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Institut für Mathematik, Universität Augsburg,
D-86135 Augsburg, Germany

November 8, 2007

Abstract

In this paper we introduce the notion of an exponential dichotomy for not necessarily
invertible linear dynamic equations in Banach spaces within the framework of the “Calculus
on Measure Chains.” Particularly this unifies the corresponding theories for difference and
differential equations. We apply our approach to obtain results on perturbed systems.
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1 Introduction and Preliminaries

Basically an exponential dichotomy is a generalization of the concept of hyperbolicity from
autonomous to nonautonomous linear equations, where the stability properties of the solutions in
the nontrivial invariant sets, or precisely in the invariant vector bundles, are uniform. Thorough
introductions into the theory of exponentially dichotomic ordinary differential equations (ODEs)
can be found in e.g. the books Daleckĭi & Krĕin [7] or Coppel [6]. For difference equations
(O∆Es) the literature is slightly sparser, but Coffman & Schäffer [5] and Henry [9, Section
7.6] pioneered here and meanwhile dichotomies are widely used. They are so important in
the theory of nonautonomous dynamical systems, since they are a very useful tool to solve
nonlinear problems as perturbations of linear ones, like in the persistence of integral manifolds
(cf. e.g. Sakamoto [18]). Moreover the applications range from stability theory, because a
dichotomy is a type of conditional stability, to modern chaos theory (see Palmer [17], which is
also a good introduction into discrete dichotomies).

In the present paper we introduce the notion of an exponential dichotomy for nonregressive linear
dynamic equations in Banach spaces and prove some of its central properties. This allows to
consider difference, differential and equations on inhomogeneous time scales, i.e. closed subsets
of R, simultaneously. As an application we also deduce some results about inhomogeneously and
semi-linearly perturbed systems. Here we have to point out that our exponential growth rates
are not assumed to be constant. To quote a good reference about dynamic equations on measure
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chains we still strongly recommend Hilger [11] and with a focus on the linear theory Aulbach
& Hilger [1]. Nevertheless there exists the monograph Lakshmikantham, Sivasundaram &
Kaymakçalan [13].

Now suppose for the following that (T,�, µ) is an arbitrary measure chain with bounded grain-
iness µ∗ and X is a real or complex Banach space with the norm ‖·‖. L(X1;X2) stands for
the linear space of continuous homomorphisms with the norm ‖T‖ := sup‖x‖=1 ‖Tx‖ for any
T ∈ L(X1;X2), and GL(X1;X2) for the set of toplinear isomorphisms between two linear sub-
spaces X1,X2 of X ; IX1 is the identity mapping on X1. Additionally we write L(X ) := L(X ;X )
and N (T ) := T−1({0}) is the nullspace and R(T ) := TX the range of T ∈ L(X ).

We also shortly introduce some notions, which are specific for the calculus on measure chains.
Above all, T+

τ and T−τ are the T-intervals {t ∈ T : τ � t} and {t ∈ T : t � τ}, respectively, for
any τ ∈ T; differing from the usual standard, ρ+ : T → T is the forward jump operator. A
subset J ⊆ T is said to be unbounded above (resp. below), if the set {µ(t, τ) ∈ R : t ∈ J} is
unbounded above (resp. below) for one and hence (by the properties of the growth calibration
µ) every τ ∈ T. The partial derivative of a mapping Φ : T × T → X with respect to the first
variable is denoted by ∆1Φ. Crd(Tκ,X ) are the rd-continuous mappings from Tκ into X and
C+
rdR(Tκ,R) := {a ∈ Crd(Tκ,R) : 1 + µ∗(t)a(t) > 0 for t ∈ Tκ} is the linear space of positively

regressive functions with the algebraic operations

(a⊕ b)(t) := a(t) + b(t) + µ∗(t)a(t)b(t),

(α� a)(t) := lim
h↘µ∗(t)

(1 + ha(t))α − 1
h

for t ∈ Tκ

for a, b ∈ C+
rdR(Tκ,R) and reals α ∈ R. With fixed τ ∈ T and c, d ∈ C+

rdR(Tκ,R) we define the
two linear spaces

B+
τ,c(X ) :=

{
λ ∈ Crd(T+

τ ,X ) : sup
τ�t
‖λ(t)‖ e	c(t, τ) <∞

}
,

B−τ,d(X ) :=
{
λ ∈ Crd(T−τ ,X ) : sup

t�τ
‖λ(t)‖ e	d(t, τ) <∞

}
of so-called c+-quasibounded and d−-quasibounded mappings, which are immediately seen to be
Banach spaces with regard to the norms

‖λ‖+τ,c := sup
τ�t
‖λ(t)‖ e	c(t, τ), ‖λ‖−τ,d := sup

t�τ
‖λ(t)‖ e	d(t, τ),

respectively.

2 Exponential Dichotomies

We consider a linear dynamic equation

x∆ = A(t)x, (2.1)

with coefficient operator A ∈ Crd(Tκ,L(X )) and the transition operator ΦA(t, τ) ∈ L(X ), i.e. the
solution of the corresponding operator-valued initial value problem X∆ = A(t)X, X(τ) = IX
in L(X ) for τ, t ∈ T, τ � t. Since we do not assume IX + µ∗(t)A(t) ∈ GL(X ;X ), in other
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words, (2.1) needs not to be regressive, ΦA(t, τ) in general is not invertible and exists only for
τ � t, which can be shown like in the standard existence and uniqueness theorem for dynamic
equations from Hilger [11, Theorem 5.7].

For all the subsequent, let J ⊆ Tκ be a bounded or unbounded T-interval. A nonempty set
W ⊆ J ×X is called an invariant vector bundle of (2.1), if the following holds:

(i) W is positively invariant with respect to (2.1), i.e.

(τ, ξ) ∈ W ⇒ (t,ΦA(t, τ)ξ) ∈ W for τ � t, τ, t ∈ J,

(ii) for each τ ∈ J the fiber W(τ) := {ξ ∈ X : (τ, ξ) ∈ W} is a closed subspace of X ;

see also Siegmund [19]. In case of a regressive equation (2.1) two fibers W(t) and W(s) are
homeomorphic by virtue of the toplinear homeomorphism ΦA(t, s) (s, t ∈ J). Otherwise only
the inclusion ΦA(t, s)W(s) ⊆ W(t) for s � t holds. Trivially the zero bundle J × {0} and the
whole extended state space J ×X are invariant vector bundles, but also the following holds.

Proposition 2.1 (invariant projector): If P : J → L(X ) is an invariant projector of equation
(2.1), i.e. a projection-valued function (P (t)2 ≡ P (t)) such that

P (t)ΦA(t, s) = ΦA(t, s)P (s) for s � t, s, t ∈ J, (2.2)

then the two sets

S := {(τ, η) ∈ J ×X : η ∈ R(P (τ))} , U := {(τ, ξ) ∈ J ×X : ξ ∈ N (P (τ))}

are invariant vector bundles of (2.1) and it is S(τ)⊕ U(τ) = X for all τ ∈ J .

Remark 2.2: (1) On a discrete measure chain, i.e. if there exists a real γ > 0 such that γ ≤ µ∗(t)
for t ∈ J , a function of projections P : J → L(X ) is an invariant projector of (2.1), if and only
if P (ρ+(t)) [IX + µ∗(t)A(t)] = [IX + µ∗(t)A(t)]P (t) for t ∈ Jκ holds. This is a consequence of
Hilger [11, Theorem 6.2] and mathematical induction.

(2) In case of a regressive equation (2.1), we get P (t) = ΦA(t, s)P (s)ΦA(s, t) for s, t ∈ J and all
projections P (t) ∈ L(X ) are similar. In addition to this, each P (t) has the same rank, if S(s) is
finite-dimensional for one and consequently every s ∈ J .

Proof. The proof is a straight-forward verification of the definition of an invariant vector bundle.

Because we do not restrict our considerations on regressive equations, in particular solutions in
the vector bundle U might not exist in backward time. To overcome this problem, we postulate
invertibility only between the fibers of U .

Proposition 2.3 (regularity condition): Let P : J → L(X ) be an invariant projector of equation
(2.1) such that the regularity condition

[IX + µ∗(t)A(t)] |U(t) : U(t)→ U(ρ+(t)) is bijective for right-scattered t ∈ Jκ (2.3)

is fulfilled. Then we have ΦA(t, s)|U(s) ∈ GL(U(s);U(t)) for any s � t, s, t ∈ J .
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Remark 2.4: (1) For regressive equations (2.1) and especially ODEs, the regularity condition
is always fulfilled.

(2) Under the regularity condition invariant projectors P : J → L(X ) are rd-continuously
differentiable with the derivative P∆(t) = A(t)P (t)− P (ρ+(t))A(t) for t ∈ Jκ.

Proof. First of all, the mapping (2.3) is well-defined by Proposition 2.1. For fixed s ∈ J we use
the induction principle from Hilger [11, Theorem 1.4(c)] to prove the statement

A(t) : ΦA(t, s)|U(s) : U(s)→ U(t) is continuous and bijective

for each t ∈ J , s � t. Therefore we have to proceed in four steps:
(I): Because of ΦA(s, s)|U(s) = IU(s) obviously A(s) is fulfilled.
(II): Now let t ∈ J , s � t be right-scattered. Since A(t) holds by assumption, the mapping
ΦA(ρ+(t), s)|U(s) = [IX + µ∗(t)A(t)] |U(t)ΦA(t, s)|U(s) is a composition of two continuous bijective
homomorphisms, and this yields A(ρ+(t)).
(III): Let t ∈ J , s � t be right-dense and let A(t) be true. Thus there exists a T-neighborhood
U ⊆ T of t such that supt∈U µ∗(t) ‖A(t)‖ < 1 and (2.1) is regressive on U . Consequently
ΦA(r, t) is a toplinear isomorphism on X for r ∈ U , t � r and with the aid of the identity
ΦA(r, s)|U(s) = ΦA(r, t)|U(t)ΦA(t, s)|U(s) we obtain A(r) for r ∈ U , t � r.
(IV): Finally let t ∈ J , s � t be left-dense and A(r) be true for each r ∈ J , s � r ≺ t. Then also
A(t) follows similarly to step (III).
Now the proof is finished, since the continuous isomorphism ΦA(t, s)|U(s) : U(s) → U(t) has a
continuous inverse by Lang [14, p. 388, Corollary 1.4]).

At this point the Proposition 2.3 allows us to define the extended transition operator Φ̄A(t, s) :
U(s)→ U(t),

Φ̄A(t, s) :=

{ [
ΦA(s, t)|U(t)

]−1 if t ≺ s
Φ(t, s)|U(s) if s � t

for any pairs (t, s) ∈ J × J . It is easy to show that Φ̄A(t, s) ∈ GL(U(s);U(t)) inherits certain
distinctive features of the usual transition operator, namely the cocycle property

Φ̄A(t, τ) = Φ̄A(t, s)Φ̄A(s, τ) for τ, s, t ∈ J,

or the two identities

[IX − P (t)] Φ̄A(t, s) = Φ̄A(t, s) [IX − P (s)] , Φ̄A(t, s)−1 = Φ̄A(s, t) for s, t ∈ J. (2.4)

Finally one can show the differentiability of Φ̄A(·, τ) : Jκ → L(U(τ);X ) with the derivative

(∆1Φ̄A)(t, τ) = A(t)Φ̄A(t, τ) for τ, t ∈ Jκ.

To bring our preparations to an end, in the definition of an exponential dichotomy we use the
abbreviation bb− ac := inft∈Tκ(b(t)− a(t)) and introduce the notations

a C b :⇔ 0 < bb− ac , a E b :⇔ 0 ≤ bb− ac ,

where two positively regressive functions a, b ∈ C+
rdR(Tκ,R) are denoted as growth rates, if

supt∈Tκ µ
∗(t)a(t) <∞ and supt∈Tκ µ

∗(t)b(t) <∞, respectively. Then we obtain the limits

lim
t→∞

ea	b(t, τ) = 0, lim
t→−∞

eb	a(t, τ) = 0 (2.5)

for growth rates a C b and on a measure chain, which is unbounded above resp. below. The
relations (2.5) can be shown using similar arguments as in Hilger [10, Satz 9.2].
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Definition 2.5 (exponential dichotomy): Let P : J → L(X ) be an invariant projector of (2.1)
such that the regularity condition (2.3) is fulfilled. Then equation (2.1) is said to possess an
exponential dichotomy, if the estimates

‖ΦA(t, s)P (s)‖ ≤ K1ea(t, s) for s � t, s, t ∈ J, (2.6)∥∥Φ̄A(t, s) [IX − P (s)]
∥∥ ≤ K2eb(t, s) for t � s, s, t ∈ J (2.7)

hold for real constants K1,K2 ≥ 1 and growth rates a, b ∈ C+
rdR(J,R), a C b.

Remark 2.6: (1) The growth rates a, b do not have to be constant functions. For ODEs this
goes back to Muldowney [16]. A second feature of our definition is that we do not insist on
a hyperbolicity condition like a C 0 C b. Thus one can speak of a pseudo-hyperbolic dichotomy.
Although this makes Definition 2.5 more flexible, it is not a real generalization, because one
can transform each pseudo-hyperbolic into a hyperbolic system (see Corollary 2.7). Eventually
we point out again that equation (2.1) does not have to be regressive. For O∆Es this can be
traced back to Henry [9, p. 229, Definition 7.6.4] and with a different, but equivalent definition
to Kalkbrenner [12]. A dichotomy notion for O∆Es without any regularity condition is
contained in Aulbach & Kalkbrenner [2].

(2) The equation (2.1) is said to have an ordinary dichotomy if the estimates (2.6) and (2.7)
hold with a = b = 0. Having the current concept available, one can generalize results from
Bohner & Lutz [3] to nonregressive equations in finite-dimensional Banach spaces, like it has
been done in Elaydi, Papaschinopoulos & Schinas [8] for O∆Es.

(3) Setting s = t, the inequalities (2.6) and (2.7) imply the boundedness of the invariant projec-
tors P and IX − P , respectively.

The following result can be seen as a first step to introduce a spectral notion for linear dynamic
equations (see Siegmund [19]).

Corollary 2.7 (shifted system): If equation (2.1) possesses an exponential dichotomy with a, b,
K1,K2 and P on a T-interval J , then for arbitrary growth rates c ∈ C+

rdR(J,R) also the shifted
system

x∆ = (A	 cIX )(t)x (2.8)

has an exponential dichotomy with a	 c, b	 c, K1,K2 and P on J .

Remark 2.8: Specifically for c := 1
2 � (a ⊕ b) the shifted system (2.8) has a hyperbolic expo-

nential dichotomy with the growth rates 1
2 � (a	 b), 1

2 � (b	 a).

Proof. For τ � t define the mapping Φ(t, τ) := ec(τ, t)ΦA(t, τ). Then the product rule
(cf. Hilger [11, Theorem 2.6(ii)]) leads to

(∆1Φ)(t, τ) = ec(τ, ρ+(t))A(t)ΦA(t, τ)− c(t)ec(τ, ρ+(t))ΦA(t, τ) =
= ec(t, ρ+(t)) [A(t)− c(t)IX ] ec(τ, t)ΦA(t, τ) =
= [1 + µ∗(t)c(t)]−1 [A(t)− c(t)IX ] Φ(t, τ) for τ � t, t ∈ Jκ

and consequently Φ(t, τ) is the transition operator of the shifted system (2.8) since we already
have Φ(τ, τ) = IX . Now it is easy to see that P is also an invariant projector of (2.8) satisfying
the regularity condition (2.3), and that the dichotomy estimates (2.6) and (2.7) for Φ(t, τ) hold
true.
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Eventually, for systems possessing an exponential dichotomy, we can characterize the invariant
vector bundles S and U dynamically.

Theorem 2.9 (dynamical characterization of S and U): Let equation (2.1) possess an expo-
nential dichotomy with a, b and P on J . For a fixed τ0 ∈ Tκ the following holds:

(a) If J = T+
τ0 is unbounded above and c ∈ C+

rdR(J,R) with a E c C b, then

S =
{

(τ, η) ∈ J ×X : ΦA(·, τ)η ∈ B+
τ,c(X )

}
,

(b) if J = T−τ0 is unbounded below and d ∈ C+
rdR(J,R) with a C d E b, then

U =
{

(τ, ξ) ∈ J ×X :
there exists a solution ν : T−τ → X of
(2.1) with ν(τ) = ξ and ν ∈ B−τ,d(X )

}
.

Hence we call S and U the pseudo-stable and the pseudo-unstable vector bundle of (2.1),
respectively.

Remark 2.10: In particular the sets S and U are independent of the growth rates c and d,
respectively, since they are defined in Proposition 2.1 only using invariant projectors.

Proof. We have to show two inclusions each.

(a)(⊆) For (τ, η) ∈ S, i.e. η = P (τ)η it follows

‖ΦA(t, τ)η‖ e	c(t, τ)
(2.6)

≤ K1ea	c(t, τ) ‖η‖ ≤ K1 ‖η‖ for τ � t

and we obtain ΦA(·, τ)η ∈ B+
τ,c(X ) by passing over to the least upper bound over t ∈ T+

τ in the
last estimate.
(⊇) Because of ΦA(·, τ)η ∈ B+

τ,c(X ) there exists a real Cτ ≥ 0 such that ‖ΦA(t, τ)η‖ ≤
Cτec(t, τ) ‖η‖ for τ � t and the identity [IX − P (τ)] η = Φ̄A(τ, t) [IX − P (t)] ΦA(t, τ)η yields

‖[IX − P (τ)] η‖ ≤
∥∥Φ̄A(τ, t) [IX − P (t)]

∥∥ ‖ΦA(t, τ)η‖
(2.7)

≤ CτK2ec	b(t, τ) ‖η‖ for τ � t.

By taking the limit t → ∞ in this estimate and considering (2.5), it follows η = P (τ)η and
consequently (τ, η) ∈ S.

(b)(⊆) This inclusion results similarly to the first inclusion in (a), if one defines the function
ν(t) := Φ̄A(t, τ)ξ for t � τ .
(⊆) Vice versa let ν ∈ B−τ,d(X ) be a solution of (2.1) with ν(τ) = ξ. Then we have ΦA(τ, t)ν(t) =
ξ for t � τ and one gets

‖P (τ)ξ‖ (2.2)
= ‖ΦA(τ, t)P (t)ν(t)‖

(2.6)

≤ K1ed	a(t, τ) ‖ν‖−τ,d for t � τ.

Now passing over to the limit t → −∞ in this estimate and by considering (2.5) we obtain
P (τ)ξ = 0 and (τ, ξ) ∈ U .

Without proof we state an immediate consequence of Theorem 2.9 about the possible choices of
the invariant projectors. Its partial converse can be found in Siegmund [19, Lemma 1.1].
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Corollary 2.11: Let equation (2.1) possess an exponential dichotomy with a, b and the invariant
projectors P and Q on J . For fixed τ0 ∈ Tκ and c, d ∈ C+

rdR(J,R) the following holds:

(a) If J = T+
τ0 is unbounded above, τ ∈ J , then R(P (τ)) = R(Q(τ)) and for c C b the equation

(2.1) has no nontrivial c+-quasibounded solution in U on T+
τ ,

(b) if J = T−τ0 is unbounded below, τ ∈ J , then N (P (τ)) = N (Q(τ)) and for a C d the equation
(2.1) has no nontrivial d−-quasibounded solution in S on T−τ ,

(c) if J = T is unbounded above and below, then P = Q and for a C c C b, a C d C b the
equation (2.1) has no nontrivial c+- and d−-quasibounded solution on T.

3 Perturbation Results

To prepare the proofs of our perturbation theorems, we have to derive an elementary lemma.
Yet its importance should not be underestimated, since it is the key to consider nonconstant
growth rates, too.

Lemma 3.1: For τ, t, t1, t2 ∈ Tκ, t1 � t2 and a, b ∈ C+
rdR(Tκ,R) we obtain

∫ t2

t1

ea(t, ρ+(s))eb(s, τ) ∆s ≤

{
ea(t,τ)
bb−ac [eb	a(t2, τ)− eb	a(t1, τ)] if a C b
ea(t,τ)
ba−bc [eb	a(t1, τ)− eb	a(t2, τ)] if b C a

. (3.1)

Proof. The desired estimates follow from the identity∫ t2

t1

ea(t, ρ+(s))eb(s, τ) ∆s = ea(t, τ)
∫ t2

t1

(∆1eb	a)(s, τ)
b(s)− a(s)

∆s,

by the properties of the Cauchy-Integral (cf. Hilger [11, Theorem 4.3]).

Or primary aim is to show the existence of some quasibounded solutions of perturbed dynamic
equations. Here we follow closely to Palmer [17, Lemma 2.7, Proposition 2.8], who considered
finite-dimensional invertible O∆Es. One can also apply the Theorems 3.2 and 3.4 in the situation
of a “trivial dichotomy,” where P (t) ≡ IX or P (t) ≡ 0. In this case they state that certain
exponential growth properties of the solutions of (2.1) are preserved under linear-inhomogeneous
and semi-linear perturbations.

On the other hand, both subsequent results can be seen as a generalization of Corollary 2.11,
while the following theorem is also related to the problem of admissibility (cf. Massera
& Schäffer [15, pp. 165ff]), because it gives sufficient conditions, under which the pairs
(B+

τ,c(X ),B+
τ,c(X )) and (B−τ,d(X ),B−τ,d(X )) are admissible for the linear dynamic equation (2.1).

Theorem 3.2 (inhomogeneous perturbations): Let equation (2.1) possess an exponential di-
chotomy with a, b, K1,K2 and P on J . For the linear-inhomogeneous equation

x∆ = A(t)x+ r(t) (3.2)

and fixed τ0 ∈ Tκ, c, d ∈ C+
rdR(J,R), a C c C b, a C d C b the following holds:
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(a) If J = T+
τ0 is unbounded above, then for each τ ∈ J , x0 ∈ X and r ∈ B+

τ,c(X ) there exists
exactly one solution λ∗ ∈ B+

τ,c(X ) of (3.2) with (τ, λ∗(τ)− x0) ∈ U ; additionally it is

‖λ∗‖+τ,c ≤ K1 ‖x0‖+ C(c) ‖r‖+τ,c , (3.3)

(b) if J = T−τ0 is unbounded below, then for each τ ∈ J , x0 ∈ X and r ∈ B−τ,d(X ) there exists
exactly one solution λ∗ ∈ B−τ,d(X ) of (3.2) with (τ, λ∗(τ)− x0) ∈ S; additionally it is

‖λ∗‖−τ,d ≤ K2 ‖x0‖+ C(d) ‖r‖−τ,d ,

where we have used the abbreviation C(c) := K1
bc−ac + K2

bb−cc .

Remark 3.3: The inclusion (τ, λ∗(τ)−x0) ∈ U (resp. (τ, λ∗(τ)−x0) ∈ S) means that the initial
value λ∗(τ) and the point x0 have the same projection onto the fiber S(τ) (resp. U(τ)).

Proof. (a) Keep the points τ ∈ J , x0 ∈ X and the inhomogeneity r ∈ B+
τ,c(X ) fixed. Above all

the function λ∗ : T+
τ → X ,

λ∗(t) := ΦA(t, τ)P (τ)x0 +
∫ t

τ
ΦA(t, ρ+(s))P (ρ+(s))r(s) ∆s−

−
∫ ∞
t

Φ̄A(t, ρ+(s))
[
IX − P (ρ+(s))

]
r(s) ∆s (3.4)

is well-defined, since the integrands are rd-continuous in the variable s (hence they have an
anti-derivative by Hilger [11, Theorem 4.4]) and using Lemma 3.1 we obtain the estimate

‖λ∗(t)‖ ≤
(3.4)

≤ K1ea(t, τ) ‖x0‖+K1

∫ t

τ
ea(t, ρ+(s)) ‖r(s)‖ ∆s+K2

∫ ∞
t

eb(t, ρ+(s)) ‖r(s)‖ ∆s ≤

≤ K1ea(t, τ) ‖x0‖+

+
[
K1

∫ t

τ
ea(t, ρ+(s))ec(s, τ) ∆s+K2

∫ ∞
t

eb(t, ρ+(s))ec(s, τ) ∆s
]
‖r‖+τ,c ≤

(3.1)

≤ K1ea(t, τ) ‖x0‖+
[

K1

bc− ac
(ec(t, τ)− ea(t, τ)) +

K2

bb− cc
ec(t, τ)

]
‖r‖+τ,c for τ � t,

which on the other side implies the c+-quasiboundedness of λ∗ as well as the inequality (3.3).
Now the Lemma 4.1 applies to the first integral in (3.4) and Lemma 4.2 can be applied to the
indefinite integral in (3.4), which leads to

λ∆
∗ (t)

(3.4)
= A(t)ΦA(t, τ)P (τ)x0 + P (ρ+(t))r(t) +

∫ t

τ
A(t)ΦA(t, ρ+(s))P (ρ+(s))r(s) ∆s+

+
[
IX − P (ρ+(t))

]
r(t)−

∫ ∞
t

A(t)Φ̄A(t, ρ+(s))
[
IX − P (ρ+(s))

]
r(s) ∆s =

(3.4)
= A(t)λ∗(t) + r(t) for τ � t;

whence λ∗ is a solution of (3.2). It remains to show (τ, λ∗(τ)− x0) ∈ U , which however follows
from

P (τ)λ∗(τ)
(3.4)
= P (τ)x0 − P (τ)

∫ ∞
τ

Φ̄A(τ, ρ+(s))
[
IX − P (ρ+(s))

]
r(s) ∆s

(2.4)
= P (τ)x0.
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Eventually λ∗ is uniquely defined, because if ν∗ would be another solution of (3.2) with
(τ, ν∗(τ) − x0) ∈ U , then the difference λ∗ − ν∗ ∈ B+

τ,c(X ) would be a solution of the homo-
geneous equation (2.1) and P (τ) [λ∗(τ)− ν∗(τ)] = P (τ)x0 − P (τ)x0 = 0. Consequently λ∗ − ν∗
is a c+-quasibounded solution of (2.1) in U which has to vanish identically on T+

τ by Corollary
2.11(a).

(b) Completely analogously to (a), the function λ∗ : T−τ → X ,

λ∗(t) := Φ̄A(t, τ) [IX − P (τ)]x0 +
∫ t

−∞
ΦA(t, ρ+(s))P (ρ+(s))r(s) ∆s−

−
∫ τ

t
Φ̄A(t, ρ+(s))

[
IX − P (ρ+(s))

]
r(s) ∆s

is a d−-quasibounded solution of equation (3.2) with [IX − P (τ)]λ∗(τ) = [IX − P (τ)]x0,
i.e. (τ, λ∗(τ)− x0) ∈ S. The uniqueness in the present case follows from Corollary 2.11(b).

Theorem 3.4 (semi-linear perturbations): Let equation (2.1) possess an exponential dichotomy
with a, b, K1,K2 and P on J . For the semi-linear equation

x∆ = A(t)x+ g(t, x) + h(t),∆ (3.5)

fixed τ0 ∈ Tκ, c, d ∈ C+
rdR(J,R), a C c C b, a C d C b and under the assumptions

(i) g : J ×X → X is rd-continuous and fulfills

‖g(t, x)− g(t, x̄)‖ ≤ L ‖x− x̄‖ for t ∈ J, x, x̄ ∈ X , (3.6)

for a real constant L ≥ 0,

(ii) Lmax {C(c), C(d)} < 1,

the following holds:

(a) If J = T+
τ0 is unbounded above and g(·, 0) ∈ B+

τ,c(X ), then for each τ ∈ J , x0 ∈ X and
h ∈ B+

τ,c(X ) there exists exactly one solution λ∗ ∈ B+
τ,c(X ) of (3.5) with (τ, λ∗(τ)−x0) ∈ U ;

additionally it is

‖λ∗‖+τ,c ≤
1

1− LC(c)

[
K1 ‖x0‖+ C(c) ‖g(·, 0) + h‖+τ,c

]
, (3.7)

(b) if J = T−τ0 is unbounded below and g(·, 0) ∈ B−τ,d(X ), then for each τ ∈ J , x0 ∈ X and
h ∈ B−τ,d(X ) there exists exactly one solution λ∗ ∈ B−τ,d(X ) of (3.5) with (τ, λ∗(τ)−x0) ∈ S;
additionally it is

‖λ∗‖−τ,d ≤
1

1− LC(d)

[
K2 ‖x0‖+ C(d) ‖g(·, 0) + h‖−τ,d

]
,

where the constant C(c) > 0 is given in Theorem 3.2.

Remark 3.5: Under the additional assumptions g(t, 0) ≡ 0, h(t) ≡ 0 on J , the semi-
linear equation (3.5) has no nontrivial c+-quasibounded (resp. d−-quasibounded) solution with
(τ, λ∗(τ)) ∈ U on T+

τ (resp. (τ, λ∗(τ)) ∈ S on T−τ ).
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Proof. (a) First of all, the solutions of equation (3.5) are unique and they exist on T+
τ , which

follows from the proof of Hilger [11, Theorem 5.7]. Keep τ ∈ J , x0 ∈ X fixed and consider any
functions λ, λ̄ ∈ B+

τ,c(X ) for the moment. Then the mapping rλ : J → X , rλ(t) := g(t, λ(t))+h(t)
has the property

‖rλ(t)‖ ≤ ‖g(t, λ(t))− g(t, 0)‖+ ‖g(t, 0) + h(t)‖
(3.6)

≤ L ‖λ(t)‖+ ‖g(t, 0) + h(t)‖ for τ � t

and accordingly it is c+-quasibounded with

‖rλ‖+τ,c ≤ L ‖λ‖
+
τ,c + ‖g(·, 0) + h‖+τ,c . (3.8)

Therefore Theorem 3.2(a) implies that

x∆ = A(t)x+ rλ(t) (3.9)

has a unique c+-quasibounded solution Tx0λ : T+
τ → X with (τ, (Tx0λ)(τ) − x0) ∈ U , which is

given by the expression (3.4), namely

(Tx0λ)(t) := ΦA(t, τ)P (τ)x0 +
∫ t

τ
ΦA(t, ρ+(s))P (ρ+(s))rλ(s) ∆s−

−
∫ ∞
t

Φ̄A(t, ρ+(s))
[
IX − P (ρ+(s))

]
rλ(s) ∆s.

In particular the operator Tx0 : B+
τ,c(X ) → B+

τ,c(X ) is well-defined and the difference Tx0λ −
Tx0 λ̄ ∈ B+

τ,c(X ) solves the equation

x∆ = A(t)x+ g(t, λ(t))− g(t, λ̄(t)) (3.10)

with (τ, (Tx0λ)(τ)− (Tx0 λ̄)(τ)) ∈ U , where the inhomogeneity fulfills
∥∥g(·, λ(·))− g(·, λ̄(·))

∥∥+

τ,c
≤

L
∥∥λ− λ̄∥∥+

τ,c
by (3.6). Now Theorem 3.2(a) applied to the equation (3.10) has the consequence

∥∥Tx0λ− Tx0 λ̄
∥∥+

τ,c

(3.3)

≤ C(c)
∥∥g(·, λ(·))− g(·, λ̄(·))

∥∥+

τ,c
≤ LC(c)

∥∥λ− λ̄∥∥+

τ,c
;

hence Tx0 is a contraction on the Banach space B+
τ,c(X ) by assumption (ii). Using the contraction

principle (see e.g. Lang [14, p. 360, Lemma 1.1]), Tx0 has a unique fixed point λ∗ ∈ B+
τ,c(X )

with (τ, λ∗(τ)−x0) ∈ U . Moreover λ∗ is a solution of (3.9) (for λ = λ∗) and thus also a solution
of (3.5). Finally we get the estimate

‖λ∗‖+τ,c
(3.3)

≤ K1 ‖x0‖+ C(c) ‖rλ∗‖
+
τ,c

(3.8)

≤ K1 ‖x0‖+ C(c)
[
L ‖λ∗‖+τ,c + ‖g(·, 0) + h‖+τ,c

]
,

which implies (3.7)

(b) One has to proceed analogously to step (a) and use Theorem 3.2(b) hereby. Consequently
the proof is complete.

4 Appendix: Parameter Integrals

Here we state two results about the differentiability of integrals, which depend on a parameter.
So far they cannot be quoted from another reference concerning the calculus on measure chains.
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Lemma 4.1 (parameter integrals): Assume τ, t ∈ Tκ, τ � t and r ∈ Crd(Tκ,X ). If
Φ : {(t, τ) ∈ T× Tκ : τ � t} → L(X ) is a continuous mapping, Φ(·, t0) possesses a continu-
ous extension to a neighborhood of each right-dense t0 ∈ Tκ and if Φ(·, s) is rd-continuously
differentiable such that the limit

(∆1Φ)(t0, s) = lim
t→t0

Φ(t, s)− Φ(t0, s)
µ(t, t0)

exists uniformly in s on compact subsets in each right-dense t0 ∈ Tκ. Then the function F :
T→ X , F (t) :=

∫ t
τ Φ(t, s)r(s) ∆s is differentiable on Tκ with derivative

F∆(t) = Φ(ρ+(t), t)r(t) +
∫ t

τ
(∆1Φ)(t, s)r(s) ∆s.

Proof. The proof can be done similarly to Bohner & Peterson [4, Theorem 1.73].

Lemma 4.2 (improper parameter integrals): Assume that T is unbounded to the right, Φ :
T× T→ L(X ) is a continuous mapping, r ∈ Crd(T,X ) and

(i) for arbitrary t ∈ T it is
∫∞
t Φ(t, s)r(s) ∆s <∞,

(ii) Φ(·, s) is rd-continuously differentiable, where the limit

(∆1Φ)(t0, s) = lim
t→t0

Φ(t, s)− Φ(t0, s)
µ(t, t0)

exists uniformly in s on compact subsets of T in each right-dense t0 ∈ T,

(iii) there exists a locally bounded function c : T → R+
0 and a rd-continuous function m : T →

R+
0 with

∫
Tm(s)∆s <∞ such that ‖(∆1Φ)(t, s)r(s)‖ ≤ c(t)m(s) for s, t ∈ T.

Then the mapping F : T→ X , F (t) :=
∫∞
t Φ(t, s)r(s) ∆s is differentiable with derivative

F∆(t) = −Φ(ρ+(t), t)r(t) +
∫ ∞
t

(∆1Φ)(t, s)r(s) ∆s.

Proof. The proof can be done using arguments from to the well-known case of the time scale
T = R, which can be found in standard calculus textbooks on the Riemann integral.
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[5] C. V. Coffman and J. J. Schäffer, Dichotomies for linear difference equations, Math-
ematische Annalen, 172 (1967), pp. 139–166.

[6] W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, 629,
Springer-Verlag, Berlin-Heidelberg-New York, 1978.
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