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ABSTRACT. If a linear autonomous ordinary differential of difference equation possesses a coefficient
operator, which is (pseudo-) hyperbolic or allows a more specific splitting of its spectrum into appropri-
ate spectral sets, then this gives rise to a so-called hierarchy of invariant linear subspaces of X related
to the ranges to the corresponding spectral projections. Together with the intersections of these invariant
subspaces, we get an extended hierarchy. Here, each member of the hierarchy can be characterized dy-
namically as set of initial points for orbits with a certain asymptotic growth rate in forward or backward
time.

In this paper we show that such a scenario persists under perturbations w.r.t. two points of view: In
the first instance, the invariant linear spaces become an “extended hierarchy” of invariant manifolds, if the
linear part is perturbed by a globally Lipschitzian (or smooth) mapping on X . This will be done in the
nonautonomous context of dynamic equations on measure chains or time scales, where the time-varying
invariant manifolds are called invariant fiber bundles. Secondly, we derive perturbation results well-suited
for up-coming applications in analytical discretization theory.

1. MOTIVATION AND NOTATION

Consider a linear autonomous difference equation (recursion)

(1.1) xn+1 = Axn,

in a (complex) Banach space X , where the linear bounded operator A : X → X is pseudo-hyperbolic.
That means, its spectrum Σ(A) ⊂ C can be separated into two nonempty subsets Σ1,Σ2 with |λ| < α
for all λ ∈ Σ1, β < |λ| for all λ ∈ Σ2 and reals 0 < α < β. Let Q,P be the spectral projections
corresponding with Σ1 and Σ2, respectively. Then we have a direct decomposition X = R(Q)⊕R(P )
of the state space X into two (forward) invariant subspaces allowing the dynamical characterization

R(Q) =
{
ξ ∈ X : sup

n≥0
‖Anξ‖ γ−n <∞

}
,

R(P ) =
{
ξ ∈ X :

there exists a sequence (xn)n≤0 with x0 = ξ,
xn+1 = Axn for n < 0 and supn≤0 ‖Anξ‖ γ−n <∞

}(1.2)

for any γ ∈ (α, β). It is well-known that these invariant subspaces persist under certain globally Lip-
schitzian perturbations. To be more precise, if f : X → X is a (possibly nonlinear) mapping with a
“sufficiently small” global Lipschitz constant, then also the semilinear difference equation

(1.3) xn+1 = Axn + f(xn)

has two invariant manifolds S and R, which are graphs of Lipschitzian mappings over the linear sub-
spaces R(Q) and R(P ) of (1.1), respectively. This result is well-known as the generalized Hadamard-
Perron (or generalized stable manifold) theorem and can be traced back to, e.g., in [Har64, pp. 234–236,
Lemma 5.1 and Exercise 5.2] for C1-mappings on Rn, in [HPS77, pp. 53–54, Theorem 5.1] for Cm-
diffeomorphisms,m ≥ 1, or [Aul98] for general nonautonomous difference equations in Banach spaces.
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If more detailed information is known about the spectrum of the operator A, the generalized
Hadamard-Perron theorem can be used to obtain a deeper insight into the dynamics of (1.3). In fact, if
we assume the decomposition Σ(A) = Σ1 ∪ . . . ∪ ΣN for N ≥ 2, and the existence of reals β0 < 0,

0 < α1 < β1 < . . . < αN−1 < βN−1 < αN :=∞,

such that the moduli of the spectral points in Σi are contained in the open interval (βi−1, αi) for 1 ≤ i ≤
N , then one can show the existence of invariant manifolds Ci,1, CN,i, 1 ≤ i < N , of (1.3). Denoting
the spectral projectors corresponding with Σi by Pi, the manifold Ci,1 is a Lipschitzian graph over
R(P1)⊕ . . .⊕R(Pi), while CN,i is a Lipschitzian graph overR(Pi+1)⊕ . . .⊕R(PN ) for 1 ≤ i < N ,
and a dynamical characterization of Ci,1, CN,i similar to (1.2) leads to the hierarchical inclusions

{0} ⊂C1,1 ⊂ . . . ⊂ CN−1,1 ⊂ X , {0} ⊂CN,N ⊂ . . . ⊂ CN,2 ⊂ X .

In addition, also the intersections Ci,j := Ci,1 ∩ CN,j , 1 < j ≤ i < N , are invariant manifolds of (1.3)
representable as graphs overR(Pj)⊕ . . .⊕R(Pi), and one speaks of an extended hierarchy of invariant
manifolds. Note that the above scenario is classical in case N = 3 and β1 < 0 < α2. Then C1,1 is the
stable, C2,1 the center-stable, C3,3 the unstable and C3,2 the center-unstable manifold of (1.3), while the
center manifold is given by the intersection C2,2 = C2,1 ∩ C3,2 (cf. [Kel67] for ODEs).

Analogous results to the discrete case considered above, hold for ODEs or more general evolutionary
differential equations under appropriate spectral assumptions on the linear part, i.e., the generator of
the corresponding semigroup. Essentially, one has to replace modulii of the spectral points by their
real parts. Indeed, the idea to consider (extended) hierarchies of invariant manifolds stands in a certain
tradition. In the general setting described above, it can be traced back at least to [Aul87], who considers
finite-dimensional autonomous ODEs, while [Aul95] works with nonautonomous difference equations
in general Banach spaces, and the case of infinite-dimensional Carathéodory differential equations can
be found in [AW96]. These quoted papers also contain examples showing that not all invariant linear
subspaces of (1.1) survive under perturbations described above in the sense that they are Lipschitzian
graphs. Finally, extended hierarchies of Carathéodory differential equations are constructed in [Sie99].

The recent years saw an increasing interest to study dynamical behavior on time axes different from
the reals (as for ODEs) or the integers (as for difference equations). The corresponding tool for such an
endeavor is the so-called calculus on measure chains or time scales (cf. [Hil90, BP01]). In general, a
time scale is an arbitrary closed subset T of the real numbers. Thus, instead of studying discrete (T = Z)
and continuous (T = R) dynamical systems separately, one investigates them on time scales and obtains
the classical situations for free as special cases. Beyond that, it turned out that time scales of particu-
lar interest include unions of disjoint closed intervals (for population modeling under the influence of
hibernation periods) or meshes of discrete points (in analytical discretization theory). Specifically for
discretization issues, the time scale calculus is a well-suited device, since two key topics are met:

• Persistence under temporal discretization, since continuous and discrete phenomena can be de-
rived simultaneously.
• Convergence for small time step-sizes, provided one establishes appropriate perturbation results

for time scale, i.e., dynamic equations.
Motivated by these perspectives, the main contributions of this paper essentially consist of two results
(see Theorem 3.3 and 4.2).

• We provide a flexible and general version of the Hadamard-Perron theorem, where the invariant
manifolds generalize to so-called invariant fiber bundles. It applies to nonautonomous, nonin-
vertible dynamic equations on nearly arbitrary time scales. Their linear part is allowed to be
pseudo-hyperbolic in terms of an exponential dichotomy with not necessarily constant growth
rates. For discretization problems, a dichotomy notion with variable growth rates has the tech-
nical advantage to avoid lower bounds for the step-sizes (see [KP05, Lemma 3.3] for details).
The nonlinearities can depend on parameters from general metric spaces. Based on this result,
we will be able to derive concepts like invariant foliations or asymptotic phases, leading to the
reduction principle (see [Pöt06]) and a generalized Hartman-Grobman theorem (see [Pöt07a]).
In doing so, we generalize [Aul87, Aul95, AW96, Kel99, Pöt03, PS04] in two ways: Firstly,
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the equations need to be only (globally) Lipschitzian in their state space variable, which is a
minimal requirement to develop a topological linearization theory. Secondly, the equations un-
der consideration are not assumed to possess a decoupled linear part and the usual Lyapunov
transformation technique (cf. [AP02]) becomes redundant.

• If we replace the above dichotomy assumption on the linear part by a more general exponential
splitting of the extended state space, we are able to prove the existence of extended hierarchies
of invariant fiber bundles for dynamic equations on time scales beyond the reals or the integers.
Under certain spectral gap conditions, and relying on our earlier work (see [Pöt03, PS04]), we
moreover obtain differentiability results for this hierarchy.

These two results provide a theoretical framework to study the persistence of hierarchies of invariant
manifolds under numerical discretization. To address convergence questions, though, it is essential to
allow a specific parameter-dependence (cf. equation (2.2)). In applications (see [KP05]) this parameter
serves as homotopy parameter between the flow of a nonautonomous ODE and its discretization using
a variable step-size one-step method of, e.g., Runge-Kutta-type.

Concerning our general notation, N are the positive integers, R denotes the real and C the complex
field. Throughout this paper, Banach spaces X are over the real (F = R) or complex (F = C) field,
and their norm is denoted by ‖·‖X , or simply by ‖·‖. L(X ) is the Banach space of linear bounded
endomorphisms and IX the identity on X , R(T ) := TX the range and N (T ) := T−1({0}) the kernel
of T ∈ L(X ). The direct sum of two linear subspaces X1,X2 ⊆ X is denoted by X1 ⊕ X2 and on the
Cartesian product X1 ×X2 we always use the norm

‖(x1, x2)‖X1×X2
:= max

{
‖x1‖X1

, ‖x2‖X2

}
.

If a mapping f between metric spaces satisfies a Lipschitz condition, then its smallest Lipschitz constant
is denoted by Lip f . In case f depends on more than one variable, and if it is Fréchet-differentiable in
the ith variable, we write Dif for the corresponding partial derivative.

2. MEASURE CHAINS, TIME SCALES AND DYNAMIC EQUATIONS

In order to keep this article self-contained, we introduce some basic terminology from the calculus
on measure chains (cf. [Hil90, BP01]). In all subsequent considerations we deal with a measure chain
(T,�, µ), i.e. a conditionally complete totally ordered set (T,�) (see [Hil90, Axiom 2]) with growth
calibration µ : T2 → R (see [Hil90, Axiom 3]), such that µ(T, τ) ⊆ R, τ ∈ T, is unbounded above.
The most intuitive and relevant examples of measure chains are time scales, where T is a canonically
ordered closed subset of the reals and µ is given by µ(t, s) = t − s. Continuing, σ : T → T, σ(t) :=
inf {s ∈ T : t ≺ s} defines the forward jump operator and the graininess µ∗ : T → R, µ∗(t) :=
µ(σ(t), t) is assumed to be bounded from now on. For τ ∈ T we abbreviate T+

τ := {s ∈ T : τ � s}
and T−τ := {s ∈ T : s � τ}.

Crd(T,X ) denotes the set of rd-continuous functions from T to X (cf. [Hil90, Section 4.1]). Growth
rates are functions a ∈ Crd(T,R) such that −1 < inft∈T µ

∗(t)a(t), supt∈T µ
∗(t)a(t) <∞. Moreover,

for a, b ∈ Crd(T,R) we introduce the relations bb− ac := inft∈T(b(t)− a(t)),

a C b :⇔ 0 < bb− ac , a E b :⇔ 0 ≤ bb− ac .

On the set C+
rdR(T,R) := {a ∈ Crd(T,R) : a is a growth rate and 1 + µ∗(t)a(t) > 0 for t ∈ T} we

define the product (m� a)(t) := limh↘µ∗(t)
(1+ha(t))m−1

h with m ∈ N. Besides, for a ∈ C+
rdR(T,R)

the (real) exponential function on T is denoted by ea(t, s) ∈ R, s, t ∈ T (cf. [Hil90, Theorem 7.3]).
A function φ : T→ X is said to be T -periodic for some T > 0, if there exists a mapping σT : T→ T

satisfying the identities µ(σT (t), t) ≡ T and φ(σT (t)) ≡ φ(t) on T. We say φ is differentiable (in a
point t0 ∈ T), if there exists a unique derivative φ∆(t0) ∈ X , such that for any ε > 0 the estimate∥∥φ(σ(t0))− φ(t)− µ(σ(t0), t)φ∆(t0)

∥∥ ≤ ε |µ(σ(t0), t)| for t ∈ U
holds in a T-neighborhood U of t0 (see [Hil90, Section 2.4]). The Lebesgue integral of φ is denoted
as
∫ t
τ
φ(s) ∆s for τ, t ∈ T, provided it exists (cf. [Nei01]). The following example is intended to give

readers unfamiliar with time scale a flavor of the above rather abstract objects.
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Example 2.1. Above all, a variety of examples for time scales is discussed in [BP01]. Of particular
interest, though, are the time scales T = R to describe ODEs, as well as discrete meshes

T = D :=
{
tk ∈ R : lim

k→±∞
tk = ±∞ and tk < tk+1 for all k ∈ Z

}
to capture numerical schemes for temporal discretizations with varying step-sizes tk+1 − tk (or simply
difference equations). On such time scales, the above objects are summarized in the following table:

T R D
σ(t) σ(t) = t σ(tk) = tk+1

µ∗(t) µ∗(t) ≡ 0 µ∗(tk) = tk+1 − tk
Crd(T,X ) C(R,X ) {φ : D→ X}

C+
rdR(T,R) C(R,R) {a : D→ X| 1 + (tk+1 − tk)a(tk) > 0}

(m� a)(t) (m� a)(t) = ma(t) (m� a)(tk) = [1+(tk+1−tk)a(tk)]m−1
tk+1−tk

ea(t, τ) ea(t, τ) = exp
(∫ t

τ
a(a)ds

)
ea(tk, tn) =

∏k−1
l=n [1 + (tl+1 − tl)a(tl)]

φ∆(t) φ∆(t) = φ̇(t) φ∆(tk) = φ(tk+1)−φ(tk)
tk+1−tk∫ t

τ
φ(s) ∆s

∫ t
τ
φ(s) ∆s =

∫ t
τ
φ(s) ds

∫ tk
tn
φ(s) ∆s =

∑n−1
l=k (tl+1 − tl)φ(tl)

Note that on more complicated time scales these formulas are more involved than the above differential
resp. difference case (think of, e.g., a Cantor set T).

Given a mapping A ∈ Crd(T,L(X )), a linear dynamic equation is of the form

(2.1) x∆ = A(t)x;

here the transition operator ΦA(t, s) ∈ L(X ), s � t, is the solution of the operator-valued initial value
problem X∆ = A(t)X , X(s) = IX in L(X ).

Let (Q, d) be a metric space and keep the parameters θ ∈ F, q ∈ Q fixed. We consider semilinear
perturbations of the dynamic equation (2.1) given by

(2.2) x∆ = A(t)x+ F1(t, x; q) + θF2(t, x; q)

with mappings Fi : T × X × Q → X , such that Fi(·; q), q ∈ Q, is rd-continuous (see [Hil90,
Section 5.1]) and Fi(t, ·), t ∈ T, is continuous for i = 1, 2. Further assumptions on F1, F2 can
be found in Hypothesis 3.1 and 4.1. A solution of (2.2) is a function ν satisfying the identity
ν∆(t) ≡ A(t)ν(t) + F1(t, ν(t); q) + θF2(t, ν(t); q) on a T-interval. ϕ denotes the general solution
of (2.2), i.e., ϕ(·; τ, ξ; θ, q) solves (2.2) on T+

τ and satisfies the initial condition ϕ(τ ; τ, ξ; θ, q) = ξ for
τ ∈ T, ξ ∈ X . It fulfills the cocycle property

(2.3) ϕ(t; s, ϕ(s; τ, ξ; θ, q); θ, q) = ϕ(t; τ, ξ; θ, q) for τ, s, t ∈ T, τ � s � t, ξ ∈ X .

The dynamic equation (2.2) is said to be T -periodic for some T > 0, if the mappings A and Fi(·, x, q)
possess this property for all x ∈ X , q ∈ Q.

As mentioned in the introduction, invariant fiber bundles are generalizations of invariant manifolds
to nonautonomous equations. In order to be more precise, we call a subset S(θ, q) of the extended
state space T × X an invariant fiber bundle of (2.2), if it is forward invariant, i.e., if for any pair
(τ, ξ) ∈ S(θ, q) one has (t, ϕ(t; τ, ξ; θ, q)) ∈ S(θ, q) for all t ∈ T+

τ .

Definition 2.1. For c ∈ C+
rdR(T,R) and τ ∈ T we say that φ ∈ Crd(T,X ) is

(a) c+-quasibounded, if ‖φ‖+τ,c := supt∈T+
τ
‖φ(t)‖ ec(τ, t) <∞,

(b) c−-quasibounded, if ‖φ‖−τ,c := supt∈T−τ ‖φ(t)‖ ec(τ, t) <∞,
(c) c±-quasibounded, if ‖φ‖±τ,c := supt∈T ‖φ(t)‖ ec(τ, t) <∞.

X+
τ,c and X−τ,c denote the sets of c+- and c−-quasibounded functions on T+

τ and T−τ , respectively.
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Obviously X+
τ,c and X−τ,c are nonempty and by [Hil90, Theorem 4.1(iii)], it is immediate that for any

c ∈ C+
rdR(T,R), τ ∈ T, the sets X+

τ,c and X−τ,c are Banach spaces with the norms ‖·‖+τ,c and ‖·‖−τ,c,
respectively. Finally, X+

τ,c define a scale of Banach spaces, i.e., for c, d ∈ C+
rdR(T,R) we have

(2.4) c E d ⇒ X+
τ,c ⊆ X+

τ,d

and in case c C d the strong inclusion X+
τ,c ⊂ X+

τ,d holds.

3. EXISTENCE OF INVARIANT FIBER BUNDLES

We begin this section by stating some frequently used assumptions for our prototype system (2.2) of
dynamic equations. As a preparation, a projection-valued mapping P : T→ L(X ) is called a projector,
we speak of an invariant projector of (2.1), if

(3.1) P (t)ΦA(t, s) = ΦA(t, s)P (s) for s, t ∈ T, s � t

holds, and finally an invariant projector P is denoted as regular, if

IX + µ∗(t)A(t)|R(P (t)) : R(P (t))→ R
(
P (σ(t))

)
is bijective for all t ∈ T.

Then the restriction Φ̄A(t, s) := ΦA(t, s)|R(P (s)) : R(P (s)) → R(P (t)), s � t, is a well-defined
isomorphism, and we write Φ̄A(s, t) for its inverse (cf. [Pöt02, p. 85, Lemma 2.1.8]).

From now on we assume:

Hypothesis 3.1. (i) There exists a regular invariant projector P : T → L(X ) of (2.1) such that
the dichotomy estimates

‖ΦA(t, s)Q(s)‖ ≤ K1ea(t, s),
∥∥Φ̄A(s, t)P (t)

∥∥ ≤ K2eb(s, t) for t � s(3.2)

are satisfied, with the complementary projector Q(t) := IX − P (t), reals K1,K2 ≥ 1 and
growth rates a, b ∈ C+

rdR(T,R), a C b.
(ii) We abbreviate Hθ := F1 + θF2, and for i = 1, 2 the identities

(3.3) Fi(t, 0; q) ≡ 0 on T×Q

hold and the mappings Fi satisfy the following global Lipschitz estimates

(3.4) Li := sup
(t,q)∈T×Q

LipFi(t, ·; q) <∞.

Moreover, for some δmax > 0 we require

(3.5) L1 <
δmax

2(K1 +K2)
,

choose a fixed δ ∈ (2(K1 +K2)L1, δmax) and abbreviate Θ := {θ ∈ F : L2 |θ| ≤ L1} ,

Γ :=
{
c ∈ C+

rdR(T,R) : a+ δ C c C b− δ
}
.

(iii) Assume the partial derivatives Dn
2Fi(t, ·), t ∈ T, exist, are continuous on X × Q up to order

m ∈ N, and suppose they are globally bounded, i.e. for 2 ≤ n ≤ m we have

|Fi|n := sup
(t,x,q)∈T×X×Q

‖Dn
2Fi(t, x; q)‖ <∞ for i = 1, 2.

Remark 3.1. (1) It is easy to see that the existence of suitable values for δ follows from (3.5). Since we
have 0 < δ < δmax there exist functions c ∈ C+

rdR(T,R) such that a + δ C c C b − δ and in addition
a+ δ, b− δ are positively regressive.

(2) As a consequence of (3.4), the partial derivatives D2Fi are globally bounded on T × X × Q by
the Lipschitz constants Li for i = 1, 2.

(3) Under Hypothesis 3.1(i)–(ii) the solutions ϕ(·; τ, ξ; θ, q) exist and are unique on T+
τ for arbitrary

τ ∈ T, ξ ∈ X and θ ∈ F, q ∈ Q (cf. [Pöt02, p. 38, Satz 1.2.17(a)]).
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(4) By means of a cut-off-technique using radial retractions (cf. [AW96]), we can replace the strong
assumption on the existence of Li <∞, i = 1, 2, and (3.5) by

lim
x,x̄→0

Fi(t, x; q)− Fi(t, x̄; q)
‖x− x̄‖

= 0 uniformly in t ∈ T, q ∈ Q.

Similarly, using Cm-bump functions (cf., for instance, [KM97]), one substitutes the existence of |Fi|n,
i = 1, 2, n ∈ {2, . . . ,m} and (3.5) by

lim
x→0

D2Fi(t, x; q) = 0 uniformly in t ∈ T, q ∈ Q.

Then, however, the obtained results hold only locally in a neighborhood of the origin.

At this point we transplant most of our technical preparations into an abstract lemma. It particularly
allows to characterize the quasibounded solutions of (2.2) as fixed points of a suitable operator.

Lemma 3.2. Assume Hypothesis 3.1(i)–(ii), choose τ ∈ T fixed and set δmax := bb−ac
2 . Then for

growth rates c ∈ C+
rdR(T,R), a C c C b, the operator Tτ : X+

τ,c ×X ×Θ×Q → X+
τ,c,

Tτ (ν;x0, θ, q) :=ΦA(·, τ)Q(τ)x0 +
∫ ·
τ

ΦA(·, σ(s))Q(σ(s))Hθ(s, ν(s); q) ∆s

−
∫ ∞
·

Φ̄A(·, σ(s))P (σ(s))Hθ(s, ν(s); q) ∆s(3.6)

is well-defined and has, for fixed x0 ∈ X , θ ∈ Θ, q ∈ Q, the following properties:
(a) ν : T+

τ → X is a c+-quasibounded solution of equation (2.2) with Q(τ)ν(τ) = Q(τ)x0, if and
only if ν ∈ X+

τ,c solves the fixed point problem

(3.7) ν = Tτ (ν;x0, θ, q).

Moreover, in case a+ δ E c E b− δ, we have:
(b) Tτ (·;x0, θ, q) is a uniform contraction with Lipschitz constant

(3.8) Lip Tτ (·;x0, θ, q) ≤ L(θ) < 1,

where L(θ) := K1+K2
δ (L1 + |θ|L2),

(c) the unique fixed point ν∗τ (x0, θ, q) ∈ X+
τ,c of Tτ (·;x0, θ, q) does not depend on the growth rate

c ∈ C+
rdR(T,R), it satisfies ν∗τ (0, θ, q) = 0, ν∗τ (x0, θ, q) = ν∗τ (Q(τ)x0, θ, q) and we have

LipP (τ)ν∗τ (·, θ, q)(τ) ≤ K1K2 (L1 + |θ|L2)
δ − (K1 +K2) (L1 + |θ|L2)

,(3.9)

Lip ν∗τ (x0, ·, q) ≤
δK1(K1 +K2)L2

[δ − 2(K1 +K2)L1]2
‖x0‖ ,(3.10)

(d) for c ∈ Γ the mapping ν∗τ : X ×Θ×Q → X+
τ,c is continuous.

Proof. Let τ ∈ T be arbitrarily fixed, and choose a growth rate c ∈ C+
rdR(T,R), a + δ E c E b − δ.

We show the well-definedness of the operator Tτ . Thereto, let x0 ∈ X , θ ∈ Θ and q ∈ Q arbitrary. For
ν, ν̄ ∈ X+

τ,c we obtain

‖Tτ (ν;x0, θ, q)(t)− Tτ (ν̄;x0, θ, q)(t)‖ ec(τ, t)
(3.6)
≤
∥∥∥∥∫ t

τ

ΦA(t, σ(s))Q(σ(s)) [Hθ(s, ν(s); q)−Hθ(s, ν̄(s); q)] ∆s
∥∥∥∥ ec(τ, t)

+
∥∥∥∥∫ ∞

t

Φ̄A(t, σ(s))P (σ(s)) [Hθ(s, ν(s); q)−Hθ(s, ν̄(s); q)] ∆s
∥∥∥∥ ec(τ, t)

(3.2)
≤ K1

∫ t

τ

ea(t, σ(s)) ‖Hθ(s, ν(s); q)−Hθ(s, ν̄(s); q)‖ ∆sec(τ, t)(3.11)

+K2

∫ ∞
t

eb(t, σ(s)) ‖Hθ(s, ν(s); q)−Hθ(s, ν̄(s); q)‖ ∆sec(τ, t)
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(3.4)
≤
(
K1

∫ t

τ

ea(t, σ(s))ec(s, t) ∆s+K2

∫ ∞
t

eb(t, σ(s))ec(s, t) ∆s
)

· (L1 + |θ|L2) ‖ν − ν̄‖+τ,c

≤
(

K1

bc− ac
+

K2

bb− cc

)
(L1 + |θ|L2) ‖ν − ν̄‖+τ,c for t ∈ T+

τ ,

where we have evaluated the integrals using [Pöt02, p. 65, Lemma 1.3.29]. To verify that Tτ is well-
defined, we observe

‖Tτ (ν;x0, θ, q)(t)‖ ec(τ, t)

≤ ‖Tτ (0;x0, θ, q)(t)‖ ec(τ, t) + ‖Tτ (ν;x0, θ, q)(t)− Tτ (0;x0, θ, q)(t)‖ ec(τ, t)
(3.3)
≤ ‖ΦA(t, τ)Q(τ)x0‖ ec(τ, t) + ‖Tτ (ν;x0, θ, q)− Tτ (0;x0, θ, q)‖+τ,c

(3.2)
≤ K1 ‖x0‖+

(
K1

bc− ac
+

K2

bb− cc

)
(L1 + |θ|L2) ‖ν‖+τ,c for t ∈ T+

τ

and taking the supremum over t ∈ T+
τ implies Tτ (ν;x0, θ, q) ∈ X+

τ,c.
(a) Let x0 ∈ X , θ ∈ Θ and q ∈ Q be arbitrary.

(⇒) If ν ∈ X+
τ,c is a solution of (2.2) with Q(τ)ν(τ) = Q(τ)x0, then ν also solves the linear-

inhomogeneous dynamic equation

(3.12) x∆ = A(t)x+Hθ(t, ν(t); q)

on T+
τ , where the inhomogeneous part satisfies

‖Hθ(t, ν(t); q)‖ ec(τ, t)
(3.3)= ‖Hθ(t, ν(t); q)−Hθ(t, 0; q)‖ ec(τ, t)
(3.3)
≤ (L1 + |θ|L2) ‖ν‖+τ,c for t ∈ T+

τ

and is therefore in X+
τ,c. Then [Pöt02, p. 103, Satz 2.2.4(a)] implies that ν is uniquely determined and

given by the right hand side of (3.6). So ν satisfies (3.7).
(⇐) If ν ∈ X+

τ,c solves the fixed point problem (3.7), then a direct computation in (3.6) yields that ν
solves the dynamic equation (3.12) and consequently also (2.2) (cf. [Pöt02, p. 105]). Moreover, from
(3.7), (3.6) and [Pöt02, p. 86, Korollar 2.1.9(a)] we have Q(τ)ν(τ) = Q(τ)x0.

From now on, let a+ δ E c E b− δ.
(b) Passing over to the least upper bound for t ∈ T+

τ in (3.11) yields the estimate

‖Tτ (ν;x0, θ, q)− Tτ (ν̄;x0, θ, q)‖+τ,c ≤ L(θ) ‖ν − ν̄‖ for ν, ν̄ ∈ X+
τ,c

and our choice of δ in Hypothesis 3.1(ii) guarantees L(θ) < 1 for θ ∈ Θ. Therefore, the contraction
mapping principle implies that there exists a unique fixed point ν∗τ (x0, θ, q) ∈ X+

τ,c of Tτ (·;x0, θ, q),
which moreover satisfies

(3.13) ‖ν∗τ (x0, θ, q)‖+τ,c ≤
K1

1− L(θ)
‖x0‖ for ν ∈ X+

τ,c.

(c) The fixed point ν∗τ (x0, θ, q) ∈ X+
τ,c is independent of the growth rate c ∈ C+

rdR(T,R), a+δ E c E
b− δ, because with (2.4) we have the inclusion X+

τ,a+δ ⊆ X+
τ,c, and thus, every operator Tτ (·;x0, θ, q) :

X+
τ,c → X+

τ,c has the same fixed point as its restriction Tτ (·;x0, θ, q)|X+
τ,a+δ

. Using the assumption
(3.3) and the uniqueness of solutions (cf. [Pöt02, p. 38, Satz 1.2.17(a)]), we see ϕ(t; τ, 0; θ, q) ≡ 0
on T+

τ and since trivially ϕ(·; τ, 0; θ, q) ∈ X+
τ,c holds, the assertion (a) with x0 = 0 implies that

ϕ(·; τ, 0; θ, q) solves the fixed point equation (3.7). This fixed point, in turn, is unique and so we
get ν∗τ (0; θ, q) = ϕ(·; τ, 0; θ, q) = 0. Directly from (3.6) we obtain the identity ν∗τ (Q(τ)x0, θ, q) =
Tτ (ν∗τ (Q(τ)x0, θ, q);Q(τ)x0, θ, q) = Tτ (ν∗τ (Q(τ)x0, θ, q);x0, θ, q) and therefore, ν∗τ (Q(τ)x0, θ, q) is
the unique fixed point of Tτ (·;x0, θ, q), i.e., we have

(3.14) ν∗τ (x0, θ, q) = ν∗τ (Q(τ)x0, θ, q) for x ∈ X , θ ∈ Θ, q ∈ Q.
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To prove the Lipschitz estimates (3.9), (3.10), we suppress the dependence on the fixed parameter q ∈ Q.
To this end, consider x0, x̄0 ∈ X , fixed θ ∈ Θ and the corresponding fixed points ν∗τ (x0, θ), ν∗τ (x̄0, θ) ∈
X+
τ,c of Tτ (·;x0, θ) and Tτ (·; x̄0, θ), respectively. We have

‖ν∗τ (x0, θ)− ν∗τ (x̄0, θ)‖+τ,c
(3.7)
≤ ‖Tτ (ν∗τ (x0, θ);x0, θ)− Tτ (ν∗τ (x̄0, θ);x0, θ)‖+τ,c

+ ‖Tτ (ν∗τ (x̄0, θ);x0, θ)− Tτ (ν∗τ (x̄0, θ); x̄0, θ)‖+τ,c
(3.8)
≤ L(θ) ‖ν∗τ (x0, θ)− ν∗τ (x̄0, θ)‖+τ,c

+ ‖Tτ (ν∗τ (x̄0, θ);x0, θ)− Tτ (ν∗τ (x̄0, θ); x̄0, θ)‖+τ,c ,
and thus,

‖ν∗τ (x0, θ)− ν∗τ (x̄0, θ)‖+τ,c ≤
1

1− L(θ)
‖Tτ (ν∗τ (x̄0, θ);x0, θ)−Tτ (ν∗τ (x̄0, θ); x̄0, θ)‖+τ,c

(3.6)=
1

1− L(θ)
sup
t∈T+

τ

‖ΦA(t, τ)Q(τ) (x0 − x̄0)‖ ec(τ, t)
(3.2)
≤ K1

1− L(θ)
‖x0 − x̄0‖ .

(3.15)

Moreover, directly from (3.6) and (3.7) we get the identity

P (·)ν∗τ (x0, θ)
(3.1)= −

∫ ∞
·

Φ̄A(·, σ(s))Q(σ(s))Hθ(s, ν∗τ (x0, θ)(s)) ∆s

and similarly to the proof of (b) this yields

‖P (·) [ν∗τ (x0, θ)− ν∗τ (x̄0, θ)]‖+τ,c ≤
K2

bb− cc
(L1 + |θ|L2) ‖ν∗τ (x0, θ)− ν∗τ (x̄0, θ)‖+τ,c ,

which, together with (3.15), implies (3.9). Analogously, for fixed x0 ∈ X and θ, θ̄ ∈ Θ we obtain∥∥ν∗τ (x0, θ)− ν∗τ (x0, θ̄)
∥∥+

τ,c

(3.8)
≤ L(θ)

∥∥ν∗τ (x0, θ)− ν∗τ (x0, θ̄)
∥∥+

τ,c

+
∥∥Tτ (ν∗τ (x0, θ̄);x0, θ)− Tτ (ν∗τ (x0, θ̄);x0, θ̄)

∥∥+

τ,c

and consequently, by known arguments, using (3.3)–(3.4)∥∥ν∗τ (x0, θ)− ν∗τ (x0, θ̄)
∥∥+

τ,c

(3.6)
≤ 1

1− L(θ)

(
sup
τ�t

∥∥∥∥∫ t

τ

ΦA(t, σ(s))Q(σ(s))F2(s, ν∗τ (x0, θ̄)(s)) ∆s
∥∥∥∥ ec(τ, t)

+ sup
τ�t

∥∥∥∥∫ ∞
t

Φ̄A(t, σ(s))P (σ(s))F2(s, ν∗τ (x0, θ̄)(s)) ∆s
∥∥∥∥ ec(τ, t)) ∣∣θ − θ̄∣∣

(3.2)
≤ L2

1− L(θ)

(
K1

bc− ac
+

K2

bb− cc

)∥∥ν∗τ (x0, θ̄)
∥∥+

τ,c

∣∣θ − θ̄∣∣
(3.13)
≤ K1(K1 +K2)L2

δ(1− L(θ))(1− L(θ̄))
‖x0‖

∣∣θ − θ̄∣∣ .
If we keep in mind the inequality L(θ) ≤ 2K1+K2

δ L1 for θ ∈ Θ, then (3.10) follows. Therefore we
have established the assertion (c).

(d) In order to show the continuity of ν∗τ : X ×Θ×Q → X+
τ,c, with c ∈ Γ, by [AW96, Lemma B.4]

it suffices to prove the following limit relation

(3.16) lim
(θ,q)→(θ0,q0)

ν∗τ (x0, θ, q) = ν∗τ (x0, θ0, q0) for θ0 ∈ Θ, q ∈ Q,

since the mappings ν∗τ (·, θ, q) : X → X+
τ,c are globally Lipschitzian, where (3.15) implies the uniform

estimate Lip ν∗τ (·, θ, q) ≤ δK1
δ−2(K1+K2)L1

for all θ ∈ Θ, q ∈ Q. We suppress the dependence on x0 ∈ X ,
choose θ0 ∈ Θ, q0 ∈ Q fixed and obtain from (3.2) for θ ∈ Θ, q ∈ Q the estimate

‖ν∗τ (θ, q)(t)− ν∗τ (θ0, q0)(t)‖
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(3.6)
≤ K1

∫ t

τ

ea(t, σ(s)) ‖Hθ(s, ν∗τ (θ, q)(s); q)−Hθ0(s, ν∗τ (θ0, q0)(s); q0)‖ ∆s

+K2

∫ ∞
t

eb(t, σ(s)) ‖Hθ(s, ν∗τ (θ, q)(s); q)−Hθ0(s, ν∗τ (θ0, q0)(s); q0)‖ ∆s

for t ∈ T+
τ . Subtraction and addition of Hθ(s, ν∗τ (θ0, q0)(s); q) in the corresponding norms leads to

‖ν∗τ (θ, q)(t)− ν∗τ (θ0, q0)(t)‖ ≤ I1 + I2 + I3 + I4 for all t ∈ T+
τ , where (cf. (3.2), (3.4))

I1 := K1 (L1 + |θ|L2)
∫ t

τ

ea(t, σ(s)) ‖ν∗τ (θ, q)(s)− ν∗τ (θ0, q0)(s)‖ ∆s,

I2 := K1

∫ t

τ

ea(t, σ(s)) ‖Hθ(s, ν∗τ (θ0, q0)(s); q)−Hθ0(s, ν∗τ (θ0, q0)(s); q0)‖ ∆s,

I3 := K2 (L1 + |θ|L2)
∫ ∞
t

eb(t, σ(s)) ‖ν∗τ (θ, q)(s)− ν∗τ (θ0, q0)(s)‖ ∆s,

I4 := K2

∫ ∞
t

eb(t, σ(s)) ‖Hθ(s, ν∗τ (θ0, q0)(s); q)−Hθ0(s, ν∗τ (θ0, q0)(s); q0)‖ ∆s.

From this, and with the aid of [Pöt02, p. 65, Lemma 1.3.29], we obtain the estimate

‖ν∗τ (θ, q)(t)− ν∗τ (θ0, q0)(t)‖ ec(τ, t)

≤ I1ec(τ, t) + I3ec(τ, t) + L(θ) ‖ν∗τ (θ, q)− ν∗τ (θ0, q0)‖+τ,c for t ∈ T+
τ .

Hence, by passing over to the least upper bound for t ∈ T+
τ , and using (3.7), we get the inequality

‖ν∗τ (θ, q)− ν∗τ (θ0, q0)‖+τ,c ≤
δmax{K1,K2}
δ−2(K1+K2)L1

supτ�t U(t, θ, q) with

U(t, θ, q) := ec(τ, t)
∫ t

τ

ea(t, σ(s)) ‖Hθ(s, ν∗τ (θ0, q0)(s); q)−Hθ0(s, ν∗τ (θ0, q0)(s); q0)‖ ∆s

+ ec(τ, t)
∫ ∞
t

eb(t, σ(s)) ‖Hθ(s, ν∗τ (θ0, q0)(s); q)−Hθ0(s, ν∗τ (θ0, q0)(s); q0)‖ ∆s.

Therefore, it is sufficient to prove

(3.17) lim
(θ,q)→(θ0,q0)

sup
τ�t

U(t, θ, q) = 0

in order to show the limit relation (3.16). We proceed indirectly and assume (3.17) does not hold. Then
there is an ε > 0 and sequences (θi)i∈N, (qi)i∈N in Θ and Q, resp., with limi→∞(θi, qi) = (θ0, q0) and
supτ�t U(t, θi, qi) > ε for i ∈ N. This implies the existence of a sequence (ti)i∈N in T+

τ such that

(3.18) U(ti, θi, qi) > ε for i ∈ N.

From now on we consider a + δ C c, choose a fixed growth rate d ∈ C+
rdR(T,R), a + δ C d C c and

remark that the inequality d C c will play an important role below. Because of Hypothesis 3.1(ii) and
ν∗τ (θ, q) ∈ X+

τ,d we get (cf. (3.3))

‖Hθ(s, ν∗τ (θ0, q0)(s); q)‖
(3.4)
≤ (L1 + |θ|L2) ‖ν∗τ (θ0, q0)‖+τ,d ed(s, τ) for s ∈ T+

τ ,

and the triangle inequality, as well as |θ|L2 ≤ L1, leads to

U(t, θ, q) ≤ 4L1 ‖ν∗τ (θ0, q0)‖+τ,d ec(τ, t)
∫ t

τ

ea(t, σ(s))ed(s, τ) ds

+4L1 ‖ν∗τ (θ0, q0)‖+τ,d ec(τ, t)
∫ ∞
t

eb(t, σ(s))ed(s, τ) ds

≤ 8L1
δ ‖ν

∗
τ (θ0, q0)‖+τ,d ed	c(t, τ) for t ∈ T+

τ ,

where we have evaluated the integrals using [Pöt02, p. 65, Lemma 1.3.29]. Because of d C c and
[Pöt02, p. 63, Lemma 1.3.26], passing over to the limit t→∞ yields limt→∞ U(t, θ, q) = 0 uniformly
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in θ ∈ Θ, q ∈ Q, and taking into account (3.18), the sequence (ti)i∈N in T+
τ has to be bounded above,

i.e. there exists a time T ∈ T+
τ , τ ≺ T , with ti � T for all i ∈ N. Hence, by [Hil90, Theorem 7.4(i)],

U(ti, θi, qi) ≤
∫ T

τ

ec(τ, σ(s)) ‖Hθi(s, ν
∗
τ (θ0, q0)(s); qi)−Hθ0(s, ν∗τ (θ0, q0)(s); q0)‖ ∆s

+
∫ ∞
τ

ec(τ, σ(s))eb	c(T, σ(s))

· ‖Hθi(s, ν
∗
τ (θ0, q0)(s); qi)−Hθ0(s, ν∗τ (θ0, q0)(s); q0)‖ ∆s for i ∈ N,

where the first integral tends to 0 for i→∞ by the continuity of F1, F2. Likewise, continuity of F1, F2

implies limi→∞Hθi(s, ν
∗
τ (θ0, q0)(s); qi) = Hθ0(s, ν∗τ (θ0, q0)(s); q0) and with Lebesgue’s dominated

convergence theorem for the integral on T (cf. [Nei01, p. 161, Nr. 313]), we get the convergence of
the improper integral to 0 for i → ∞. Thus, we derived the relation limi→∞ U(ti, θi, qi) = 0, which
obviously contradicts (3.18). This means (3.16) is verified and the proof of Lemma 3.2 is finished. �

Having collected the preparations in Lemma 3.2, we may now head for our general version of the
Hadamard-Perron theorem. Related results for dynamic equations on measure chains (or time scales)
can be found in [Kel99, Pöt03, PS04]. Nevertheless, these references assume a decoupled linear part.

Before proceeding, in order to address differentiability issues we introduce a notation needed in the
next theorem; for growth rates a, b ∈ C+

rdR(T,R) and m ∈ N we get from [PS04, Lemma 4.1] that

m� a C b ⇒ ρms [a, b] := inf
t∈T

lim
h↘µ∗(t)

1 + ha(t)
h

(
m

√
1 + ha(t) + 1 + hb(t)

1 + ha(t) + (1 + ha(t))m
− 1

)
> 0,

a C m� b ⇒ ρmr [a, b] := inf
t∈T

lim
h↘µ∗(t)

1 + hb(t)
h

(
1− m

√
1 + ha(t) + 1 + hb(t)

1 + hb(t) + (1 + hb(t))m

)
> 0.

Theorem 3.3 (invariant fiber bundles). Assume Hypothesis 3.1(i)–(ii) is fulfilled with δmax = 1
2 bb− ac.

Then the following statements are true:

(a) For all θ ∈ Θ, q ∈ Q the set

S(θ, q) :=
{

(τ, x0) ∈ T×X : ϕ(·; τ, x0; θ, q) ∈ X+
τ,c for all c ∈ Γ

}
is an invariant fiber bundle of (2.2) possessing the representation

(3.19) S(θ, q) = {(τ, ξ + s(τ, ξ; θ, q)) ∈ T×X : τ ∈ T, ξ ∈ R(Q(τ))}

with a uniquely determined continuous mapping s : T×X ×Θ×Q → X satisfying

(3.20) s(τ, x0; θ, q) = s(τ,Q(τ)x0; θ, q) ∈ R(P (τ)) for τ ∈ T, x0 ∈ X

and the invariance equation

(3.21) P (t)ϕ(t; τ, x0; θ, q) = s(t, Q(t)ϕ(t; τ, x0; θ, q); θ, q) for (τ, x0) ∈ S(θ, q), τ � t.

Furthermore, it holds:
(a1) s(τ, 0; θ, q) ≡ 0 on T×Θ×Q,
(a2) s : T×X ×Θ×Q → X satisfies the Lipschitz estimates

Lip s(τ, ·; θ, q) ≤ K1K2 (L1 + |θ|L2)
δ − (K1 +K2) (L1 + |θ|L2)

,(3.22)

Lip s(τ, x0; ·, q) ≤ δK1K2(K1 +K2)L2

[δ − 2(K1 +K2)L1]2
‖x0‖

for all τ ∈ T, x0 ∈ X , θ ∈ Θ and q ∈ Q,
(a3) if additionally Hypothesis 3.1(iii) and the gap condition

ms � a C b
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holds for some ms ∈ {1, . . . ,m}, and if we set δmax := min
{
bb−ac

2 , ρmss [a, b]
}

, then
the partial derivatives Dn

(2,3)s exist, are continuous up to order ms, and there exist reals
Mn
s , N

n
s > 0, such that

‖Dn
2 s(τ, x0; θ, q)‖ ≤Mn

s for 1 ≤ n ≤ ms,

‖D3D
n
2 s(τ, x0; θ, q)‖ ≤ Nn

s ‖x0‖ for 0 ≤ n < ms

for all τ ∈ T, x0 ∈ X , θ ∈ Θ and q ∈ Q,
(a4) if the dynamic equation (2.2) and Q are T -periodic for some T > 0, then s(·, x0; θ, q) is

T -periodic for all x0 ∈ X , θ ∈ Θ and q ∈ Q.
(b) In case T is unbounded below, then for all θ ∈ Θ, q ∈ Q the set

R(θ, q) :=
{

(τ, x0) ∈ T×X :
there exists a solution ν : T→ X of (2.2)
with ν(τ) = x0 and ν ∈ X−τ,c for all c ∈ Γ

}
is an invariant fiber bundle of (2.2) possessing the representation

R(θ, q) = {(τ, η + r(τ, η; θ, q)) ∈ T×X : τ ∈ T, η ∈ R(P (τ))}

with a uniquely determined mapping r : T×X ×Θ×Q → X satisfying

r(τ, x0; θ, q) = r(τ, P (τ)x0; θ, q) ∈ R(Q(τ)) for τ ∈ T, x0 ∈ X

and the invariance equation

Q(t)ϕ(t; τ, x0; θ, q) = r(t, P (t)ϕ(t; τ, x0; θ, q); θ, q) for (τ, x0) ∈ R(θ, q), τ � t.

Furthermore, it holds:
(b1) r(τ, 0; θ, q) ≡ 0 on T×Θ×Q,
(b2) r : T×X ×Θ×Q → X satisfies the Lipschitz estimates

Lip r(τ, ·; θ, q) ≤ K1K2 (L1 + |θ|L2)
δ − (K1 +K2) (L1 + |θ|L2)

,(3.23)

Lip r(τ, x0; ·, q) ≤ δK1K2(K1 +K2)L2

[δ − 2(K1 +K2)L1]2
‖x0‖

for all τ ∈ T, x0 ∈ X , θ ∈ Θ and q ∈ Q,
(b3) if additionally Hypothesis 3.1(iii) and the gap condition

a C mr � b

holds for some mr ∈ {1, . . . ,m}, and if we set δmax := min
{
bb−ac

2 , ρmrr [a, b]
}

, then
the partial derivatives Dn

(2,3)r exist, are continuous up to order mr, and there exist reals
Mn
r , N

n
r > 0, such that

‖Dn
2 r(τ, x0; θ, q)‖ ≤Mn

r for 1 ≤ n ≤ mr,

‖D3D
n
2 r(τ, x0; θ, q)‖ ≤ Nn

r ‖x0‖ for 0 ≤ n < mr

for all τ ∈ T, x0 ∈ X , θ ∈ Θ and q ∈ Q,
(b4) if the dynamic equation (2.2) and Q are T -periodic for some T > 0, then r(·, x0; θ, q) is

T -periodic for all x0 ∈ X , θ ∈ Θ and q ∈ Q.
(c) In case T is also unbounded below, and if

(3.24) L1 <
δ

2 (K1 +K2 + max {K1,K2})
,

only the zero solution of equation (2.2) is contained both in S(θ, q) and R(θ, q), i.e. S(θ, q) ∩
R(θ, q) = T×{0} for all θ ∈ Θ, q ∈ Q, and hence the zero solution is the only c±-quasibounded
solution of (2.2) for any growth rate c ∈ Γ.
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Proof. Let τ ∈ T be arbitrary, but fixed, and let us choose a c ∈ Γ.
(a) The parameters θ ∈ Θ, q ∈ Q are arbitrary. We want to show that S(θ, q) is an invariant fiber

bundle of (2.2). By definition, the solution ϕ(·; τ, ξ0; θ, q) is c+-quasibounded for arbitrary pairs of
initial values (τ, ξ0) ∈ S(θ, q). The cocycle property (2.3) now implies for any time t0 ∈ T+

τ that
ϕ(t; t0, ϕ(t0; τ, ξ0; θ, q); θ, q) ≡ ϕ(t; τ, ξ0; θ, q) on T+

t0 . Hence also ϕ(·; t0, ϕ(t0; τ, ξ0; θ, q); θ, q) is a
c+-quasibounded function and this yields the inclusion (t0, ϕ(t0; τ, ξ0; θ, q)) ∈ S(θ, q) for t0 ∈ T+

τ .
For x0 ∈ X , by Lemma 3.2(a), the unique fixed point ν∗τ (x0, θ, q) ∈ X+

τ,c of Tτ (·;x0, θ, q) is a
solution of the dynamic equation (2.2) satisfying Q(τ)ν∗τ (x0, θ, q)(τ) = Q(τ)x0. Now we define

(3.25) s(τ, x0; θ, q) := P (τ)ν∗τ (x0, θ, q)(τ)

and evidently have s(τ, x0; θ, q) ∈ R(P (τ)). In addition, Lemma 3.2(c) implies s(τ, x0; θ, q) =
s(τ,Q(τ)x0; θ, q) (cf. (3.14)). We postpone the continuity proof for s to the end of part (a) and verify
the representation (3.19) and the invariance equation (3.21) now.

(⊆) Let (τ, x0) ∈ S(θ, q), i.e., ϕ(·; τ, x0; θ, q) is c+-quasibounded. Then ϕ(·; τ, x0; θ, q) trivially
satisfies Q(τ)ϕ(τ ; τ, x0; θ, q) = Q(τ)x0 and is consequently the unique fixed point of (3.6), i.e., we
have ϕ(·; τ, x0; θ, q) = ν∗τ (x0, θ, q) (see Lemma 3.2(a)). This implies

x0 = ν∗τ (x0, θ, q)(τ) = Q(τ)ν∗τ (x0, θ, q)(τ) + P (τ)ν∗τ (x0, θ, q)(τ)

= Q(τ)x0 + P (τ)ν∗τ (Q(τ)x0, θ, q)(τ),

since ν∗τ (x0, θ, q) = ν∗τ (Q(τ)x0, θ, q) holds due to Tτ (·;x0, θ, q) = Tτ (·;Q(τ)x0, θ, q) (cf. (3.6)). So,
setting ξ := Q(τ)x0 ∈ R(Q(τ)), we have x0 = ξ + P (τ)ν∗τ (ξ, θ, q) = ξ + s(τ, ξ; θ, q) by (3.25) and
(3.19) is verified.

(⊇) On the other hand, let x0 ∈ X be of the form x0 = ξ + s(τ, ξ; θ, q), ξ ∈ R(Q(τ)). Then

x0
(3.25)= ξ + P (τ)ν∗τ (ξ, θ, q)(τ)
= Q(τ)ν∗τ (ξ, θ, q)(τ) + P (τ)ν∗τ (ξ, θ, q)(τ) = ν∗τ (ξ, θ, q)(τ)

and therefore, due to the uniqueness of solutions (cf. [Pöt02, p. 38, Satz 1.2.17(a)]), one has
ϕ(·; τ, x0; θ, q) = ϕ(·; τ, ν∗τ (ξ, θ, q)(τ); θ, q) = ν∗τ (ξ, θ, q) ∈ X+

τ,c.
With (τ, ξ0) ∈ S(θ, q) the invariance of S(θ, q) implies ϕ(t; τ, ξ0; θ, q) = Q(t)ϕ(t; τ, ξ0; θ, q) +

s(t, Q(t)ϕ(t; τ, ξ0; θ, q); θ, q) for τ � t and multiplication with P (t) yields (3.21).
(a1) From Lemma 3.2(c) we get s(τ, 0; θ, q) = P (τ)ν∗τ (0; θ, q)(τ) = 0 (cf. (3.25)).
(a2) To prove the claimed Lipschitz estimates, we suppress the dependence on q ∈ Q. To this

end, consider x0, x̄0 ∈ X , fixed θ ∈ Θ and corresponding fixed points ν∗τ (x0, θ), ν∗τ (x̄0, θ) ∈ X+
τ,c of

Tτ (·;x0, θ) and Tτ (·; x̄0, θ), respectively. One gets from Lemma 3.2(c)

‖s(τ, x0; θ)− s(τ, x̄0; θ)‖ (3.25)= ‖P (τ) [ν∗τ (x0, θ)(τ)− ν∗τ (x̄0, θ)(τ)]‖
(3.9)
≤ K1K2 (L1 + |θ|L2)

δ − (K1 +K2) (L1 + |θ|L2)
‖x0 − x̄0‖ .

Similarly, consider x0 ∈ X fixed, θ, θ̄ ∈ Θ and let ν∗τ (x0, θ), ν∗τ (x0, θ̄) ∈ X+
τ,c denote the corresponding

fixed points of Tτ (·;x0, θ) and Tτ (·;x0, θ̄), respectively. Then we obtain∥∥s(τ, x0; θ)− s(τ, x0; θ̄)
∥∥ (3.25)=

∥∥P (τ)
[
ν∗τ (x0, θ)(τ)− ν∗τ (x0, θ̄)(τ)

]∥∥
(3.2)
≤ K2

∥∥ν∗τ (x0, θ)(τ)− ν∗τ (x0, θ̄)(τ)
∥∥ ≤ K2

∥∥ν∗τ (x0, θ)− ν∗τ (x0, θ̄)
∥∥+

τ,c

(3.10)
≤ δK1K2(K1 +K2)L2

[δ − 2(K1 +K2)L1]2
‖x0‖

∣∣θ − θ̄∣∣
and both Lipschitz estimates are established.

(a3) Due to its technical complexity, we omit the differentiability proof for the mapping s. It is
based on a “formal differentiation” of the fixed point identity (3.7) w.r.t. the variable (x0, θ) ∈ X ×Θ.
Concerning the details, we refer to [PS04, Kel99], where the latter reference is particularly devoted to
the dependence on the parameter θ ∈ Θ.
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It remains to show the continuity statement for s. Thereto, let τ0 ∈ T, ξ0 ∈ X , θ0 ∈ Θ and q0 ∈ Q.
Then for arbitrary τ ∈ T, x0 ∈ X , θ ∈ Θ and q ∈ Q we obtain the estimate

‖s(τ, x0; θ, q)− s(τ, ξ0; θ0, q0)‖
(3.22)
≤ 2K1K2L1

δ − 2(K1 +K2)L1
‖x0 − ξ0‖

+ ‖s(τ, ξ0; θ, q)− s(τ0, ξ0; θ, q)‖+ ‖s(τ0, ξ0; θ, q)− s(τ0, ξ0; θ0, q0)‖

and by Lemma 3.2(d) the third sum on the right hand side satisfies

‖s(τ0, ξ0; θ, q)− s(τ0, ξ0; θ0, q0)‖
(3.25)
≤ ‖P (τ0)‖ ‖ν∗τ (ξ0, θ, q)(τ0)− ν∗τ (ξ0, θ0, q0)(τ0)‖

(3.2)
≤ K2 ‖ν∗τ (ξ0, θ, q)− ν∗τ (ξ0, θ0, q0)‖+τ0,c −−−−−−−−−→(θ,q)→(θ0,q0)

0.

Consequently, to verify the continuity of s in (τ0, ξ0, θ0, q0), it remains to prove the limit relation

(3.26) lim
τ→τ0

s(τ, ξ0; θ, q) = s(τ0, ξ0; θ, q) uniformly in θ ∈ Θ, q ∈ Q.

We abbreviate φ(τ ; θ, q) := ϕ(τ ; τ0, Q(τ0)ξ0+s(τ0, ξ0; θ, q); θ, q) and remark that the solution φ(·; θ, q)
of (2.2) exists in a T-neighborhood (uniform in θ ∈ Θ, q ∈ Q) of τ0, due to [PS04, Satz 2.3(a)].
Moreover, as a preparation we have the estimate (cf. (a1))

‖Q(τ0)ξ0 + s(τ0, ξ0; θ, q)‖
(3.2)
≤ K1 ‖ξ0‖+ ‖s(τ0, ξ0; θ, q)− s(τ0, 0; θ, q)‖

(3.22)
≤

(
K1 +

2K1K2L1

δ − 2(K1 +K2)L1

)
‖ξ0‖

and we therefore can apply [PS04, Satz 2.3(b)] to equation (2.2) to obtain

(3.27) lim
τ→τ0

φ(τ ; θ, q) = φ(τ0; θ, q) uniformly in θ ∈ Θ, q ∈ Q.

By definition of φ we get P (τ0)φ(τ0; θ, q) = s(τ0, ξ0; θ, q), Q(τ0)φ(τ0; θ, q) = Q(τ0)ξ0 from (3.25)
and (3.21) implies P (τ)φ(τ ; θ, q) = s(τ,Q(τ)φ(τ ; θ, q); θ, q). Hence, we arrive at

‖s(τ, ξ0; θ, q)− s(τ0, ξ0; θ, q)‖
(3.20)
≤ ‖s(τ,Q(τ)ξ0; θ, q)− s(τ,Q(τ)φ(τ ; θ, q); θ, q)‖

+ ‖s(τ,Q(τ)φ(τ ; θ, q); θ, q)− s(τ0, ξ0; θ, q)‖
(3.22)
≤ 2K2

1K2L1

δ − 2(K1 +K2)L1
‖ξ0 − φ(τ ; θ, q)‖

+ ‖P (τ)φ(τ ; θ, q)− P (τ0)φ(τ0; θ, q)‖ ,

and so (3.27) readily implies the desired limit relation (3.26), because the invariant projectors P,Q :
T→ L(X ) are continuous (cf. [Pöt02, p. 88, Satz 2.1.10]).

(a4) Choose a growth rate c ∈ Γ and an arbitrary point ξ0 ∈ R(Q(τ)). Then the solution ν :=
ϕ(·; τ, ξ0 + s(τ, ξ0; θ, q); θ, q) of (2.2) is c+-quasibounded. Because of the T -periodicity of (2.2) and
[Pöt02, p. 31, Korollar 1.2.4(b)], we know that also ν̃ := ν ◦ σ−T is a c+-quasibounded solution,
where σT : T → T is a function satisfying the identity µ(σT (t), t) ≡ T on T. Hence, we have
(σT (τ), ν̃(τ)) ∈ S(θ, q) and consequently

s(σT (τ), ξ0; θ, q) (3.20)= s(σT (τ), Q(τ)ν(σ−T ◦ σT (τ)); θ, q) = s(σT (τ), Q(σT (τ))ν̃(σT (τ)); θ, q)
(3.21)= P (σT (τ))ν̃(σT (τ)) (3.20)= s(τ, ξ0; θ, q),

i.e., we established the T -periodicity of s(·, ξ0; θ, q) in case ξ0 ∈ R(Q(τ)). Now the T -periodicity of
s(·, x0; θ, q) for general x0 ∈ X follows from (3.20).

(b) Since the present part (b) of Theorem 3.3 can be proved along the same lines as part (a), we
present only a sketch of the proof. Analogously to (a), for x0 ∈ X and parameters θ ∈ Θ, q ∈ Q, the c−-
quasibounded solutions ν the dynamic equation (2.2) with P (τ)ν(τ) = P (τ)x0 may be characterized
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as fixed points of the operator T̄τ : X−τ,c ×X ×Θ×Q → X−τ,c,

T̄τ (ν;x0, θ, q) :=Φ̄A(·, τ)P (τ)x0 +
∫ ·
τ

Φ̄A(·, σ(s))P (τ)Hθ(s, ν(s); q) ∆s

+
∫ ·
−∞

ΦA(·, σ(s))Q(τ)Hθ(s, ν(s); q) ∆s.

Here a counterpart to the above Lemma 3.2 holds true in the Banach space X−τ,c. It follows from
the assumption (3.5) that T̄τ (·;x0, θ, q) is a uniform contraction on X−τ,c and if ν∗τ (x0, θ, q) ∈ X−τ,c
denotes its unique fixed point we define the mapping r : T × X × Θ × Q → X by r(τ, x0; θ, q) :=
Q(τ)ν∗τ (x0, θ, q)(τ). The claimed properties of r can be proved using dual arguments as (a).

(c) Keep θ ∈ Θ and q ∈ Q arbitrarily fixed. Let ν : T → X be any c±-quasibounded
solution of (2.2). By means of Hypothesis 3.1(ii), the mapping Hθ(·, ν(·); q) is c±-quasibounded
and as a consequence of [Pöt02, p. 106, Satz 2.2.7] the unique c±-quasibounded solution of x∆ =
A(t)x+Hθ(t, ν(t); q), which again by [Pöt02, p. 106, Satz 2.2.7] additionally satisfies

‖ν‖±τ,c
(3.4)
≤ K1 +K2 + max {K1,K2}

δ
(L1 + |θ|L2) ‖ν‖±τ,c .

Using (3.24), we therefore obtain ν = 0 and the proof of Theorem 3.3 is complete. �

4. HIERARCHIES OF INVARIANT FIBER BUNDLES

In the preceding section we provided conditions under which the semilinear dynamic equation (2.2)
possesses two nontrivial invariant fiber bundles intersecting along the trivial solution. Now we are
going to extend this result to obtain conditions guaranteeing more than just two invariant fiber bundles.
Actually, we present conditions implying the existence of a so-called extended hierarchy of invariant
fiber bundles canonically ordered via set-theoretical inclusion.

Hereto, we turn our attention to dynamic equations of the form (2.2), where more information is
known about their linear part (2.1). Precisely, for an integer N ≥ 2 we say that projectors P1, . . . , PN
are complementary, in case the identities

P1(t) + . . .+ PN (t) ≡ IX , Pi(t)Pj(t) ≡ 0 for i 6= j(4.1)

hold on T. Then the system (2.1) is said to have an exponential N -splitting, if there exist comple-
mentary invariant projectors P1, . . . , PN , reals K+

1 , . . . ,K
+
N−1, K−1 , . . . ,K

−
N−1 ≥ 1, and growth rates

a1, . . . , aN−1, b1, . . . , bN−1 ∈ C+
rdR(T,R) such that the following holds:

• P2, . . . , PN are regular,
• for 1 ≤ i < N we have the estimates

‖ΦA(t, s)Pi(s)‖ ≤ K+
i eai(t, s),

∥∥Φ̄A(s, t)Pi+1(t)
∥∥ ≤ K−i ebi(s, t) for s � t,(4.2)

• ai C bi for 1 ≤ i < N and bi E ai+1 for 1 ≤ i < N − 1.
In case N = 2, 3 we speak of an exponential dichotomy or trichotomy, respectively.

Hypothesis 4.1. (i) The linear dynamic equation (2.1) has an exponential N -splitting, i.e., the
estimates (4.2) hold.

(ii) For i = 1, 2 one has the identities Fi(t, 0; q) ≡ 0 on T × Q and the mappings Fi satisfy the
following global Lipschitz estimates

Li := sup
(t,q)∈T×Q

LipFi(t, ·; q) <∞.

Moreover, we define K1(j) :=
∑j
k=1K

+
k , K2(j) :=

∑N−1
k=j K

−
k for 1 ≤ j < N , for some real

δmax > 0 we require

L1 <
δmax

2Kmax
, Kmax :=

N−1
max
i=1

(K1(i) +K2(i) +K1(i)K2(i)) ,(4.3)
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choose a fixed δ ∈ (2KmaxL1, δmax) and abbreviate Θ := {θ ∈ F : L2 |θ| ≤ L1},

Γj :=
{
c ∈ C+

rdR(T,R) : aj + δ C c C bj − δ
}

for 1 ≤ j < N.

(iii) Assume the partial derivatives Dn
2Fi(t, ·), t ∈ T, exist, are continuous on X × Q up to order

m ∈ N, and suppose they are globally bounded, i.e. for 2 ≤ n ≤ m we have

sup
(t,x,q)∈T×X×Q

‖Dn
2Fi(t, x; q)‖ <∞ for i = 1, 2.

Having all preparatory results at hand, for 1 ≤ i ≤ j ≤ N , we define the mappings P ji : T→ L(X ),
P ji (t) := Pi(t)+ . . .+Pj(t) and using (4.1), we see that P ji is an invariant projector of (2.1); moreover,
P ji is regular for i ≥ 2. Defining the complementary subspaces

X ji (τ) := R(P ji (τ)) =
j⊕
k=i

R(Pk(τ)), X̄ ji (τ) := N (P ji (τ)) =
j⋂
k=i

N (Pk(τ))

for any τ ∈ T, we now head for the second main theorem in this paper. It guarantees the existence of
(N+2)(N−1)

2 nontrivial invariant fiber bundles of (2.2).

Theorem 4.2 (hierarchies of invariant fiber bundles). Assume Hypothesis 4.1(i)–(ii) holds with δmax =
1
2 minN−1

i=1 bbi − aic, let 1 ≤ j ≤ i ≤ N , (j, i) 6= (1, N), where in case j > 1 we additionally suppose
that T is also unbounded below. Then for all θ ∈ Θ, q ∈ Q the sets

Ci,j(θ, q) :=


{

(τ, x0) ∈ T×X : ϕ(·; τ, x0; θ, q) ∈ X+
τ,c for all c ∈ Γi

}
for j = 1{

(τ, x0) ∈ T×X :
there exists a solution ν : T→ X of (2.2)
with ν(τ) = x0 and ν ∈ X−τ,c for all c ∈ Γj−1

}
for i = N

Ci,1(θ, q) ∩ CN,j(θ, q) else

are invariant fiber bundles of (2.2) admitting the following so-called extended hierarchy

(4.4)

C1,1(θ, q) ⊂ C2,1(θ, q) ⊂ . . . ⊂ CN−1,1(θ, q) ⊂ T×X
∪ ∪ ∪

C2,2(θ, q) ⊂ . . . ⊂ CN−1,2(θ, q) ⊂ CN,2(θ, q)
∪ ∪

. . .
...

...
∪ ∪

CN−1,N−1(θ, q) ⊂ CN,N−1(θ, q)
∪

CN,N (θ, q).

Each Ci,j(θ, q) possesses the representation

(4.5) Ci,j(θ, q) =
{

(τ, η + ci,j(τ, η; θ, q)) ∈ T×X : τ ∈ T, η ∈ X ij (τ)
}

with a uniquely determined continuous mapping ci,j : T×X ×Θ×Q → X satisfying

(4.6) ci,j(τ, x0; θ, q) = ci,j(τ, P ij (τ)x0; θ, q) ∈ X̄ ij (τ) for τ ∈ T, x0 ∈ X

and the invariance equation[
IX − P ij (t)

]
ϕ(t; τ, x0; θ, q) = ci,j(t, P ij (t)ϕ(t; τ, x0; θ, q); θ, q) for (τ, x0) ∈ Ci,j(θ, q), τ � t.

Furthermore, it holds:
(a) ci,j(τ, 0; θ, q) ≡ 0 on T×Θ×Q,
(b) ci,j : T×X ×Θ×Q → X satisfies the Lipschitz estimates

Lip ci,j(τ, ·; θ, q) ≤


K1(i)K2(i)(L1+|θ|L2)

δ−(K1(i)+K2(i))(L1+|θ|L2) for j = 1
K1(j−1)K2(j−1)(L1+|θ|L2)

δ−(K1(j−1)+K2(j−1))(L1+|θ|L2) for i = N

maxk∈{i,j−1}
2K1(k)K2(k)(L1+|θ|L2)

δ−(K1(k)+K2(k)+K1(k)K2(k))(L1+|θ|L2) else
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Lip ci,j(τ, x0; ·, q) ≤


δK1(i)K2(i)(K1(i)+K2(i))L2

[δ−2(K1(i)+K2(i))L1]2
‖x0‖ for j = 1

δK1(j−1)(K1(j−1)+K2(j−1))L2

[δ−2(K1(j−1)+K2(j−1))L1]2
‖x0‖ for i = N

2Li,j maxk∈{i,j−1}
δK1(k)K2(k)(K1(k)+K2(k))L2

[δ−2(K1(k)+K2(k))L1]2

1−maxk∈{i,j−1}
2K1(k)K2(k)L1

δ−2(K1(k)+K2(k))L1

‖x0‖ else

(4.7)

for all τ ∈ T, x0 ∈ X , θ ∈ Θ and q ∈ Q, with

Li,j := 1 + max
k∈{i,j−1}

2K1(k)K2(k)L1

δ − 2(K1(k) +K2(k) +K1(k)K2(k))L1
,

(c) if additionally Hypothesis 4.1(iii) and the gap conditions

(4.8)

 mi,j � ai C bi for j = 1
aj−1 C mi,j � bj−1 for i = N
mi,j � ai C bi, aj−1 C mi,j � bj−1 else

hold for some mi,j ∈ {1, . . . ,m}, and if we set

δmax :=


min

{
bbi−aic

2 , ρ
mi,j
s [ai, bi]

}
for j = 1

min
{
bbj−1−aj−1c

2 , ρ
mi,j
r [aj−1, bj−1]

}
for i = N

min
{
bbi−aic

2 ,
bbj−1−aj−1c

2 , ρ
mi,j
s [ai, bi], ρ

mi,j
r [aj−1, bj−1]

}
else

,

then the partial derivatives Dn
(2,3)ci,j exist, are continuous up to order mi,j , and there exist

reals Mn
i,j , N

n
i,j > 0, such that

‖Dn
2 ci,j(τ, x0; θ, q)‖ ≤Mn

i,j for 1 ≤ n ≤ mi,j ,

‖D3D
n
2 ci,j(τ, x0; θ, q)‖ ≤ Nn

i,j ‖x0‖ for 0 ≤ n < mi,j
(4.9)

for all τ ∈ T, x0 ∈ X , θ ∈ Θ and q ∈ Q,
(d) if the dynamic equation (2.2) and P2, . . . , PN are T -periodic for some T > 0, then

ci,j(·, x0; θ, q) is T -periodic for all x0 ∈ X , θ ∈ Θ and q ∈ Q.

Remark 4.1. (1) We denote the first row in the array (4.4) as stable hierarchy, the right column as
unstable hierarchy and the remaining inclusions as center hierarchy of (2.2).

(2) For the special case of a dynamic equation (2.1) possessing an exponential trichotomy with b1 E
0 E a2, we obtain the classical five invariant fiber bundles, namely:

• Stable fiber bundle C1,1: Because of c1 C b1 and the dynamical characterization in Theo-
rem 4.2(a) all solutions of (2.2) on C1,1 converge to 0 exponentially for t→∞.

• Center-stable fiber bundle C2,1: All solutions of (2.2) which are not growing too fast as t→∞
(in the sense that they are c+2 -quasibounded with c2 E b2 − δ) are contained in C2,1, like e.g.,
solutions bounded in forward time.

• Center-unstable fiber bundle C3,2: All solutions of (2.2) which exist and are not growing too
fast as t → −∞ (in the sense of c−1 -quasiboundedness with a1 + δ E c1) lie on C3,2, like e.g.,
solutions bounded in backward time.

• Unstable fiber bundle C3,3: All solutions on the unstable fiber bundle exist in backward time
and converge exponentially to 0 as t→ −∞.

• Center fiber bundleC2,2: The center fiber bundle consists of those solutions which are contained
both in the center-stable and the center-unstable fiber bundle. Particularly, all bounded solutions
lie on this fiber bundle.

Here we have suppressed the dependence on the parameters θ ∈ Θ and q ∈ Q.

Proof (of Theorem 4.2): Keep τ ∈ T, q ∈ Q fixed. We subdivide the proof into four steps.
(I) First of all, we show the extended hierarchy (4.4). Let θ ∈ Θ be fixed, and 1 ≤ j ≤ i ≤ N with

(j, i) 6= (1, N). Then the facts ci C ci+1 for all ci ∈ Γi, ci+1 ∈ Γi+1 and X+
τ,ci ⊂ X

+
τ,ci+1

(cf. (2.4))
imply the hierarchical inclusions

(4.10) Ci,1(θ, q) ⊂ Ci+1,1(θ, q) for 1 ≤ i < N.
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The definition of Ci,j(θ, q) yields the identity Ci,j(θ, q) = Ci,1(θ, q) ∩ CN,j(θ, q) and from (4.10)
we have Ci,j(θ, q) ⊂ Ci+1,1(θ, q) ∩ CN,j(θ, q) = Ci+1,j(θ, q). Analogously one derives the unstable
hierarchy CN,j(θ, q) ⊂ CN,j−1(θ, q) for 1 < j ≤ N , which, in turn, leads to Ci,j(θ, q) ⊂ Ci,1(θ, q) ∩
CN,j−1(θ, q) = Ci,j−1(θ, q) and we are done.

(II) In order to verify the above assertions in case j = 1, we only have to apply Theorem 3.3(a)
repeatedly. To this end, let 1 ≤ i < N be arbitrary, but fixed and j = 1. Then, due to Hypothesis 4.1(i)
the linear dynamic equation (2.1) satisfies Hypothesis 3.1(i) with the complementary invariant projectors
Q,P : T → L(X ) given by Q(t) := P i1(t), P (t) := PNi+1(t), since we have the estimates (cf. [Hil90,
Theorem 7.4(i)])

‖ΦA(t, s)Q(s)‖ ≤
i∑

k=1

‖ΦA(t, s)Pk(s)‖
(4.2)
≤

i∑
k=1

K+
k eak(t, s) ≤ K1(i)eai(t, s) for s � t

and similarly
∥∥Φ̄A(t, s)P (s)

∥∥ ≤ K2(i)ebi(t, s) for t � s. Because assumption (4.3) yields the estimate
L1 <

bbi−aic
4(K1(i)+K2(i)) , Theorem 3.3(a) implies for all θ ∈ Θ that the set

S(θ, q) :=
{

(τ, x0) ∈ T×X : ϕ(·; τ, x0; θ, q) ∈ X+
τ,c for all c ∈ Γi

}
can be represented as graph of a unique mapping s : T × X × Θ × Q → X . Since S(θ, q) and s
obviously depend on the particular choice of i, we denote them by Ci,1(θ, q) and ci,1, respectively.
Then the relation (4.6), the invariance equation, as well as the assertions (a)–(d) for indices 1 ≤ i < N ,
j = 1 follow directly from Theorem 3.3(a).

(III) Analogously to step (II), and for indices i = N , 1 < j ≤ N , one can use Theorem 3.3(b) to see
that for all θ ∈ Θ the set

R(θ, q) :=
{

(τ, x0) ∈ T×X :
there exists a solution ν : T→ X of (2.2)
with ν(τ) = x0 and ν ∈ X−τ,c for all c ∈ Γj−1

}
is representable as graph of a unique mapping r : T × X × Θ × Q → X . To indicate the dependence
on j, we denote R(θ, q) and r as CN,j(θ, q) and cN,j , resp., and the assertions for i = N , 1 < j ≤ N
yield from Theorem 3.3(b).

(IV) From now on consider 1 < j ≤ i < N , since it remains to prove Theorem 4.2 for the center
hierarchy. As a preparation we investigate the operator T : X 2 × T×X ×Θ×Q → X 2,

(4.11) T (x, z; τ, y, θ, q) :=
(
cN,j(τ, y + z; θ, q)
ci,1(τ, x+ y; θ, q)

)
.

According to (3.22), (3.23) and |θ|L2 ≤ L1, for fixed τ ∈ T, y ∈ X , θ ∈ Θ, we have

‖T (x, z; τ, y, θ, q)− T (x̄, z̄; τ, y, θ, q)‖
(4.11)
≤ max{‖cN,j(τ, y + z; θ, q)− cN,j(τ, y + z̄; θ, q)‖ ,

‖ci,1(τ, x+ y; θ, q)− ci,1(τ, x̄+ y; θ, q)‖}

≤ max
k∈{i,j−1}

2K1(k)K2(k)L1

δ − 2(K1(k) +K2(k))L1

∥∥∥∥(x− x̄z − z̄

)∥∥∥∥ for x, x̄, z, z̄ ∈ X .

(4.12)

It evidently holds 2K1(k)K2(k)L1
δ−2(K1(k)+K2(k))L1

< 1 for 1 ≤ k < N (cf. (4.3)) and consequently T (·; τ, y, θ, q) :
X 2 → X 2 is a contraction; due to (4.11) in connection with the already established special cases i = N

(cf. step (III)) and j = 1 (cf. step (II)) of (4.6), its unique fixed point (c(1)
i,j , c

(2)
i,j )(τ, y; θ, q) satisfies the

inclusions c(1)
i,j (τ, y; θ, q) ∈ X j−1

1 (τ) and c(2)
i,j (τ, y; θ, q) ∈ XNi+1(τ). An argument analogous to [AW96,

Lemma B.4] shows that the mappings c(1)
i,j , c

(2)
i,j : T×X ×Θ×Q → X are continuous. In addition, for

fixed τ ∈ T, x, z ∈ X , θ ∈ Θ and arbitrary y, ȳ ∈ X , it is not difficult to derive the estimate

‖T (x, z; τ, y, θ, q)− T (x, z; τ, ȳ, θ, q)‖

≤ max
k∈{i,j−1}

K1(k)K2(k) (L1 + |θ|L2)
δ − (K1(k) +K2(k)) (L1 + |θ|L2)

‖x− x̄‖
(4.13)
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from (3.22) and (3.23).
Now we prove the representation (4.5) of Ci,j(θ, q) as graph of a function ci,j . From step (II) we

know that for arbitrary θ ∈ Θ, a point x0 ∈ X satisfies (τ, x0) ∈ Ci,1(θ, q), if and only if there exists a
ξ0 ∈ X i1(τ) such that x0 = ξ0+ci,1(τ, ξ0; θ, q) and accordingly P i1(τ)x0 = ξ0+P i1(τ)ci,1(τ, x0; θ, q) =
ξ0 (cf. (4.6)). This yields (τ, x0) ∈ Ci,1(θ, q) if and only if x0 = P i1(τ)x0 + ci,1(τ, P i1(τ)x0; θ, q),
and analogously from step (III) we have (τ, x0) ∈ CN,j−1(θ, q) if and only if x0 = PNj (τ)x0 +
cN,j(τ, PNj (τ)x0; θ, q). The unique decomposition x0 = ξ + η + ζ into ξ ∈ X j−1

1 (τ), η ∈ X ij (τ),
ζ ∈ XNi+1(τ) leads to the equivalence

(τ, x0) ∈ Ci,j(θ, q) ⇔ x0 = P i1(τ)x0 + ci,1(τ, P i1(τ)x0; θ, q) and

x0 = PNj (τ)x0 + cN,j(τ, PNj (τ)x0; θ, q)

⇔ ζ = ci,1(τ, ξ + η; θ, q) and ξ = cN,j(τ ; η + ζ; θ, q)
(4.11)⇔ (ξ, ζ) = T (ξ, ζ; τ, η, θ, q),

i.e., the pair (ξ, ζ) ∈ X j−1
1 (τ) × XNi+1(τ) is a fixed point of T (·; τ, η, θ, q); from the above consider-

ations it is uniquely determined by (c(1)
i,j , c

(2)
i,j )(τ, y0; θ, q). As a result, if we define ci,j(τ, x0; θ, q) :=

c
(1)
i,j (τ, x0; θ, q)+c(2)

i,j (τ, x0; θ, q) for x0 ∈ X and θ ∈ Θ, then the continuity statement for ci,j , as well as
the representation (4.5) holds. The fiber bundle Ci,j(θ, q) is invariant, because for (τ, x0) ∈ Ci,j(θ, q)
we obtain ϕ(·; τ, x0; θ, q) ∈ X+

τ,c and the existence of a d−-quasibounded solution ν : T → X of
(2.2) with ν(τ) = x0 for all c ∈ Γi, d ∈ Γj−1. Then the cocycle property (2.3) implies that
ϕ(·; t0, ϕ(t0; τ, x0; θ, q); θ, q), t0 ∈ T+

τ , is also c+- and d−-quasibounded (in the sense above), and
therefore (t0, ϕ(t0; τ, x0; θ, q)) ∈ Ci,j(θ, q).

(a) From step (II) and (III) (cf. Theorem 3.3(a1), (b1)) one sees that (0, 0) is obviously the unique
fixed point of T (·; τ, 0, θ, q), and this implies ci,j(τ, 0; θ, q) = 0 for all θ ∈ Θ.

(b) We have to verify the Lipschitz estimates for ci,j . To do so, we suppress the dependence on q ∈ Q
from now on and abbreviate γi,j := (c(1)

i,j , c
(2)
i,j ). To that end, for fixed θ ∈ Θ and x, x̄ ∈ X , due to the

fixed point identities for T (·; τ, x, θ) and T (·; τ, x̄, θ), respectively, we obtain from (4.12) and (4.13)

‖γi,j(τ, x; θ)− γi,j(τ, x̄; θ)‖
(4.11)
≤ max

k∈{i,j−1}

K1(k)K2(k) (L1 + |θ|L2)
δ − (K1(k) +K2(k) +K1(k)K2(k)) (L1 + |θ|L2)

‖x− x̄‖ ,
(4.14)

which easily yields the first Lipschitz estimate for ci,j . Moreover, for fixed τ ∈ T, x ∈ X and arbitrary
θ, θ̄ ∈ Θ we get from the assertion (c1) that∥∥∥ci,1(τ, x+ c

(1)
i,j (τ, x; θ); θ)− ci,1(τ, x+ c

(1)
i,j (τ, x; θ̄); θ̄)

∥∥∥
(3.22)
≤ 2K1(i)K2(i)L1

δ − 2(K1(i) +K2(i))L1

∥∥∥c(1)
i,j (τ, x; θ)− c(1)

i,j (τ, x; θ̄)
∥∥∥

+
∥∥∥ci,1(τ, x+ c

(1)
i,j (τ, x; θ̄); θ)− ci,1(τ, x+ c

(1)
i,j (τ, x; θ̄); θ̄)

∥∥∥
(4.7)
≤ max

k∈{i,j−1}

2K1(k)K2(k)L1

δ − 2(K1(k) +K2(k))L1

∥∥γi,j(τ, x; θ)− γi,j(τ, x; θ̄)
∥∥

+
δK1(i)K2(i)(K1(i) +K2(i))L2

[δ − 2(K1(i) +K2(i))L1]2
∥∥∥x+ c

(1)
i,j (τ, x; θ̄)

∥∥∥
≤ max

k∈{i,j−1}

2K1(k)K2(k)L1

δ − 2(K1(k) +K2(k))L1

∥∥γi,j(τ, x; θ)− γi,j(τ, x; θ̄)
∥∥

+
δK1(i)K2(i)(K1(i) +K2(i))L2

[δ − 2(K1(i) +K2(i))L1]2
(
‖x‖+

∥∥γi,j(τ, x; θ̄)− γi,j(τ, 0; θ̄)
∥∥)

(4.14)
≤ max

k∈{i,j−1}

2K1(k)K2(k)L1

δ − 2(K1(k) +K2(k))L1

∥∥γi,j(τ, x; θ)− γi,j(τ, x; θ̄)
∥∥
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+ Li,j max
k∈{i,j−1}

δK1(k)K2(k)(K1(k) +K2(k))L2

[δ − 2(K1(k) +K2(k))L1]2
‖x‖ .

With the aid of the fixed point identities for T (·; τ, x, θ) and T (·; τ, x, θ̄), respectively, together with the
corresponding estimate for cN,j , this implies∥∥γi,j(τ, x; θ)− γi,j(τ, x; θ̄)

∥∥ ≤ max
k∈{i,j−1}

2K1(k)K2(k)L1

δ − 2(K1(k) +K2(k))L1

∥∥γi,j(τ, x; θ)− γi,j(τ, x; θ̄)
∥∥

+ Li,j max
k∈{i,j−1}

δK1(k)K2(k)(K1(k) +K2(k))L2

[δ − 2(K1(k) +K2(k))L1]2
‖x‖

and we readily get the second Lipschitz estimate in (c2).
(c) The mapping ci,j was constructed using the fixed points of the operator T defined in (4.11).

Under Hypothesis 4.1(iii) and the gap conditions (4.8), we know from step (II) and (III) (cf. Theo-
rem 3.3(a3), (b3)) that T (·; τ, ·, q) : X 3 → X 2, τ ∈ T, q ∈ Q, is mci,j -times differentiable with
continuous partial derivatives Dn

(1,2,4)T for n ∈ {1, . . . ,mi,j}. Then it is a consequence of the uniform
contraction principle (cf. [CH96, p. 25, Theorem 2.2]) that ci,j has the claimed smoothness property.
Finally, the estimates (4.9) result similarly to [Kel99, p. 80, Satz 3.7.6].

(d) Let T > 0 and assume σT : T → T satisfies µ(σT (t), t) ≡ T on T. For a T -periodic
dynamic equation (2.2) and T -periodic projectors P2, . . . , PN , we obtain from step (II) and (III)
(cf. Theorem 3.3(a4), (b4)) that the identity T (x, z; τ, y, θ, q) = T (x, z;σT (τ), y, θ, q) holds for all
τ ∈ T, x, y, z ∈ X and parameters θ ∈ Θ. Then the unique fixed points (c(1)

i,j , c
(2)
i,j )(τ, y, θ, q),

(c(1)
i,j , c

(2)
i,j )(σT (τ), y, θ, q) ∈ X 2 of the contractions T (x, z; τ, y, θ, q) and T (x, z;σT (τ), y, θ, q), resp.,

coincide and this yields the T -periodicity of ci,j(·, x0; θ, q) for all x0 ∈ X .
Therefore, the proof of Theorem 4.2 is finished. �

5. CONCLUSION AND PERSPECTIVES

This paper continued our research within the field of dynamic equations on time scales and provided
the basic results for two areas of further research:

(I) A flexible (meaning, nonautonomous, pseudo-hyperbolic) and general (dependence on the pa-
rameter q) existence theorem for invariant fiber bundles is fundamental to derive a geometric theory
of dynamic equations on time scales. Theorem 3.3 has been employed in [Pöt06] to derive invariant
foliations of the extended state space, as well as a principle on reduced stability. Moreover, after these
preparations, we have been able to address topological linearization issues and prove a generalized
Hartman-Grobman result in [Pöt07a].

(II) We advocate for time scales as a useful and convenient vehicle in analytical discretization theory.
The particular dependence on the parameter θ allows us to interpret (2.2), i.e.,

x∆ = A(t)x+ F1(t, x) + θF2(t, x)

in three ways (we refer to [KP05] for details):
• On the time scale T = R and for θ = 0, F1 = F , the above dynamic equation reduces to a

nonautonomous ordinary differential equation

(5.1) ẋ = A(t)x+ F (t, x).

• On the time scale T = D (cf. Example 2.1), for θ = 0 and a specific F1, the dynamic equation
(2.2) describes the behavior of solutions for (5.1) restricted to the discrete set D.
• On the time scale T = D, for θ > 0 and a specific F2, the dynamic equation (2.2) captures the

behavior of an explicit one-step scheme with varying step sizes tk+1− tk applied to numerically
solve (5.1), like for example a Runge-Kutta method.

Summarizing this, the obtained perturbation results open the door to show that geometric properties of
ODEs, like for instance the existence of invariant manifolds (see [KP05]), invariant foliations or topo-
logical conjugacies (see [Pöt07b]), persist under discretization. In addition, one obtains convergence for
small step-sizes by letting θ → 0.
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