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ABSTRACT. We derive a linearization theorem in the framework of dynamic equations on time scales.
This extends a recent result from [Y. Xia, J. Cao & M. Han, A new analytical method for the lineariza-
tion of dynamic equation on measure chains, Journal of Differential Equations 235 (2007), 527–543]
in various directions: Firstly, in our setting the linear part needs not to be hyperbolic and due to
the existence of a center manifold this leads to a generalized global Hartman-Grobman theorem for
nonautonomous problems. Secondly, we investigate the behavior of the topological conjugacy under
parameter variation.

These perturbation results are tailor-made for future applications in analytical discretization theory,
i.e., to study the relationship between ODEs and numerical schemes applied to them.

1. INTRODUCTION, MOTIVATION AND TERMINOLOGY

Linearization of dynamical models given by differential or difference equations is a very suc-
cessful and frequently used simplification concept in applied sciences, since linear equations are
mathematically well-understood and problems can be approached on an analytical level. Indeed, the
basic reason why such linear models actually yield to a realistic and successful description of real
world nonlinear models, is the Hartman-Grobman theorem.

For that reason, the theorem of Hartman-Grobman, also known as linearization theorem, is one
of the central results in the local theory of dynamical systems. Basically this result states that the
behavior of a given dynamical system near a hyperbolic fixed point is qualitatively the same as the
dynamics of its linearization close to the origin. Using a more technical terminology, this means that
the nonlinear flow is topologically conjugated to the corresponding linear flow, i.e., both flows can
be transformed into each other using a homeomorphism and the corresponding phase portraits are
homeomorphic images of each other. Thus, when dealing with such fixed points the linearization of
the system is sufficient to analyze its behavior. The classical Hartman-Grobman theorem dates back
to [Gro59, Gro62, Ha60a] (ordinary differential equations) and [Ha60b] (maps, i.e., autonomous
difference equations). Meanwhile it can be found in many textbooks on dynamical systems.

The central and generic assumption in the standard Hartman-Grobman setting is hyperbolicity
of the linearization. If we have eigenvalues on the imaginary axis respectively on the unit circle,
though, then the situation changes drastically due to the existence of a center manifold. This invari-
ant manifold contains more complex dynamical objects, like periodic motions or homo-/heteroclinic
orbits. Such an extended set-up is the playground for the generalized Hartman-Grobman theorem,
which states that the dynamical behavior near a nonhyperbolic equilibrium is topologically conju-
gated to a saddle times the flow on the center manifold. This geometrically intuitive result is due to
[Sos72] and [Pal73, Pal80]. The latter three references deal with ODEs, but a parallel treatment of
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the continuous and discrete case is contained in [KP90]. Finally, variants of the Hartman-Grobman
theorem for different kinds of differential equations can be found in [LP99] (impulsive equations),
[Far01] (retarded FDEs) and [Lu91] (scalar reaction diffusion equations).

The recent years saw an increasing interest in nonautonomous equations. They are well-motivated
due to various reasons of mathematical nature (e.g., studies on the behavior near non-constant ref-
erence solutions, or a description of adaptive numerical schemes), as well as necessity from the
applications (for instance, the desire to incorporate time-dependent parameters into models in order
to obtain a more realistic description of phenomena under consideration). Accordingly, extensions
of the (generalized) Hartman-Grobman theorem to nonautonomous equations go back to the thesis
[Wan91]. Moreover, for nonautonomous ODEs of Carathéodory-type one can find them in [AW00]
or [Sie99], whereas [AW06] is concerned with nonautonomous difference equations.

Another quite recent field of research is to investigate equations on inhomogeneous time scales
(cf. [Hil90, BP01]). The corresponding calculus on measure chains or time scales (closed subsets
T of the reals) has two main motivations. On the one hand, it yields an elegant and accessible
framework to describe discrete and continuous dynamics, i.e., differential (T = R) and difference
equations (T = Z) in a unified manner. Moreover, it provides an extension of these two classical sit-
uations by allowing inhomogeneous time scales, where the time axis T is different from the integers
or the reals. For instance, in biological applications with hibernation effects it might be adequate
to use a time scale consisting of the union of disjoint closed intervals. In discretization theory, the
appropriate time scale is a grid of discrete points on the real axis. With these perspectives in vision,
a generalized Hartman-Grobman theorem for dynamic equations on time scales already appeared in
[Hil96]. Since the measure chain calculus has reached further maturity in the mean time, it is our
intention to prepare an application and extend these results as follows:

• We present a transparent and geometric approach to global linearization and decoupling
problems using invariant foliations – thus, our methods differ from [Hil96]. In particular,
we harvest from technical preliminaries on pseudo-stable and -unstable foliations obtained
in [Pöt06]. Additionally, the above references [Wan91, Sie99, AW00, AW06] and [Hil96]
assume a decoupled linear part, while we, despite concepts like kinematical similarity, think
it is more canonical and applicable to work with an exponentially trichotomic system.

• Not long ago, a Hartman-Grobman theorem on time scales appeared in the interesting pa-
per [XCH07], with a proof based on admissiblity properties for exponential dichotomies.
We contribute to this nice result by addressing the nonhyperbolic situation, hence, allowing
the presence of a center manifold and including a particular parameter dependence. Both
improvements are not straight forward consequences of [XCH07].

• Finally, we prepare a theoretical perturbation framework for up-coming applications in an-
alytical discretization theory, i.e., the question how topological conjugacy behaves under
numerical discretization (see [Pöt07]). The time scales calculus is well-suited for such ques-
tions: Using [Pöt03] we obtained persistence and convergence results for invariant manifolds
in [KP05]. The present paper plays a similar role as [Pöt03] did for invariant manifolds, but
now to investigate the more complex problem of topological decoupling and linearization.

The mathematical part of this paper is divided into four sections. After introducing some notation, in
Section 2 we lay down our essential set-up on semilinear dynamic equation with a Lipschitzian non-
linearity and discuss our essential assumptions. The following Section 3 contains our construction of
invariant foliations and fiber bundles, which generalize classical invariant manifolds; moreover, we
deduce an asymptotic phase property. Section 4 suggests a nonautonomous notion for topological
conjugacy and applies it in order to decouple dynamic equations. Our primary result, the general-
ized Hartman-Grobman theorem is featured in Section 5, which implies the main result of [XCH07]
(cf. Corollary 5.6). Our corresponding perturbation results are supplemented as corollaries.



LINEARIZATION AND PERTURBATION ON INHOMOGENEOUS TIME SCALES 3

The Banach spaces X of this paper are all real (F = R) or complex (F = C) and their norm is
denoted by ‖·‖. L(X ) is the Banach space of linear bounded endomorphisms, IX the identity on X ,
and R(T ) := TX the range of an operator T ∈ L(X ).

If a mapping f : Y → Z between metric spaces Y and Z satisfies a Lipschitz condition, then its
smallest Lipschitz constant is denoted by Lip f . When f : Y × P → Z additionally depends on a
parameter from some set P , we write

Lip1 f := sup
p∈P

Lip f(·, p).

In case P has a metric structure, we define Lip2 f accordingly, and proceed along these lines for
mappings depending on more than two variables.

2. INHOMOGENEOUS TIME SCALES AND SEMILINEAR DYNAMIC EQUATIONS

Trying to keep this paper largely self-contained, we start the mathematical part by introducing
some basic terminology from the calculus on measure chains (including time scales). For further
details, see the pioneering paper [Hil90] or the monograph [BP01]). In all subsequent considera-
tions we deal with a measure chain (T,%, µ), i.e. a conditionally complete totally ordered set (T,%)
(see [Hil90, Axiom 2]) with growth calibration µ : T2 → R (see [Hil90, Axiom 3]). The most
intuitive and relevant examples of measure chains are time scales, where T is a canonically ordered
closed subset of the real numbers and µ measures the oriented distance by µ(t, s) = t− s. Further-
more, the function σ : T → T, σ(t) := inf {s ∈ T : t ≺ s} defines the forward jump operator and
µ∗ : T → R, µ∗(t) := µ(σ(t), t) the graininess. A T-interval I is a subset of T with I ∪ T = I ∩ T
and for τ, T ∈ T we write

[τ, T ]T := {t ∈ T : τ % t % T} , T+
τ := {s ∈ T : τ % s} , T−τ := {s ∈ T : s % τ} .

The classical time scales R, Z are homogeneous in the sense that their graininess is constant. We
allow a much broader class of possibly inhomogeneous time scales. Indeed, since we deal with
asymptotic behavior and stability questions, the following standing assumption is legitimate.

Hypothesis. µ(T, τ) ⊆ R, τ ∈ T, is unbounded above, and µ∗ is bounded.

The set Crd(T,X ) denotes the rd-continuous maps from T toX (cf. [Hil90, Section 4.1]). Growth
rates are functions a ∈ Crd(T, R) with −1 < inft∈T µ∗(t)a(t), supt∈T µ∗(t)a(t) < ∞. Moreover,
for a, b ∈ Crd(T, R) we introduce the relations ,b− a- := inft∈T(b(t)− a(t)),

a ! b :⇔ 0 < ,b− a- , a " b :⇔ 0 ≤ ,b− a-
and the set of positively regressive functions

C+
rdR(T, R) := {a ∈ Crd(T, R) : a is a growth rate and 1 + µ∗(t)a(t) > 0 for t ∈ T} .

This class is technically appropriate to describe exponential growth and for a ∈ C+
rdR(T, R) the

exponential function on T is denoted by ea(t, s) ∈ R, s, t ∈ T (cf. [Hil90, Theorem 7.3]).
To provide a flavor of these rather abstract notions, the following example might be helpful for

readers unfamiliar with the realm of measure chains (or time scales).

Example 2.1. A variety of time scales is discussed in [BP01]. Of particular interest, though, are the
time scales T = R to describe ordinary differential equations, as well as discrete meshes

T = D :=
{

tk ∈ R : lim
k→±∞

tk = ±∞ and tk < tk+1 for all k ∈ Z
}

to capture numerical schemes for temporal discretizations with varying step-sizes tk+1 − tk – or
simply difference equations. On such time scales, the above objects are summarized in Figure 1.
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T R D
σ σ(t) = t σ(tk) = tk+1

µ∗ µ∗(t) ≡ 0 µ∗(tk) = tk+1 − tk
Crd(T,X ) C(R,X ) {φ : D → X}

ea(t, τ) ea(t, τ) = exp
(∫ t

τ a(a)ds
)

ea(tk, tn) =
∏k−1

l=n [1 + (tl+1 − tl)a(tl)]

FIGURE 1. Continuous and discrete time scales

Measure chain integrals of such mappings φ : T → X are always understood in Lebesgue’s sense
and denoted by

∫ t
τ φ(s) ∆s for τ, t ∈ T, provided they exist (cf. [Nei01]).

It is handy to introduce the so-called quasiboundedness, a convenient notion due to Bernd
Aulbach describing exponential growth of functions. Thereto we keep τ ∈ T fixed and choose
growth rates c, d ∈ C+

rdR(T, R). A function φ : T → X is said to be c+-quasibounded, if

‖φ‖+τ,c := sup
t∈T+

τ

‖φ(t)‖ ec(τ, t) < ∞

and the set X+
τ,c :=

{
φ ∈ Crd(T+

τ ,X ) : ‖φ‖+τ,c < ∞
}

is a Banach space with norm ‖·‖+τ,c (this
can be shown easily using [Hil90, Theorem 4.1(iii)]). Moreover, one has a continuous embedding
X+

τ,c ↪→ X+
τ,d for c " d with

(2.1) ‖φ‖+τ,d ≤ ‖φ‖
+
τ,c for φ ∈ X+

τ,c.

In a dual fashion, we define the Banach space of c−-quasibounded functions, which is given by
X−τ,c := {φ ∈ Crd(T−τ ,X ) : supt∈T−τ ‖φ(t)‖ ec(τ, t) < ∞} canonically equipped with the norm
‖φ‖−τ,c := supt∈T−τ ‖φ(t)‖ ec(τ, t). Here, one has X−τ,c ↪→ X−τ,d for d " c. Finally, a function φ is
called c±-quasibounded, if

‖φ‖±τ,c := sup
t∈T

‖φ(t)‖ ec(τ, t) < ∞

and the set X±
c :=

{
φ ∈ Crd(T,X ) : ‖φ‖±τ,c < ∞

}
is a Banach space with norm ‖·‖±τ,c.

Given A ∈ Crd(T,L(X )), a linear dynamic equation is of the form

(2.2) x∆ = A(t)x;

here the transition operator ΦA(t, s) ∈ L(X ), s % t, is the solution of the operator-valued initial
value problem X∆ = A(t)X , X(s) = IX in L(X ).

Example 2.2. The T-derivative φ∆(t) ∈ X of a function φ : T → X reads as

φ∆(t) = φ̇(t) if T = R, φ∆(tk) =
φ(tk+1)− φ(tk)

tk+1 − tk
if T = D.

However, note that the formula for φ∆(t) is more involved than the above differential resp. difference
quotient on more complicated time scales (think of, e.g., a Cantor set T).

For a meaningful notion of pseudo-hyperbolicity in this framework, further notions are needed.
A projection-valued mapping P : T → L(X ) is an invariant projector of (2.2), if

(2.3) P (t)ΦA(t, s) = ΦA(t, s)P (s) for s, t ∈ T, s % t,

holds, and finally an invariant projector P is denoted as regular, if

IX + µ∗(t)A(t)|R(P (t)) : R(P (t)) → R
(
P (σ(t))

)
is bijective for all t ∈ T.
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This regularity condition enables us to deal with non-invertible dynamic equations. In fact, the
restriction Φ̄A(t, s) := ΦA(t, s)|R(P (s)) : R(P (s)) → R(P (t)), s % t, is a well-defined isomor-
phism, and we write Φ̄A(s, t) for its inverse (cf. [Pöt02, p. 85, Lemma 2.1.8]). Having this at hand,
for two invariant projectors P,Q we can define Green’s function GP

Q : T× T → L(X ) of (2.2) by

(2.4) GP
Q(t, s) :=

{
ΦA(t, s)Q(s) for s % t

−Φ̄A(t, s)P (s) for t ≺ s
.

We close our discussion of invariant projectors by

Lemma 2.1. A regular invariant projector P of (2.2) is rd-continuously differentiable with

P∆(t) = A(t)P (t)− P (σ(t))A(t) for t ∈ T.

Proof. See [Pöt02, p. 88, Satz 2.1.10]. #

The results of this paper apply to a certain class of dynamic equations which are dominated
by their linear parts. The advantage of dealing with such semilinear equations is that we obtain
quantitative global results using transparent proofs. Local results, which hold under more realistic
assumptions on the nonlinearities, can be deduced easily using standard cut-off techniques (cf., e.g.,
[Pöt06, Theorem 4.1]). Furthermore, for the mentioned applications in discretization theory it is cru-
cial to deal with equations admitting a specific dependence on parameters θ ∈ F. As demonstrated
in [KP05], θ serves as a homotopy parameter between a continuous flow and its discretization using
a numerical scheme (e.g., an Euler or Runge-Kutta method). More precisely, we consider nonlinear
perturbations of (2.2) given by

(2.5) x∆ = A(t)x + H(t, x; θ)

with the particular nonlinearity

H(t, x; θ) := F1(t, x) + θF2(t, x)

and rd-continuous mappings F1, F2 : T × X → X (see [Hil90, Section 5.1]). Further assumptions
on F1, F2 can be found below in Hypothesis 2.2. A solution of the nonlinear dynamic equation (2.5)
is a function φ : I → X satisfying the identity φ∆(t) ≡ A(t)φ(t) + F1(t, φ(t)) + θF2(t, φ(t)) on a
T-interval I. Provided it exists, ϕ denotes the general solution of (2.5), i.e., ϕ(·; τ, ξ; θ) solves (2.5)
on T+

τ and satisfies the initial condition ϕ(τ ; τ, ξ; θ) = ξ for τ ∈ T, ξ ∈ X .
In general, solutions of dynamic equations need not to exist or to be unique in backward time.

However, in later results we have to enforce backward existence and uniqueness. Hence, we define
the dynamic equation (2.5) to be regressive on a set Θ ⊆ F, if

(2.6) Tt,θ := IX + µ∗(t) [A(t) + F1(t, ·) + θF2(t, ·)] : X → X for t ∈ T, θ ∈ Θ

is a homeomorphism and T̃ : T× X ×Θ → X , T̃ (t, x; θ) := T−1
t,θ (x) is rd-continuous.

Dynamic equations on measure chains (or time scales) are intrinsically nonautonomous. Accord-
ingly, the following notions should provide some insight into their geometric behavior. We fix a
certain parameter θ ∈ Θ. An arbitrary (nonempty) subset S(θ) of the extended state space T×X is
called a nonautonomous set with τ -fibers

S(θ)τ := {x ∈ X : (τ, x) ∈ S(θ)} for τ ∈ T.

We denote S(θ) as forward invariant, if for any pair (τ, ξ) ∈ S(θ) one has the inclusion

ϕ(t; τ, S(θ)τ ; θ) ⊆ S(θ)t for t ∈ T+
τ

and S(θ) is called invariant, if equality holds. Presumed each fiber S(θ)τ is a submanifold of X , we
speak of a fiber bundle.
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From now on we deal with nonlinearities satisfying global Lipschitz conditions with small con-
stants. In this sense, the dynamic equations (2.5) are semilinear and we precisely assume

Hypothesis 2.2. Let K1,K2 ≥ 1 be reals and a, b ∈ C+
rdR(T, R) growth rates with a ! b.

(i) Exponential dichotomy: There exists a regular invariant projector P : T → L(X ) of (2.2)
such that the estimates

‖ΦA(t, s)Q(s)‖ ≤ K1ea(t, s),
∥∥Φ̄A(s, t)P (t)

∥∥ ≤ K2eb(s, t) for t % s(2.7)

are satisfied with the complementary projector Q(t) := IX − P (t).
(ii) Lipschitz perturbation: For i = 1, 2 the identities Fi(t, 0) ≡ 0 on T hold and the mappings

Fi satisfy the Lipschitz estimates

(2.8) Li := sup
t∈T

LipFi(t, ·) < ∞.

Moreover, we set K := 2(K1 + K2 + K1K2 max {K1,K2}), require

(2.9) L1 <
,b− a-

2K
,

choose a fixed δ ∈
(
KL1,

&b−a'
2

)
and define

Γ :=
{
c ∈ C+

rdR(T, R) : a + δ ! c ! b− δ
}

, Γ̄ :=
{
c ∈ C+

rdR(T, R) : a + δ " c " b− δ
}

.

Remark 2.1. (1) For the special case of ordinary differential equations (T = R) our Hypothesis 2.2(i)
reduces to the generalized dichotomy notion introduced in [Mul84], allowing time-dependent decay
rates (cf. Figure 1).

(2) In our considerations we sometimes have to restrict the parameter space Θ. As general con-
vention, we define Θ ⊆ F to be a compact neighborhood of 0 ∈ F satisfying

Θ ⊆ {θ ∈ F : L2 |θ| ≤ L1} .

(3) The nonlinearity H : T× X × F → X satisfies the Lipschitz estimate

(2.10) Lip2 H(·; θ) ≤ L1 + |θ|L2 ≤ 2L1 for θ ∈ Θ

and the existence of suitable values for δ yields from (2.9): Since we have δ < &b−a'
2 , there exist

functions c ∈ Γ and in addition a + δ, b− δ are positively regressive. Furthermore, for later use we
state the inequalities

L(θ) :=
K1 + K2

δ
(L1 + |θ|L2)

(2.10)
≤ 2

K1 + K2

δ
L1

(2.9)
< 1,(2.11)

)(θ) :=
K1K2

K1 + K2

L(θ)
1− L(θ)

< min
{

1
K1

, 1
K2

}
< 1 for θ ∈ Θ.(2.12)

Note that the inequality (2.9) is stronger than the corresponding assumptions imposed in [Pöt07,
Pöt06, KP05] to deduce variants of Theorem 3.5 (without the statement on the asymptotic phase) or
Proposition 3.1. Nevertheless, we demand it for the sake of consistency.

(4) The general solution ϕ : {(t, τ, ξ, θ) ∈ T × T × X × F : τ % t} → X of the dynamic
equation (2.5) exists uniquely and is continuous. If we additionally suppose that (2.5) is regressive
on Θ, then even ϕ : T × T × X × F → X is well-defined and continuous (see [Pöt02, p. 38,
Satz 1.2.17(a)]). In particular, referring to (2.10), a sufficient condition for regressivity is given by
µ∗(t) [A(t) + 2L1] < 1 for all t ∈ T.
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As shown in our earlier papers [Pöt07, Pöt06, KP05], the above Hypothesis 2.2 is sufficient to
derive a quite general version of the stable/unstable manifold theorem for dynamic equations of the
form (2.5) – including attractivity properties of the invariant manifolds in terms of an asymptotic
phase. In this paper our interest is focused on the geometrical behavior of (2.5) under variation
of the parameter θ ∈ Θ. For our analysis concerning this matter, where we utilize the Lyapunov-
Perron method, it is crucial to have an additional assumption controlling the exponential growth of
solutions. At first glance it might seem purely technical and artificial, but can be justified in many
applications, particularly if a certain “dissipativity” is present.

Hypothesis 2.3. Assume there exist reals C+
i , C−i ,≥ 0 and functions c+

i , c−i ∈ C+
rdR(T, R) for

i ∈ {1, 2} such that for all τ ∈ T, ξ ∈ X and θ ∈ Θ the following holds:
(i) The general solution of (2.5) satisfies

‖ϕ(t; τ, ξ; θ)‖ ≤ C+
1 ec+

1
(t, τ) ‖ξ‖ , Lipϕ(t; τ, ξ; ·)|Θ ≤ C+

2 ec+
2
(t, τ) ‖ξ‖ for t ∈ T+

τ .(2.13)

(ii) The dynamic equation (2.5) is regressive on Θ and its general solution satisfies

‖ϕ(t; τ, ξ; θ)‖ ≤ C−1 ec−1
(t, τ) ‖ξ‖ , Lipϕ(t; τ, ξ; ·)|Θ ≤ C−2 ec−2

(t, τ) ‖ξ‖ for t ∈ T−τ .(2.14)

The existence of classical Lipschitz estimates as given in Hypothesis 2.2(ii) is actually enough to
deduce sufficient conditions for Hypothesis 2.3 to hold. Yet, the resulting growth rates c+

i , c−i are
often too pessimistic for applications.

3. INVARIANT FIBER BUNDLES AND FOLIATIONS

This section contains the key ingredients to understand the geometric behavior for semilinear
dynamic equations of the form (2.5). We derive that there is a (pseudo-hyperbolic) saddle point
structure around the trivial solution and obtain information on the corresponding pseudo-stable and
-unstable sets (we call them invariant fiber bundles). They are given as Lipschitzian graphs which
attract solutions in one time direction. This attraction will be given in terms of an asymptotic phase.
All these properties, and their proofs, have already been prepared in [Pöt03] and [Pöt06].

Our earlier work [Pöt03] also contains precise knowledge on the behavior of the invariant fiber
bundles under variation of the parameter θ in (2.5). Hence, the basic task of the section is to inves-
tigate how the asymptotic phase property is influenced, when θ is varied. Recapitulating [Pöt06],
the asymptotic phase had been constructed using an invariant foliation of the extended state space.
Thus, the main load will consist of obtaining corresponding perturbation results on this foliation.

Proposition 3.1 (invariant fibers). Assume that Hypothesis 2.2 is fulfilled. Then for all τ ∈ T,
ξ ∈ X , θ ∈ Θ the following holds:

(a) The pseudo-stable fiber through (τ, ξ), given by

S+(ξ, θ)τ :=
{
ζ ∈ X : ϕ(·; τ, ζ; θ)− ϕ(·; τ, ξ; θ) ∈ X+

τ,c for all c ∈ Γ
}

is forward invariant w.r.t. (2.5), i.e.,

(3.1) ϕ(t; τ, S+(ξ, θ)τ ; θ) ⊆ S+(ϕ(t; τ, ξ; θ), θ)t for t ∈ T+
τ

and possesses the representation

(3.2) S+(ξ, θ) =
{
(τ, η + s+(τ, η, ξ; θ)) : η ∈ R(Q(τ))

}

as graph of a continuous mapping s+ : T× X × X ×Θ → X satisfying

s+(τ, η, ξ; θ) = s+(τ, Q(τ)η, ξ; θ) ∈ R(P (τ)) for η ∈ X .

Furthermore, s+ : T× X × X ×Θ → X is linearly bounded

(3.3)
∥∥s+(τ, η, ξ; θ)

∥∥ ≤ ‖P (τ)ξ‖+ )(θ) ‖η − ξ‖ for η ∈ X ,
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and satisfies Lip2 s+(·; θ) ≤ K1)(θ).
(b) For T unbounded below and if (2.5) is regressive on Θ, then the pseudo-unstable fiber

through (τ, ξ), given by

R−(ξ, θ)τ :=
{
ζ ∈ X : ϕ(·; τ, ζ; θ)− ϕ(·; τ, ξ; θ) ∈ X−τ,c for all c ∈ Γ

}

is invariant w.r.t. (2.5), i.e.,

(3.4) ϕ(t; τ, R−(ξ, θ)τ ; θ) = R−(ϕ(t; τ, ξ; θ), θ)t for t ∈ T
and possesses the representation

R−(ξ, θ) =
{
(τ, η + r−(τ, η, ξ; θ)) : η ∈ R(P (τ))

}

as graph of a continuous mapping r− : T× X × X ×Θ → X satisfying

r+(τ, η, ξ; θ) = r+(τ, P (τ)η, ξ; θ) ∈ R(Q(τ)) for η ∈ X .

Furthermore, r− : T× X × X ×Θ → X is linearly bounded

(3.5)
∥∥r−(τ, η, ξ; θ)

∥∥ ≤ ‖Q(τ)ξ‖+ )(θ) ‖η − ξ‖ for η ∈ X ,

and satisfies Lip2 r−(·; θ) ≤ K2)(θ).
(c) For T unbounded below and if (2.5) is regressive on Θ, then there exists a unique continuous

mapping Π : T× X × X ×Θ → X geometrically given by

(3.6) S+(x1, θ)τ ∩R−(x2, θ)τ = {Π(τ, x1, x2; θ)} for τ ∈ T, x1, x2 ∈ X , θ ∈ Θ.

Furthermore, Π is linearly bounded

(3.7) ‖Π(τ, x1, x2; θ)‖ ≤
(K2 + )(θ))(1 + 2)(θ))

1− )(θ)2
‖x1‖+

(K1 + )(θ))(1 + 2)(θ))
1− )(θ)2

‖x2‖

for all τ ∈ T, x1, x2 ∈ X and θ ∈ Θ.

Remark 3.1. If the dynamic equation (2.5) is regressive on Θ, then the pseudo-stable fibers S+(ξ, θ)
are invariant w.r.t. (2.5), i.e., the inclusion (3.1) can be strengthened to

(3.8) ϕ(t; τ, S+(ξ, θ)τ ; θ) = S+(ϕ(t; τ, ξ; θ), θ)t for t ∈ T.

Proof. The assertions (a) and (b) have already been shown in [Pöt06, Proposition 3.2]. Thus, it
remains to establish (c). Thereto, let τ ∈ T, x1, x2 ∈ X and θ ∈ Θ. Having the inequality (2.12) at
hand, we know from (a), or (b),

Lip2 s+(·; θ) ≤ K1)(θ) < 1, Lip2 r−(·; θ) ≤ K2)(θ) < 1,(3.9)

respectively. The intersection S+(x1, θ)τ ∩R−(x2, θ)τ contains a point y ∈ X , if and only if there
exist p ∈ R(P (τ)), q ∈ R(Q(τ)) so that

y = q + s+(τ, q, x1; θ), y = p + r−(τ, p, x2; θ),

which, in turn, is equivalent to the fact that y allows the representation y = p + q, where p ∈
R(P (τ)), q ∈ R(Q(τ)) solve the equations

p = s+(τ, q, x1; θ), q = r−(τ, p, x2; θ).(3.10)

Hence, we have to show that the equations (3.10) are uniquely solvable. Despite the fact that this is
an easy consequence of the (uniform) contraction principle, we give the argument for later reference.
Thanks to (a), (b) and (3.9), the two mappings

Π−τ : R(P (τ))× X × X ×Θ → R(P (τ)),

(p, x1, x2, θ) 2→ r−(τ, s+(τ, p, x1; θ), x2; θ),

Π+
τ : R(Q(τ))× X × X ×Θ → R(Q(τ)),
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(q, x1, x2, θ) 2→ s+(τ, r−(τ, q, x2; θ), x1; θ)

are continuous and contractions in their first arguments (uniformly in the parameters τ , x1, x2 and θ).
Consequently, the contraction mapping principle implies that there exist unique fixed point functions
p∗ : T× X × X ×Θ → X and q∗ : T× X × X ×Θ → X for Π−τ and Π+

τ , respectively. Thus,

(3.11) Π(τ, x1, x2; θ) := p∗(τ, x1, x2; θ) + q∗(τ, x1, x2; θ)

satisfies the geometric property (3.6). Given τ0 ∈ T, x0
1, x

0
2 ∈ X , θ0 ∈ Θ arbitrarily, we have

∥∥p∗(τ, x1, x2; θ)− p∗(τ0, x0
1, x

0
2; θ

0)
∥∥(3.12)

≤ 1
1− Lip1 Π+

τ

∥∥Π+
τ (p∗(τ0, x0

1, x
0
2; θ

0), x1, x2; θ)−Π+
τ0

(p∗(τ0, x0
1, x

0
2; θ

0), x0
1, x

0
2; θ

0)
∥∥ ,

∥∥q∗(τ, x1, x2; θ)− q∗(τ0, x0
1, x

0
2; θ

0)
∥∥(3.13)

≤ 1
1− Lip1 Π−τ

∥∥Π−τ (p∗(τ0, x0
1, x

0
2; θ

0), x1, x2; θ)−Π−τ0
(p∗(τ0, x0

1, x
0
2; θ

0), x0
1, x

0
2; θ

0)
∥∥ .

and these inequalities immediately imply the continuity of Π inherited from the corresponding prop-
erties of s+ and r−. In order to prove that Π(τ, ·; θ) is linearly bounded by (3.11), it suffices to show
that p∗(τ, ·; θ) and q∗(τ, ·; θ) have this property. This can be seen as follows,

‖p∗(τ, x1, x2; θ)‖
(3.10)=

∥∥s+(τ, q∗(τ, x1, x2; θ), x1; θ)
∥∥

(3.3)
≤ ‖P (τ)x1‖+ )(θ) ‖q∗(τ, x1, x2; θ)‖+ )(θ) ‖x1‖

(3.5)
≤ (K2 + )(θ)) ‖x1‖+ )(θ) ‖Q(τ)x2‖+ )(θ)2 ‖x2‖+ )(θ)2 ‖p∗(τ, x1, x2; θ)‖ ,

hence,

‖p∗(τ, x1, x2; θ)‖ ≤
K2 + )(θ)
1− )(θ)

‖x1‖+
)(θ)(K1 + )(θ))

1− )(θ)2
‖x2‖

and similarly

‖q∗(τ, x1, x2; θ)‖ ≤
K1 + )(θ)
1− )(θ)

‖x2‖+
)(θ)(K2 + )(θ))

1− )(θ)2
‖x1‖ ,

which implies (3.7). We have established (c). #

For later use, we accompany Proposition 3.1 by a corollary. It investigates the behavior of the
functions s+, r− and Π under perturbation, i.e., variation of the parameter θ. Having applications to
discretization theory in mind, this can be considered as crucial result. It provides, in a certain sense,
precise perturbation results for the invariant fibers of (2.5).

Corollary 3.2 (perturbed invariant fibers). Let τ ∈ T. Assume that Hypotheses 2.2–2.3 are fulfilled.
Then for all θ0 ∈ Θ the following holds:

(a) For any sets B1, B2 ⊆ X such that Q(τ)B1 and B2 are bounded, one has

(3.14) lim
θ→θ0

s+(τ, η, ξ; θ) = s+(τ, η, ξ; θ0) uniformly in η ∈ B1, ξ ∈ B2,

and in case a ! c+
2 ! b− δ there exist reals C̄+

1 , C̄+
2 ≥ 0 such that

(3.15) Lip s+(τ, η, ξ, ·) ≤ C̄+
1 ‖ξ‖+ C̄+

2 ‖Q(τ)η − ξ‖ for τ ∈ T, ξ, η ∈ X .



10 CHRISTIAN PÖTZSCHE

(b) If T is unbounded below and if Hypothesis 2.3(ii) holds, then for sets B1, B2 ⊆ X such that
P (τ)B1 and B2 are bounded, one has

(3.16) lim
θ→θ0

r−(τ, η, ξ; θ) = r−(τ, η, ξ; θ0) uniformly in η ∈ B1, ξ ∈ B2,

and in case a + δ ! c−2 ! b there exist reals C̄−1 , C̄−2 ≥ 0 such that

(3.17) Lip r−(τ, η, ξ, ·) ≤ C̄−1 ‖ξ‖+ C̄−2 ‖P (τ)η − ξ‖ for τ ∈ T, ξ, η ∈ X .

(c) If T is unbounded below and if Hypothesis 2.3(ii) holds, then for bounded sets B1, B2 ⊆ X ,
one has

(3.18) lim
θ→θ0

Π(τ, x1, x2; θ) = Π(τ, x1, x2; θ0) uniformly in x1 ∈ B1, x2 ∈ B2,

and in case a ! c+
2 ! b− δ, a + δ ! c−2 ! b there exist reals C̄1, C̄2 ≥ 0 such that

(3.19) LipΠ(τ, x1, x2, ·) ≤ C̄1 ‖x1‖+ C̄2 ‖x2‖ for τ ∈ T, x1, x2 ∈ X .

The proof of Corollary 3.2 is involved. Actually, before giving it, we have to recapitulate some
basic concepts from our earlier paper [Pöt06] and have a closer look at them. Simply spoken, the
basic tool for our analysis will be the equation of perturbed motion related to a solution of (2.5)
starting in (τ, ξ) ∈ T × X . From a somehow more technical perspective, the general solution
ϕ of (2.5) exists uniquely in forward time and consequently the mapping G : {(t, x, τ, ξ, θ) ∈
T× X × T× X × F : τ ∈ T, t ∈ T+

τ , x, ξ ∈ X}→ X ,

G(t, x; τ, ξ, θ) := H(t, x + ϕ(t; τ, ξ; θ); θ)−H(t, ϕ(t; τ, ξ; θ); θ)

is well-defined under the above Hypothesis 2.2. Moreover, by Remark 2.1(4) the nonlinearity G is
continuous in (τ, ξ, θ), G(t, 0; τ, ξ, θ) ≡ 0 and Lip2 G(·; θ) ≤ L1 + |θ|L2.

Lemma 3.3. Assume that Hypothesis 2.2 is fulfilled and choose τ ∈ T fixed. Then for growth rates
c, d ∈ C+

rdR(T, R), a ! c ! b, c " d, the operator S+
τ : X+

τ,c ×R(Q(τ))× X ×Θ → X+
τ,d,

S+
τ (ψ; η, ξ, θ) := ΦA(·, τ) [η −Q(τ)ξ] s +

∫ ∞

τ
GP

Q(·,σ(s))G(s,ψ(s); τ, ξ, θ) ∆s(3.20)

is well-defined and has, for θ0 ∈ Θ and c ∈ Γ̄, the following properties:
(a) S+

τ (·; η, ξ, θ0) : X+
τ,c → X+

τ,d is a uniform contraction with Lipschitz constant

(3.21) LipS+
τ (·; η, ξ, θ0) ≤ L(θ0) for η ∈ R(Q(τ)), ξ ∈ X ,

and, if additionally Hypothesis 2.3 holds, one furthermore obtains
(b) in case c ! d " b and for bounded sets B1 ⊆ X+

τ,c, B2 ⊆ X one has

(3.22) lim
θ→θ0

∥∥S+
τ (ψ; η, ξ, θ)− S+

τ (ψ; η, ξ, θ0)
∥∥+

τ,d
= 0

uniformly in ψ ∈ B1, η ∈ R(Q(τ)) and ξ ∈ B2,
(c) in case a ! c+

2 ! b, c+
2 " d one has

(3.23) LipS+
τ (ψ; η, ξ, ·) ≤ 4C+

2 L1λ(c+
2 ) ‖ξ‖+ 4L2λ(c) ‖ψ‖+τ,c

for all ψ ∈ X+
τ,c, η ∈ R(Q(τ)), ξ ∈ X , with λ(c) := K1

&c−a' + K2
&b−c' .

Proof. Referring to [Pöt06, Lemma 3.1(b)] it remains to deduce the assertions (b) and (c). Thereto,
we keep τ ∈ T, ξ ∈ X arbitrary, but fixed. For notational reasons we write

ϕ(t) := ϕ(t; τ, ξ; θ), ϕ0(t) := ϕ(t; τ, ξ; θ0) for t ∈ T+
τ .
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(b) We begin with two preliminary inequalities and suppress the dependence of G on τ, ξ. A
direct application of the triangle inequality to the definition of G gives us

(3.24) ‖G(t, x; θ)−G(t, x; θ0)‖
(2.10)
≤ 4L1 ‖x‖ for t ∈ T+

τ , x ∈ X , θ ∈ Θ,

and, on the other hand, one has

‖G(t, x; θ)−G(t, x; θ0)‖(3.25)
≤ ‖H(t, x + ϕ(t); θ)−H(t, x + ϕ0(t); θ)‖

+ ‖H(t, x + ϕ0(t); θ)−H(t, ϕ0(t); θ) + H(t, ϕ0(t); θ0)−H(t, x + ϕ0(t); θ0)‖
+ ‖H(t, ϕ0(t); θ)−H(t, ϕ(t); θ0)‖

≤ 4L1 ‖ϕ(t)− ϕ0(t)‖+ L2 ‖x‖ |θ − θ0| for t ∈ T+
τ , x ∈ X , θ ∈ Θ.

Now let c, d ∈ C+
rdR(T, R), c ! d and ψ ∈ X+

τ,c. We define

∆(t) := G(t, ψ(t), θ)−G(t, ψ(t), θ0) for t ∈ T+
τ

and obtain the inequalities

(3.26) ‖∆(t)‖
(3.24)
≤ 4L1 ‖ψ(t)‖ ≤ 4L1ec(t, τ) ‖ψ‖+τ,c for t ∈ T+

τ

and

(3.27) ‖∆(t)‖
(3.25)
≤ 4L1 ‖ϕ(t)− ϕ0(t)‖+ L2ec(t, τ) ‖ψ‖+τ,c |θ − θ0| for t ∈ T+

τ .

In order to establish the limit relation (3.22) we have to estimate the difference

(3.28)
∥∥S+

τ (ψ; η, ξ, θ)(t)− S+
τ (ψ; η, ξ, θ0)(t)

∥∥ ed(τ, t) ≤ S1(t) + S2(t) for t ∈ T+
τ

with η ∈ R(Q(τ)) and (cf. (3.20))

S1(t) :=
∫ t

τ
‖ΦA(t, σ(s))Q(σ(s))∆(s)‖ ∆sed(τ, t),

S2(t) :=
∫ ∞

t

∥∥Φ̄A(t, σ(s))P (σ(s))∆(s)
∥∥ ∆sed(τ, t) for t ∈ T+

τ .

Thereto, let ε > 0. With (3.26) we immediately get from [Pöt02, p. 65, Lemma 1.3.29],

S1(t) ≤
4K1L1

,c− a- ‖ψ‖
+
τ,c ec(d(t, τ), S2(t) ≤

4K2L1

,b− c- ‖ψ‖
+
τ,c ec(d(t, τ) for t ∈ T+

τ

using the estimates (2.7). Due to the limit relation limt→∞ ec(d(t, τ) = 0 (see [Pöt02, p. 63,
Lemma 1.3.26]) we can choose T ∈ T+

τ so large, and independent of η ∈ R(Q(τ)), ξ ∈ X , that
∥∥S+

τ (ψ; η, ξ, θ)(t)− S+
τ (ψ; η, ξ, θ0)(t)

∥∥ ed(τ, t) ≤ ε
2 for t ∈ T+

T .

Thus, it remains to obtain an estimate for (3.28) on the compact T-interval [τ, T ]T. Thereto, we
apply (3.27) and obtain from (2.7) that

S1(t) ≤ 4K1L1

∫ t

τ
ea(t, σ(s)) ‖ϕ(s)− ϕ0(s)‖ ∆sed(τ, t) +

4K1L2

,c− a- ‖ψ‖
+
τ,c ec(d(t, τ) |θ − θ0| ,

(3.29)

S2(t) ≤ 4K2L1

∫ ∞

t
eb(t, σ(s)) ‖ϕ(s)− ϕ0(s)‖ ∆sed(τ, t) +

4K2L2

,b− c- ‖ψ‖
+
τ,c ec(d(t, τ) |θ − θ0|

(3.30)
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for all t ∈ T+
τ . Concerning S1(t), this particularly implies

S1(t) ≤ 4K1L1

∫ T

τ
ea(τ,σ(s)) ‖ϕ(s)− ϕ0(s)‖ ∆s +

4K1L2

,c− a- ‖ψ‖
+
τ,c ec(d(t, τ) |θ − θ0| ,

where we have used ea(d(t, τ) ≤ 1, and Hypothesis 2.13 leads to

S1(t) ≤ 4C+
2 K1L1

∫ T

τ
ea(τ,σ(s))ec+

2
(s, τ) ∆s ‖ξ‖ |θ − θ0|+

4K1L2

,c− a- ‖ψ‖
+
τ,c ec(d(t, τ) |θ − θ0|

for all t ∈ [τ, T ]T. Hence, for each bounded B1 ⊆ X+
τ,c and B2 ⊆ X we find a δ > 0 such that

S1(t) ≤
ε

4
for t ∈ [τ, t]T , η ∈ R(Q(τ)), ψ ∈ B1, ξ ∈ B2

and θ ∈ Bδ(θ0). The corresponding estimate for S2(t) on [τ, T ]T can be deduced using similar
arguments and we arrive at

S1(t) + S2(t) ≤ ε
2 for t ∈ [τ, T ]T

uniformly in η ∈ R(Q(τ)) and ξ,ψ from bounded sets. Consequently, we obtain
∥∥S+

τ (ψ; η, ξ, θ)(t)− S+
τ (ψ; η, ξ, θ0)(t)

∥∥ ed(τ, t) ≤ ε
2 for t ∈ T+

τ

and taking the least upper bound over t ∈ T+
τ in this estimate yields assertion (b).

(c) We rely on the notation and the estimates inherited from (b). Indeed, if we substitute the right
inequality in (2.13) into (3.29) and evaluate the integrals using [Pöt02, p. 65, Lemma 1.3.29], we get

S1(t) ≤ 4K1

(
C+

2 L1⌊
c+
2 − a

⌋ ‖ξ‖+
L2

,c− a- ‖ψ‖
+
τ,c

)
|θ − θ0| for t ∈ T+

τ

and applying the same to (3.30) guarantees

S2(t) ≤ 4K2

(
C+

2 L1⌊
b− c+

2

⌋ ‖ξ‖+
L2

,b− c- ‖ψ‖
+
τ,c

)
|θ − θ0| for t ∈ T+

τ .

Here, the assumptions a ! c+
2 ! b, c+

2 " d yield existence of the corresponding integrals. #
With the preparations in Lemma 3.3 it is fairly standard to obtain results on the behavior of the

fixed point of S+
τ (·; η, ξ, θ) under variation of the parameter θ ∈ Θ.

Lemma 3.4. Assume that Hypothesis 2.2 is fulfilled and choose τ ∈ T fixed. Then for c ∈ Γ̄ the
operator S+

τ (·; η, ξ, θ0) : X+
τ,c → X+

τ,c from Lemma 3.3 possesses a unique fixed point ψ∗τ (η, ξ, θ0) ∈
X+

τ,c for all η ∈ R(Q(τ)), ξ ∈ X , θ0 ∈ Θ, which does not depend on the growth rate c ∈ Γ̄, and
has, for θ0 ∈ Θ and c ∈ Γ, the following properties:

(a) It satisfies the estimates

‖ψ∗τ (η, ξ, θ0)‖+τ,c ≤
K1

1− L(θ0)
‖η − ξ‖ ,(3.31)

‖P (τ)ψ∗τ (η, ξ; θ0)(τ)‖ ≤ )(θ0) ‖η − ξ‖ ,(3.32)
LipP (τ)ψ∗τ (·, ξ; θ0)(τ) ≤ )(θ0) for η ∈ R(Q(τ)), ξ ∈ X ,(3.33)

and the mapping ψ∗τ : R(Q(τ))× X ×Θ → X+
τ,c is continuous.

If additionally Hypothesis 2.3 holds, one furthermore obtains
(b) for every bounded B1 ⊆ R(Q(τ)) and B2 ⊆ X one has

(3.34) lim
θ→θ0

‖ψ∗τ (η, ξ; θ)− ψ∗τ (η, ξ; θ0)‖+τ,c = 0 uniformly in η ∈ B1, ξ ∈ B2,
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(c) in case a ! c+
2 ! b, c+

2 " c one has

(3.35) Lipψ∗τ (η, ξ, ·) ≤ 4δ

δ − 2(K1 + K2)L1

(
C+

2 L1λ(c+
2 ) ‖ξ‖+

δK1L2λ(c)
δ − 2(K1 + K2)L1

‖η − ξ‖
)

for all η ∈ R(Q(τ)), ξ ∈ X .

Proof. Using our preparations in [Pöt06, Lemma 3.1(c), (d) and (3.9)] we only have to establish
claims (b) and (c). Let τ ∈ T, ξ ∈ X , η ∈ R(Q(τ)) and c ∈ Γ.

(b) Keep θ0 ∈ Θ fixed. Let c̄ ∈ Γ with c̄ ! c and, suppressing the dependence on η, ξ, we have
the inclusion ψ∗τ (θ) ⊆ X+

τ,c̄ ⊆ X+
τ,c. Keeping in mind the fixed point relation ψ∗τ (θ) = S+

τ (ψ∗τ (θ); θ)
for all θ ∈ Θ, we obtain

‖ψ∗τ (θ)− ψ∗τ (θ0)‖+τ,c̄

(3.21)
≤ L(θ) ‖ψ∗τ (θ)− ψ∗τ (θ0)‖+τ,c̄ +

∥∥S+
τ (ψ∗τ (θ0); θ)− S(ψ∗τ (θ0); θ0)

∥∥+

τ,c̄

and consequently,

‖ψ∗τ (θ)− ψ∗τ (θ0)‖+τ,c̄

(2.1)
≤ 1

1− L(θ)
∥∥S+

τ (ψ∗τ (θ0); θ)− S(ψ∗τ (θ0); θ0)
∥∥+

τ,c
for θ ∈ Θ.

Now let B1 ⊆ R(Q(τ)) and B2 ∈ X be bounded. For η ∈ B1, ξ ∈ B2 we know from (3.31) that
ψ∗τ (η, ξ; θ0) ∈ X+

τ,c is bounded. Consequently, passing over to the limit θ → θ0 yields the relation
(3.34) by Lemma 3.3(b).

(c) For arbitrary θ, θ0 ∈ Θ we suppose a ! c+
2 ! b, c+

2 " c and obtain just as in the above proof
of (b) that

‖ψ∗τ (θ)− ψ∗τ (θ0)‖+τ,c ≤
1

1− L(θ)
∥∥S+

τ (ψ∗τ (θ0), θ)− S(ψ∗τ (θ0), θ0)
∥∥+

τ,c

(3.23)
≤ 4

1− L(θ)

(
C+

2 L1λ(c+
2 ) ‖ξ‖+ L2λ(c) ‖ψ∗τ (θ0)‖+τ,c

)
|θ − θ0|

(3.31)
≤ 4

1− L(θ)

(
C+

2 L1λ(c+
2 ) ‖ξ‖+

K1L2λ(c)
1− L(θ0)

‖η − ξ‖
)
|θ − θ0|

for θ, θ0 ∈ Θ, which leads to assertion (c). #
Proof of Corollary 3.2. Let τ ∈ T, ξ, η ∈ X and θ ∈ Θ be given.

(a) Let ψ∗τ (η, ξ; θ) denote the unique fixed point of S+
τ (·; η, ξ, θ) from Lemma 3.3 and 3.4. From

[Pöt06, (3.15)] we know that the function s+ : T× X × X ×Θ → X is given by

s+(τ, ξ, η; θ) := P (τ) [ξ + ψ∗τ (Q(τ)η, ξ; θ)(τ)] .

Then the claim is an easy consequence of Lemma 3.4(b) and (c), due to ‖P (τ)‖ ≤ K2 for all τ ∈ T
and λ(c) ≤ K1+K2

δ for all c ∈ Γ.
(b) This can be shown analogously to (a).
(c) We adopt the notation from the proof of Proposition 3.1. Then the function Π is given by

(3.11) and the components p∗(τ, x1, x2; θ), q∗(τ, x1, x2; θ) are fixed points of mappings Π−τ and
Π+

τ , respectively. We note that Π−τ and Π+
τ are compositions of s+ and r−. Thus, if we apply

assertions (a) and (b) to the estimates (3.12), (3.13), we obtain our claim. #
Remark 3.2. As technical comment to the proof of Corollary 3.2 we like to point out that a di-
rect estimate of P (τ)ψ∗τ (Q(τ)η, ξ, ·)(τ) (instead of using (3.34) or (3.35)) does not yield “better”
estimates, i.e., estimates which are uniform in ξ and η.

We arrive at the main result of this section, which can be considered as a very general and quan-
titative version of the stable manifold theorem. Moreover, it provides, in a certain sense, precise
perturbation results for the invariant fiber bundles of (2.5).
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Theorem 3.5 (perturbed invariant fiber bundles). Assume that Hypothesis 2.2 is fulfilled. Then for
all θ ∈ Θ the following statements are true:

(a) The pseudo-stable fiber bundle of (2.5), given by

S(θ) :=
{
(τ, ξ) ∈ T× X : ϕ(·; τ, ξ; θ) ∈ X+

τ,c for all c ∈ Γ
}

is a forward invariant fiber bundle of (2.5) possessing the representation

S(θ) = {(τ, ξ + s(τ, ξ; θ)) ∈ T× X : τ ∈ T, ξ ∈ R(Q(τ))}
with a continuous mapping s : T× X ×Θ → X satisfying

s(τ, ξ; θ) = s(τ, Q(τ)ξ; θ) ∈ R(P (τ)) for τ ∈ T, ξ ∈ X .

Furthermore, for all τ ∈ T, ξ ∈ X it holds:
(a1) s(τ, 0; θ) ≡ 0,
(a2) s : T× X ×Θ → X satisfies the Lipschitz estimates

Lip s(τ, ·; θ) ≤ )(θ), Lip s(τ, ξ; ·) ≤ δK1K2(K1 + K2)L2

[δ − 2(K1 + K2)L1]
2 ‖ξ‖ ,(3.36)

(a3) for T unbounded below and if the dynamic equation (2.5) is regressive on Θ, there
exists a unique retraction π−(τ, ·; θ) : X → S(θ)τ onto S(θ)τ with

∥∥ϕ(t; τ, ξ; θ)− ϕ(t; τ,π−(τ, ξ; θ); θ)
∥∥ ≤ K2

1− L(θ)
1 + (K1 − 1))(θ)

1− )(θ)
‖ξ‖ ec(t, τ)

for all t ∈ T−τ . The map π− : T× X ×Θ → X is continuous, linearly bounded

(3.37)
∥∥π−(τ, ξ; θ)

∥∥ ≤ K1
1 + )(θ)
1− )(θ)

‖ξ‖

and we denote π−(·; θ) as asymptotic (backward) phase of S(θ).
(b) For T unbounded below, the pseudo-unstable fiber bundle of (2.5), given by

R(θ) :=
{

(τ, ξ) ∈ T× X : there exists a solution φ : T → X of (2.5)
with φ(τ) = ξ and φ ∈ X−τ,c for all c ∈ Γ

}

is an invariant fiber bundle of (2.5) possessing the representation

R(θ) = {(τ, η + r(τ, η; θ)) ∈ X : τ ∈ T, η ∈ R(P (τ))}
with a continuous mapping r : T× X ×Θ → X satisfying

(3.38) r(τ, ξ; θ) = r(τ, P (τ)ξ; θ) ∈ R(Q(τ)) for τ ∈ T, ξ ∈ X .

Furthermore, for all τ ∈ T, ξ ∈ X it holds:
(b1) r(τ, 0; θ) ≡ 0,
(b2) r : T× X ×Θ → X satisfies the Lipschitz estimates

Lip r(τ, ·; θ) ≤ )(θ), Lip r(τ, ξ; ·) ≤ δK1K2(K1 + K2)L2

[δ − 2(K1 + K2)L1]
2 ‖ξ‖ ,(3.39)

(b3) there exists a unique retraction π+(τ, ·; θ) : X → R(θ)τ onto R(θ)τ with
∥∥ϕ(t; τ, ξ; θ)− ϕ(t; τ,π+(τ, ξ; θ); θ)

∥∥ ≤ K1

1− L(θ)
1 + (K2 − 1))(θ)

1− )(θ)
‖ξ‖ ec(t, τ)

for all t ∈ T+
τ . The map π+ : T× X ×Θ → X is continuous, linearly bounded

(3.40)
∥∥π+(τ, ξ; θ)

∥∥ ≤ K2
1 + )(θ)
1− )(θ)

‖ξ‖

and we denote π+(·; θ) as asymptotic (forward) phase of R(θ).
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(c) For T unbounded below, one has S(θ) ∩R(θ) = T× {0} and

S(θ)τ ∩R−(ξ, θ)τ =
{
π−(τ, ξ; θ)

}
, R(θ)τ ∩ S+(ξ, θ)τ =

{
π+(τ, ξ; θ)

}

for all τ ∈ T, ξ ∈ X .

Remark 3.3. For all θ ∈ Θ the following holds:
(1) If (2.5) is regressive on Θ, then S(θ) is an invariant fiber bundle.
(2) From Proposition 3.1 and Theorem 3.5(c) we obviously have

S(θ) = S+(0, θ), R(θ) = R−(0, θ),

π+(τ, ξ; θ) = Π(τ, ξ, 0; θ), π−(τ, ξ; θ) = Π(τ, 0, ξ; θ);

however, the right relations holds only if (2.5) is regressive.
(3) The pseudo-stable fibers S+(x0, θ)τ are the leaves of a (forward) invariant foliation over each

fiber R(θ)τ , i.e., for every τ ∈ T we have

X =
⋃

x0∈R(θ)τ

S+(x0, θ), S+(x1, θ) ∩ S+(x2, θ) = ∅ for x1, x2 ∈ R(θ)τ , x1 4= x2.

Similarly, the fibers R−(x0, θ) form a foliation over S(θ)τ .

Proof. The properties of s and r have been shown in [Pöt03, Theorem 3.3], while the asymptotic
(forward and backward) phases π− and π+, resp., were constructed in [Pöt06, Theorem 3.3]. #

It remains to obtain some additional information on the mappings π− and π+.

Corollary 3.6 (perturbed asymptotic phase). Let τ ∈ T. Assume that Hypotheses 2.2–2.3(i) are
fulfilled and T is unbounded below. Then for all θ0 ∈ Θ the following holds:

(a) Under Hypothesis 2.3(ii), for every bounded B ⊆ X one has

(3.41) lim
θ→θ0

π−(τ, ξ; θ) = π−(τ, ξ; θ0) uniformly in ξ ∈ B,

and in case a ! c+
2 ! b− δ there exists a C− ≥ 0 such that

(3.42) Lipπ−(τ, ξ, ·) ≤ C−(L1 + L2) ‖ξ‖ for τ ∈ T, ξ ∈ X .

(b) For every bounded B ⊆ X one has

(3.43) lim
θ→θ0

π+(τ, ξ; θ) = π+(τ, ξ; θ0) uniformly in ξ ∈ B,

and in case a + δ ! c−2 ! b there exists a C+ ≥ 0 such that

(3.44) Lipπ+(τ, ξ, ·) ≤ C+(L1 + L2) ‖ξ‖ for τ ∈ T, ξ ∈ X .

Proof. Let τ ∈ T, ξ ∈ X and θ0, θ ∈ Θ be given.
(a) Since π−(τ, ξ; θ) ∈ X is the unique point in S(θ)τ ∩ R−(ξ, θ) we can simply apply Corol-

lary 3.2(c) with π−(τ, ξ; θ) := Π(τ, ξ, 0; θ). On the other hand, the relations (3.41) and (3.42) can
be shown analogously to our proceeding in the following step (b).

(b) We do not need to assume that (2.5) is regressive on Θ. Hence, it is not legitimate to apply
Corollary 3.2(c) with x2 = 0. We only mimic the corresponding argument. First of all, from
Theorem 3.5(c) we know that π+(τ, ξ; θ) ∈ X is the unique element in R(θ)τ ∩S+(ξ, θ) for all θ ∈
Θ, i.e., we have the representation π+(τ, ξ; θ) = p(τ, ξ; θ) + q(τ, ξ; θ), where p(τ, ξ; θ) ∈ R(P (τ))
and q(τ, ξ; θ) ∈ R(Q(τ)) are the unique solutions of the equations

p = s+(τ, q, ξ; θ), q = r(τ, p; θ)
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with the mapping s+ : T × X × X × Θ → X from Proposition 3.1(a) defining the pseudo-stable
fibers S+(ξ, θ). Additionally, from [Pöt06, (3.23)] we get the estimates

‖p(τ, ξ; θ)‖ ≤ K2

1− )(θ)
‖ξ‖ , ‖q(τ, ξ; θ)‖ ≤ K2)(θ)

1− )(θ)
‖ξ‖ .(3.45)

From now on we suppress the dependence on the fixed parameters τ ∈ T and ξ ∈ X . Thus, due to
Proposition 3.1(a1) we have

‖p(θ)− p(θ0)‖ ≤
∥∥s+(q(θ); θ)− s+(q(θ0); θ)

∥∥ +
∥∥s+(q(θ0); θ)− s+(q(θ0); θ0)

∥∥

≤ K1)(θ) ‖q(θ)− q(θ0)‖+
∥∥s+(q(θ0); θ)− s+(q(θ0); θ0)

∥∥

and the assertion (b2) gives us

‖q(θ)− q(θ0)‖ ≤ ‖r(p(θ); θ)− r(p(θ0); θ)‖+ ‖r(p(θ0); θ)− r(p(θ0); θ0)‖
(3.39)
≤ )(θ) ‖p(θ)− p(θ0)‖+ ‖r(p(θ0); θ)− r(p(θ0); θ0)‖ .

Inserting these equations into each other, in combination with Theorem 3.5(b2), leads to

‖p(θ)− p(θ0)‖ ≤
K1)(θ)

1−K1)(θ)2
‖r(p(θ0); θ)− r(p(θ0); θ0)‖(3.46)

+
1

1−K1)(θ)2
∥∥s+(q(θ0); θ)− s+(q(θ0); θ0)

∥∥

(3.39)
≤ K1)(θ)

1−K1)(θ)2
δK1K2(K1 + K2)L2

[δ − 2(K1 + K2)L1]
2 ‖ξ‖ |θ − θ0|

+
1

1−K1)(θ)2
∥∥s+(q(θ0); θ)− s+(q(θ0); θ0)

∥∥ for θ ∈ Θ

and

‖q(θ)− q(θ0)‖ ≤
)(θ)

1−K1)(θ)2
∥∥s+(q(θ0); θ)− s+(q(θ0); θ0)

∥∥(3.47)

+
1

1−K1)(θ)2
‖r(p(θ0); θ)− r(p(θ0); θ0)‖

(3.39)
≤ )(θ)

1−K1)(θ)2
∥∥s+(q(θ0); θ)− s+(q(θ0); θ0)

∥∥

+
1

1−K1)(θ)2
δK1K2(K1 + K2)L2

[δ − 2(K1 + K2)L1]
2 ‖ξ‖ |θ − θ0| for θ ∈ Θ.

Thus, passing over to the limit θ → θ0 yields (3.43) by relation (3.14) from Corollary 3.2(a), where
(3.45) guarantees that the convergence is uniform in ξ ∈ B for bounded sets B ⊆ X .

Moreover, having the Lipschitz estimate (3.15) from Corollary 3.2(a) available, also the assertion
(3.44) immediately follows from the above inequalities (3.46) and (3.47), as well as the bound (3.45).
Thus, Theorem 3.5 is established. #

4. TOPOLOGICAL DECOUPLING

Throughout this section we suppose T is unbounded above and below. Moreover, we assume the
semilinear dynamic equation (2.5) is regressive on Θ. Without regressivity, the decoupling result of
this section does not hold. Yet, one can transform nonregressive equations into a tridiagonal form –
for difference equations this has been achieved in [AG94].
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We begin with the notion of a transformation, suitable for parameter-dependent nonautonomous
equations. For that purpose, we consider two dynamic equations

(4.1) x∆ = A(t)x + H1(t, x; θ)

and

(4.2) x∆ = A(t)x + H2(t, x; θ),

where the rd-continuous mappings A : T → L(X ) and H1,H2 : T × X × Θ → X might en-
sure existence of unique forward solutions (this is guaranteed, for instance, by [Pöt02, p. 38, Satz
1.2.17(a)]). In addition, they are assumed to satisfy

H1(t, 0; θ) ≡ 0, H2(t, 0; θ) ≡ 0 on T×Θ.

We denote the general solution of (4.1) by ϕ1 and the general solution of (4.2) by ϕ2.

Definition 4.1. A continuous mapping T : T×X ×Θ → X is said to be a topological equivalence
between (4.1) and (4.2), if for every τ ∈ T, θ ∈ Θ the mapping Tτ,θ : X → X , Tτ,θ(x) := T (τ, x; θ)
is a homeomorphism, T̃ : T× X ×Θ → X , T̃ (τ, x; θ) := T−1

τ,θ (x) is continuous, one has

(4.3) lim
x→0

T (τ, x; θ) = lim
x→0

T̃ (τ, x; θ) = 0 uniformly in τ ∈ T, θ ∈ Θ

and the following properties hold:
(i) For every solution φ1 of (4.1) the function φ2(t) := T (t, φ1(t); θ) solves (4.2).

(ii) For every solution φ2 of (4.2) the function φ1(t) := T̃ (t, φ2(t); θ) solves (4.1).
If such a mapping T exists, then (4.1) and (4.2) are called topologically conjugated.

Remark 4.1. Suppose the dynamic equations (4.1) and (4.2) are topologically conjugated. Then the
trivial solution of (4.1) is stable (attractive, asymptotically stable, unstable), if and only if the trivial
solution of (4.2) possesses the corresponding property.

Let us continue with a geometrical interpretation of the dynamics generated by the semilinear
dynamic equation (2.5). From Theorem 3.5 we know that the pseudo-stable fiber bundle S(θ) pos-
sesses an asymptotic backward phase π−(·; θ) and, dually, the pseudo-unstable fiber bundle R(θ)
admits an asymptotic forward phase π+(·; θ). These asymptotic phases assign to any given solution
φ : T → X of (2.5) two further solutions:

• A solution φ− in S(θ), which is given by φ−(t) := ϕ(t; τ,π−(τ,φ(τ); θ); θ) and can be
identified with its projection φ−−, φ−−(t) := Q(t)φ−(t); it solves the dynamic equation

(4.4) q∆ = A(t)q + Q(t)H(t, q + s(t, q; θ); θ).

• A solution φ+ in R(θ) given by φ+(t) := ϕ(t; τ,π+(τ,φ(τ); θ); θ) and being identified with
its projection φ+

+, φ+
+(t) := P (t)φ+(t). It solves the dynamic equation

(4.5) p∆ = A(t)p + P (t)H(t, p + r(t, p; θ); θ).

Thus, the assignment φ 2→ (φ−−,φ+
+) leads to a decoupling of (2.5) into components in the invariant

fiber bundles given by the ranges of the invariant projections P and Q, respectively. The following
proposition puts the above explanations into a more precise framework:

Proposition 4.1 (decoupling). Assume that Hypothesis 2.2 is fulfilled. Then there exists a topologi-
cal equivalence T : T× X ×Θ → X between the dynamic equations (2.5) and

(4.6) x∆ = A(t)x + Q(t)H(t, Q(t)x + s(t, x; θ); θ) + P (t)H(t, P (t)x + r(t, x; θ); θ)

with the following properties:
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(a) One has the linear bounds

‖T (τ, ξ; θ)‖ ≤ (K2
1 + K2

2 )
1 + )(θ)
1− )(θ)

‖ξ‖ ,

∥∥∥T̃ (τ, ξ; θ)
∥∥∥ ≤

[
(K1 + )(θ))2 + (K2 + )(θ))2

] 1 + 2)(θ)
1− )(θ)2

‖ξ‖ for τ ∈ T, θ ∈ Θ,

(4.7)

(b) the fiber bundles S(θ) and R(θ) of (2.5) are mapped to invariant fiber bundles

S0 := {(t, x) ∈ T× X : x ∈ R(Q(t))} , R0 := {(t, x) ∈ T× X : x ∈ R(P (t))}

of (4.6), respectively, i.e., for the corresponding fibers we have

T (τ, S(θ)τ ; θ) = S0
τ , T (τ, R(θ)τ ; θ) = R0

τ for τ ∈ T, θ ∈ Θ.

Proof. Let τ ∈ T, ξ ∈ X and θ ∈ Θ. In our following notation we largely suppress the dependence
on the parameter θ; this issue is tackled in the subsequent Corollary 4.2. Using the asymptotic
phases π−,π+ from Theorem 3.5 and the mapping Π from Proposition 3.1(c), we define mappings
T, T̃ : T× X ×Θ → X ,

T (τ, ξ; θ) := Q(τ)π−(τ, ξ; θ) + P (τ)π+(τ, ξ; θ),

T̃ (τ, ξ; θ) := Π
(
τ, P (τ)ξ + r(τ, ξ; θ), Q(τ)ξ + s(τ, ξ; θ); θ

)

and use the notation introduced in Definition 4.1. From Lemma 2.1 and Theorem 3.1 we know that
T is continuous, and thanks to Proposition 3.1(c) the same holds true for T̃ .

In order to show that T is a topological equivalence between (2.5) and (4.6), we remark that
π+(τ, ξ) ∈ R(θ)τ and π−(τ, ξ) ∈ S(θ)τ evidently imply

P (τ)π+(τ, ξ) + r(τ,π+(τ, ξ)) = π+(τ, ξ), Q(τ)π−(τ, ξ) + s(τ,π−(τ, ξ)) = π−(τ, ξ),

respectively. This yields T̃ (τ, T (τ, ξ)) ≡ Π(τ,π+(τ, ξ),π−(τ, ξ)) ≡ ξ on T×X , since we also have
π+(τ, ξ) ∈ S+(ξ, θ)τ and π−(τ, ξ) ∈ R−(ξ, θ)τ ; similarly one shows the identity T (τ, T̃ (τ, ξ)) ≡ ξ
on T× X , and the mappings T (τ, ·), T̃ (τ, ·) are inverse to each other.

Next we show the uniform limit relations (4.3), which immediately follow form (4.7). These
relations, in turn, can be derived as follows. In case of T , it is an easy consequence of (3.37) and
(3.40) from Theorem 3.5; concerning the inverse T̃ , this follows from Proposition 3.1(c) and the
Lipschitz estimates for s(τ, ·; θ), r(τ, ·; θ) stated in Theorem 3.5.

Thus, it remains to establish the properties (i)–(ii) of Definition 4.1. Thereto, let the function
φ : T → X be a solution of (2.5) (say, for a fixed parameter θ ∈ Θ). We define φ−(t) :=
ϕ
(
t; τ,π−(τ,φ(τ))

)
and obtain

φ−(τ) = π−(τ, ξ) ∈ S(θ)τ ∩R−(φ(τ), θ)τ .

Due to the invariance of R−(φ(τ), θ) (cf. (3.2)) and S(θ) (cf. Remark 3.3(1)) one has

φ−(t) ∈ S(θ)t ∩R−(φ(τ), θ)t for t ∈ T

and by Theorem 3.5(a) and Proposition 3.1(b), respectively,

P (t)φ−(t) = s(t, φ−(t)), Q(t)φ−(t) = Q(t)π−(t, φ(t)) for t ∈ T.

Hence, Q(·)π−(·,φ(·)) is a solution of (4.4) and analogously P (·)π+(·,φ(·)) solves the dynamic
equation (4.5). We have established that T (·,φ(·)) is a solution of (4.6) and, whence, (i) holds.
Conversely, let φ̃ : T → X be a solution of (4.6). We define a solution of (2.5) by

ψ(t) := ϕ
(
t; τ,Π(τ, P (τ)φ̃(τ) + r(τ, φ̃(τ))), P (τ)φ̃(τ) + r(τ, φ̃(τ)))

)
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and obtain from (3.8), (3.4) that

φ(t) ∈ S+(P (t)φ̃(t) + r(t, φ̃(t)); θ)t ∩R−(Q(t)φ̃(t) + s(t, φ̃(t)); θ)t for t ∈ T,

which implies ψ(t) = T̃ (t, φ̃(t)) and T̃ (·, φ̃(·)) is a solution of (2.5); we have shown (ii).
Referring to the estimates (4.7) we know that quasiboundedness of solutions for (2.5) (or (4.6)) is

preserved under the mapping T (or T̃ , resp.). Therefore, due to their dynamical characterization, the
invariant fiber bundles S(θ) and R(θ) of (2.5) are bijectively mapped onto the respective invariant
fiber bundles S0

τ and R0
τ of (4.6). This was claim (b) and we have shown Proposition 4.1. #

Corollary 4.2. Let τ ∈ T. Assume that Hypotheses 2.2–2.3 are fulfilled. Then for all θ0 ∈ Θ and
every bounded B ⊆ X one has

lim
θ→θ0

T (τ, ξ; θ) = T (τ, ξ; θ0), lim
θ→θ0

T̃ (τ, ξ; θ) = T̃ (τ, ξ; θ0) uniformly in ξ ∈ B,(4.8)

and in case a ! c+
2 ! b− δ, a + δ ! c−2 ! b there exists C ≥ 0 such that

LipT (τ, ξ, ·) ≤ C(L1 + L2) ‖ξ‖ for τ ∈ T, ξ ∈ X .(4.9)

Proof. Due to the definition of T, T̃ , the claims follows from Corollary 3.6 and 3.2(c). #

5. TOPOLOGICAL LINEARIZATION

Now we are finally in the position to demonstrate how fruitful our preparations have been. In
order to harvest a generalized topological linearization theorem, it remains to prove only one fur-
ther result. Again, this section is based on the assumption that T is unbounded in both direction.
Moreover, we suppose the dynamic equation (2.5) is regressive on Θ. This is always fulfilled for
ordinary differential equations (see Figure 1 and (2.6)). On discrete time scales, though, regressiv-
ity is an essential ingredient of linearization theory. E.g., for difference equations, a corresponding
counterexample can be found in [Wan91, p. 140].

So far we dealt with dynamic equations, where we obtained single invariant splitting of their
extended phase space into two invariant subsets – the pseudo-stable and the pseudo-unstable fiber
bundle. This was guaranteed by (pseudo-) hyperbolicity of their linear part. In the hyperbolic case,
this setting is sufficient to obtain a nonautonomous variant of the classical Hartman-Grobman theo-
rem (cf. [XCH07]). We, nevertheless, are interested in the critical non-hyperbolic situation, where
the linear part admits an exponential trichotomy.

We denote projectors P1, P2, P3 : T → L(X ) for (2.2) as complementary, if

P1(t) + P2(t) + P3(t) = IX , Pi(t)Pj(t) = 0 for i 4= j, t ∈ T.(5.1)

Hypothesis 5.1. Let K+
1 ,K+

2 ,K+
3 ,K−

1 ,K−
2 ,K−

3 ≥ 1 be reals and a1, a2, b1, b2 ∈ C+
rdR(T, R) be

growth rates with a1 ! b1 " a2 ! b2.
(i) Exponential trichotomy: The linear part (2.2) is regressive and there are complementary

projectors P1, P2, P3 : T → L(X ) such that P2, P3 are invariant with

‖ΦA(t, s)P1(s)‖ ≤ K+
1 ea1(t, s), ‖ΦA(s, t)P2(t)‖ ≤ K−

1 eb1(s, t) for s % t,(5.2)

‖ΦA(t, s)P2(s)‖ ≤ K+
2 ea2(t, s), ‖ΦA(s, t)P3(t)‖ ≤ K−

2 eb2(s, t) for s % t.(5.3)

(ii) Lipschitz perturbation: For i ∈ {1, 2} the identities Fi(t, 0) ≡ 0 on T × Θ hold and the
mappings Fi satisfy the Lipschitz estimates

Li := sup
t∈T

LipFi(t, ·) < ∞.
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Moreover, we set K1(j) :=
∑j

k=1 K+
k , K2(j) :=

∑2
k=j K−

k for j ∈ {1, 2}, require

L1 <
2

min
i=1

,bi − ai-
4Kmax

, Kmax := 2max
i=1

(K1(i) + K2(i) + 3K1(i)K2(i)) ,(5.4)

choose δ ∈
(
2KmaxL1,min2

i=1
&bi−ai'

2

)
and abbreviate Θ := {θ ∈ F : L2 |θ| ≤ L1},

Γj :=
{
c ∈ C+

rdR(T, R) : aj + δ ! c ! bj − δ
}

for j ∈ {1, 2} .

(ii) Bounded perturbation: The mappings Fi satisfy

(5.5) Mij := sup
(t,x)∈T×X

‖Pj(t)Fi(t, x)‖ < ∞ for i ∈ {1, 2} , j ∈ {1, 3} .

For 1 ≤ i ≤ j ≤ 3, we define the mappings P j
i : T → L(X ), P j

i (t) := Pi(t) + . . . + Pj(t) and
using (5.1), also P j

i is an invariant projector of (2.2); moreover, P j
i is regular for i ≥ 2. Defining

the complementary subspaces

X j
i (τ) := R(P j

i (τ)) =
j⊕

k=i

R(Pk(τ)), X̄ j
i (τ) := N (P j

i (τ)) =
j⋂

k=i

N (Pk(τ)) for τ ∈ T,

we now formulate an important tool for our later linearization result, which is based on an admissi-
bility property (cf. [Pöt02, p. 111, Satz 2.2.12]) of exponential dichotomies.

Proposition 5.2. Let M1,M2 ≥ 0 be reals. Assume both dynamic equations (4.1), (4.2) are regres-
sive on Θ, that Hypothesis 5.1(i) is satisfied with

a1 ! 0 ! b2

and that the functions Hi satisfy for all t ∈ T, x ∈ X̄ 2
2 (t), θ ∈ Θ and i ∈ {1, 2} that

Lip2 H1 < ∞, 2ν(a1, b2) Lip2 H2 < 1,

Hi(t, x; θ) ∈ X̄ 2
2 (t), ‖Hi(t, x; θ)‖ ≤ Mi.(5.6)

Then there exists a unique mapping J : T× X ×Θ → X such that

J(τ, ξ; θ) = J(τ, [IX − P2(τ)] ξ; θ) ∈ X̄ 2
2 (τ) for τ ∈ T, ξ ∈ X , θ ∈ Θ,

ϕ2(·; τ, J(τ, ξ; θ); θ)− ϕ1(·; τ, ξ) ∈ X±
0 for τ ∈ T, ξ ∈ X̄ 2

2 (τ), θ ∈ Θ.

Moreover, the following holds for all θ ∈ Θ:
(a) J : T× X ×Θ → X is continuous with

lim
ξ→0

J(τ, ξ; θ) = 0 uniformly in τ ∈ T, θ ∈ Θ,

(b) J is “near identity” with

(5.7) ‖J(τ, ξ; θ)− ξ‖ ≤ 2ν(a1, b2)(M1 + M2)
1− 2ν(a1, b2) Lip2 H2

for τ ∈ T, ξ ∈ X̄ 2
2 (τ),

(c) for every solution φ1 : T → X of (4.1) satisfying φ1(τ) ∈ X̄ 2
2 (τ) for some τ ∈ T, the

function φ2(t) := J(t, φ1(t); θ) solves (4.2),
where we have abbreviated ν(a, b) := K1

&−a' + K2
&b' .

Proof. Referring to [Pöt02, p. 38, Satz 1.2.17] we know that the general solutions ϕ1 and ϕ2 of (4.1)
and (4.2), resp., exist on T2 × X × Θ as continuous functions. Now let τ ∈ T, ξ ∈ X and θ ∈ Θ.
Central for our following considerations is the dynamic equation

(5.8) x∆ = A(t)x + H2(t, x + ϕ1(t; τ, ξ; θ); θ)−H1(t, ϕ1(t; τ, ξ; θ); θ).
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Its general solution ϕ3 is continuous in τ ∈ T, ξ ∈ X , θ ∈ Θ. Note that assumption (5.6) implies
that the fiber bundle

{
(t, x) ∈ T× X : x ∈ X̄ 2

2 (t)
}

is invariant w.r.t. (4.1), (4.2) and (5.8).
Now we consider the operator Sτ : X±

0 × X̄ 2
2 (τ)×Θ → X±

0 given by

Sτ (ψ; ξ, θ) :=
∫

T
GP3

P1
(·,σ(s)) [H2(s,ψ(s) + ϕ1(s; τ, ξ; θ); θ)−H1(s,ϕ1(s; τ, ξ; θ); θ)] ∆s;

quoting [Pöt02, p. 111, Satz 2.2.12] we know that Sτ is well-defined and that Sτ (·; ξ, θ) is a contrac-
tion uniformly in its parameters. Moreover, its unique fixed point is exactly the uniquely determined
bounded solution φ∗(τ, ξ; θ) : T → X of (5.8) with φ∗(τ, ξ; θ)(τ) ∈ X̄ 2

2 (τ), and additionally

(5.9) ‖φ∗(τ, ξ; θ)(t)‖ ≤ 2ν(a1, b2)(M1 + M2)
1− 2ν(a1, b2) Lip2 H2

for τ ∈ T, ξ ∈ X̄ 2
2 (τ), θ ∈ Θ.

Therefore, we define the mapping J : T× X ×Θ → X by

J(τ, ξ; θ) := [P1(τ) + P3(τ)] ξ + φ∗(τ, [P1(τ) + P3(τ)] ξ; θ)(τ) ∈ X̄ 2
2 (τ).

Evidently, ϕ2(·; τ, J(τ, ξ; θ); θ) is a solution of (4.2), and due to construction the difference
ϕ2(·; τ, J(τ, ξ; θ); θ)− ϕ1(·; τ, ξ; θ) solves our initial equation (5.8). By uniqueness, this yields

ϕ2(·; τ, J(τ, ξ; θ); θ)− ϕ1(·; τ, ξ; θ) = ϕ3(·; τ,φ∗(τ, τ, ξ; θ); θ)
(5.9)
∈ X±

0 for ξ ∈ X̄ 2
2 (τ).

(a) The continuity assertion on the function φ∗ : T × T × X × Θ → X is not shown in [Pöt02,
p. 111, Satz 2.2.12]. Nevertheless, it can be derived using very similar techniques as employed in
Lemma 3.3 or 3.4 and we omit it here. In particular, the continuity of Sτ can be shown as in [Pöt02,
pp. 147–148, Lemma 3.2.10].

(b) Due to the definition of J , the claimed estimate in (b) immediately follows from (5.9).
(c) Let φ1 : T → X be a solution of the dynamic equation (4.1) with φ1(τ0) ∈ X̄ 2

2 (τ0) for τ0 ∈ T.
Then φ2 := ϕ2(·; τ0, J(τ0,φ1(τ0); θ); θ) solves the dynamic equation (4.2) and, by construction, the
difference φ2 − φ1 is bounded. On the other hand, for an arbitrary τ ∈ T, J(τ,φ1(τ); θ) is the
unique element of X̄ 2

2 (τ) such that

ϕ2(·; τ, J(τ,φ1(τ); θ), θ)− ϕ1(·; τ,φ1(τ); θ) ∈ X±
0 .

Therefore, the identity ϕ1(·; τ,φ1(τ); θ) = φ1 implies ϕ2(·; τ, J(τ,φ1(τ); θ); θ) = φ2 and φ2 =
J(·,φ1(·); θ), which in turn yields that J(·,φ1(·); θ) solves the dynamic equation (4.2). #

Corollary 5.3. Let τ ∈ T. Suppose the assumptions of Proposition 5.2 hold and that the general
solutions ϕ1,ϕ2 of (4.1), (4.2), resp., satisfy Hypothesis 2.3. Then for all θ0 ∈ Θ and every B ⊆ X
such that [P1(τ) + P3(τ)]B is bounded one has

(5.10) lim
θ→θ0

J(τ, ξ; θ) = J(τ, ξ; θ0) uniformly in ξ ∈ B,

and in case a1 + δ ! c−2 , c+
2 ! b2 − δ and Lip3 Hi < ∞ for i = 1, 2 there exists a C ≥ 0 such that

(5.11) LipJ(τ, ξ, ·) ≤ C(L1 + L2) ‖ξ‖ for τ ∈ T, ξ ∈ X .

Proof. We use the notation from the proof of Proposition 5.2. The mapping J is constructed via
the fixed point φ∗ : T × X × Θ → X±

0 of the operator Sτ : X±
0 × X × Θ → X±

0 . This operator
has a very similar structure as the operator S+

τ introduced in Lemma 3.3. Thus, φ∗ can be handled
analogously to the fixed point mapping of S+

τ in Lemma 3.4. To avoid redundancy, we omit the
details and leave them to the interested reader. #

We now head for the main result in this paper, the generalized Hartman-Grobman theorem:
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Theorem 5.4 (Palmer-Šošitaǐšvili). Assume Hypothesis 5.1 holds with

b1 " 0 " a2

and that (2.5) is regressive on Θ. Then for all θ ∈ Θ the following statements are true:
(a) The center fiber bundle of (2.5), given by

C(θ) :=




(τ, x0) ∈ T× X :
ϕ(·; τ, x0; θ) ∈ X+

τ,c2
for all c2 ∈ Γ2 and

there exists a solution φ : T → X of (2.5)
with φ(τ) = x0 and φ ∈ X−τ,c1

for all c1 ∈ Γ1






is a forward invariant fiber bundle of (2.5) possessing the representation

(5.12) C(θ) =
{
(τ, η + c(τ, η; θ)) ∈ T× X : τ ∈ T, η ∈ X 2

2 (τ)
}

with a uniquely determined continuous mapping c : T× X ×Θ → X satisfying

(5.13) c(τ, x0; θ) = c(τ, P 2
2 (τ)x0; θ) ∈ X̄ 2

2 (τ) for τ ∈ T, x0 ∈ X
and c(τ, 0; θ) ≡ 0 on T×Θ.

(b) Under the additional assumptions

8(K+
2 + K−

2 )
(
1 + K+

2 + K−
2

)
L1 <

,b2 − a1-
K+

2 + K−
2 + K+

2 K−
2 max

{
K+

2 ,K−
2

} ,(5.14)

4ν(a1, b2)
[
K+

1 (1 + K+
1 ) + K−

2 (1 + K−
2 )

]
L1 < 1,(5.15)

there exists a topological equivalence T : T × X × Θ → X between (2.5) and the reduced
dynamic equation

(5.16) x∆ = A(t)x + P2(t)H(t, P2(t)x + c(t, x; θ); θ),

where ν(a, b) is defined in Proposition 5.2.

Remark 5.1. (1) As demonstrated in [Pöt03, Theorem 4.3], the regressivity of the dynamic equations
(2.2) and (2.5) is not needed in the proof of Theorem 5.4(a). Moreover, this reference also discussed
the dependence of the center fiber bundle C(θ) under variation of θ.

(2) An interesting special case is the situation where the measure chain (T,%, µ) and the dy-
namic equation (2.5) are T -periodic in time (cf. [Pöt02, p. 3]). Then this T -periodicity in the first
component carries over to the mapping c defining the center fiber bundle C(θ), as well as to the
topological equivalence T . This can be seen as in the special cases of differential equations (see
[Wan91, Sie99, AW00]) or difference equations (see [Wan91, AW06]). Nonetheless, for periodic
dynamic equations on time scales we refer to [Pöt03] and [XCH07].

Proof. The proof brings most of our previous results together. We begin with some preparations.
Thereto, let 1 ≤ j ≤ i ≤ 3, (j, i) 4= (1, 3) be integers and choose θ ∈ Θ. From [Pöt03, Theo-
rem 4.3], which is shown via a successive application of Theorem 3.5, we obtain that the sets

Ci,j(θ) :=






{
(τ, x0) ∈ T× X : ϕ(·; τ, x0; θ) ∈ X+

τ,c for all c ∈ Γi

}
for j = 1{

(τ, x0) ∈ T× X : there exists a solution φ : T → X of (2.5)
with φ(τ) = x0 and φ ∈ X−τ,c for all c ∈ Γj−1

}
for i = N

Ci,1(θ) ∩ CN,j(θ) else
are forward invariant fiber bundles of (2.5) admitting the extended hierarchy

(5.17)

C1,1(θ) ⊂ C2,1(θ) ⊂ T×Θ
∪ ∪

C2,2(θ) ⊂ C3,2(θ)
∪

C3,1(θ).
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Each Ci,j(θ) ⊆ T× X possesses the representation

(5.18) Ci,j(θ) =
{
(τ, η + ci,j(τ, η; θ)) ∈ T× X : τ ∈ T, η ∈ X i

j (τ)
}

with a uniquely determined continuous mapping ci,j : T× X ×Θ → X satisfying

(5.19) ci,j(τ, x0; θ) = ci,j(τ, P i
j (τ)x0; θ) ∈ X̄ i

j (τ) for τ ∈ T, x0 ∈ X .

Furthermore, ci,j(τ, 0; θ) ≡ 0 on T×Θ and ci,j : T× X ×Θ → X satisfies the estimate

Lip ci,j(τ, ·; θ) ≤






K1(i)K2(i)(L1+|θ|L2)
δ−(K1(i)+K2(i))(L1+|θ|L2)

for j = 1
K1(j−1)K2(j−1)(L1+|θ|L2)

δ−(K1(j−1)+K2(j−1))(L1+|θ|L2)
for i = 3

maxk∈{i,j−1}
2K1(k)K2(k)(L1+|θ|L2)

δ−(K1(k)+K2(k)+K1(k)K2(k))(L1+|θ|L2)
else

(5.20)

for τ ∈ T, θ ∈ Θ. Our assumptions (5.4) yield Lip cij(τ, ·; θ) ≤ 1. More detailed, C1,1(θ) is the
pseudo-stable, and C3,2(θ) the pseudo-unstable fiber bundle of (2.5) obtained from Theorem 3.5 by
choosing the invariant projector Q := P1. Similarly, we get C2,1(θ) as pseudo-stable and C3,1(θ) as
pseudo-unstable fiber bundle of (2.5) using Theorem 3.5 with Q := P 2

1 .
For notational convenience, we abbreviate Ci(θ) := Ci,i(θ) and ci := ci,i for 1 ≤ i ≤ 3.
(a) From the above we obtain the assertion by defining C(θ) := C2,2(θ) and c := c2,2.
(b) The proof of part (b) is subdivided into two steps. We suppress the dependence on θ.
(I) Claim: There exists a topological equivalence U : T× X → X between (2.5) and

(5.21) x∆ = A(t)x +
∑

i∈{1,2,3}

Pi(t)H(t, Pi(t)x + ci(t, x)).

We can apply Proposition 4.1 with the invariant projector Q = P1 to (2.5) and obtain topological
equivalence to the decoupled dynamic equation

x∆ = A(t)x + P1(t)H(t, P1(t)x + c1(t, x)) + P 3
2 (t)H(t, P 3

2 (t)x + c2,3(t, x))

by virtue of a mapping U1 : T×X → X . Next, thanks to (5.14), we are able to apply Proposition 4.1
with Q = P2 to the reduced dynamic equation

x∆ = A(t)P 3
2 (t)x + P 3

2 (t)H(t, P 3
2 (t)x + c2,3(t, x)),

which lives in
{
(t, x) ∈ T× X : x ∈ X 3

2 (t)
}

, and obtain a topological equivalence U2 to

x∆ = A(t)P 3
2 (t)x +

∑

i∈{2,3}

Pi(t)H(t, Pi(t)x + ci(t, x)).

Therefore, the composition U(t, x) := P1(t)U1(t, x) + U2(t, P 3
2 (t)U1(t, x)) provides a topological

equivalence between the initial equation (2.5) and (5.21). The inverse of U is given by Ũ(t, x) :=
Ũ1(t, P1(t)x + Ũ2(t, P 3

2 (t)x)), where the tilde indicates inverse mappings.
(II) Claim: There exists a topological equivalence V : T × X → X between (5.21) and the

reduced dynamic equation (5.16).
The basic tool in this step is Proposition 5.2, which will be successively applied to the following
dynamic equations

(5.22) x∆ = A(t)
∑

i∈{1,3}

Pi(t)x +
∑

i∈{1,3}

Pi(t)H(t, Pi(t)x + ci(t, x))

and its linearization

(5.23) x∆ = A(t)
∑

i∈{1,3}

Pi(t)x,

both living in
{
(t, x) ∈ T× X : x ∈ X̄ 2

2 (t)
}

, with miscellaneous nonlinearities:
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• For H1(t, x) :=
∑

i∈{1,3} Pi(t)H(t, Pi(t)x+ci(t, x)) and H2(t, x) :≡ 0 we obtain a unique
continuous mapping W : T× X → X satisfying

ΦA(·, τ)W (τ, ξ)− ϕ(·; τ, ξ) ∈ X±
0 for τ ∈ T, ξ ∈ X̄ 2

2 (τ).

• For H1(t, x) :≡ 0 and H2(t, x) :=
∑

i∈{1,3} Pi(t)H(t, Pi(t)x+ci(t, x)) we obtain a unique
continuous W̃ : T× X → X satisfying

ϕ
(
·; τ, W̃ (τ,W (τ, ξ))

)
− ΦA(·, τ)W (τ, ξ) ∈ X±

0 for τ ∈ T, ξ ∈ X̄ 2
2 (τ).

• Finally, H1(t, x) := H2(t, x) :=
∑

i∈{1,3} Pi(t)H(t, Pi(t)x + ci(t, x)) leads to a unique
continuous mapping J : T× X → X satisfying

ϕ(·; τ, J(τ, ξ))− ϕ(·; τ, ξ) ∈ X±
0 for τ ∈ T, ξ ∈ X̄ 2

2 (τ),

where obviously J(τ, ξ) = ξ.
Note that Proposition 5.2 is applicable due to (5.15). Since the bounded functions X±

0 form a linear
space, this implies the inclusion

ϕ
(
·; τ, W̃ (τ,W (τ, ξ))

)
− ϕ(·; τ, ξ) ∈ X±

0 for τ ∈ T, ξ ∈ X̄ 2
2 (τ)

and consequently, due to the uniqueness assertion in Proposition 5.2,

W̃ (τ,W (τ, ξ)) = J(τ, ξ) = ξ for τ ∈ T, ξ ∈ X̄ 2
2 (τ).

Analogously, one shows the identity W (τ, W̃ (τ, ξ)) = ξ and thus the mappings W , W̃ are inverse
to each other. The remaining properties to show that W is a topological equivalence between (5.22)
and (5.23) directly follow from Proposition 5.2. Hence, the desired topological equivalence between
(5.21) and (5.16) is given by V (t, x) = P2(t)x + W (t, [P1(t) + P3(t)]x).

Summarizing step (I) and (II), the composition T (t, x) = V (t, U(t, x)) is the claimed topological
equivalence between (2.5) and (5.21). #
Corollary 5.5. Let τ ∈ T. Assume that Hypothesis 5.1 and 2.3 are fulfilled. Then for all θ0 ∈ Θ
and every bounded B ⊆ X one has

lim
θ→θ0

T (τ, ξ; θ) = T (τ, ξ; θ0), lim
θ→θ0

T̃ (τ, ξ; θ) = T̃ (τ, ξ; θ0) uniformly in ξ ∈ B.(5.24)

Proof. We borrow notation from the proof of Theorem 5.4(b). First of all, the mappings U, Ũ from
step (I) satisfy the uniform limit relations (4.8) from Corollary 4.2. Additionally, we show that also
the mappings W, W̃ of step (II) satisfy the limit relation (5.10) from the first part of Corollary 5.3.
Since this property is preserved under composition, we have established Corollary 5.5. #
Corollary 5.6 (Hartman-Grobman). Assume that Hypothesis 5.1 holds with

P2(t) ≡ 0 on T, a2 = b1 = 0

and that (2.5) is regressive on Θ. Then there exists a topological equivalence T : T× X ×Θ → X
between (2.5) and the linear dynamic equation (2.2), which is “near identity” in the following sense:

‖T (τ, ξ; θ)− ξ‖ ≤ 2ν(a1, b2)M,
∥∥∥T̃ (τ, ξ; θ)− ξ

∥∥∥ ≤
2ν(a1, b2)M

1− 2ν(a1, b2)L
(5.25)

for all τ ∈ T, ξ ∈ X and θ ∈ Θ, with M := M11 + M13 + |θ| (M21 + M23),

L :=K+
1

(
K+

1 +
K1(1)K2(1) (L1 + |θ|L2)

δ − (K1(1) + K2(1)) (L1 + |θ|L2)

)
(L1 + |θ|L2)

+ K−
2

(
K−

2 +
K1(2)K2(2) (L1 + |θ|L2)

δ − (K1(2) + K2(2)) (L1 + |θ|L2)

)
(L1 + |θ|L2),
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where ν(a, b) is defined in Proposition 5.2.

Proof. We apply Theorem 5.4 with P2 = 0 and rely on the notation of its proof. Our present
assumptions guarantee that U1 decouples (2.5) into the dynamic equation (5.21), which degenerates
into (5.22). Accordingly, the topological equivalence between (2.2) and (2.5) is given by the mapping
T : T× X ×Θ → X , T (t, x; θ) := W (t, U1(t, x; θ); θ). Thus, it remains to establish (5.25).

Referring to Proposition 5.2 we know, by construction, that W satisfies the estimate (5.7). Then
the particular choice of the functions H1 and H2 in step (II) together with (5.20) implies the left
inequality in (5.25). In addition, we know from step (II) that the inverse of W is given by W̃ , and
using the same arguments, the right estimate of (5.25) follows from Proposition 5.2 and (5.20). #
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[Sos72] A.N. Šošitaǐšvili, Bifurcations of topological type at singular points of parametrized vector fields, Functional

Analysis and its Applications 5 (1972), 169–170.
[Wan91] T. Wanner, Invariante Faserbündel und topologische Äquivalenz bei dynamischen Prozessen, Thesis, Universität
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