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Abstract

In this paper we present an existence and smoothness result for center-like invariant
manifolds of nonautonomous difference equations with slow and fast state-space variables.
This result can be seen as a first step to obtain Fenichel’s geometric theory for difference
equations. Hereby, our basic tool is an abstract integral manifold theorem.
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1 Introduction and Preliminaries

Many problems from the applied sciences lead to dynamical systems, where the state space
variables have certain components which vary rapidly, and others which vary relatively slowly
in time. Usually one approaches such problems within the framework of singular perturbations
and integral manifolds. In fact, the investigation of singularly perturbed ordinary differential
equations (ODEs) using the method of integral manifolds is a classical matter, since its origins
reach back to Baris [3] or even Zadiraka [22]. Meanwhile their approach has been developed
further in various directions, and we only mention the contributions of Henry [8], Sacker &
Sell [17], Sakamoto [18], Rybakowski [15], as well as the very applicable considerations in
Nipp [11, 12] here. Moreover, Fenichel [7] provided a largely complete geometric theory of
singular perturbations in continuous time over 20 years ago.

In the case of difference equations the situation is significantly different, because the existing liter-
ature on singular perturbations is comparatively small. Using asymptotic methods, Comstock
& Hsiao [4], Kelley [9], Suzuki [21], or in a simple situation Agarwal [2, pp. 92–95], obtain
results concerning individual solutions instead of a whole set of solutions. Other approaches
based on invariant manifolds have their origins in discretization theory of ODEs, namely in the
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2 1 INTRODUCTION AND PRELIMINARIES

occurrence of singularly perturbed Poincaré-mappings (cf. Stiefenhofer [20]) or in numerical
approximation of singularly perturbed differential equations (cf. e.g. Nipp & Stoffer [13]).

The aim of this paper is to show the existence and smoothness of a center-like invariant manifold
for certain types of difference equations, which can be interpreted as discrete counterparts of sin-
gularly perturbed ODEs with fast time. Such a result in the continuous autonomous situation
and the corresponding geometric ideas are already contained in [7], but with a proof heav-
ily depending on a “differential-geometric” approach developed in [6]. However, our technical
machinery is purely analytical and basically inspired by [8] and [18, 19].

The present paper is organized in a straight-forward manner: Section 2 contains the two basic
technical tools, namely a perturbation result for exponential dichotomies (Theorem 2.1) and
the quite general Theorem 2.2 about invariant fiber bundles — the discrete pendant of integral
manifolds. Both are new for difference equations and of independent interest, but the proofs are
lengthly and technical, and therefore omitted here. The main result (Theorem 3.6) is deduced
in Section 3 after some preparations. As a general philosophy, and although this article belongs
to the qualitative theory of (nonautonomous) dynamical systems, we have tried to state our
results as quantitatively as possible.

Now we introduce our basic terminology. Z denotes the integers and N the set of positive integers.
The Banach spaces X , Y are all real (F = R) or complex (F = C) throughout this paper and
their norm is denoted by ‖·‖X , ‖·‖Y or simply by ‖·‖. On the cartesian product X ×Y we always
use the norm ‖(x, y)‖X×Y := max

{
‖x‖X , ‖y‖Y

}
and Bρ(x) is the ball in a normed space with

center x and radius ρ > 0. Ln(X ;Y) is the Banach space of n-linear continuous operators from
X n to Y for n ∈ N, L0(X ;Y) := Y, L(X ) := L1(X ;X ); IX is the identity map on X and GL(X )
the multiplicative group of bijective mappings in L(X ). We write N (T ) := T−1({0}) for the
kernel and R(T ) := T (X ) for the range of an operator T ∈ L(X ).

DF stands for the Frechét-derivative of a mapping F , and if F : (x, y) 7→ F (x, y) depends
differentiable on more than one variable, then its partial derivatives are denoted by D1F and
D2F , respectively, provided they exist. Higher order derivatives, like e.g. Dn

1F , n ∈ N0, are
defined inductively.

Finally, we use the notation

∆x = f(k, x) (1.1)

to denote the difference equation ∆x(k) = f(k, x(k)), with the forward difference operator
(∆x)(k) := x(k + 1) − x(k), k ∈ Z, and the right-hand side f : Z × X → X . Let λ(·;κ, ξ)
be the general solution of equation (1.1), i.e., it solves (1.1) and satisfies the initial condition
λ(κ;κ, ξ) = ξ for κ ∈ Z, ξ ∈ X . In forward time (k ≥ κ), λ(·;κ, ξ) can be defined recursively as

λ(k;κ, ξ) :=
{

ξ for k = κ
λ(k − 1;κ, ξ) + f(k − 1, λ(k − 1;κ, ξ)) for k > κ

,

and if the inverse mapping [IX + f(k − 1, ·)]−1 : X → X exists for k ≤ κ, then λ(·;κ, ξ) can be
extended on Z by defining recursively

λ(k − 1;κ, ξ) := [IX + f(k − 1, ·)]−1 λ(k;κ, ξ) for k ≤ κ.

A subset W of the extended state space Z×X is called an invariant fiber bundle of (1.1), if for
any pair (κ, ξ) ∈ W, the solution λ(·;κ, ξ) exists on Z, and if it follows that (k, λ(k;κ, ξ)) ∈ W
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for all k ∈ Z. Given an operator sequence A : Z → L(X ), we define the evolution operator
Φ(k, κ) ∈ L(X ) of the linear difference equation ∆x = A(k)x as the mapping given by

Φ(k, κ) :=
{

IX for k = κ
[IX +A(k − 1)] · · · [IX +A(κ)] for k > κ

,

and if IX +A(k) is invertible (in L(X )) for k < κ, then

Φ(k, κ) := [IX +A(k)]−1 · · · [IX +A(κ− 1)]−1 for k < κ.

2 Exponential Dichotomies and Invariant Fiber Bundles

We need some preparations to establish the announced results in Section 3, namely a nonau-
tonomous concept of hyperbolicity, its robustness under perturbations, and a generalized center-
manifold theorem. Thereto consider an operator-valued sequence A : Z → L(X ). Then a
nonautonomous linear difference equation

∆x = A(k)x (2.1)

is said to have

(i) γ+-bounded growth (with constant C), if there exist real numbers γ > 0, C ≥ 1 such that
‖Φ(k, l)‖ ≤ Cγk−l for k ≥ l,

(ii) (γ, δ)-bounded growth (with constant C), if IX + A(k) ∈ GL(X ), k ∈ Z, and if there exist
reals γ, δ > 0, C ≥ 1 such that ‖Φ(k, l)‖ ≤ Cγk−l for k ≥ l and ‖Φ(k, l)‖ ≤ Cδk−l for
l ≥ k.

Differing from the situation of ODEs (cf. Coppel [5, pp. 8–9]), bounded growth of (2.1) can
be characterized in terms of boundedness of the coefficient operator A. Precisely, the equation
(2.1) has (γ, δ)-bounded growth with constant 1, if and only if

‖IX +A(k)‖ ≤ γ,
∥∥∥[IX +A(k)]−1

∥∥∥ ≤ δ for k ∈ Z

holds. Accordingly, the left inequality is necessary and sufficient for γ+-bounded growth of (2.1)
with constant 1. Furthermore, in the finite dimensional setting X = FN , the boundedness of
IX + A : Z → GL(FN ) implies that [IX +A(·)]−1 : Z → GL(FN ) is bounded (cf. [5, p. 47,
Lemma 1]). Autonomous linear difference equations evidently have bounded growth.

A sequence of projections P : Z→ L(X ) is called a regular invariant projector of (2.1), if

P (k + 1)A(k) = A(k)P (k), N (P (k + 1)) ⊆ R(IX +A(k)) for k ∈ Z

holds. Then it is not difficult to show that the restriction Φ̄(k, l) := Φ(k, l)|N (P (l)) : N (P (l))→
N (P (k)), k ≥ l, is a well-defined isomorphism, and we denote its inverse by Φ̄(l, k). The system
(2.1) is said to possess an exponential dichotomy with α, β, K1,K2 on Z, if there exists a regular
invariant projector P : Z→ L(X ) of (2.1) satisfying

‖Φ(k, l)P (l)‖ ≤ K1α
k−l for k ≥ l,

∥∥Φ̄(k, l) [IX − P (l)]
∥∥ ≤ K2β

k−l for l ≥ k,
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where 0 < α < β, K1,K2 ≥ 1 are real constants. In the autonomous situation A(k) ≡ A, the
equation (2.1) has an exponential dichotomy with α, β, if the spectrum of IX + A ∈ L(X ) can
be separated into spectral sets disjoint from the annulus {λ ∈ C : α ≤ |λ| ≤ β} in the complex
plane C. A comprehensive introduction to exponential dichotomies for difference equations can
be found in, for example, Henry [8, pp. 229–237].

The next result is crucial and concerns the robustness of exponential dichotomies under slowly
varying parameters. Related results for ODEs are provided by e.g., [5, p. 50, Proposition 1],
Sacker & Sell [16, Theorem 6], [8, pp. 240–241, Theorem 7.6.12] or Sakamoto [19, Theo-
rem 1]. However, it is new for difference equations to our knowledge.

Theorem 2.1 (slowly varying coefficients): Let (Q, d) be a metric space, A : Z×Q → L(X ) be
a mapping, and let C1, C2, L ≥ 0, K1,K2 ≥ 1, γ1, γ2, δ2 > 0, 0 < α < β be reals such that for
any q ∈ Q the following holds:

(i) A satisfies the Lipschitz condition

‖A(k, q)−A(k, q̄)‖ ≤ Ld(q, q̄) for k ∈ Z, q̄ ∈ Q, (2.2)

(ii) the linear difference equation
∆x = A(k, q)x (2.3)

has γ+
1 -bounded growth with constant C1,

(iii) (2.3) possesses an exponential dichotomy with α, β, K1,K1 and the regular invariant pro-
jector Pq : Z→ L(X ) on Z.

Now, if we fix reals γ, δ with α < γ < δ < β and choose h ∈ N so large that

max
{

log β
α

(K1K2), log γ
α

(K1), log β
δ
(K2)

}
< h,

then for arbitrary fixed real numbers θ1 < 1 < θ2 with θ2
θ1

= 1
2

[
1 +

(
β
α

)h ]
and any sequence

q∗ : Z→ Q satisfying

(iv) the following Lipschitz condition is fulfilled

d(q∗(k), q∗(l)) ≤ ϑ |k − l| for k, l ∈ Z, (2.4)

where the Lipschitz constant ϑ ≥ 0 is so small that

Lhϑ ≤ ε0, Lhmax {K1,K2}C(γ, δ)ϑ ≤ ε1

and ε0, ε1 > 0 suffice the estimates

2K1ε1 ≤ min {1− θ1, θ2 − 1} , C̄(γ, δ)ε < 1,

whereby C(γ, δ) := K1
δ−α + K2

β−γ + max
{

K1
γ−α ,

K2
β−δ

}
,

C̄(γ, δ) :=
hθ1K1

θ1δh −K1αh
+

hθ2K
2
2

βh − θ2K2γh
+ max

{
hθ1K1

θ1γh −K1αh
,

hθ2K
2
2

βh − θ2K2δh

}
,

ε := C1

[
ε0C1(γ1 + C1ε0)h−1 +

1
h

2ε1K1γ
h
1

1− 2ε1K1

]
,
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(v) the linear difference equation
∆x = A(k, q∗(k))x (2.5)

has (γ2, δ2)-bounded growth with constant C2,

also the system (2.5) possesses an exponential dichotomy with γ, δ,

L1(γ, δ) := max

{
1, C2

(
γ2

γ

)h( C̄(γ, δ)δ
1− εC̄(γ, δ)

)2
}
,

L2(γ, δ) := max

{
1, C2

(
δ

δ2

)h(
1 +

C̄(γ, δ)δ
1− εC̄(γ, δ)

)
C̄(γ, δ)δ

1− εC̄(γ, δ)

} (2.6)

and a regular invariant projector Q : Z→ L(X ) satisfying∥∥Q(k)− Pq∗(k)(k)
∥∥ ≤ ε1 + ε

(
1 +

C̄(γ, δ)δ
1− εC̄(γ, δ)

)
C̄(γ, δ)2δ

1− εC̄(γ, δ)
for k ∈ Z.

Proof. The detailed proof is technically involved and can be found in Pötzsche [14, pp. 121–
128, Satz 2.3.6, Korollar 2.3.10 and Korollar 2.3.11]. Nonetheless it is roughly modeled after [8,
pp. 240–241, Theorem 7.6.12] or [19, Theorem 1].

Now we turn our attention to invariant fiber bundles of nonlinear systems. The related theory
on integral manifolds of ODEs is wide-spread, and for the Lipschitz-smooth case we only refer
to [19, Theorem 6], whereas [8, pp. 275–277, Theorem 9.1.1] also treats C1-smoothness. Thereto
let X ,Y be Banach spaces over F.

Theorem 2.2 (invariant fiber bundles): Let m ∈ N, ρ0 > 0, K1,K2 ≥ 1 and 0 < α < 1 < β,
γ1 = γ2, δ2 > 0, C1 = C2 ≥ 1 be reals. Consider a nonautonomous difference equation{

∆x=A(k, y)x+ f(k, x, y)
∆y= g(k, x, y)

(2.7)

under the following assumptions:

(i) A : Z × Y → L(X ) is m-times continuously differentiable in y ∈ Y with globally bounded
partial derivatives:

|A|n := sup
(k,y)∈Z×Y

‖Dn
2A(k, y)‖Ln(Y;L(X )) <∞ for n ∈ {0, . . . ,m} ,

(ii) f : Z× X × Y → X is m-times continuously differentiable in (x, y) ∈ X × Y with globally
bounded partial derivatives:

|f |n := sup
(k,x,y)∈Z×X×Y

∥∥∥Dn
(2,3)f(k, x, y)

∥∥∥
Ln(X×Y;X )

<∞ for n ∈ {0, . . . ,m} ,

(iii) g : Z× X × Y → Y is m-times continuously differentiable in (x, y) ∈ X × Y with globally
bounded partial derivatives:

|g|n := sup
(k,x,y)∈Z×X×Y

∥∥∥Dn
(2,3)g(k, x, y)

∥∥∥
Ln(X×Y;Y)

<∞ for n ∈ {0, . . . ,m} ,
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(iv) if ψ : Z → X is an arbitrary sequence with supk∈Z ‖ψ(k)‖ ≤ ρ0, and if νψ denotes the
general solution of the difference equation ∆y = g(k, ψ(k), y), then the linear difference
equation

∆x = A(k, νψ(k;κ, η))x

has (γ2, δ2)-bounded growth with constant C2 (uniformly in κ ∈ Z, η ∈ Y, ψ), and the
linear difference equation

∆x = A(k, ν0(k;κ, η))x

possesses an exponential dichotomy with α, β, K1,K2 on Z (uniformly in κ ∈ Z, η ∈ Y),

(v) the mappings A, f, g satisfy the following estimates:

|g|1 < min
{

1
2
, 1− α

β
,
β

α
− 1
}
, (2.8)

|g|1 <
1
2

min

{
β − 1

4
,
1− α

4
,
m

√
1 + β

2
− 1, 1− m

√
1 + α

2

}
and

|A|1 |g|1 (1 + |g|1)h hρ0 ≤ ε0,

|A|1 |g|1

(
K1K2 (1 + |g|1)h

β − α− β |g|1
+
K1K2 (1 + |g|1)h

β − α− α |g|1

)
hρ0 ≤ ε1,

2C1
K1,K2

(α, β) |A|1 |f |0 + 4C2
K1,K2

(α, β) |f |1 < 1,

2C1
K1,K2

(α, β) |f |0 ≤ ρ0,

4C2
K1,K2

(α, β)
(
2C1

K1,K2
(α, β) |A|1 |f |0 + |f |1

)
< 1,

with an integer h > max
{

log β
α

(K1K2), log 1+α
2α

(K1), log 2β
1+β

(K2)
}

,

C1
K1,K2

(α, β) :=
C2

(
2γ2
1+α

)h
L1

(
1+α

2 , 1+β
2

)
1− α

+
C2

(
1+β
2δ2

)h
L2

(
1+α

2 , 1+β
2

)
β − 1

+

+ max


C2

(
2γ2
1+α

)h
L1

(
1+α

2 , 1+β
2

)
1− α

,
C2

(
1+β
2δ2

)h
L2

(
1+α

2 , 1+β
2

)
β − 1

 ,

C2
K1,K2

(α, β) := C1
K1,K2

(α, β) +
C2

(
2γ2
1+α

)h
L1

(
1+α

2 , 1+β
2

)
1− α

+
C2

(
1+β
2δ2

)h
L2

(
1+α

2 , 1+β
2

)
β − 1

and the reals ε0, ε1 > 0, L1

(
1+α

2 , 1+β
2

)
, L2

(
1+α

2 , 1+β
2

)
≥ 1 from Theorem 2.1.

Then there exists a uniquely determined mapping w : Z× Y → X , whose graph

W := {(κ,w(κ, η), η) ∈ Z×X × Y : κ ∈ Z, η ∈ Y}

can be characterized dynamically as

W = {(κ, ξ, η) ∈ Z×X × Y : ‖λ1(k;κ, ξ, η)‖ ≤ ρ0 for k ∈ Z} ,

where λ = (λ1, λ2) is the general solution of (2.7). Moreover, we obtain:
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(a) w : Z× Y → X is globally bounded: ‖w(κ, η)‖ ≤ 2C1
K1,K2

(α, β) |f |0 for κ ∈ Z, η ∈ Y,

(b) w : Z × Y → X is m-times continuously differentiable in η ∈ Y with globally bounded
partial derivatives,

(c) the graph W is an invariant fiber bundle of the difference equation (2.7).

Remark 2.3: (1) Under the condition (2.8) it is an easy application of the contraction mapping
principle (cf. Lang [10, p. 360, Lemma 1.1]) to show that the solutions νψ(·;κ, η) exists on Z,
κ ∈ Z, η ∈ Y.

(2) The uniformity of the exponential dichotomy in (iv) means that the dichotomy constants
α, β, K1,K2 are independent of κ ∈ Z, η ∈ Y, whilst the corresponding invariant projector is
allowed to depend on these parameters.

(3) If one replaces (i), (ii), (iii) by global Lipschitz conditions for the mappings A, f, g, which
are uniform in k ∈ Z, then the existence of Lipschitz-smooth invariant fiber bundles yields
analogously (cf. [14, p. 154, Satz 3.2.15]).

Proof. The above result is a special case of [14, pp. 210–211, Satz 3.3.15].

3 Slow Invariant Fiber Bundles

For this main section and for the rest of the paper let Y be an arbitrary Banach space, and let X
be a Cm-Banach space, m ∈ N0, i.e., a complete normed space, where ‖·‖X \{0} → R is m-times
continuously Frechét-differentiable. The setting within we work is a system of nonautonomous
difference equations in X × Y under the subsequent standing
Hypothesis 3.1: Let m ∈ N \ {1}, K1,K2 ≥ 1, 0 < α < 1 < β and ε ∈ R be reals. Consider a
nonautonomous difference equation {

∆x= F (k, x, y)
∆y= εG(k, x, y)

(3.1)

under the following assumptions:

(i) F : Z × X × Y → X is (m + 1)-times continuously differentiable in (x, y) ∈ X × Y with
globally bounded partial derivatives:

|F |n := sup
(k,x,y)∈Z×X×Y

∥∥∥Dn
(2,3)F (k, x, y)

∥∥∥
Ln(X×Y;X )

<∞, (3.2)

|F |∗n := sup
(k,x,y)∈Z×X×Y

‖Dn
2F (k, x, y)‖Ln(X ;X ) ≤ |F |n

for n ∈ {0, . . . ,m+ 1},

(ii) G : Z×X ×Y → Y is m-times continuously differentiable in (x, y) ∈ X ×Y with globally
bounded partial derivatives:

|G|n := sup
(k,x,y)∈Z×X×Y

∥∥∥Dn
(2,3)G(k, x, y)

∥∥∥
Ln(X×Y;Y)

<∞ (3.3)

for n ∈ {0, . . . ,m},
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(iii) there exists a mapping w0 : Z× Y → X such that

w0(k, y) + F (k,w0(k, y), y) ≡ w0(k + 1, y) on Z× Y, (3.4)

and w0 is m-times continuously differentiable in y ∈ Y with globally bounded partial
derivatives

|w0|n := sup
(k,y)∈Z×Y

‖Dn
2w0(k, y)‖Ln(Y;X ) <∞ (3.5)

for n ∈ {1, . . . ,m},

(iv) the linear difference equation

∆x = D2F (k,w0(k, y), y)x (3.6)

possesses an exponential dichotomy with α, β, K1,K2 on Z (uniformly in y ∈ Y) and
IX +D2F (k,w0(k, y), y) ∈ GL(X ), k ∈ Z, y ∈ Y, such that

δ2 := sup
(k,y)∈Z×Y

∥∥∥[IX +D2F (k,w0(k, y), y)]−1
∥∥∥ <∞.

Remark 3.2: (1) Finite dimensional Banach spaces X are C∞-Banach spaces, like Hilbert
spaces as well. Nevertheless, in general infinite dimensional Banach spaces X , norms are only
Cm-mappings on X \ {0} for some finite m ∈ N0. Explicit examples and further results can be
found in Abraham, Marsden & Ratiu [1, pp. 387–388].

(2) In case of an autonomous difference equation (3.1) every mapping w0 : Y → X parameterizing
the zeros of F (·, η), η ∈ Y, satisfies the identity (3.4). Hence, in such a setting, the graph of w0

is a manifold of equilibria for (3.1) in the limit case ε = 0.

(3) For simplicity reasons only, we have omitted the dependence of the mappings F,G on the
parameter ε ∈ R. If F and G depend on ε and are of class Cm+1 and Cm, respectively, in
(x, y, ε) ∈ X ×Y×R with globally bounded derivatives, then the following results yield similarly.

(4) Using Theorem 2.1 it is possible to derive sufficient conditions for an exponential dichotomy
of (3.6) with α, β by making assumptions on the spectrum of IX + D2F (k,w0(k, y), y) ∈ L(X )
for fixed k ∈ Z, y ∈ Y. Actually, one considers the parameter space Q = Z × Y, the sequence
q∗(k) := (k, y), y ∈ Y, and has to require:

(iv)1 There exists a neighborhood N ⊆ C of the annulus {λ ∈ C : α ≤ |λ| ≤ β} such that for
any k ∈ Z, y ∈ Y the spectrum of IX +D2F (k,w0(k, y), y) is disjoint from N .

(iv)2 The coefficient operator D2F (k,w0(k, y), y) of (3.6) satisfies a Lipschitz condition in
(k, y) ∈ Z× Y with a sufficiently small Lipschitz constant L ≥ 0 (cf. (2.2)).

Difference equations of the form (3.1) are discrete counterparts of singularly perturbed ODEs
with fast time (see e.g. [7]). Here ε is real parameter with small absolute value, and for obvious
reasons, the x variable is called the fast variable, while the y variable is called slow. The system
(3.1) in the limit case ε = 0, namely {

∆x=F (k, x, y)
∆y= 0

, (3.7)
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will be denoted as the singular system. Unlike the situation of singularly perturbed ODEs,
we are confronted with a nonautonomous equation here. By Hypothesis 3.1(iii) each sequence
µη : Z→ X × Y, µη(k) := (w0(k, η), η), η ∈ Y, is a solution of (3.7), and hence the set

W0 := {(κ,w0(κ, η), η) ∈ Z×X × Y : κ ∈ Z, η ∈ Y}

is an invariant fiber bundle of the singular system (3.7). Because of the particular y-equation
in (3.7) the extended state space Z × X × Y near the invariant fiber bundle W0 is foliated by
“horizontal fiber bundles” which are parameterized by y ∈ Y. On each of those fibers bundles,
the behavior of the solutions of system (3.7) is described by the parameter depending x-equation

∆x = F (k, x, y). (3.8)

The qualitative behavior of the solutions of this system (3.8) near the solution w0(·, η) : Z →
X , η ∈ Y, is determined its linearization, i.e., the dichotomy properties of equation (3.6) in
Hypothesis 3.1(iv). Now from a perturbation point of view, it is reasonable to conjecture the
existence of an invariant fiber bundle Wε ⊆ Z × X × Y for (3.1) near W0, assumed that |ε| is
small. More precise, Wε allows the representation

Wε = {(κ,w0(κ, η) + wε(κ, η), η) ∈ Z×X × Y : κ ∈ Z, η ∈ Y} ,

where the mapping wε : Z × Y → X satisfies limε→0wε(κ, η) = 0 for any κ ∈ Z, η ∈ Y. The
relevance of this invariant fiber bundle Wε is due to the fact that any solution of (3.1) which
remains sufficiently close to the manifold W0 for all k ∈ Z lies entirely on Wε.

To verify these statements using our Theorem 2.2 we have to transform the difference equation
(3.1) into a certain normal form:

Lemma 3.3 (normal form): Assume that the Hypothesis 3.1 holds. Then the change of variables
x 7→ x− w0(k, y) transforms (3.1) into the nonautonomous difference equation{

∆x=A(k, y)x+ F1(k, x, y; ε)
∆y= εG1(k, x, y)

, (3.9)

where the mappings A : Z × Y → L(X ), F1 : Z × X × Y × R → X , G1 : Z × X × Y → Y are
given by

A(k, y) := D2F (k,w0(k, y), y), (3.10)
F1(k, x, y; ε) := F (k, x+ w0(k, y), y)−D2F (k,w0(k, y), y)x− w0(k + 1, y) + w0(k, y)−

−ε
∫ 1

0
D2w0(k + 1, y + hεG(k, x+ w0(k, y), y)) dhG(k, x+ w0(k, y), y),

G1(k, x, y) := G(k, x+ w0(k, y), y)

and possess the following properties:

‖D2A(k, y)‖L1(Y;L(X )) ≤ max {1, |w0|1} |F |2 , (3.11)

‖F1(k, x, y; ε)‖ ≤ 1
2 |F |

∗
2 ‖x‖

2 + |ε| |w0|1 |G|0 , (3.12)

‖D2F1(k, x, y; ε)‖L1(X ) ≤ |F |2 ‖x‖+ 1
2 |ε|

2 |w0|2 |G|1 |G|0 + |ε| |w0|1 |G|1 (3.13)

‖D3F1(k, x, y; ε)‖L1(Y;X ) ≤ 2(1 + |w0|1) |F |2 ‖x‖+ 1
2 |ε|

2 |w0|2 |G|0 |G|1 (1 + |w0|1) +

+ |ε|
[
|w0|2 |G|0 + |w0|1 |G|1 (1 + |w0|1)

]
, (3.14)∥∥D(2,3)G1(k, x, y)

∥∥
L1(X×Y;Y)

≤ (1 + |w0|1) |G|1 (3.15)

for all k ∈ Z, x ∈ X , y ∈ Y and ε ∈ R.
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Proof. Apparently the mapping (x, y) 7→ (x−w0(k, y), y) is a Cm-diffeomorphism on X ×Y for
each fixed k ∈ Z, by Hypothesis 3.1(iii). Furthermore, it transforms (3.1) into the difference
equation (3.9). Now Hypothesis 3.1(i), [10, p. 342, Corollary 4.3]), and (3.5) yields the Lipschitz
estimate

‖A(k, y)−A(k, ȳ)‖ (3.10)
= ‖D2F (k,w0(k, y), y)−D2F (k,w0(k, ȳ), ȳ)‖ ≤

(3.2)

≤ |F |2

∥∥∥∥(w0(k, y)− w0(k, ȳ)
y − ȳ

)∥∥∥∥ ≤ max {1, |w0|1} |F |2 ‖y − ȳ‖

for k ∈ Z, y, ȳ ∈ Y, which in turn implies (3.11). With a quite similar argument one can show
(3.15). The estimate (3.12) is a consequence of Taylor’s formula (cf. [10, p. 349]) applied to
F1(k, x, y; ε) using (3.4), (3.2), (3.3) and (3.5). We can derive (3.13) by differentiation and a
direct estimate using [10, p. 342, Corollary 4.3] and (3.2), (3.3), (3.5). Finally, the remaining
inequality (3.14) yields by analogous arguments.

Lemma 3.4: Assume that the Hypothesis 3.1 holds. Now if ν0 denotes the general solution of
the difference equation ∆y = εG(k,w0(k, y), y), and if ε ∈ R satisfies the estimates

max {1, |w0|1} |F |2 |G|0 h |ε| ≤ ε0,

max {K1,K2}C
(

1 + α

2
,
1 + β

2

)
max {1, |w0|1} |F |2 |G|0 h |ε| ≤ ε1,

(3.16)

with the real constants h ∈ N from Theorem 2.2, and ε0, ε1 > 0, C
(

1+α
2 , 1+β

2

)
> 0 from Theorem

2.1, then for any κ ∈ Z, η ∈ Y the linear difference equation

∆x = A(k, ν0(k;κ, η))x (3.17)

possesses an exponential dichotomy on Z with 1+α
2 , 1+β

2 , L1

(
1+α

2 , 1+β
2

)
, L2

(
1+α

2 , 1+β
2

)
≥ 1

(uniformly in κ ∈ Z, η ∈ Y).

Remark 3.5: Due to Hypotheses 3.1(i) and (iv), equation (3.17) has (γ2, δ2)-bounded growth
with constant C2 = 1, where γ2 = 1 + |F |∗1. To determine the size of ε0, ε1 > 0 in Theorem 2.1,
one in addition has to set γ1 = 1 + |F |∗1, C1 = 1. These values of γ1, γ2, δ2 > 0 and C1, C2 ≥ 1
should be used subsequently to calculate the constants C1

K1,K2
(α, β), C1

K1,K2
(α, β) > 0 as well.

Proof. We apply Theorem 2.1 with Q = Y, γ = 1+α
2 , δ = 1+β

2 to the linear difference equation

∆x = A(k, y)x, (3.18)

depending on the parameter y ∈ Y. Then due to (3.11) the mapping A satisfies (2.2) with the
Lipschitz constant L = max {1, |w0|1} |F |2 and (3.18) has γ+

1 -bounded growth with γ1 = 1+ |F |∗1
and constant 1. Hypothesis 3.1(iv) guarantees that (3.18) possesses an exponential dichotomy
with α, β, K1,K2 uniformly in y ∈ Y. For arbitrary κ ∈ Z, η ∈ Y we define the mapping
q∗ : Z → Y, q∗(k) := ν0(k;κ, η) and using the solution property of ν0 we readily obtain by
“telescope summation”

‖q∗(k)− q∗(l)‖ =

∥∥∥∥∥
k−1∑
n=l

∆q∗(n)

∥∥∥∥∥ ≤
k−1∑
n=l

‖εG(n,w0(n, q∗(n)), q∗(n))‖
(3.3)

≤ |ε| |G|0 (k − l)

for k ≥ l; an analogous estimate for l ≥ k implies that the Lipschitz condition (2.4) holds with
Lipschitz constant ϑ = |ε| |G|0. Under the assumptions (3.16) together with Remark 3.5 we
ultimately obtain the assertion of Lemma 3.4.
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Theorem 3.6 (slow fiber bundles): Assume that the Hypothesis 3.1 and

4C1
L1,L2

(
1+α

2 , 1+β
2

)
|F |∗2 < 1 (3.19)

holds, and set

ρ0(ε) :=
2C1

L1,L2

(
1+α

2 , 1+β
2

)
|w0|1 |G|0

1− 4C1
L1,L2

(
1+α

2 , 1+β
2

)
|F |∗2

|ε| ,

whereby C1
K1,K2

(α, β) > 0 is defined in Theorem 2.2 and the real numbers L1 = L1

(
1+α

2 , 1+β
2

)
,

L2 = L2

(
1+α

2 , 1+β
2

)
from Theorem 2.1. Then there is a real constant εmax > 0, depending on

α, β, δ2, K1,K2, |F |1 , |F |2, |G|0 , |G|1, |w0|1 , |w0|2, as well as on m ≥ 2 and on the space X ,
such that for any ε ∈ [−εmax, εmax] there exists a mapping wε : Z×Y → X , such that the graph

Wε := {(κ,w0(κ, η) + wε(κ, η), η) ∈ Z×X × Y : κ ∈ Z, η ∈ Y}

is denoted as slow fiber bundle of (3.1) and can be characterized dynamically as

Wε = {(κ, ξ, η) ∈ Z×X × Y : ‖λ1(k;κ, ξ, η)− w0(k, λ2(k;κ, ξ, η))‖ ≤ ρ0(ε) for k ∈ Z} ,

where λ = (λ1, λ2) denotes the general solution of (3.1). Moreover, we obtain:

(a) wε : Z× Y → X is globally bounded: ‖wε(κ, η)‖ ≤ ρ0(ε) for κ ∈ Z, η ∈ Y,

(b) wε : Z × Y → X is m-times continuously differentiable in η ∈ Y with globally bounded
partial derivatives,

(c) the graph Wε is an invariant fiber bundle of the difference equation (3.1).

Remark 3.7: (1) Due to the transformation in Lemma 3.3 we loose one order in the smoothness
of Wε compared to the mapping F (k, ·) : X × Y → X , k ∈ Z. In case of ODEs, [11] or [18, 15]
are confronted with the same deficit, while the method provided in [12] eludes this problem.

(2) During the proof of Theorem 3.6 we will see that the constant εmax > 0 in particular depends
on the desired order of smoothness m for Wε. The larger m ∈ N \ {1} is, the smaller one has
to choose εmax. Hence, if F (k, ·) and G(k, ·) are e.g. C∞-functions, then wε is the smoother the
smaller εmax is taken. A precise estimate illuminating this fact is given in (3.23) below.

(3) The global Hypotheses 3.1 are hardly ever met in applications. Nevertheless, in case of au-
tonomous ODEs, e.g. [11, 12] shows the existence of invariant manifolds in singular perturbation
problems under much more reasonable assumptions, like e.g., a bounded domain of w0. Here
one modifies the right hand side of (3.1) outside a neighborhood of W0 such that certain global
hypotheses are fulfilled, and applies a result like Theorem 3.6 afterwards.

Proof. We subdivide the proof in two steps:

(I) First of all we introduce the abbreviation ω := (1 + |w0|1) |G|1 and choose εmax > 0 so small
that ε ∈ [−εmax, εmax] satisfies the estimates (3.16). Consequently, we can use Lemma 3.4 to
verify that the linear system (3.17) possesses an exponential dichotomy with 1+α

2 , 1+β
2 , L1 =

L1

(
1+α

2 , 1+β
2

)
, L2 = L2

(
1+α

2 , 1+β
2

)
on Z. Before we can apply Theorem 2.2 to the transformed

difference equation (3.9), one has to modify the mapping F1 : Z × X × Y × R → X in an
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appropriate way. Thereto let ρ > 0 be given. Since X is assumed to be a Cm-Banach space,
because of [1, p. 473, Lemma 4.2.13] there exists a Cm-cut-off-function Θ : X → [0, 1] with
Θ(x) ≡ 1 on B1(0) and Θ(x) ≡ 0 on X \ B2(0). Hence, due to Hypothesis 3.1 and Lemma 3.3
also fρ : Z × X × Y × R → X , fρ(k, x, y; ε) := Θ

(
x
ρ

)
F1(k, x, y; ε) defines a mapping such that

fρ(k, ·; ε), k ∈ Z, |ε| ≤ εmax, is of class Cm with globally bounded derivatives. Furthermore,
Lemma 3.3 yields

‖fρ(k, x, y; ε)‖ = Θ
(
x

ρ

)
‖F1(k, x, y; ε)‖

(3.12)

≤ 2 |F |∗2 ρ
2 + |ε| |w0|1 |G|0 (3.20)

for k ∈ Z, x ∈ X , y ∈ Y and ε ∈ R. Additionally, by reproducing the explicit construction of
Θ : X → [0, 1]R from [1, p. 473, Lemma 4.2.13], one can see that |Θ|1 := supx∈X ‖DΘ(x)‖L1(X ;R)

exists and depends on the smooth norm ‖·‖X , therefore on the normed space X . Using the
product rule (cf. [10, p. 336]) and Lemma 3.3 we see that

‖D2fρ(k, x, y; ε)‖ ≤

∥∥∥DΘ
(
x
ρ

)∥∥∥
ρ

‖F1(k, x, y; ε)‖+ Θ
(
x

ρ

)
‖D2F1(k, x, y; ε)‖ ≤

(3.12)

≤ |Θ|1
(

2 |F |2 ρ+ |w0|1 |G|0
|ε|
ρ

)
+ Θ

(
x

ρ

)
‖D2F1(k, x, y; ε)‖ ≤

(3.13)

≤ |Θ|1
(

2 |F |2 ρ+ |w0|1 |G|0
|ε|
ρ

)
+ 2 |F |2 ρ+ 1

2 |ε|
2 |w0|2 |G|1 |G|0 + |ε| |w0|1 |G|1 ,

‖D3fρ(k, x, y; ε)‖ ≤ Θ
(
x

ρ

)
‖D3F1(k, x, y; ε)‖ ≤

(3.14)

≤ 4(1 + |w0|1) |F |2 ρ+ 1
2 |ε|

2 |w0|2 |G|0 ω + |ε| (|w0|2 |G|0 + |w0|1 ω)

for k ∈ Z, x ∈ X , y ∈ Y and ε ∈ R, which in turn implies the existence of the least upper
bounds

∣∣∣f√
ρ0(ε)

∣∣∣
n

:= sup(k,x,y)∈Z×X×Y

∥∥∥Dn
(2,3)f

√
ρ0(ε)

(k, x, y; ε)
∥∥∥ for n ∈ {0, 1}, as well as the

limit relations
lim
ε→0

∣∣∣f√
ρ0(ε)

∣∣∣
n

= 0 for n ∈ {0, 1} . (3.21)

Additionally, the modified difference equation{
∆x=A(k, y)x+ f√

ρ0(ε)
(k, x, y; ε)

∆y= εG1(k, x, y)
(3.22)

coincides with (3.9) on the set Z×B√
ρ0(ε)

(0)× Y ⊆ Z×X × Y.

(II) With a view to the above step (I), the difference equation (3.22) satisfies all the hypotheses
of Theorem 2.2. Beyond step (I), we choose εmax > 0 so small that

εmaxω < min
{

1
2
,
β − α
1 + β

}
,

εmaxω <
1
2

min

{
β − 1

8
,
1− α

8
,
m

√
3 + β

4
− 1, 1− m

√
3 + α

4

}
(3.23)

and ρ0(εmax) < 1,

εmax max {1, |w0|1} |F |2 ω (1 + εmaxω)h hρ0(εmax) ≤ ε0,
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2εmax max {1, |w0|1} |F |2 ω

(
L1L2 (1 + εmaxω)h

β − α− (1 + β)εmaxω
+

L1L2 (1 + εmaxω)h

β − α− (1 + α)εmaxω

)
hρ0(εmax) ≤ ε1,

2C1
L1,L2

(
1+α

2 , 1+β
2

)
max {1, |w0|1} |F |2

∣∣∣f√
ρ0(ε)

∣∣∣
0

+ 4C2
L1,L2

(
1+α

2 , 1+β
2

) ∣∣∣f√
ρ0(ε)

∣∣∣
1
< 1,

4C2
L1,L2

(
1+α

2 , 1+β
2

)(
2C1

L1,L2

(
1+α

2 , 1+β
2

)
max {1, |w0|1} |F |2

∣∣∣f√
ρ0(ε)

∣∣∣
0

+
∣∣∣f√

ρ0(ε)

∣∣∣
1

)
< 1,

which is possible due to lims→0 ρ0(s) = 0 and the limit relations (3.21); here we have applied
the abbreviations h ∈ N such that

h > max
{

log 1+β
1+α

(L1L2), log 3+α
2+2α

(L1), log 2+2β
3+β

(L2)
}

and C1
K1,K2

(α, β), C2
K1,K2

(α, β) > 0 from Theorem 2.2. Using assumption (3.19) and the estimate

(3.20) we additionally obtain 2C1
L1,L2

(
1+α

2 , 1+β
2

) ∣∣∣f√
ρ0(ε)

∣∣∣
0
≤ ρ0(ε). Consequently, we have

completely verified the assumptions of Theorem 2.2. Hence, for each fixed ε ∈ [−εmax, εmax],
there exists an invariant fiber bundleWε ⊆ Z×X ×Y of the modified difference equation (3.22),
which can be characterized dynamically as

Wε =
{

(κ, ξ, η) ∈ Z×X × Y :
∥∥λ̄1(k;κ, ξ, η)

∥∥ ≤ ρ0(ε) for k ∈ Z
}
,

where λ̄ = (λ̄1, λ̄2) is the general solution of (3.22). Moreover, Wε is the graph of a mapping
wε : Z× Y → X with the properties

• ‖wε(k, y)‖ ≤ ρ0(ε) for k ∈ Z, y ∈ Y,

• wε : Z × Y → X is m-times continuously differentiable in η ∈ Y with globally bounded
partial derivatives.

Since the modified difference equation (3.22) and the system (3.9) in normal form coincide on
the set Z×Bρ0(ε)(0)× Y ⊆ Z× X × Y, also (3.9) possesses the invariant fiber bundle Wε with
the above properties, as well as its dynamical characterization. In regard to the transformation
from Lemma 3.3 we obtain that the graph of the mapping wε +w0 : Z×Y → X is an invariant
fiber bundle of the initial difference equation (3.1) and the proof of Theorem 3.6 is complete.
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