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A LIMIT SET TRICHOTOMY FOR
ABSTRACT 2-PARAMETER SEMIFLOWS ON TIME SCALES

C. PÖTZSCHE ∗

Abstract. Under certain contractivity conditions, we study the asymptotic behavior
of abstract 2-parameter semiflows on normal cones in Banach spaces, and show that there
are only three possible scenarios for their limit behavior.
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1. Introduction. In certain relevant situations, e.g. in biological appli-
cations from population dynamics, it frequently happens that a dynamical
system preserves a (partial) order relation on its state space. Such systems
are called order-preserving or monotone and Krasnosel’skii laid the basics
for their qualitative theory in [Kra64, Kra68]. Meanwhile many others made
important contributions for different types of monotone (semi-)dynamical
systems and in this small note we simply refer to [PS04, Chu02] for further
references.

The essential property of order-preserving dynamical systems is that
they possess a surprisingly simple asymptotic behavior. In fact Krause et
al. [KN93, KR92] proved a so-called limit set trichotomy (cf. also [Nes99]
for nonautonomous difference equations or [Chu02] for random dynamical
systems), describing the only three possible asymptotic scenarios of difference
equations under a certain kind of concavity.
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In an earlier paper (cf. [PS04]), Siegmund and the author proved such
a limit set trichotomy for a general model of nonexpansive dynamical pro-
cesses, namely 2-parameter semiflows in normal cones on time scales. They
include, for example, solution operators of dynamic equations on time scales
(cf. [BP01]) and in particular of nonautonomous difference and differen-
tial equations. Here we impose different contractivity conditions on the 2-
parameter semiflows and obtain a stronger limit set trichotomy in this situa-
tion, leading to the asymptotic equivalence of all bounded solutions. Despite
the more general setting, our arguments follow closely those of [Nes99].

2. Semiflows, Cones, and the Part Metric. Let T be an arbitrary
time scale, i.e., a canonically ordered closed subset of the real axis R. Since
we are interested in the asymptotic behavior of evolutionary processes on
such sets T, it is reasonable to assume that T is unbounded above in the
whole paper. (X, d) stands for a metric space from now on.

We begin with a very elementary result.

Lemma 1. Let x0 ∈ X, T > 0 and f : T→ X. Then limt→∞ f(t) = x0

holds, if and only if one has limn→∞ f(tn) = x0 for every sequence (tn)n∈N
in T satisfying T ≤ tn+1 − tn for all n ∈ N.

Proof. We leave the easy proof to the reader.

Now we are in the position to define an abstract concept to describe
nonautonomous evolutionary processes.

Definition 1. A mapping ϕ : {(t, τ) ∈ T2 : τ ≤ t}×X → X is denoted
as a 2-parameter semiflow onX, if the mappings ϕ(t, τ, ·) = ϕ(t, τ) : X → X,
τ ≤ t, satisfy the following properties:

(i) ϕ(τ, τ)x = x for all τ ∈ T, x ∈ X,
(ii) ϕ(t, s)ϕ(s, τ) = ϕ(t, τ) for all τ, s, t ∈ T, τ ≤ s ≤ t,

(iii) ϕ( ·, ·)x : {(t, τ) ∈ T2 : τ ≤ t} → X is continuous for all x ∈ X.

For explicit examples of 2-parameter semiflows we only mention strongly-
continuous 1-parameter semiflows, as well as solution operators of nonau-
tonomous difference equations (T = Z) or ordinary and functional differential
equations (T = R) under certain canonical assumptions on their right-hand
side (cf. [PS04, Example 2.3]).

To provide some concepts from the classical theory of (autonomous)
dynamical systems, we denote a point x0 ∈ X as an equilibrium of ϕ, if
ϕ(t, τ)x0 = x0 holds for all τ ≤ t. Moreover, for τ ∈ T and x ∈ X, the orbit
emanating from (τ, x) is γ+

τ (x) := {ϕ(t, τ)x ∈ X : τ ≤ t} and the ω-limit set
of (τ, x) is given by ω+

τ (x) :=
⋂
τ≤t cl {ϕ(s, τ)x ∈ X : t ≤ s}. Equivalently,

ω+
τ (x) consists of all points x∗ ∈ X such that there exists a sequence tn →∞

in T with x∗ = limn→∞ ϕ(tn, τ)x.
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We say a self-mapping Φ : X → X is nonexpansive (on (X, d)), if
d(Φx,Φx̄) ≤ d(x, x̄) for all x, x̄ ∈ X. The set of nonexpansive self-mappings
is closed under composition. If P 6= ∅ is a set, then a family of parameter-
dependent self-mappings Φ(p) : X → X, p ∈ P , is called uniformly contrac-
tive, if there exists a continuous function c : X ×X → [0,∞), such that the
following two conditions are fulfilled (cf. [Nes99]):

(i) c(x, x̄) < d(x, x̄) for all x, x̄ ∈ X, x 6= x̄,
(ii) d(Φ(p)x,Φ(p)x̄) ≤ c(x, x̄) for all p ∈ P , x, x̄ ∈ X.

In particular, each Φ(p) is nonexpansive. Moreover, in case, the mappings
Φ1(p),Φ2(p) : X → X, p ∈ P , are uniformly contractive (with contractivity
function c) and Ψ : X → X is nonexpansive, then the compositions Φ1(p) ◦
Φ2(p) and Ψ ◦ Φ1(p) are uniformly contractive (with the same contractivity
function c).

Assume from now on that the metric space X is a cone V+ in a real
Banach space (V, ‖·‖). Recall that a cone is a nonempty closed convex set
V+ ⊂ V such that αV+ ⊂ V+ for α ≥ 0 and V+ ∩ (−V+) = {0}. Moreover,
define V ∗+ := V+ \ {0}. Any cone induces a partial order relation on V
via u ≤ v, if v − u ∈ V+, which is preserved under addition and scalar
multiplication with nonnegative reals. A cone V+ is called normal, if there
exists an equivalent norm ‖·‖′ on V such that ‖u‖′ ≤ ‖v‖′, if u ≤ v.

Although forthcoming results on the boundedness of orbits are stated
in the norm topology on V+, our contractivity condition for 2-parameter
semiflows will be formulated in a different metric topology:

Definition 2. If λ(u, v) := sup {α ∈ [0,∞) : αu ≤ v} for u, v ∈ V+,
then the mapping p : V ∗+×V ∗+ → [0,∞), p(u, v) := − log min {λ(u, v), λ(v, u)}
for u, v ∈ V ∗+ defines a quasi-metric on V ∗+, called the part metric.

Remark 1. (1) One easily sees p(u, v) = inf {logα : α−1u ≤ v ≤ αu}
for all u, v ∈ V ∗+ and, therefore, the part metric defined in [PS04, Defini-
tion 2.4(ii)] coincides with the one from Definition 2.

(2) If the cone V+ is normal, then intV+ is a complete metric space
w.r.t. the part metric p (cf. [Tho63]).

Lemma 2. If V+ ⊂ V is a normal cone with monotone norm, then

‖u− v‖ ≤
(
2ep(u,v) − e−p(u,v) − 1

)
min {‖u‖ , ‖v‖} for all u, v ∈ V ∗+.

Proof. See [KN93, Lemma 2.3].
The subsequent result is an adaption from [Nes99, Lemma 4]. Thereto,

let P 6= ∅ be a set again, and we denote Φ(p) : V+ → V+, p ∈ P , as uniformly
ascending on A ⊂ V+, if there exists a continuous mapping φ : [0, 1]→ [0, 1]
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with α < φ(α) for all α ∈ (0, 1) such that

αv ≤ u ⇒ φ(α)Φ(p)v ≤ Φ(p)u for all α ∈ [0, 1] , p ∈ P, u, v ∈ A.

Evidently, each such operator Φ(p) is order-preserving and subhomogeneous
on A; latter means that αΦ(p)v ≤ Φ(p)αv holds for α ∈ (0, 1), v ∈ A and
p ∈ P . Moreover, if Ψ : V+ → V+ is a mapping satisfying Ψ(A) ⊂ A and

αv ≤ u ⇒ αΨv ≤ Ψu for all α ∈ [0, 1] , u, v ∈ A,

then also the composition Φ(p) ◦ Ψ : V+ → V+, p ∈ P , is uniformly ascend-
ing with φ. In particular, the composition Φ1(p) ◦ Φ2(p) of two uniformly
ascending mappings Φ1(p),Φ2(p) : V+ → V+, p ∈ P , is uniformly ascending
on A, if Φ2(p)A ⊂ A.

Lemma 3. Let V+ ⊂ V be a normal cone with intV+ 6= ∅ and assume
that the mapping Φ(p) : intV+ → intV+, p ∈ P , is uniformly ascending
w.r.t. φ. Then Φ(p) is uniformly contractive on intV+ for the part metric,
where the contractivity function c is given by

c(u, v) := − log φ(min {λ(u, v), λ(v, u)}) for all u, v ∈ intV+. (1)

Proof. Let u, v ∈ intV+ be given arbitrarily. Since p is a metric on intV+,
one has p(u, v) ≥ 0 and the definition of p yields min {λ(u, v), λ(v, u)} ≤ 1,
where λ(u, v) is given in Definition 2. Therefore, w.l.o.g. we can assume
λ(u, v) = min {λ(u, v), λ(v, u)} ≤ 1. Since λ(u, v)u ≤ v and Φ(p) is uni-
formly ascending, it follows that φ(λ(u, v))Φ(p)u ≤ Φ(p)v, and consequently
λ(Φ(p)u,Φ(p)v) ≥ φ(λ(u, v)) for p ∈ P . One gets φ (min {λ(u, v), λ(v, u)}) ≤
λ(Φ(p)u,Φ(p)v) and exchanging u and v in the proof of the above esti-
mate, yields that Φ(p) satisfies property (ii) of a uniformly contractive map-
ping. On the other hand, due to the metric properties of p, one has 0 <

min {λ(u, v), λ(v, u)} < 1 for all u, v ∈ V ∗+, u 6= v, and thus we obtain the
inequality φ(min {λ(u, v), λ(v, u)}) > min {λ(u, v), λ(v, u)} for u, v ∈ intV+,
u 6= v. Hence, c satisfies both conditions in the definition of uniform con-
tractivity w.r.t. the part metric. As in [Nes99, Proof of Lemma 4], one sees
that c is continuous under the part metric, and this implies the assertion.

3. Limit Set Trichotomies. The following theorem is a clear mani-
festation of the intuition that contractivity drastically simplifies the possible
long-term behavior of a dynamical system — in fact, only three asymptotic
scenarios are possible. In the autonomous discrete time case, these limit set
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trichotomy was discovered (and so named) by Krause and Ranft [KR92] and
generalized in [KN93] to infinite-dimensional autonomous difference equa-
tions; in addition, [Nes99] considers such nonautonomous systems, while
[PS04] prove a limit set trichotomy for general nonexpansive 2-parameter
semiflows. Now the nonexpansiveness of ϕ(t, τ) is strengthened to the ssump-
tion that ϕ(t, τ) is uniformly ascending.

Theorem 1 (Limit Set Trichotomy). Let V+ ⊂ V be a normal
cone, intV+ 6= ∅ and assume that ϕ is a 2-parameter semiflow on V+ with
the following properties:

(i) There exists a real T > 0 such that for all t, τ ∈ T with T ≤ t − τ ,
one has ϕ(t, τ)V ∗+ ⊂ intV+ and that ϕ(t, τ) is uniformly ascending
on intV+,

(ii) for all (τ, v) ∈ T×V+ every bounded orbit γ+
τ (v) is relatively compact

in the norm topology.
Then for every τ ∈ T the following trichotomy holds, i.e., precisely one of
the following three cases applies:

(a) For all v ∈ V ∗+ the orbits γ+
τ (v) are unbounded in norm,

(b) for all v ∈ V+ the orbits γ+
τ (v) are bounded in norm and for all

v ∈ V ∗+ we have limt→∞ ‖ϕ(t, τ)v‖ = 0,
(c) for all v ∈ V+ the orbits γ+

τ (v) are bounded in norm, for v ∈ V ∗+ they
have a nontrivial accumulation point, and

lim
t→∞
‖ϕ(t, τ)u− ϕ(t, τ)v‖ = 0 for all u, v ∈ V ∗+. (2)

Remark 2. (1) The above limit relation (2) implies that all ω-limit sets
ω+
τ (v), v ∈ V ∗+, are identical, and it excludes the existence of two different

equilibria of ϕ in V ∗+. In fact, if ϕ possesses an equilibrium v0 ∈ V ∗+, then (2)
guarantees ω+

τ (v) = {v0} for all v ∈ V ∗+.
(2) Let Tmax ≥ T and suppose T is a time scale such that for all t, τ ∈ T,

T ≤ t−τ , there exist finitely many points t0 := τ < t1 < . . . < tN−1 < tN := t
in T satisfying T ≤ tn+1 − tn ≤ Tmax for all n ∈ {0, . . . , N − 1}. Then it is
sufficient in hypothesis (i) to assume that ϕ(t, τ) is uniformly ascending on
intV+ for all t, τ ∈ T with T ≤ t− τ ≤ Tmax. This can be seen as follows:
For arbitrary t, τ ∈ T, T ≤ t−τ , choose t0, . . . , tN as above. Then, due to the
2-parameter semiflow property, one has that ϕ(t, τ) = ϕ(tN , tN−1) . . . ϕ(t1, t0)
is a composition of uniformly ascending operators ϕ(tn, tn−1), n = 1, . . . , N ,
with ϕ(tn, tn−1) intV+ ⊂ intV+ and functions φ not depending on n. Hence,
ϕ(t, τ), T ≤ t− τ , itself is uniformly ascending on intV+.

(3) A remark similar to (2) holds for the nonexpansiveness and uniform
contractivity assumptions from [PS04, Theorem 3.1].
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Proof. Let τ ∈ T be fixed. Because of Lemma 3, we know that the
mapping ϕ(t, τ), T ≤ t − τ , is nonexpansive, and all assumptions of [PS04,
Theorem 3.1] are satisfied. To obtain (2), we show that in case (c) the relation

lim
t→∞

p(ϕ(t, τ)u, ϕ(t, τ)v) = 0 for all u, v ∈ V ∗+ (3)

holds. By Lemma 2 this implies (2), since all orbits are bounded in norm.
To verify (3), let u, v ∈ V ∗+ and (tn)n∈N0 be a sequence in T with t0 = τ

and limn→∞ tn = ∞, where w.l.o.g. we may assume T ≤ tn+1 − tn for all
n ∈ N0 (cf. Lemma 1). Now let neither (a) nor (b) hold. Then the orbits
γ+
τ (u), γ+

τ (v) are norm-bounded (cf. [PS04, Theorem 3.1]), and furthermore,
by (i), one has ϕ(tn, τ)u, ϕ(tn, τ)v ∈ intV+ for n ∈ N. With a view to assump-
tion (ii), this implies that the set F := {(ϕ(tn, τ)u, ϕ(tn, τ)v) : n ∈ N} ⊂
(intV+)2 is relatively compact.

Due to Lemma 3, we know that ϕ(t, τ), T ≤ t−τ , is uniformly contractive
on intV+ and it follows from the 2-parameter semiflow property that there
exists a constant γ ≥ 0 with

p (ϕ(tn, τ)u, ϕ(tn, τ)v) ≥ c(ϕ(tn, τ)u, ϕ(tn, τ)v)

≥ p(ϕ(tn+1, τ)u, ϕ(tn+1, τ)v) ≥ γ for all n ∈ N.
(4)

From now on, we assume that (3) does not hold, which yields 0 < γ ≤
p(ξ1, ξ2) ≤ Γ for (ξ1, ξ2) ∈ F , with some real Γ > 0; note here that (4)
implies Γ <∞. Setting ψ(ξ1, ξ2) := e−p(ξ1,ξ2), we therefore obtain 0 < e−Γ ≤
ψ(ξ1, ξ2) ≤ e−γ < 1 for (ξ1, ξ2) ∈ F , and hence the continuity of φ and α <
φ(α) for α ∈ (0, 1) implies the existence of a C > 0 with φ(ψ(ξ1,ξ2))

ψ(ξ1,ξ2)
≥ C > 1

for (ξ1, ξ2) ∈ F . Thus, using ψ(ξ1, ξ2) = min {λ(ξ1, ξ2), λ(ξ2, ξ1)} we arrive at
the estimate

γ ≤ p(ϕ(tn+1, τ)u, ϕ(tn+1, τ)v)
(4)

≤ p(ϕ(tn, τ)u, ϕ(tn, τ)v)
(1)
= − log φ(ψ(ϕ(tn, τ)u, ϕ(tn, τ)v))

≤ − log (Cψ(ϕ(tn, τ)u, ϕ(tn, τ)v))

= p(ϕ(tn, τ)u, ϕ(tn, τ)v)− logC

. . .

≤ p(ϕ(t1, τ)u, ϕ(t1, τ)v)− n logC for all n ∈ N,

yielding a contradiction for n → ∞, since C > 1. So we must have γ = 0
and in the light of Lemma 1, the limit relation (3) holds true.

Now we switch to a finite-dimensional situation.
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Theorem 2 (Limit Set Trichotomy). Let V+ ⊂ [0,∞)d be a normal
cone, intV+ 6= ∅ and assume that ϕ is a 2-parameter semiflow on V+ with
the following properties:

(i) There exists a real T > 0 such that one has ϕ(t, τ)V ∗+ ⊂ intV+ for
all t, τ ∈ T with T ≤ t− τ ,

(ii) ϕ(t, τ)|intV+, T ≤ t− τ , is continuously differentiable, and

d∑
k=1

vk

∣∣∣∣∂ϕj(t, τ, v)

∂vk

∣∣∣∣ ≤ a(v)ϕj(t, τ, v) for all T ≤ t− τ, v ∈ intV+

and j = 1, . . . , d, where a : V+ → [0, 1) is a continuous mapping.
Then for every τ ∈ T the following trichotomy holds, i.e., precisely one of
the following three cases applies:

(a) For all v ∈ V ∗+ the orbits γ+
τ (v) are unbounded in norm,

(b) for all v ∈ V+ the orbits γ+
τ (v) are bounded in norm and for all

v ∈ V ∗+ we have limt→∞ ‖ϕ(t, τ)v‖ = 0,
(c) for all v ∈ V+ the orbits γ+

τ (v) are bounded in norm, for v ∈ V ∗+ they
have a nontrivial accumulation point, and

lim
t→∞
‖ϕ(t, τ)u− ϕ(t, τ)v‖ = 0 for all u, v ∈ V ∗+. (5)

Proof. Let τ ∈ T be fixed. Now we define the mapping

c(u, v) := sup
θ∈[0,1]

a(uθv1−θ)p(u, v) (6)

for all u, v ∈ V ∗+ with p(u, v) < ∞, where uθv1−θ ∈ [0,∞)d abbreviates the
vector with components uθi v

1−θ
i ∈ [0,∞), i = 1, . . . , d. By assumption we

have c(u, v) < p(u, v) for u, v ∈ V ∗+, u 6= v, with p(u, v) < ∞, and [Nes99,
Lemma 6] applied to ϕ(t, τ), T ≤ t−τ , gives us p(ϕ(t, τ)u, ϕ(t, τ)v) ≤ c(u, v)
for all t, τ ∈ T, T ≤ t−τ , and u, v ∈ intV+. The definition of c readily implies
its continuity w.r.t. the part metric and, therefore, ϕ(t, τ), T ≤ t − τ , is a
uniform contraction on intV+. Since we are in a finite-dimensional setting,
each bounded orbit of ϕ is relatively compact and the limit set trichotomy
from [PS04, Theorem 3.1] applies. It remains to strengthen the assertion in
case (c) of this trichotomy, by showing the limit relation (5).

Thereto, let u, v ∈ V ∗+ and assume that neither (a) nor (b) of the limit set
trichotomy in [PS04, Theorem 3.1] holds. Then the orbits γ+

τ (u), γ+
τ (v) are

bounded in norm and one has ϕ(t, τ)u, ϕ(t, τ)v ∈ intV+ for T ≤ t− τ . Now
choose an arbitrary sequence (tn)n∈N0 in T with t0 := τ , limn→∞ tn =∞, and
w.l.o.g. we suppose T ≤ tn+1 − tn for n ∈ N0 (cf. Lemma 1). In case, the
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sequence (ϕ(tn, τ)u)n∈N has a trivial accumulation point, then there exists
an infinite set N ⊂ N with limn→∞,n∈N ‖ϕ(tn, τ)u‖ = 0; otherwise we set
N := ∅. Using mathematical induction, one obtains from (4) the inequality
p(ϕ(tn, τ)u, ϕ(tn, τ)v) ≤ p(ϕ(t1, τ)u, ϕ(t1, τ)v) for all n ∈ N. Hence we can
find some real λ > 0 with 0 ≤ ϕ(tn, τ)v ≤ λϕ(tn, τ)u for all n ∈ N and
consequently one has limn→∞,n∈N ‖ϕ(tn, τ)v‖ = 0, which immediately implies
limn→∞,n∈N ‖ϕ(tn, τ)u− ϕ(tn, τ)v‖ = 0. It remains to prove

lim
n→∞,n 6∈N

‖ϕ(tn, τ)u− ϕ(tn, τ)v‖ = 0. (7)

Due to the construction of N , the set F := {(ϕ(tn, τ)u, ϕ(tn, τ)v) : n ∈ N} ⊂
(intV+)2 has compact closure in

(
V ∗+
)2

. Consequently, there exists an α < 1
with supθ∈[0,1] a(uθv1−θ) ≤ α for (u, v) ∈ F , we obtain from the definition of
c and the 2-parameter semiflow property

p(ϕ(tn+1, τ)u, ϕ(tn+1, τ)v) ≤c(ϕ(tn, τ)u, ϕ(tn, τ)v) ≤αp(ϕ(tn, τ)u, ϕ(tn, τ)v)

and inductively

0 ≤ p(ϕ(tn, τ)u, ϕ(tn, τ)v) ≤ αn−1p(ϕ(t1, τ)u, ϕ(t1, τ)v) −−−−−−→
n→∞,n 6∈N

0.

Finally, Lemma 2 and the norm-compactness of clF implies the limit rela-
tion (7), which concludes our present proof.
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