative of ν in case of a right-dense $\tau \in \mathbb{T}$. Any solution satisfying the IVP (2) will be denoted by $\varphi\left(\cdot ; \tau, \phi_{\tau}\right)$.

A tool solely important for the proof of Theorem 2.4 is given by means of the mapping $F^{\tau]}: \mathbb{T}_{\tau}^{-} \times \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$, which is defined for a fixed $\tau \in \mathbb{T}^{\kappa}$ by

$$
F^{\tau]}(t, x, y):=\left\{\begin{array}{cl}
F(t, x, y) & \text { for } t \prec \tau,(x, y) \in \mathcal{X} \times \mathcal{X} \\
\lim _{\substack{(s, \xi, \eta) \rightarrow(\tau, x, y) \\
s \prec \tau}} F(s, \xi, \eta) & \text { for } t=\tau,(x, y) \in \mathcal{X} \times \mathcal{X}
\end{array} .\right.
$$

Lemma 2.1. Suppose $\theta: \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is a continuous delay function, let I be a \mathbb{T}-interval, $\tau, r \in I$ with $\tau \preceq r$ and define $I_{\tau}:=[\theta(\tau), \tau]_{\mathbb{T}} \cup I$. Then a function $\nu: I_{\tau} \rightarrow \mathcal{X}$ is a (unique) solution of the IVP (2), if and only if
(i) $\nu_{1}:=\left.\nu\right|_{\mathbb{T}_{r}^{-} \cap I_{\tau}}$ is a (unique) solution of the IVP $(1)_{F^{r]}},\left(\tau, \phi_{\tau}\right)$,
(ii) $\left.\nu\right|_{\mathbb{T}_{r}^{+} \cap I_{\tau}}$ is a (unique) solution of the IVP $(1)_{F},\left(r,\left.\nu_{1}\right|_{[\theta(r), r]_{\mathbb{T}}}\right)$.

Proof. The proof is similar to [Hil90, Theorem 5.3] and omitted here.
Lemma 2.2. Suppose $\theta: \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is a continuous delay function and define $I:=[a, b]_{\mathbb{T}}$ for $a, b \in \mathbb{T}, a \prec b$. Moreover, let $\ell: I \rightarrow \mathbb{R}_{+}$be rd-continuous,

$$
\begin{equation*}
\int_{a}^{b} \ell(s) \Delta s<1 \tag{3}
\end{equation*}
$$

and assume the rd-continuous mapping $F: \mathbb{T}^{\kappa} \times \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ satisfies

$$
\begin{equation*}
\|F(t, x, y)-F(t, \bar{x}, \bar{y})\| \leq \ell(t)\left\|\binom{x-\bar{x}}{y-\bar{y}}\right\| \quad \text { for all } x, y, \bar{x}, \bar{y} \in \mathcal{X} \tag{4}
\end{equation*}
$$

and $t \in I$. Then, for any $\tau \in I$ and any $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, the IVP (2) possesses exactly one solution $\nu:[\theta(\tau), \tau]_{\mathbb{T}} \cup I \rightarrow \mathcal{X}$.
Proof. Let $\tau \in I$ and $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$. We define the \mathbb{T}-interval $I_{\tau}:=I \cup[\theta(\tau), \tau]_{\mathbb{T}}$ and $\mathcal{C}\left(I_{\tau}, \mathcal{X}\right)$ is complete w.r.t. the norm $\|\nu\|_{\mathcal{C}\left(I_{\tau}, \mathcal{X}\right)}:=\max _{t \in I_{\tau}}\|\nu(t)\|$. Now consider the operator $\mathcal{T}_{\tau}: \mathcal{C}\left(I_{\tau}, \mathcal{X}\right) \rightarrow \mathcal{C}\left(I_{\tau}, \mathcal{X}\right)$,

$$
\mathcal{T}_{\tau}(\nu)(t):=\left\{\begin{array}{cl}
\phi_{\tau}(t) & \text { for } \theta(\tau) \preceq t \prec \tau \tag{5}\\
\phi_{\tau}(\tau)+\int_{\tau}^{t} F(s, \nu(s), \nu(\theta(s))) \Delta s & \text { for } \tau \preceq t
\end{array},\right.
$$

which is well-defined due to [Hil90, Theorem 4.4]. Then $\nu \in \mathcal{C}\left(I_{\tau}, \mathcal{X}\right)$ is a fixed point of \mathcal{T}_{τ}, if and only if ν solves the IVP (2).

Because of [Hil90, Theorem 4.3(iii)], and for $\nu, \bar{\nu} \in \mathcal{C}\left(I_{\tau}, \mathcal{X}\right)$, one obtains

$$
\begin{aligned}
\left\|\mathcal{T}_{\tau}(\nu)(t)-\mathcal{T}_{\tau}(\bar{\nu})(t)\right\| & \stackrel{(5)}{\leq} \int_{\tau}^{t}\|F(s, \nu(s), \nu(\theta(s)))-F(s, \bar{\nu}(s), \bar{\nu}(\theta(s)))\| \Delta s \\
& \stackrel{(4)}{\leq} \int_{\tau}^{t} \ell(s)\left\|\binom{\nu(s)-\bar{\nu}(s)}{\nu(\theta(s))-\bar{\nu}(\theta(s))}\right\| \Delta s \\
& \leq \int_{a}^{b} \ell(s) \Delta s\|\nu-\bar{\nu}\|_{\mathbb{C}\left(I_{\tau}, \mathcal{X}\right)} \quad \text { for all } t \in I_{\tau}, \tau \preceq t
\end{aligned}
$$

and by passing over to the least upper bound for $t \in I_{\tau}$, we get

$$
\left\|\mathcal{T}_{\tau}(\nu)-\mathcal{T}_{\tau}(\bar{\nu})\right\|_{\mathcal{E}\left(I_{\tau}, \mathcal{X}\right)} \leq \int_{a}^{b} \ell(s) \Delta s\|\nu-\bar{\nu}\|_{\mathcal{C}\left(I_{\tau}, \mathcal{X}\right)}
$$

Using (3), we know that \mathcal{T}_{τ} is a contraction on $\mathcal{C}\left(I_{\tau}, \mathcal{X}\right)$ and the contraction mapping principle yields that \mathcal{I}_{τ} possesses exactly one fixed point ν.

To show, e.g., the continuous dependence of solutions on the initial functions, we need a generalized version of Gronwall's inequality.

Lemma 2.3. Let $\tau \in \mathbb{T}$, suppose $\theta: \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is a continuous delay function, $C \geq 0$ and $b_{1}, b_{2}: \mathbb{T}_{\tau}^{+} \rightarrow \mathbb{R}_{+}, y: \mathbb{T}_{\theta(\tau)}^{+} \rightarrow \mathbb{R}_{+}$are rd-continuous. Then

$$
\begin{equation*}
y(t) \leq C+\int_{\tau}^{t} b_{1}(s) y(s) \Delta s+\int_{\tau}^{t} b_{2}(s) y(\theta(s)) \Delta s \quad \text { for all } t \in \mathbb{T}_{\tau}^{+} \tag{6}
\end{equation*}
$$

implies $y(t) \leq C e_{b_{1}+b_{2}}(t, \tau)$ for all $t \in \mathbb{T}_{\tau}^{+}$with $\tau \preceq \theta(t)$.
Proof. The function $z: \mathbb{T}_{\tau}^{+} \rightarrow \mathbb{R}, z(t):=\int_{\tau}^{t} b_{1}(s) y(s) \Delta s+\int_{\tau}^{t} b_{2}(s) y(\theta(s)) \Delta s$ satisfies $z(\tau)=0$ and is nondecreasing. Furthermore, we have

$$
\begin{aligned}
z^{\Delta}(t) & \leq b_{1}(t) y(t)+b_{2}(t) y(\theta(t)) \\
& \stackrel{(6)}{\leq} C\left(b_{1}(t)+b_{2}(t)\right)+b_{1}(t) z(t)+b_{2}(t) z(\theta(t)) \\
& \leq C\left(b_{1}(t)+b_{2}(t)\right)+\left(b_{1}(t)+b_{2}(t)\right) z(t) \quad \text { for all } t \in \mathbb{T}_{\tau}^{+}, \tau \preceq \theta(t)
\end{aligned}
$$

and [BP01, p. 255, Theorem 6.1] yields

$$
z(t) \leq C \int_{\tau}^{t} e_{b_{1}+b_{2}}(t, \sigma(s))\left(b_{1}(s)+b_{2}(s)\right) \Delta s=C\left[e_{b_{1}+b_{2}}(t, \tau)-1\right]
$$

for all $t \in \mathbb{T}_{\tau}^{+}, \tau \preceq \theta(t)$. Hence the claim follows because of $y(t) \leq C+z(t)$.
Theorem 2.4 (global existence and uniqueness). Suppose $\theta: \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is a continuous delay function, $L_{1}, L_{2}: \mathbb{T}^{\kappa} \rightarrow \mathbb{R}_{+}$are rd-continuous, and that the rd-continuous mapping $F: \mathbb{T}^{\kappa} \times \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ satisfies the condition:

For each $t \in \mathbb{T}^{\kappa}$ there exists a compact \mathbb{T}-neighborhood U_{t} of t such that

$$
\begin{align*}
& \left\|F^{t]}(s, x, y)-F^{t]}(s, \bar{x}, y)\right\| \leq L_{1}(t)\|x-\bar{x}\|, \tag{7}\\
& \left\|F^{t]}(s, x, y)-F^{t]}(s, x, \bar{y})\right\| \leq L_{2}(t)\|y-\bar{y}\|
\end{align*}
$$

for all $s \in U_{t}^{\kappa}, x, \bar{x}, y, \bar{y} \in \mathcal{X}$ hold.
Then, for any $\tau \in \mathbb{T}^{\kappa}$ and $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, the IVP (2) admits exactly one solution $\varphi\left(\cdot ; \tau, \phi_{\tau}\right): \mathbb{T}_{\theta(\tau)}^{+} \rightarrow \mathcal{X}$. Moreover, for $\phi_{\tau}, \bar{\phi}_{\tau} \in \mathcal{C}_{\tau}(\theta)$ and $t \in \mathbb{T}_{\tau}^{+}$we have

$$
\begin{equation*}
\left\|\varphi\left(t ; \tau, \phi_{\tau}\right)-\varphi\left(t ; \tau, \bar{\phi}_{\tau}\right)\right\| \tag{8}
\end{equation*}
$$

$\leq\left\{\begin{array}{cl}e_{L_{1}+L_{2}}(t, \tau)\left\|\phi_{\tau}(\tau)-\bar{\phi}_{\tau}(\tau)\right\| & \text { for } \tau \preceq \theta(t) \\ e_{L_{1}}(t, \tau)\left(1+\int_{\tau}^{t} L_{2}(s) \Delta s\right) \sup _{s \in[\theta(\tau), \tau]_{\mathbb{T}}}\left\|\phi_{\tau}(s)-\bar{\phi}_{\tau}(s)\right\| & \text { for } \theta(t) \preceq \tau\end{array}\right.$
Proof. Let $\tau \in \mathbb{T}^{\kappa}$ and $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$ be given arbitrarily.
(I) To show the existence and uniqueness of solutions, we apply the induction principle (cf. [Hil90, Theorem 1.4(c)] for $r \in\left(\mathbb{T}_{\tau}^{+}\right)^{\kappa}$ to the statement:
$\mathcal{A}(r): \begin{cases}\text { The IVP } \\ x^{\Delta}(t)=F^{r]}(t, x(t), x(\theta(t))), & \left(\tau, \phi_{\tau}\right) \\ \text { possesses exactly one solution } \nu_{r}:[\theta(\tau), r]_{\mathbb{T}} & \rightarrow \mathcal{X} .\end{cases}$
(i): Obviously there exists a unique continuous mapping $\nu_{\tau}:[\theta(\tau), \tau]_{\mathbb{T}} \rightarrow \mathcal{X}$ satisfying $\nu_{\tau}(t)=\phi_{\tau}(t)$ for $t \in[\theta(\tau), \tau]_{\mathbb{T}}$ and $\nu_{\tau}^{\Delta}(t)=F^{\tau]}\left(t, \nu_{\tau}(t), \nu_{\tau}(\theta(t))\right)$ for all $t \in\{\tau\}^{\kappa}=\emptyset$.
(ii): Let r be a right-scattered point. Using the induction hypothesis $\mathcal{A}(r)$, the IVP in (9) possesses exactly one solution $\nu_{r}:[\theta(\tau), r]_{\mathbb{T}} \rightarrow \mathcal{X}$. We define its continuous extension $\nu_{\sigma(r)}:[\theta(\tau), \sigma(r)]_{\mathbb{T}} \rightarrow \mathcal{X}$ as

$$
\nu_{\sigma(r)}(t):=\left\{\begin{array}{cl}
\nu_{r}(t) & \text { for } t \in[\theta(\tau), r]_{\mathbb{T}} \\
\nu_{r}(r)+\mu^{*}(r) F\left(r, \nu_{r}(r), \nu_{r}(\theta(r))\right) & \text { for } t=\sigma(r)
\end{array}\right.
$$

which, by Lemma 2.1, is the unique solution of the above IVP, since the restriction on $[\theta(\tau), r]_{\mathbb{T}}$ is the unique solution of (9) and the restriction on $[\theta(r), \sigma(r)]_{\mathbb{T}}$ is the unique solution of $(1)_{F},\left(r,\left.\nu_{r}\right|_{[\theta(r), r]_{\mathbb{T}}}\right)$ on $[\theta(r), \sigma(r)]_{\mathbb{T}}$.
(iii): Let r be right-dense. Due to the induction hypothesis $\mathcal{A}(r)$ we have a unique solution ν_{r} of (9). Let $\left[a_{r}, b_{r}\right]_{\mathbb{T}} \subseteq U_{r}$ be a compact \mathbb{T}-neighborhood of r, such that the function $\ell: \mathbb{T}^{\kappa} \rightarrow \mathbb{R}_{+}, \ell(t):=\max \left\{L_{1}(r), L_{2}(r)\right\}$ for all $t \in\left[a_{r}, b_{r}\right]_{\mathbb{T}}$ from Lemma 2.2 satisfies $\int_{a_{r}}^{b_{r}} \ell(s) \Delta s=\ell(r) \mu\left(b_{r}, a_{r}\right)<1$. Now Lemma 2.2 guarantees that the IVP $(1)_{F^{s]}},\left(r,\left.\nu_{r}\right|_{[\theta(r), r]_{T}}\right)$ has exactly one solution $\nu:[\theta(r), s]_{\mathbb{T}} \rightarrow \mathcal{X}$ for any $s \in\left[a_{r}, b_{r}\right]_{\mathbb{T}}$. Because of Lemma 2.1, the function $\nu_{s}:[\theta(\tau), s]_{\mathbb{T}} \rightarrow \mathcal{X}$, defined by

$$
\nu_{s}(t):=\left\{\begin{array}{cl}
\nu_{r}(t) & \text { for } t \in[\theta(\tau), r]_{\mathbb{T}} \\
\nu(t) & \text { for } t \in[r, s]_{\mathbb{T}}
\end{array}\right.
$$

is the unique solution of (9) for $r=s$. Hence, the statement $\mathcal{A}(s)$ holds for all $s \in\left[a_{r}, b_{r}\right]_{\mathbb{T}} \cap \mathbb{T}_{r}^{+}$.
(iv): Let r be left-dense and we choose a \mathbb{T}-interval $\left[a_{r}, b_{r}\right]_{\mathbb{T}}$ as in (iii). Then there exists a $s \in\left[a_{r}, b_{r}\right]_{\mathbb{T}}, s \prec r$. Using the induction hypothesis $\mathcal{A}(s)$, as well as Lemma 2.2, one shows existence and uniqueness of the solution $\nu_{r}:[\theta(\tau), r]_{\mathbb{T}} \rightarrow \mathcal{X}$ of (9) exactly as in step (iii). Since on every interval $[\theta(\tau), r]_{\mathbb{T}}, \tau \preceq r$, there exists exactly one solution ν_{r}, there is one on $\mathbb{T}_{\theta(\tau)}^{+}$.
(II) It remains to prove the estimate (8). Thereto, let $\phi_{\tau}, \bar{\phi}_{\tau} \in \mathcal{C}_{\tau}(\theta)$. The solution $\varphi\left(\cdot ; \tau, \phi_{\tau}\right)$ of $(1)_{F}$ satisfies the integral equation

$$
\varphi\left(t ; \tau, \phi_{\tau}\right)=\phi_{\tau}(\tau)+\int_{\tau}^{t} F\left(s, \varphi\left(s ; \tau, \phi_{\tau}\right), \varphi\left(\theta(s) ; \tau, \phi_{\tau}\right)\right) \Delta s \quad \text { for all } t \in \mathbb{T}_{\tau}^{+},
$$

yielding the estimate

$$
\begin{aligned}
\left\|\varphi\left(t ; \tau, \phi_{\tau}\right)-\varphi\left(t ; \tau, \bar{\phi}_{\tau}\right)\right\| \stackrel{(7)}{\leq} & \left\|\phi_{\tau}(\tau)-\bar{\phi}_{\tau}(\tau)\right\| \\
& +\int_{\tau}^{t} L_{1}(s)\left\|\varphi\left(s ; \tau, \phi_{\tau}\right)-\varphi\left(s ; \tau, \bar{\phi}_{\tau}\right)\right\| \Delta s \\
& +\int_{\tau}^{t} L_{2}(s)\left\|\varphi\left(\theta(s) ; \tau, \phi_{\tau}\right)-\varphi\left(\theta(s) ; \tau, \bar{\phi}_{\tau}\right)\right\| \Delta s
\end{aligned}
$$

for all $t \in \mathbb{T}_{\tau}^{+}$, and with Lemma 2.3 we obtain

$$
\left\|\varphi\left(t ; \tau, \phi_{\tau}\right)-\varphi\left(t ; \tau, \bar{\phi}_{\tau}\right)\right\| \leq e_{L_{1}+L_{2}}(t, \tau)\left\|\phi_{\tau}(\tau)-\bar{\phi}_{\tau}(\tau)\right\|
$$

for all $t \in \mathbb{T}_{\tau}^{+}, \tau \preceq \theta(t)$. On the other hand, in case of $\theta(t) \preceq \tau$, one has

$$
\begin{aligned}
&\left\|\varphi\left(t ; \tau, \phi_{\tau}\right)-\varphi\left(t ; \tau, \bar{\phi}_{\tau}\right)\right\| \\
& \leq\left\|\phi_{\tau}(\tau)-\bar{\phi}_{\tau}(\tau)\right\|+\int_{\tau}^{t} L_{2}(s)\left\|\phi_{\tau}(\theta(s))-\bar{\phi}_{\tau}(\theta(s))\right\| \Delta s \\
&+\int_{\tau}^{t} L_{1}(s)\left\|\varphi\left(s ; \tau, \phi_{\tau}\right)-\varphi\left(s ; \tau, \bar{\phi}_{\tau}\right)\right\| \Delta s \\
& \leq\left\|\phi_{\tau}(\tau)-\bar{\phi}_{\tau}(\tau)\right\|+\int_{\tau}^{t} L_{2}(s) \Delta s \sup _{s \in[\theta(\tau), \tau]_{\mathbb{T}}}\left\|\phi_{\tau}(s)-\bar{\phi}_{\tau}(s)\right\| \\
&+\int_{\tau}^{t} L_{1}(s)\left\|\varphi\left(s ; \tau, \phi_{\tau}\right)-\varphi\left(s ; \tau, \bar{\phi}_{\tau}\right)\right\| \Delta s
\end{aligned}
$$

and Gronwall's Lemma (cf. [BP01, p. 256, Theorem 6.4]) implies the second inequality in (8). This concludes the present proof.

3 Linearized Asymptotic Stability

Throughout this section, let \mathbb{T} be unbounded above. Moreover, $\mathcal{C}_{r d}^{+} \mathcal{R}(\mathbb{T}, \mathbb{R})$ is the set of rd-continuous functions $a: \mathbb{T} \rightarrow \mathbb{R}$ with $1+\mu^{*}(t) a(t)>0$ for $t \in \mathbb{T}$.

Lemma 3.1. Let $\tau \in \mathbb{T}, K \geq 1, a \in \mathcal{C}_{r d}^{+} \mathcal{R}(\mathbb{T}, \mathbb{R})$, suppose $\theta: \mathbb{T} \rightarrow \mathbb{T}$ is a continuous delay function, $A: \mathbb{T} \rightarrow \mathcal{L}(\mathcal{X})$ and $f: \mathbb{T} \times \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ are rd-continuous. Consider the dynamic delay equation

$$
\begin{equation*}
x^{\Delta}(t)=A(t) x(t)+f(t, x(t), x(\theta(t))) \tag{10}
\end{equation*}
$$

under the following assumptions:
(i) The transition operator of $x^{\Delta}(t)=A(t) x(t)$ satisfies

$$
\begin{equation*}
\left\|\Phi_{A}(t, s)\right\| \leq K e_{a}(t, s) \quad \text { for all } \tau \preceq s \preceq t \tag{11}
\end{equation*}
$$

(ii) $f(t, 0,0) \equiv 0$ on \mathbb{T}, and there exist reals $L_{1}, L_{2} \geq 0$ such that we have

$$
\begin{align*}
& \|f(t, x, y)-f(t, \bar{x}, y)\| \leq L_{1}\|x-\bar{x}\|, \\
& \|f(t, x, y)-f(t, x, \bar{y})\| \leq L_{2}\|y-\bar{y}\| \tag{12}
\end{align*}
$$

$$
\text { for all } t \in \mathbb{T}, x, \bar{x}, y, \bar{y} \in \mathcal{X} .
$$

Then the solution $\varphi\left(\cdot ; \tau, \phi_{\tau}\right)$ of $(10)_{f}$ satisfies

$$
\begin{equation*}
\left\|\varphi\left(t ; \tau, \phi_{\tau}\right)\right\| \leq K e_{\bar{a}}(t, \tau)\left\|\phi_{\tau}(\tau)\right\| \quad \text { for all } t \in \mathbb{T}_{\tau}^{+}, \tau \preceq \theta(t) \tag{13}
\end{equation*}
$$

initial functions $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, and $\bar{a}(t):=a(t)+K\left(L_{1}+L_{2} e_{a}(\theta(t), t)\right)$.

Proof. Let $\tau \in \mathbb{T}$. Due to our present assumptions, one can apply Theorem 2.4 to the dynamical delay equation $(10)_{f}$ and consequently all solutions $\varphi\left(\cdot ; \tau, \phi_{\tau}\right)$ with $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$ exist on $\mathbb{T}_{\theta(\tau)}^{+}$. Furthermore, the variation of constants formula (cf. [Pöt02, p. 56, Satz 1.3.11]) implies the identity

$$
\varphi\left(t ; \tau, \phi_{\tau}\right)=\Phi_{A}(t, \tau) \phi_{\tau}(\tau)+\int_{\tau}^{t} \Phi_{A}(t, \sigma(s)) f\left(s, \varphi\left(s ; \tau, \phi_{\tau}\right), \varphi\left(\theta(s) ; \tau, \phi_{\tau}\right)\right) \Delta s
$$

for all $t \in \mathbb{T}_{\tau}^{+}$, and from $f(t, 0,0) \equiv 0$ we obtain

$$
\begin{aligned}
\left\|\varphi\left(t ; \tau, \phi_{\tau}\right)\right\| & \stackrel{(11)}{\leq} K e_{a}(t, \tau)\left\|\phi_{\tau}(\tau)\right\| \\
& +K \int_{\tau}^{t} e_{a}(t, \sigma(s))\left\|f\left(s, \varphi\left(s ; \tau, \phi_{\tau}\right), \varphi\left(\theta(s) ; \tau, \phi_{\tau}\right)\right)\right\| \Delta s \\
& \stackrel{(12)}{\leq} K e_{a}(t, \tau)\left\|\phi_{\tau}(\tau)\right\|+K L_{1} \int_{\tau}^{t} e_{a}(t, \sigma(s))\left\|\varphi\left(s ; \tau, \phi_{\tau}\right)\right\| \Delta s \\
& +K L_{2} \int_{\tau}^{t} e_{a}(t, \sigma(s))\left\|\varphi\left(\theta(s) ; \tau, \phi_{\tau}\right)\right\| \Delta s \quad \text { for all } t \in \mathbb{T}_{\tau}^{+}
\end{aligned}
$$

which, in turn, yields (cf. [Hil90, Theorem 6.2])

$$
\begin{aligned}
\left\|\varphi\left(t ; \tau, \phi_{\tau}\right)\right\| e_{a}(\tau, t) \leq & K\left\|\phi_{\tau}(\tau)\right\|+\int_{\tau}^{t} \frac{K_{1} L}{1+\mu^{*}(s) a(s)} e_{a}(\tau, s)\left\|\varphi\left(s ; \tau, \phi_{\tau}\right)\right\| \Delta s \\
& +K L_{2} \int_{\tau}^{t} e_{a}(\theta(s), \sigma(s)) e_{a}(\tau, \theta(s))\left\|\varphi\left(\theta(s) ; \tau, \phi_{\tau}\right)\right\| \Delta s
\end{aligned}
$$

for all $t \in \mathbb{T}_{\tau}^{+}$. Then Lemma 2.3 gives us the desired estimate (13).
Theorem 3.2. Let $\tau \in \mathbb{T}$, suppose $\theta: \mathbb{T} \rightarrow \mathbb{T}$ is a continuous delay function, $A: \mathbb{T} \rightarrow \mathcal{L}(\mathcal{X})$ is rd-continuous, $F: \mathbb{T} \times \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ is rd-continuous and continuously differentiable w.r.t. the variables in $\mathcal{X} \times \mathcal{X}$. Consider the dynamic delay equation $(10)_{f}$ under the following assumptions:
(i) The transition operator of $x^{\Delta}(t)=A(t) x(t)$ satisfies the estimate (11) with $\sup _{s \in \mathbb{T}_{\tau}^{+}} a(s)<0$ and $\sup _{s \in \mathbb{T}_{\tau}^{+}} e_{a}(\theta(s), s)<\infty$,
(ii) $f(t, 0,0) \equiv 0$ on \mathbb{T}, and we have

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} D_{(2,3)} f(t, x, y)=0 \quad \text { uniformly in } t \in \mathbb{T} . \tag{14}
\end{equation*}
$$

Then there exists a $\rho>0$ such that all solutions $\varphi\left(\cdot, \tau, \phi_{\tau}\right)$ of $(10)_{f}$ with initial functions $\phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, $\sup _{t \in[\theta(\tau), \tau]_{\mathbb{T}}}\left\|\phi_{\tau}(t)\right\| \leq \rho$ exist uniquely on $\mathbb{T}_{\theta(\tau)}^{+}$and decay to 0 exponentially.

Proof. Let $\tau \in \mathbb{T}$. Due to hypothesis (i) there exists a $L>0$ such that

$$
\begin{equation*}
K L\left(1+\sup _{s \in \mathbb{T}_{\tau}^{+}} e_{a}(\theta(s), s)\right)<\inf _{s \in \mathbb{T}_{\tau}^{+}}(-a(s)) \tag{15}
\end{equation*}
$$

holds, and the limit relation (14) guarantees that there is a $\rho_{1}>0$ with $\left\|D_{(2,3)} f(t, x, y)\right\| \leq \frac{1}{2} L$ for all $t \in \mathbb{T}, x, y \in \bar{B}_{\rho_{1}}$. Now the mean value inequality implies $\|f(t, x, y)-f(t, \bar{x}, \bar{y})\| \leq \frac{1}{2} L\left\|\binom{x-\bar{x}}{y-\bar{y}}\right\|$ for $t \in \mathbb{T}, x, \bar{x}, y, \bar{y} \in \bar{B}_{\rho_{1}}$. Using the radial retraction $R_{\rho}: \mathcal{X} \rightarrow \bar{B}_{\rho}$, defined by $R_{\rho}(x):=x$ for $\|x\| \leq \rho$ and $R_{\rho}(x):=\frac{\rho}{\|x\|} x$ for $\|x\| \geq \rho$, it is well-known that the modified mapping $\tilde{f}: \mathbb{T} \times \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}, \tilde{f}(t, x, y):=f\left(t, R_{\rho_{1}}(x), R_{\rho_{1}}(y)\right)$ coincides with f on the set $\mathbb{T} \times \bar{B}_{\rho_{1}} \times \bar{B}_{\rho_{1}}$ and satisfies $\|\tilde{f}(t, x, y)-\tilde{f}(t, \bar{x}, \bar{y})\| \leq L\left\|\binom{x-\bar{x}}{y-\bar{y}}\right\|$ for all $t \in \mathbb{T}, x, \bar{x}, y, \bar{y} \in \mathcal{X}$. Therefore, from Theorem 2.4 we get that all solutions $\tilde{\varphi}\left(\cdot ; \tau, \phi_{\tau}\right), \phi_{\tau} \in \mathcal{C}_{\tau}(\theta)$, of $(10)_{\tilde{f}}$ exist and are unique on $\mathbb{T}_{\theta(\tau)}^{+}$. Furthermore, from Lemma 3.1 we have the inequality

$$
\begin{equation*}
\left\|\tilde{\varphi}\left(t ; \tau, \phi_{\tau}\right)\right\| \stackrel{(13)}{\leq} K e_{\bar{a}}(t, \tau)\left\|\phi_{\tau}(\tau)\right\| \quad \text { for all } t \in \mathbb{T}_{\tau}^{+}, \tau \preceq \theta(t) \tag{16}
\end{equation*}
$$

with $\bar{a}(t):=a(t)+K L\left(1+e_{a}(\theta(t), t)\right)$ and (15) yields $\sup _{s \in \mathbb{T}_{\tau}^{+}} \bar{a}(s)<0$. This implies $\left\|\tilde{\varphi}\left(t ; \tau, \phi_{\tau}\right)\right\| \leq K\left\|\phi_{\tau}(\tau)\right\| \leq \rho_{1}$ for all $t \in \mathbb{T}_{\tau}^{+}, \tau \preceq \theta(t), \phi_{\tau} \in \bar{B}_{\frac{K}{\rho_{1}}}$, and from Theorem 2.4 we additionally get

$$
\left\|\tilde{\varphi}\left(t ; \tau, \phi_{\tau}\right)\right\| \stackrel{(8)}{\leq} e_{L}(t, \tau)\left(1+\int_{\tau}^{t} L(s) \Delta s\right) \sup _{s \in[\theta(\tau), \tau]_{\mathbb{T}}}\left\|\phi_{\tau}(s)\right\|
$$

for all $t \in \mathbb{T}_{\tau}^{+}, \theta(t) \preceq \tau$, which yields the existence of a $\rho_{2}>0$ such that $\left\|\tilde{\varphi}\left(t ; \tau, \phi_{\tau}\right)\right\| \leq \rho_{1}$ for all $t \in \mathbb{T}_{\tau}^{+}, \phi_{\tau} \in \bar{B}_{\rho_{2}}$. If we choose $\rho:=\min \left\{\frac{\rho_{1}}{K}, \rho_{2}\right\}$, then any solution $\tilde{\varphi}\left(\cdot ; \tau, \phi_{\tau}\right)$ of $(10)_{\tilde{f}}$ with $\phi_{\tau} \in \bar{B}_{\rho}$ is also a solution of $(10)_{f}$ and together with (16) our assertion follows.

References

[BP01] M. Bohner and A. Peterson, Dynamic Equations on Time Scales An Introduction with Applications, Birkhäuser, Boston, 2001.
[Hil90] S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus, Results in Mathematics 18 (1990), 18-56.
[Pöt02] C. Pötzsche, Langsame Faserbündel dynamischer Gleichungen auf Maßketten (in german), Logos-Verlag, Berlin, 2002.

[^0]: ${ }^{1}$ Research supported by the "Graduiertenkolleg: Nichtlineare Probleme in Analysis, Geometrie und Physik" (GRK 283) financed by the DFG and the State of Bavaria.

