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Abstract

Unifying ordinary differential and difference equations, we consider linear dynamic
equations on measure chains or time scales, which possess an exponential dichotomy
uniformly in a parameter, and show that this dichotomy is robust, if the mentioned
parameter changes slowly in time. Here, the equations can be infinite dimensional
and are not assumed to be invertible.
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1 Introduction and Preliminaries

The well-known and established notion of an exponential dichotomy generalizes
the concept of hyperbolicity from autonomous to nonautonomous linear equations,
where the invariant subspaces are replaced by so-called invariant vector bundles
and the stability properties of the solutions in these nontrivial invariant sets are
uniform. The importance of exponential dichotomies in the theory of nonautonomous
dynamical systems is due to the fact that they are a very useful tool to solve nonlinear
problems as perturbations of linear ones, like in the persistence of integral manifolds
(cf., e.g., [Hen80,Sak94,Pöt02]).
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Meanwhile dichotomies are widely used, and thorough introductions into the theory
of exponentially dichotomous ordinary differential equations (ODEs) can be found
in, e.g., the books [DK74,Cop78]. For difference equations (O∆Es) the literature is
slightly sparser, but [CS67] and [Hen80, Section 7.6] pioneered here. Both concepts
have been unified in [Pöt01,Pöt02] within the “Calculus on Measure Chains”, which
goes back to [Hil90]. This calculus allows a simultaneous treatment of ODEs, O∆Es
and of equations on so-called inhomogeneous time scales, which allow applications
in, for instance, discretization theory and population dynamics. To quote a reference
about dynamic equations on measure chains or time scales we recommend [Hil90]
and the monograph [BP01].

In the present paper we prove an abstract perturbation result (Theorem 3.4) for
parameter-dependent linear dynamic equations on measure chains in arbitrary Ba-
nach spaces. Such a result has two main applications:

• Robustness of exponential dichotomies under slowly varying coefficients : This
means, if we consider for example a parameter-dependent linear ODE ẋ = A(t, q)x,
which has an exponential dichotomy uniformly in a parameter q from, e.g., a met-
ric space, then one can replace the constant value q by any function q∗(t) which
varies “slowly” in time, such that the equation ẋ = A(t, q∗(t))x is also expo-
nentially dichotomous. This, in turn, yields a sufficient condition for a dynamic
equation to possess an exponential dichotomy in terms of the spectrum of their
coefficient operator (see Remark 3.3(2)).
• Construction of invariant fiber bundles, which are the counterpart of integral man-

ifolds in the theory of difference equations or general dynamic equations. Indeed,
using Theorem 3.4 one is able to characterize invariant fiber bundles as fixed
points of an abstract integral operator within a Lyapunov-Perron technique. Such
applications are presented in, e.g., [Hen80,Sak94] for differential equations, while
O∆Es are considered in [Pöt03] and the general case of dynamic equations on
arbitrary measure chains will be published in a forthcoming paper.

The above mentioned result has its origins in [Hen80] and [Sak94]. Their approach
has the advantage that, differing from [Cop78, p. 50, Proposition 1], one can imme-
diately apply it to infinite dimensional equations. Moreover, in the case of ODEs,
and with an equivalent result (cf. [Sak00]), it follows with Palmer [Pal87] that our
main Theorem 3.4 is more general than [SS78, p. 342, Theorem 6] in certain situa-
tions. In the case of difference equations, we do not know of any related results, and
therefore the achievements of this paper (Theorem 3.4 and Corollary 3.6) seem to
be new even in this setting.

To introduce our terminology, N are the positive integers, Z the integers, R is the
real and C the complex field. In addition, for any real h ≥ 0 we write Rh :=
{x ∈ R : 1 + hx > 0}. Now suppose for the following that X denotes a real or com-
plex Banach space with the norm ‖·‖. L(X ) stands for the linear space of continu-
ous endomorphisms on X with the norm ‖T‖ := sup‖x‖=1 ‖Tx‖, and GL(X ) for the

2



group of toplinear isomorphisms on X ; IX is the identity mapping on X . We write
N (T ) := T−1({0}) for the kernel and R(T ) := TX for the range of T ∈ L(X ).

We also shortly introduce some notions, which are specific for the calculus on mea-
sure chains. (T,�, µ) denotes an arbitrary measure chain with order relation “�”
and growth calibration µ (cf. [Hil90]). A time scale is a special case of a measure
chain, where T is a nonempty closed subset of the reals R, “�” is just the canonical
ordering “≤” and the growth calibration is given by µ(t, τ) = t− τ . Differing from
the usual notation, ρ+ : T → T, ρ+(t) := inf {s ∈ T : t ≺ s} is the forward jump
operator and we assume that the graininess µ∗(t) := µ(ρ+(t), t) is bounded through-
out the paper. Measure chains with constant graininess are called homogeneous. A
point t ∈ T is called right-dense if µ∗(t) = 0 and otherwise right-scattered. In case
sup {s ∈ T : s ≺ t} = t we speak of a left-dense point t. Besides, (T,�, µ) is as-
sumed to be unbounded above and below, i.e., the set {µ(t, τ) ∈ R : t ∈ J} has the
mentioned property for one τ ∈ T. A measure chain (T̃,�, µ̃) is denoted as discrete,
if T̃ = {tk}k∈Z and if there exist reals h0, h > 0 such that

h0 ≤ µ̃(tk+1, tk) ≤ h for k ∈ Z. (1.1)

With given real numbers h0, h > 0, and measure chain T, we write Shh0
(T) for the set

of all discrete measure chains (T̃,�, µ) with T̃ ⊆ T satisfying (1.1). Furthermore,
we speak of a (h0, h)-measure chain (T,�, µ), if for every point t0 ∈ T there exist
tk, t−k ∈ T, k ∈ N, such that {tk}k∈Z ∈ Shh0

(T) holds. Any measure chain which is
unbounded above and below, and with bounded graininess µ∗, is a (h0, h)-measure
chain for h0 > 0 and h ≥ h0 + supt∈T µ

∗(t) (cf. [Pöt02, p. 2, Lemma 1.1.7]). The
following example should illuminate the above notions for readers who are primarily
interested in ODEs or O∆Es.

Example 1.1 (1) For the reals R we have the identities ρ+(t) ≡ t, µ∗(t) ≡ 0 on R
and each real number is a right- and left-dense point. Moreover, R is a (h0, h)-time
scale for any 0 < h0 ≤ h.
(2) The discrete time scales h̄Z, h̄ > 0, and in particular the integers Z, consist
of right-scattered points. We have ρ+(t) ≡ t + h̄, µ∗(t) ≡ h̄ on h̄Z, and h̄Z is a
(h0, h)-time scale for any h̄ ≤ h0 ≤ h.

A mapping φ : T→ X is said to be differentiable (at t0 ∈ T), if there exists a unique
derivative φ∆(t0) ∈ X , such that for every ε > 0 the estimate∥∥∥φ(ρ+(t0))− φ(t)− µ(ρ+(t0), t)φ∆(t0)

∥∥∥ ≤ ε |µ(ρ+(t0), t)| for t ∈ U

holds in a neighborhood U ⊆ T of t0 (see [Hil90, Section 2.4]). As special cases we
obtain in a time scale setting the usual derivative φ∆(t) = φ̇(t) for T = R and the

forward difference operator φ∆(t) = φ(t+h)−φ(t)
h

for T = hZ, h > 0.

Now let (Q, d) be a metric space. According to [Hil90, Section 5.2], a mapping
f : T × Q → X is said to be rd-continuous, if for every q0 ∈ Q one has that f is

3



continuous in (t0, q0) for every right-dense t0 ∈ T, and if for any left-dense t0 ∈ T
the limits limq→q0 f(t0, q), lim(t,q)→(t0,q0),t≺t0 f(t, q) exist.

In addition, Crd(T,X ) denotes the set of rd-continuous maps from T into X and

CrdR(T,L(X )) :={A ∈ Crd(T,L(X )) : IX + µ∗(t)A(t) ∈ GL(X ) for all t ∈ T}

stands for the set of so-called regressive mappings. The positively regressive group is
given by C+

rdR(T,R) := {a ∈ Crd(T,R) : 1 + µ∗(t)a(t) > 0 for t ∈ T} with the addi-

tion (a⊕b)(t) := a(t)+b(t)+µ∗(t)a(t)b(t), and the subtraction (a	b)(t) := a(t)−b(t)
1+µ∗(t)b(t)

for t ∈ T. On the time scale T = R, rd-continuity means continuity, and the alge-
braic operations ⊕ or 	 reduce to the usual (pointwise) addition or subtraction
of continuous real-valued mappings, respectively. On the other hand, for T = hZ,
h > 0, any function is rd-continuous.

We abbreviate bac := inft∈T a(t), dae := supt∈T a(t) and a C b :⇔ 0 < bb− ac for
functions a, b : T → R. An element a ∈ C+

rdR(T,R) is said to be discretely bounded
below, if Γ−(a) := 1 + bµ∗ac > 0 holds. In addition, we say a is discretely bounded
above, if Γ+(a) := 1+dµ∗ae <∞. For an arbitrary real h ≥ 0 one easily verifies that

the mappings ξh : Rh → R, ϑh : R→ Rh, given by ξh(x) := limt↘h
log(1+tx)

t
, ϑh(x) :=

limt↘h
exp(tx)−1

t
are bijective and inverse to each other. Then the real exponential

function ea(t, τ) ∈ R, t, τ ∈ T, on T, allows the representation

ea(t, τ) =
∫ t

τ
ξµ∗(s)(a(s)) ∆s (1.2)

and we have ea⊕b(t, τ) = ea(t, τ)eb(t, τ) for t, τ ∈ T (cf. [Hil90]). For homogeneous
time scales and constant functions a(t) ≡ α, one obtains explicitely

ea(t, s) = eα(t−s) for T = R, ea(t, s) = (1 + hα)
t−s
h for T = hZ, h > 0

and formulas for the exponential function on various other time scales can be found
in [BP01, pp. 69ff].

We close this section with two technical results on the real exponential function.
The first one estimates the exponential function on bounded subsets of T, while the
second one relates real exponential functions on different measure chains.

Lemma 1.1 Consider reals 0 < h0 ≤ h and functions a, b ∈ C+
rdR(T,R). Then

the constants E−a (h0, h) := infh0≤µ(t,s)≤h ea(t, s), E+
b (h0, h) := suph0≤µ(t,s)≤h eb(t, s)

satisfy the following:

(a) If 0 C a, then for any C ∈ R there exist reals 0 < h0 ≤ h, dµ∗e ≤ h such that
C ≤ E−a (h0, h),

(b) if b is bounded above, we have E+
b (h0, h) <∞.

PROOF. The easy proof can be found in [Pöt02, p. 115, Lemma 2.3.1]. �
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Lemma 1.2 Suppose T̃ = {tk}k∈Z is a discrete measure chain with T̃ ⊆ T and

c̃, d̃ ∈ C+
rdR(T̃,R). Then c0, d0 : T → R, c0(t) := ϑµ∗(t)

(
supk∈Z

ln(1+µ(tk+1,tk)c̃(tk))
µ(tk+1,tk)

)
,

d0(t) := ϑµ∗(t)

(
infk∈Z

ln(1+µ(tk+1,tk)d̃(tk))
µ(tk+1,tk)

)
are positively regressive and satisfy:

ẽc̃(tk, tl) ≤ ec0(tk, tl), ẽd̃(tl, tk) ≤ ed0(tl, tk) for l ≤ k, (1.3)

where, from now on, ẽc̃ denotes the real exponential function on T̃.

PROOF. See [Pöt02, p. 67, Lemma 1.3.32]. �

2 Bounded growth and exponential dichotomies

Consider an operator-valued mapping A ∈ Crd(T,L(X )). Differing from the existing
literature on linear dynamic equations on measure chains we do not assume that
the coefficient operator A is regressive and we can include noninvertible difference
equations into our theory. Hence our standard reference for, e.g., existence and
uniqueness results will be [Pöt02], instead of [Hil90,BP01]. A linear dynamic equation
(or a linear system) is an equation of the form

x∆ = A(t)x, (2.1)

and a differentiable mapping λ : I → X is said to solve (2.1) on a subset I = T or
I = {t ∈ T : τ � t}, τ ∈ T, if its derivative λ∆ satisfies λ∆(t) ≡ A(t)λ(t) on I.

Example 2.1 On homogeneous time scales, the linear dynamic equation (2.1) de-
scribes ODEs and O∆Es. In fact, if T = R we consider linear nonautonomous ODEs
of the form ẋ = A(t)x. If T = hZ, then (2.1) reduces to the difference equation
x(t+h)−x(t)

h
= A(t)x(t) or equivalently x(t+ h) = [IX + hA(t)]x(t).

The linear dynamic equation (2.1) is said to have

• c+-bounded growth (with constant C), if there exists a real number C ≥ 1 and
some c ∈ C+

rdR(T,R) bounded above, such that ‖ΦA(t, τ)‖ ≤ Cec(t, τ) for τ � t,
• (c, d)-bounded growth (with constant C), if it has c+-bounded growth, one has
A ∈ CrdR(T,L(X )) and if there exists some d ∈ C+

rdR(T,R) bounded below, such
that ‖ΦA(t, τ)‖ ≤ Ced(t, τ) for t � τ ,

where ΦA(t, τ) ∈ L(X ) is the transition operator of (2.1), i.e. the solution of the
corresponding initial value problem X∆ = A(t)X, X(τ) = IX in L(X ) for τ � t. It
is easy to see that ΦA has the properties

ΦA(ρ+(t), t) = IX + µ∗(t)A(t) for t ∈ T, (2.2)

ΦA(t, τ) = ΦA(t, s)ΦA(s, τ) for τ � s � t (2.3)
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(cf. [Pöt02, p. 55, Satz 1.3.9]) and in case A ∈ CrdR(T,L(X )) one has the relation
ΦA(t, τ) ∈ GL(X ) and the linear cocycle property (2.3) holds for all τ, s, t ∈ T.

Remark 2.1 (1) Without the condition that c is bounded above, it would be possible
to show that every system (2.1) has c+-bounded growth (cf. [AH90]).
(2) On discrete measure chains, the system (2.1) has c+-bounded growth for a certain
c, if and only if A is bounded (cf. [Pöt02, p. 71, Satz 1.3.42]).

The following two lemmas can be shown using Gronwall’s inequality on measure
chains (see [BP01, p. 256, Theorem 6.4]).

Lemma 2.1 Assume c ∈ C+
rdR(T,R) is discretely bounded below. Consider the lin-

ear systems (2.1) and
x∆ = B(t)x (2.4)

with B ∈ Crd(T,L(X )). If there exists a real number C ≥ 1 and a bounded function
ε ∈ Crd(T,R) satisfying ‖ΦA(t, τ)‖ ≤ Cec(t, τ) for τ � t and ‖A(t)−B(t)‖ ≤ ε(t)

for t ∈ T, then ‖ΦB(t, τ)− ΦA(t, τ)‖ ≤ C2dεe
Γ−(c+Cε)

µ(t, τ)ec+Cε(t, τ) for τ � t.

PROOF. See [Pöt02, p. 73, Korollar 1.3.45(a)]. �

Lemma 2.2 Let C1, C2 ≥ 1 be reals and c ∈ C+
rdR(T,R). If the linear systems

(2.1) and (2.4) have c+-bounded growth with constants C1 and C2, respectively, then

‖ΦB(t, τ)− ΦA(t, τ)‖ ≤ C1C2ec(t, τ)
∫ t
τ
‖B(s)−A(s)‖
1+µ∗(s)c(s)

∆s for τ � t.

PROOF. See [Pöt02, p. 74, Korollar 1.3.46(a)]. �

A mapping of projections P : T → L(X ) is called an invariant projector of the
linear system (2.1), if P (t)ΦA(t, τ) = ΦA(t, τ)P (τ) for τ � t holds, and in case

[IX + µ∗(t)A(t)] |N (P (t)) : N (P (t))→ N
(
P (ρ+(t))

)
(2.5)

is bijective for all right-scattered t ∈ T, we speak of a regular invariant projector.
Then one can show that the restriction

Φ̄A(t, τ) := ΦA(t, τ)|N (P (τ)) : N (P (τ))→ N (P (t)) for τ � t

is a well-defined isomorphism, and we denote its inverse by Φ̄A(τ, t) (cf. [Pöt01,
Proposition 2.3]). The linear system (2.1) is said to possess an exponential dichotomy
(ED for short) with a, b, K1, K2, if there exists a regular invariant projector P : T→
L(X ) of (2.1) satisfying

‖ΦA(t, τ)P (τ)‖ ≤ K1ea(t, τ) for τ � t, (2.6)∥∥∥Φ̄A(t, τ) [IX − P (τ)]
∥∥∥ ≤ K2eb(t, τ) for t � τ, (2.7)

with real constants K1, K2 ≥ 1 and a, b ∈ C+
rdR(T,R), a C b. Note that on the time

scale T = R any invariant projector is regular.
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Example 2.2 Let α, β, h ≥ 0 be reals with α < β. On homogeneous measure chains
with µ∗(t) ≡ h on T and for constant coefficient operators A(t) ≡ A on T, one has
the following situation:
(1) In case h = 0 (ODEs), the linear dynamic equation (2.1) has an ED with α, β,
if the spectrum σ(A) ⊆ C is disjoint from the vertical strip {λ ∈ C : α ≤ <λ ≤ β}
in the complex plane. The corresponding invariant projector is given by the spectral
projection related to the spectral set {λ ∈ σ(A) : <λ < α} (cf. [DK74, p. 72ff]).
(2) Analogously, in case h > 0 (O∆Es), the system (2.1) possesses an ED with α, β,
if σ(IX +hA) is disjoint from the annulus {λ ∈ C : α ≤ |α| ≤ β}, and the invariant
projector is given by the spectral projection related to {λ ∈ C : |λ| < α}.

Remark 2.2 In our definition of an exponential dichotomy, the growth functions
a, b are not assumed to be constants. For ODEs this generalization dates back to
[Mul84]. A second feature of our definition is that we do not insist on a hyperbolic-
ity condition like a C 0 C b. Thus, one can speak of a pseudo-hyperbolic dichotomy,
which makes the above notion more flexible. Eventually, we point out again that equa-
tion (2.1) does not have to be regressive. For O∆Es this has its origins in [Hen80,
p. 229, Definition 7.6.4] and with a different, but equivalent definition in [Kal94].

The proof of the next lemma is too excessive to be presented here. It is based on
the fact that certain spaces of exponentially bounded functions are admissible for
equation (2.1) (cf. [Pöt02, p. 106, Satz 2.2.7]).

Lemma 2.3 Let K1, K2, L1, L2 ≥ 1, ε ≥ 0 be reals and a, b, c, d ∈ C+
rdR(T,R) such

that a C c C d C b. Then under the assumptions

(i) the linear system (2.1) possesses an ED with a, b, K1, K2 and P ,
(ii) the linear system (2.4) possesses an ED with c, d, L1, L2 and Q,

(iii) ‖A(t)−B(t)‖ ≤ ε for all t ∈ T,

the invariant projectors satisfy ‖P (t)−Q(t)‖ ≤ εmax {L1, L2}Ca,b(c, d) for t ∈ T,

with Ca,b(c, d) := K1

bd−ac + K2

bc−ac + max
{

K1

bc−ac ,
K2

bb−dc

}
.

PROOF. See [Pöt02, p. 108, Korollar 2.2.9]. �

One of the main properties of an exponential dichotomy is its roughness. At the
end of this section we present a roughness theorem for exponential dichotomies
under L∞-perturbations of dynamic equations on discrete measure chains, which is
sufficient for our purposes.

Theorem 2.4 Let (T̃,�, µ̃) be a discrete measure chain and consider a mapping
Ã : T̃→ L(X ). The linear dynamic equation x∆ = Ã(t)x on T̃ is assumed to possess
an ED with ã, b̃, K1, K2 and an invariant projector P̃ , where b̃ is bounded above.
Moreover, let c̃, d̃ ∈ C+

rdR(T̃,R) with ã C c̃ C d̃ C b̃, and suppose the mapping

B̃ : T̃ → L(X ) satisfies
∥∥∥B̃(t)− Ã(t)

∥∥∥ ≤ ε for t ∈ T̃ with a real number ε ≥ 0 such
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that εCã,b̃(c̃, d̃) < 1. Then x∆ = B̃(t)x has an ED with c̃, d̃, L1 :=
(
Cã,b̃(c̃,d̃)Γ+(d̃)

1−εCã,b̃(c̃,d̃)

)2

,

L2 :=
(

1 +
Cã,b̃(c̃,d̃)Γ+(d̃)

1−εCã,b̃(c̃,d̃)

)
Cã,b̃(c̃,d̃)Γ+(d̃)

1−εCã,b̃(c̃,d̃)
and an invariant projector Q̃ : T̃ → L(X )

satisfying

∥∥∥Q̃(t)− P̃ (t)
∥∥∥ ≤ ε

(
1 +

Cã,b̃(c̃,d̃)Γ+(d̃)

1−εCã,b̃(c̃,d̃)

)
Cã,b̃(c̃,d̃)2Γ+(d̃)

1−εCã,b̃(c̃,d̃)
for t ∈ T̃.

PROOF. See [Pöt02, pp. 113–114, Satz 2.2.14]. However, the proof is very similar
to the difference equations case presented in [Kal94, p.45, Satz 3.2.1]. �

3 Uniform exponential dichotomies

In this section we are confronted with exponential dichotomies on three different
“time scales”, namely Z, discrete and general measure chains. The subsequent lemma
clarifies to what extend the dichotomy notion for difference equations from [Kal94,
p. 7, Definition 2.1.2] carries over to dynamic equations on discrete measure chains.

Lemma 3.1 Consider reals K1, K2,M1,M2 ≥ 1, a discrete measure chain (T̃,�, µ̃)
with T̃ = {tk}k∈Z, functions ã, b̃ ∈ C+

rdR(T̃,R), ã C b̃, a sequence Â : Z→ L(X ) and

ΨÂ(k, l) :=

 IX for l = k

Â(k − 1) · . . . · Â(l) for l < k
. (3.1)

If P̂ : Z→ L(X ) is a sequence of projections such that∥∥∥ΨÂ(k, l)P̂ (l)x
∥∥∥ ≤ K1ẽã(tk, tl)

∥∥∥P̂ (l)x
∥∥∥ for l ≤ k, (3.2)∥∥∥ΨÂ(k, l)

[
IX − P̂ (l)

]
x
∥∥∥ ≥ K−1

2 ẽb̃(tk, tl)
∥∥∥[IX − P̂ (l)

]
x
∥∥∥ for l ≤ k (3.3)

and x ∈ X , and if

P̂ (k + 1)Â(k) = Â(k)P̂ (k), N
(
P̂ (k + 1)

)
⊆ R

(
Â(k)

)
, (3.4)∥∥∥P̂ (k)

∥∥∥ ≤M1,
∥∥∥IX − P̂ (k)

∥∥∥ ≤M2 (3.5)

for k ∈ Z holds, then the linear system

x∆ = Ã(t)x, Ã(tk) := 1
µ̃∗(tk)

(
Â(k)− IX

)
for k ∈ Z (3.6)

on T̃ possesses an ED with ã, b̃, constants M1K1,M2K2 and the invariant projector
P̃ : T̃→ L(X ), P̃ (tk) := P̂ (k).

8



PROOF. Above all, we remark that the transition operators ΦÃ of (3.6) and ΨÂ

satisfy ΦÃ(tk, tl) = ΨÂ(k, l) (cf. (2.2), (2.3)) for all l ≤ k. Inductively one can see

from (3.4) that P̃ : T̃→ L(X ) is an invariant projector of (3.6) and to show that P̃
is regular, we verify that[

IX + µ̃∗(t)Ã(t)
]∣∣∣
N (P̃ (t))

: N (P̃ (t))→ N
(
P̃ (ρ̃+(t))

)
(3.7)

is bijective for all t ∈ T̃. For an arbitrary t ∈ T̃ we choose ξ0 ∈ N (P̃ (t)) such that[
IX + µ̃∗(t)Ã(t)

]
ξ0 = 0 and the estimate

K−1
2 ẽb̃(ρ̃+(t), t) ‖ξ0‖ = K−1

2 ẽb̃(ρ̃+(t), t)
∥∥∥[IX − P̃ (t)

]
ξ0

∥∥∥
(3.3)

≤
∥∥∥ΦÃ(ρ̃+(t), t)

[
IX − P̃ (t)

]
ξ0

∥∥∥ (2.2)
=

∥∥∥[IX + µ̃∗(t)Ã(t)
]
ξ0

∥∥∥ = 0

yields ξ0 = 0. Therefore, the linear operator (3.7) is one-to-one. Due to the in-
clusion (3.4) we know that for every ξ ∈ N (P̃ (ρ̃+(t))) there exists a ξ0 ∈ X
with

[
IX + µ̃∗(t)Ã(t)

]
ξ0 = ξ. Hence, ξ =

[
IX − P̃ (ρ̃+(t))

]
ξ =

[
IX − P̃ (ρ̃+(t))

]
·[

IX + µ̃∗(t)Ã(t)
]
ξ0 and because the two expressions in brackets on the right-hand

side commute due to (3.4), the operator (3.7) is onto. It remains to prove that (3.6)
satisfies the claimed dichotomy estimates w.r.t. the invariant projector P̃ . Passing
over to the least upper bound for x ∈ X , ‖x‖ = 1, in (3.2) immediately gives us

∥∥∥ΦÃ(t, τ)P̃ (τ)
∥∥∥ (3.2)

≤ K1ẽã(t, τ)
∥∥∥P̃ (τ)

∥∥∥ (3.5)

≤ K1M1ẽã(t, τ) for τ � t.

On the other side, since the operator (3.7) is bijective, we know that the extended
transition operator Φ̄Ã(t, τ) : N (P̃ (τ))→ N (P̃ (t)), t � τ , is well-defined (cf. [Pöt01,
Proposition 2.3]) and for any x ∈ X we have

K−1
2 ẽb̃(τ, t)

∥∥∥Φ̄Ã(t, τ)
[
IX − P̃ (τ)

]
x
∥∥∥

(3.3)

≤
∥∥∥ΦÃ(τ, t)

[
IX − P̃ (t)

]
Φ̄Ã(t, τ)

[
IX − P̃ (τ)

]
x
∥∥∥ =

∥∥∥[IX − P̃ (τ)
]
x
∥∥∥

for t � τ . Passing over to the least upper bound over x ∈ X , ‖x‖ = 1, finally gives

∥∥∥Φ̄Ã(t, τ)
[
IX − P̃ (τ)

]∥∥∥ ≤ K2ẽb̃(t, τ)
∥∥∥IX − P̃ (τ)

∥∥∥ (3.5)

≤ K2M2ẽb̃(t, τ) for t � τ,

and the proof is finished. �

The following result can be considered as a perturbation result, as well as a sufficient
condition for an exponential dichotomy on discrete measure chains. For difference
equations it goes back to [Hen80, p. 234, Theorem 7.6.8] and [Sak94, Theorem 4].

Lemma 3.2 Consider a discrete measure chain (T̃,�, µ̃), T̃ = {tk}k∈Z, real num-

bers 0 < θ1 < 1 < θ2, K1, K2 ≥ 1, N0 ≥ 0, functions ã, b̃ ∈ C+
rdR(T̃,R), ã C b̃,
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where b̃ is bounded above, sequences Â, B̂ : Z→ L(X ), and sequences of projections
P̂1, P̂2 : Z→ L(X ) such that∥∥∥Â(k)η

∥∥∥ ≤ θ1 (1 + µ̃∗(tk)ã(tk)) ‖η‖ for η ∈ R
(
P̂1(k)

)
, (3.8)∥∥∥Â(k)ξ

∥∥∥ ≥ θ2

(
1 + µ̃∗(tk)b̃(tk)

)
‖ξ‖ for ξ ∈ N

(
P̂1(k)

)
(3.9)

and
∥∥∥IX − P̂2(k)

∥∥∥ ≤ K2,
∥∥∥Â(k)

∥∥∥ ≤ N0,

P̂2(k + 1)Â(k) = Â(k)P̂1(k), N
(
P̂2(k + 1)

)
⊆ R

(
Â(k)

)
, (3.10)∥∥∥P̂1(k)

∥∥∥ ≤ K1,
∥∥∥P̂2(k)

∥∥∥ ≤ K1, (3.11)

for k ∈ Z. For fixed functions c̃, d̃ ∈ C+
rdR(T̃,R) with ã C c̃ C d̃ C b̃ we assume∥∥∥Â(k)− B̂(k)

∥∥∥ ≤ ε1,
∥∥∥P̂2(k)− P̂1(k)

∥∥∥ ≤ ε2 for k ∈ Z, (3.12)

where the reals ε0, ε1 ≥ 0 may satisfy

2ε2K1 ≤ min {1− θ1, θ2 − 1} , εCã,b̃(c̃, d̃) < 1 (3.13)

with the abbreviation ε := 1
bµ̃∗c

(
ε1 + 2ε2K1N0

1−2ε2K1

)
. Then the linear dynamic equation

x∆ = B̃(t)x, B̃(tk) := 1
µ̃∗(tk)

(
B̂(k) − IX

)
, k ∈ Z, on T̃ possesses an ED with c̃, d̃,

L1, L2 given in Theorem 2.4, and an invariant projector Q̃ : T̃→ L(X ) such that

∥∥∥Q̃(tk)− P̂2(k)
∥∥∥ ≤ ε

(
1 +

Cã,b̃(c̃,d̃)Γ+(d̃)

1−εCã,b̃(c̃,d̃)

)
Cã,b̃(c̃,d̃)2Γ+(d̃)

1−εCã,b̃(c̃,d̃)
for k ∈ Z.

PROOF. The crucial object in our considerations is the operator sequence Γ : Z→
L(X ), Γ(k) := P̂2(k)P̂1(k) +

[
IX − P̂2(k)

][
IX − P̂1(k)

]
, which satisfies

P̂2(k)Γ(k) ≡ P̂2(k)2P̂1(k) +
[
P̂2(k)− P̂2(k)2

][
IX − P̂1(k)

]
≡ P̂2(k)P̂1(k)2 +

[
IX − P̂2(k)

][
P̂1(k)− P̂1(k)2

]
≡ Γ(k)P̂1(k)

(3.14)

on Z. Moreover, one has

‖IX − Γ(k)‖ ≤
∥∥∥P̂1(k)− P̂2(k)

∥∥∥∥∥∥P̂1(k)
∥∥∥+

∥∥∥P̂2(k)
∥∥∥∥∥∥P̂2(k)− P̂1(k)

∥∥∥
(3.11)

≤ 2K1

∥∥∥P̂2(k)− P̂1(k)
∥∥∥ (3.12)

≤ 2ε2K1 for k ∈ Z, (3.15)

and consequently the linear operator Γ(k) ∈ L(X ) is invertible due to (3.13) and
the Neumann series. This guarantees

‖Γ(k)‖ ≤ 1 + 2ε2K1,
∥∥∥Γ(k)−1

∥∥∥ ≤ [1− 2ε2K1]−1 for k ∈ Z (3.16)
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and the identity (3.14) gives us Γ(k)−1P̂2(k) ≡ P̂1(k)Γ(k)−1 on Z. For the mapping
Ĉ : Z→ L(X ), Ĉ(k) := Â(k)Γ(k)−1 we have

P̂2(k + 1)Ĉ(k)
(3.10)
≡ Â(k)P̂1(k)Γ(k)−1 ≡ Ĉ(k)P̂2(k) on Z

and the definition of Ĉ(k) ∈ L(X ) leads to R
(
Ĉ(k)

)
= R

(
Â(k)

)
. Additionally,

(3.10) implies N
(
P̂2(k+1)

)
⊆ R

(
Ĉ(k)

)
for all k ∈ Z. With arbitrary η ∈ R

(
P̂2(k)

)
we get P̂1(k)Γ(k)−1η ≡ Γ(k)−1P̂2(k)η ≡ Γ(k)−1η on Z, hence Γ(k)−1η ∈ R

(
P̂1(k)

)
and therefore due to (2.2), (2.3), applied to ẽã, the estimate

∥∥∥Ĉ(k)η
∥∥∥ =

∥∥∥Â(k)Γ(k)−1η
∥∥∥ (3.8)

≤ θ1ẽã(tk+1, tk)
∥∥∥Γ(k)−1η

∥∥∥
(3.16)

≤ θ1

1− 2ε2K1

ẽã(tk+1, tk) ‖η‖
(3.13)

≤ ẽã(tk+1, tk) ‖η‖ for k ∈ Z.

Mathematical induction over k ≥ l implies

∥∥∥ΨĈ(k, l)P̂2(l)x
∥∥∥ (2.3)

≤ ẽã(tk, tl)
∥∥∥P̂2(l)x

∥∥∥ for l ≤ k, x ∈ X ,

with the operator ΨĈ(k, l) ∈ L(X ) given by (3.1) and similarly one derives∥∥∥ΨĈ(k, l)
[
IX − P̂2(l)

]
x
∥∥∥ ≥ ẽb̃(tk, tl)

∥∥∥[IX − P̂2(l)
]
x
∥∥∥ for l ≤ k.

Thus, the assumptions of Lemma 3.1 with M1 = K1, M2 = K2 are satisfied for the
sequences Ĉ, P̂2 : Z→ L(X ), and the linear dynamic equation

x∆ = C̃(t)x, C̃(tk) := 1
µ̃∗(tk)

(
Ĉ(k)− IX

)
for k ∈ Z (3.17)

on T̃ consequently possesses an ED with ã, b̃, K1, K2 and the invariant projector
P̃ (tk) := P̂2(k), k ∈ Z. Due to the estimate

µ̃∗(tk)
∥∥∥C̃(tk)− B̃(tk)

∥∥∥ (3.17)

≤
∥∥∥Â(k)Γ(k)−1 − Â(k)

∥∥∥+
∥∥∥Â(k)− B̂(k)

∥∥∥
(3.12)

≤
∥∥∥Â(k)

∥∥∥ ∥∥∥Γ(k)−1
∥∥∥ ‖IX − Γ(k)‖+ ε1

(3.15)

≤ 2ε2K1

∥∥∥Â(k)
∥∥∥ ∥∥∥Γ(k)−1

∥∥∥+ ε1
(3.16)

≤ 2ε2K1N0

1− 2ε2K1

+ ε1 for k ∈ Z

and the inequality (3.13), one can finally apply Theorem 2.4 to (3.17). �

Our last preparation concerning discrete measure chains provides another sufficient
condition for an exponential dichotomy on quite general measure chains.

Lemma 3.3 Consider reals 0 < h0 ≤ h, dµ∗e ≤ h, such that (T,�, µ) is a (h0, h)-
measure chain, a real C2 ≥ 1 and functions c, c2, d, d2 ∈ C+

rdR(T,R), d bounded
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above, d2 discretely bounded below and c C d, sups∈T ξµ∗(s)(c(s)) < infs∈T ξµ∗(s)(d(s)),
as well as a linear system

x∆ = B(t)x (3.18)

on T with B ∈ CrdR(T,L(X )). Under the assumptions

(i) the system (3.18) has (c2, d2)-bounded growth with constant C2,
(ii) there exist real numbers L1, L2 ≥ 1, such that for any discrete measure chain T̃ =
{tk}k∈Z ∈ Shh0

(T) the equation x∆ = B̃(t)x, B̃(tk) := 1
µ(tk+1,tk)

(ΦB(tk+1, tk)− IX ),

k ∈ Z, on T̃ has an ED with c̃, d̃ : T̃ → R, c̃(tk) := ec(tk+1,tk)−1
µ(tk+1,tk)

, d̃(tk) :=
ed(tk+1,tk)−1
µ(tk+1,tk)

, L1, L2 and an invariant projector Q̃t0 : T̃→ L(X ),

the system (3.18) possesses an ED with c̄, d̄ : T→ R,

c̄(t) := ϑµ∗(t)

(
sup
s∈T

ξµ∗(s)(c(s))
)
, d̄(t) := ϑµ∗(t)

(
inf
s∈T

ξµ∗(s)(d(s))
)
, (3.19)

L̄1 := L1C2E
+
c2	c̄(h0, h), L̄2 := L2C2E

+
d̄	d2(h0, h)

and the invariant projector Q : T→ L(X ) given by Q(t) := Q̃t(t).

PROOF. Since the function d is bounded above, and since d2 is discretely bounded
below, it is not difficult to verify that c2 	 c̄, d̄	 d2 are bounded above. Therefore,
using Lemma 1.1(b) we obtain E+

c2	c̄(h0, h), E+
d̄	d2(h0, h) <∞. Now let t0 ∈ T be ar-

bitrarily given and we choose any discrete measure chain T̃ = {tk}k∈Z ∈ Shh0
(T) like in

assumption (ii) (such a measure chain exists because of [Pöt02, p. 2, Lemma 1.1.7]).
Then c̃, d̃ ∈ C+

rdR(T̃,R), and one can easily show c̃ C d̃. In addition, we have

ln(1+µ(tk+1,tk)c̃(tk))
µ(tk+1,tk)

= ln ec(tk+1,tk)
µ(tk+1,tk)

(1.2)
= 1

µ(tk+1,tk)

∫ tk+1

tk

ξµ∗(s)(c(s)) ∆s

≤ 1
µ(tk+1,tk)

∫ tk+1

tk

sup
t∈T

ξµ∗(t)(c(t)) ∆s = sup
t∈T

ξµ∗(t)(c(t)) for k ∈ Z,

and accordingly
sup
k∈Z

ln(1+µ(tk+1,tk)c̃(tk))
µ(tk+1,tk)

≤ sup
t∈T

ξµ∗(t)(c(t)). (3.20)

Now define the mapping Pt0 : T → L(X ), Pt0(t) := ΦB(t, t0)Q̃t0(t0)ΦB(t0, t), which
satisfies Pt0(t) ≡ Pt0(t)

2, Pt0(t)ΦB(t, t0) ≡ ΦB(t, t0)Pt0(t0) on T (cf. (2.3)); for this
reason, Pt0 is also an invariant projector of the linear system (3.18). As a result of
the identity IX + µ(tk+1, tk)B̃(tk) ≡ ΦB(tk+1, tk) on Z, the mapping B̃ : T̃ → L(X )
is regressive and one inductively obtains ΦB̃(tk, tl) = ΦB(tk, tl) for k, l ∈ Z. With a
given t ∈ T, t0 � t, we choose k ∈ N0 maximally such that t0 � tk � t holds, and
the assumptions (i) and (ii) imply

‖ΦB(t, t0)Pt0(t0)‖
(2.3)

≤ ‖ΦB(t, tk)‖
∥∥∥ΦB(tk, t0)Q̃t0(t0)

∥∥∥
= ‖ΦB(t, tk)‖

∥∥∥ΦB̃(tk, t0)Q̃t0(t0)
∥∥∥ ≤ C2ec2(t, tk)L1ẽc̃(tk, t0).
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On the basis of Lemma 1.2, the monotonicity properties of ϑµ∗(t) : R→ Rµ∗(t), t ∈ T,
as well as (3.20), this leads to

‖ΦB(t, t0)Pt0(t0)‖
(1.3)

≤ L1C2ec2(t, tk)ec̄(tk, t0) ≤ L1C2ec2	c̄(t, tk)ec̄(t, t0)

≤ L1C2E
+
c2	c̄(h0, h)ec̄(t, t0) for t0 � t.

Consequently the first dichotomy estimate for (3.18) is shown. To prove the corre-
sponding estimate in negative time, we fix t � t0 and choose l ≤ 0, l ∈ Z, minimally
with t � tl � t0. Analogously we get from Lemma 1.2 that ‖ΦB(t, t0) [IX − Pt0(t0)]‖ ≤
L2C2E

+
d̄	d2(h0, h)ed̄(t, t0) for t � t0. Hence the proof is finished, if one defines the

invariant projector for (3.18) by Q : T→ L(X ), Q(t) := Pt(t). �

Now we arrive at the main result of this paper. In case of infinite dimensional
differential equations it goes back to [Hen80, pp. 240–241, Theorem 7.6.12]. However,
[Sak94, Theorem 1] contains a more accessible approach for ODEs in RN .

Theorem 3.4 Let Q denote a nonempty set and consider the mappings A(·, q) ∈
Crd(T,L(X )), q ∈ Q, B ∈ CrdR(T,L(X )), reals C1, C2, K1, K2 ≥ 1 and functions
a, b, c1, c2, d2 ∈ C+

rdR(T,R), a C b, b bounded above, c1, c2 discretely bounded below,
such that for any q ∈ Q the following conditions hold:

(i) The linear system
x∆ = A(t, q)x (3.21)

has c+
1 -bounded growth with constant C1,

(ii) the linear system (3.21) possesses an ED with a, b, K1, K2 and the invariant pro-
jector Pq : T→ L(X ),

(iii) the linear system
x∆ = B(t)x (3.22)

has (c2, d2)-bounded growth with constant C2.

Moreover, for arbitrarily fixed functions c, d ∈ C+
rdR(T,R) with

a C c C d C b, sup
s∈T

ξµ∗(s)(c(s)) < inf
s∈T

ξµ∗(s)(d(s)), (3.23)

we choose reals 0 < h0 ≤ h, dµ∗e ≤ h so large that

(iv) K1K2 < E−b	a(h0, h), K1 < E−c	a(h0, h) and K2 < E−b	d(h0, h),
(v) (T,�, µ) is a (h0, h)-measure chain.

Then there exist reals ε0, ε1 > 0, depending on h0, h, a, b, c, c1, c2, d, d2, C1, C2,
K1, K2, such that under the additional assumption

(vi) there exists a mapping q∗ : T→ Q with

‖A(t, q∗(τ))−B(t)‖≤ ε0 for t, τ ∈ T, 0 ≤ µ(t, τ) ≤ h, (3.24)
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∥∥∥Pq∗(t)(t)− Pq∗(τ)(t)
∥∥∥≤ ε1 for t, τ ∈ T, h0 ≤ µ(t, τ) ≤ h, (3.25)

also the linear dynamic equation (3.22) possesses an ED with c̄, d̄ : T→ R given in
(3.19), constants L̄1, L̄2 ≥ 1 and an invariant projector Q : T→ L(X ), satisfying∥∥∥Q(t)− Pq∗(t)(t)

∥∥∥ ≤ ε1 +
∥∥∥Q(t)− Pq∗(τ)(t)

∥∥∥ (3.26)

for t, τ ∈ T, h0 ≤ µ(t, τ) ≤ h.

Remark 3.1 (1) In general we have the inequalities c E c̄, d̄ E d and thus the
exponential dichotomy with growth functions c̄, d̄ guaranteed from Theorem 3.4 is
weaker than a dichotomy with c, d. Nevertheless, one has c = c̄, d = d̄ for the special
case of the time scales T = R or T = h̄Z, h̄ > 0, and constant functions c, d, like
usually assumed for ODEs and O∆Es. In particular, under these assumptions the
right inequality in (3.23) becomes redundant. Moreover, for T = h̄Z, h̄ > 0, we can
replace hypothesis (v) by the inequality h̄ ≤ h0, while (v) can be dropped in case of
T = R. A similar remark also holds for the subsequent Corollary 3.6.
(2) Even in the special case of ODEs, our Theorem 3.4 generalizes [Sak94, Theo-
rem 1] with regard to the following aspects: On the one hand, Theorem 3.4 holds true
in infinite dimensional Banach spaces, we only need that (3.21) has bounded growth
in forward time, and finally, beyond the inequalities (3.23) we do not assume any
hyperbolicity conditions on the growth functions c, d.
(3) For a set Q with exactly one element, the inequality (3.25) is redundant and
one can consider Theorem 3.4 as a roughness theorem for exponentially dichotomous
systems with bounded growth. However, on discrete measure chains, Theorem 2.4 is
more general then Theorem 3.4.
(4) In case of homogeneous time scales it is possible to derive a relatively handy
explicit estimate for the maximal size of ε0, ε1 in terms of the growth constants for
(3.21), the dichotomy data for (3.22), as well as h0, h > 0. This can be found in
[Pöt02, pp. 125–126, Korollar 2.3.10] or in [Pöt03] for O∆Es.

PROOF. Let ΦA(·; q), q ∈ Q, denote the parameter-dependent transition operator
of (3.21). We subdivide the present proof into four steps:
(I) Since b and, by virtue of (3.23) also the growth function d ∈ C+

rdR(T,R), is
bounded above, we obtain that a, d are discretely bounded above and the inequalities
0 C b	 a, 0 C c	 a, 0 C b	 d. Due to Lemma 1.1(a) one can choose h0 > 0 so large
that the assumption (iv) is satisfied. Eventually, we pick reals 0 < θ1 < 1 < θ2, such
that θ2

θ1
K1K2 < E−b	a(h0, h) holds.

(II) Let s ∈ T be arbitrary, but fixed. Then, due to assumption (ii), the linear
dynamic equation

x∆ = A(t, q∗(s))x (3.27)

has an exponential dichotomy with an invariant projector Pq∗(s) : T→ L(X ), which
in particular satisfies the regularity condition (2.5) on T. Hence [Pöt01, Propo-
sition 2.3] guarantees that ΦA(t, s; q∗(s))|N (Pq∗(s)(s)) : N (Pq∗(s)(s)) → N (Pq∗(s)(t)),
s � t, is bijective. Thus, for any ξ ∈ N (Pq∗(s)(t)), s � t, there exists a pre-image
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ξ0 ∈ N (Pq∗(s)(s)) with ξ = ΦA(t, s; q∗(s))ξ0 and consequently we have the inclusion

N (Pq∗(s)(t)) ⊆ R
(
ΦA(t, s; q∗(s))

)
for s � t. (3.28)

(III) By assumption (v) we know that (T,�, µ) is a (h0, h)-measure chain, and
therefore for any t0 ∈ T we get a discrete measure chain T̃ = {tk}k∈Z ∈ Shh0

(T). We

are going to verify that the operator sequences Â, B̂, P̂1, P̂2 : Z → L(X ), Â(k) :=
ΦA(tk+1, tk; q∗(tk)), B̂(k) := ΦB(tk+1, tk), P̂1(k) := Pq∗(tk)(tk), P̂2(k) := Pq∗(tk−1)(tk)

satisfy the assumptions of Lemma 3.2. Obviously P̂1(k), P̂2(k) ∈ L(X ) are projec-
tions for every k ∈ Z. Furthermore, we have P̂2(k + 1)Â(k) = Â(k)P̂1(k) for k ∈ Z
and due to the inclusion (3.28) also N

(
P̂2(k + 1)

)
⊆ R

(
Â(k)

)
for k ∈ Z. Now we

define the functions ã, b̃ : T̃→ R, ã(tk) := K1ea(tk+1,tk)−θ1
θ1µ(tk+1,tk)

, b̃(tk) := eb(tk+1,tk)−θ2K2

θ2K2µ(tk+1,tk)
for

k ∈ Z, which satisfy ã, b̃ ∈ C+
rdR(T̃,R), as well as ã C b̃. Since b is bounded above,

Lemma 1.1(b) guarantees that b̃ is bounded above. From assumption (ii) and

∥∥∥Â(k)η
∥∥∥ =

∥∥∥Â(k)P̂1(k)η
∥∥∥ =

∥∥∥ΦA(tk+1, tk; q∗(tk))Pq∗(tk)(tk)η
∥∥∥

(2.6)

≤ K1ea(tk+1, tk) ‖η‖ for η ∈ R
(
P̂1(k)

)
,

‖ξ‖ =
∥∥∥Φ̄A(tk, tk+1; q∗(tk))ΦA(tk+1, tk; q∗(tk))

[
IX − Pq∗(tk)(tk)

]
ξ
∥∥∥

=
∥∥∥Φ̄A(tk, tk+1; q∗(tk))

[
IX − Pq∗(tk)(tk+1)

]
ΦA(tk+1, tk; q∗(tk))ξ

∥∥∥
(2.7)

≤ K2eb(tk, tk+1)
∥∥∥Â(k)ξ

∥∥∥ for ξ ∈ N
(
P̂1(k)

)
,

the above construction of ã, b̃ yields
∥∥∥Â(k)η

∥∥∥ ≤ θ1 (1 + µ(tk+1, tk)ã(tk)) ‖η‖ for η ∈
R
(
P̂1(k)

)
,
∥∥∥Â(k)ξ

∥∥∥ ≥ θ2

(
1 + µ(tk+1, tk)b̃(tk)

)
‖ξ‖ for ξ ∈ N

(
P̂1(k)

)
. Since the as-

sumption (ii) implies for any q ∈ Q that ‖Pq(s)‖ ≤ K1, ‖IX − Pq(s)‖ ≤ K2 for

s ∈ T, one directly has
∥∥∥P̂1(k)

∥∥∥ ≤ K1,
∥∥∥IX − P̂2(k)

∥∥∥ ≤ K2,
∥∥∥P̂2(k)

∥∥∥ ≤ K1 for k ∈ Z.

Finally, from assumption (i) we get∥∥∥Â(k)
∥∥∥ = ‖ΦA(tk+1, tk; q∗(tk))‖ ≤ C1ec1(tk+1, tk) ≤ C1E

+
c1

(h0, h)

for k ∈ Z, and assumption (iv) together with Lemma 2.1 leads to

∥∥∥Â(k)− B̂(k)
∥∥∥ = ‖ΦA(tk+1, tk; q∗(tk))− ΦB(tk+1, tk)‖

(3.24)

≤ C2
1ε0

Γ−(c1 + ε0C1)
hE+

c1+ε0C1
(h0, h) for k ∈ Z, (3.29)

as well as
∥∥∥P̂1(k) − P̂2(k)

∥∥∥ =
∥∥∥Pq∗(tk)(tk)− Pq∗(tk−1)(tk)

∥∥∥ ≤ ε1 for k ∈ Z (cf. (3.25)).

Now c̃, d̃ : T̃ → R, c̃(tk) := ec(tk+1,tk)−1
µ(tk+1,tk)

, d̃(tk) := ed(tk+1,tk)−1
µ(tk+1,tk)

, k ∈ Z, define functions

in C+
rdR(T̃,R), which satisfy ã C c̃ C d̃ C b̃ by means of the assumption (iv).
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(IV) As a result of step (III), for sufficiently small reals ε0, ε1 > 0, one can apply

Lemma 3.2 and therefore the system x∆ = B̃(t)x, B̃(tk) := 1
µ(tk+1,tk)

(
B̂(k) − IX

)
,

k ∈ Z, on T̃ has an exponential dichotomy with c̃, d̃, L̄1, L̄2 ≥ 1 and an invariant
projector Q̃t0 : T̃→ L(X ). The estimate (3.23) implies that d is bounded above and
since t0 ∈ T, as well as the discrete measure chain T̃ ∈ Shh0

(T) had been arbitrary,
Lemma 3.3 implies an exponential dichotomy of the linear system (3.22) on T.
Ultimately, the estimate (3.26) is a trivial consequence of (3.25). �

We have formulated hypothesis (vi) of Theorem 3.4 using the coefficient mappings
of (3.21) and (3.22) to increase its applicability. In some situations it is desirable,
though, to assume conditions on the transition operators or the L1-distance of the
two linear systems.

Corollary 3.5 The assumed inequality (3.24) can be replaced by

‖ΦA(t, τ ; q∗(τ))− ΦB(t, τ)‖ ≤ ε0 for t, τ ∈ T, 0 ≤ µ(t, τ) ≤ h, (3.30)

or, in case c1 = c2, by∫ t

τ

‖A(s; q∗(s))−B(s)‖
1 + µ∗(s)c1(s)

∆s ≤ ε0 for t, τ ∈ T, 0 ≤ µ(t, τ) ≤ h, (3.31)

without changing the conclusion of Theorem 3.4.

Remark 3.2 The three papers [Joh87, Theorem 3.1], [Pal87, Theorem 2] and [VM94,
Corollary 2] prove roughness theorems for an exponential dichotomy of finite dimen-
sional differential equations under assumptions similar to (3.30). In this situation,
Theorem 3.4 is sufficient for [Joh87, Theorem 3.1] and equivalent to [Pal87, Theo-
rem 2], like shown in [Sak00].

PROOF. Under each assumption, either (3.30) or (3.31), one is able to derive the
estimate (3.29) in the proof of Theorem 3.4. Actually we have

∥∥∥Â(k)− B̂(k)
∥∥∥ = ‖ΦA(tk+1, tk; q∗(tk))− ΦB(tk+1, tk)‖

(3.30)

≤ ε0 for k ∈ Z,

or using Lemma 2.2, we obtain

∥∥∥Â(k)− B̂(k)
∥∥∥ = ‖ΦA(tk+1, tk; q∗(tk))− ΦB(tk+1, tk)‖

≤C1C2ec1(tk+1, tk)
∫ tk+1

tk

‖A(s; q∗(s))−B(s)‖
1 + µ∗(s)c1(s)

∆s
(3.31)

≤ ε0C1C2E
+
c1

(h0, h)

for k ∈ Z, and therefore only the condition determining the size of ε0 > 0 changes,
but not the assertion of Theorem 3.4. �

At first glance the technical and abstract Theorem 3.4 might be a little hard to
grasp. For that reason we apply it to derive a result showing that the notion of an
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exponential dichotomy is robust under slowly varying coefficients. More precisely,
this result essentially states that, if an exponentially dichotomous system depends
Hölder-continuously on a fixed parameter, then this parameter can be replaced by
a time-dependent function possessing a sufficiently small global Hölder-constant,
without destroying the ED of the dynamic equation.

Corollary 3.6 Consider some metric space (Q, d), an rd-continuous mapping A :
T × Q → L(X ), reals K1, K2 ≥ 1, C1, C2, L ≥ 0, α, β ∈ (0, 1] and functions
a, b, c1, c2, d2 ∈ C+

rdR(T,R), a C b, b bounded above, such that for any q ∈ Q the
following conditions hold:

(i) We have the Hölder estimate

‖A(t, q)− A(t, q̄)‖ ≤ Ld(q, q̄)α for t ∈ T, q̄ ∈ Q, (3.32)

(ii) the linear system (3.21) has c+
1 -bounded growth with constant C1,

(iii) the linear system (3.21) possesses an ED with a, b, K1, K2 and the invariant pro-
jector Pq : T→ L(X ).

Moreover, for arbitrarily fixed functions c, d ∈ C+
rdR(T,R) like in (3.23), we choose

reals 0 < h0 ≤ h, dµ∗e ≤ h so large that

(iv) K1K2 < E−b	a(h0, h), K1 < E−c	a(h0, h) and K2 < E−b	d(h0, h),
(v) (T,�, µ) is a (h0, h)-measure chain.

Then there exist reals ε0, ε1 > 0, depending only on h0, h, a, b, c, d, c1, c2, d2, C1, C2,
K1, K2, such that for any mapping q∗ : T→ Q satisfying

(vi) the Hölder-condition

d(q∗(t), q∗(τ)) ≤ θ |µ(t, τ)|β for t, τ ∈ T, (3.33)

where θ ≥ 0 satisfies Lθαhαβ ≤ ε0, Lθαhαβ max {K1, K2}Ca,b(c, d) ≤ ε1,
(vii) the linear system

x∆ = A(t, q∗(t))x (3.34)

has (c2, d2)-bounded growth with C2,

also the linear system (3.34) has an ED with c̄, d̄ : T→ R given in (3.19), L̄1, L̄2 ≥ 1
and an invariant projector Q : T→ L(X ).

Remark 3.3 (1) The property that q∗ : T → Q changes slowly in time has been
formulated using the Hölder-condition (3.33). In case of a Banach space Q and a
differentiable mapping q∗, one can use the mean value theorem on measure chains
(cf. [Hil90, pp. 16–17, Corollary 3.3(i)]) to show that (3.33) is satisfied with β = 1,
if the derivative q∆

∗ : T→ Q has sufficiently small values. This is usually fulfilled in
applications from singular perturbation theory (cf. [Pöt02, pp. 219–226] for dynamic
equations on measure chains, or [Pöt03] for O∆Es).
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(2) One can also use Corollary 3.6 as a criterion for an exponential dichotomy of
the linear system (2.1). In fact, one assumes that

• h̄ ≤ µ∗(t) ≤ H̄ for all t ∈ T with certain reals h̄, H̄ > 0,
• there exist reals ᾱ < β̄, ᾱ ∈ Rh̄, such that the spectrum of A(t0) ∈ L(X ), t0 ∈ T,

can be decomposed into closed disjoint sets σ1(t0), σ2(t0) with

sup
λ∈σ1(t0)

<H̄λ < ᾱ < β̄ < inf
λ∈σ2(t0)

<h̄λ for t0 ∈ T,

and gets from [Pöt02, p. 97, Satz 2.1.22] that the time-invariant systems x∆ = A(t0)x,

t0 ∈ T fixed, possess an exponential dichotomy. Here <hz := limt↘h
|1+tz|−1

t
, z ∈ C

with 1+hz 6= 0, is the Hilger real part. Now the above Corollary 3.6 with Q = T, the
metric d(t, τ) := |µ(t, τ)|, as well as q∗(t) := t, implies that (2.1) possesses an ex-
ponential dichotomy under the assumption ‖A(t)− A(τ)‖ ≤ L |µ(t, τ)|α for t, τ ∈ T
and a sufficiently small L ≥ 0.

PROOF. We successively verify the hypotheses of Theorem 3.4 applied to the
mapping B(t) := A(t, q∗(t)). Due to the assumption (vi) we know that q∗ : T → Q
is continuous and consequently B : T → L(X ) is rd-continuous. The assumptions
(ii) and (vii) imply that the two systems (3.21) and (3.34) have bounded growth,
and (vii) includes that (3.34) is regressive. In order to derive the inequalities (3.24)
and (3.25), we pick t1, t2 ∈ T arbitrarily, use (3.32), (3.33) and arrive at

‖A(t, q∗(t1))− A(t, q∗(t2))‖ ≤ Lθαhαβ for t ∈ T, 0 ≤ µ(t1, t2) ≤ h. (3.35)

Setting t1 = t, t2 = τ yields (3.24). Using the hypothesis (iii) we know that the
linear system x∆ = A(t, q∗(t1))x has an exponential dichotomy with a, b, K1, K2 and
Pq∗(t1). Similarly, x∆ = A(t, q∗(t2))x has an exponential dichotomy with the invariant
projector Pq∗(t2), and weaker growth functions c, d. The relation (3.35), as well as
Lemma 2.3 imply for t1 = t, t2 = τ the estimate∥∥∥Pq∗(t)(t)− Pq∗(τ)(t)

∥∥∥ ≤ Lθαhαβ max {K1, K2}Ca,b(c, d)

for t, τ ∈ T, h0 ≤ µ(t, τ) ≤ h, and using Theorem 3.4 we obtain the assertion. �
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