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Abstract We consider a model for the morphology and growth of the fungus-
like plant pathogen Phytophthora using the example of Phytophthora plurivora.
Here, we are utilizing a correlated random walk describing the density of tips.
This random walk incorporates a delay in branching behavior: newly split tips
only start to grow after a short while.

First, we question the effect of such a delay on the running fronts, for
uniform- as well as non-uniform turning kernels. We find that this delay pri-
marily influences the slope of the front and therewith the way of spatial appro-
priation, and not its velocity. Our theoretical predictions are confirmed by the
growth of Phytophthora in concrete experiments performed in Petri dishes. The
second question addressed in this paper, concerns the manner tips are inter-
acting, especially the point why tips stop to grow “behind” the interface of the
front, respectively in confrontation experiments at the interface between two
colonies. The combination of experimental data about the spatially structured
time course of the glucose concentration and simulations of a model taking into
account both, tips and glucose, reveals that nutrient depletion is most likely
the central mechanism of tip interaction and hyphal growth inhibition. We
presume that this is the growing mechanism for our kind of Phytophthora in
infected plant tissue. Thus, the pathogen will sap its hosts via energy depletion
and tissue destruction in infected areas.
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1 Introduction

The genus Phytophthora de Bary, belonging to the Class Oomycetes, is a well-
known group of fungus-like pathogens with algal relatives which are the causal
agent for some of the most devastating plant diseases. Herbaceous crops like
potatoes as well as woody crops like citrus or even trees in natural forests fall
prey to them [10,19]. This leads to tremendous pecuniary and ecological losses
each year, attracting a lot of interest in the investigation of the behaviour and
spread of Phytophthora [20].

Nevertheless, doing research in phytopathology is an intricate work due to
the complexity of interactions between host and pathogen. Hence, the scientific
progress in working with Phytophthora has happened on different scales: the
interaction between a molecular and cellular level e.g [4,39,41], on the whole
plant level e.g. [3,6,11–14,34], or on the pathogenic impact on different species
e.g. [12,24,40,43]. Furthermore, Cahill et al. [5] investigate the dimensions
of the ecological impact of P. cinnamomi Rands in Australia and provide
an application of management strategies. For all these interesting results the
precise mechanism of killing a tree is not well understood.

The aim of the present paper is to investigate the growth of Phytophthora
focussing on its morphology. In difference to most studies performed up to now,
the complexity of the host-pathogen system is circumvented in constructing
a more controlled setup: the pathogen is grown in a medium, simulating a
host proving a certain nutrient supply. More complex feedback like induced
reactions by the host are excluded. This is, we try to obtain an in depth under-
standing of the first step from the pathogen’s point of view. The pathogen we
are working at is Phytophthora citricola Sawada, which was recently revealed
to be a new species named Phytophthora plurivora (cf. [23]). Indeed, Jung and
Burgess [23] and citations therein also showed that this Phytophthora is caus-
ing progressive destruction of large portions of the root system. In addition,
it is predisposing the trees to droughts and attacks by secondary pests and
pathogens which results in an impairment of the host with lethal outcome.

The mathematical approaches encountered so far mostly focus on the over-
all spread of Phytophthora, using general model structures developed to de-
scribe the spread of infectious diseases. E.g. [31] investigates a model without
spatial structure, in order to understand the effect of variability in the suscep-
tibility of plants; also the controllability in models without spatial structure
has been considered, see e.g. [2,15,30] and references therein. Spatial mod-
els were developed, again basically in order to investigate the controllability
of Phytophthora, at a macroscopic level, see e.g. [21,37]. On the other hand,
models for the gene network on a molecular level were investigated in [33].

The phenomenon we are considering in the present work describes the
propagation on the microscopic and mesoscopic scale. Indeed, we model the
spread of hyphae, the long filaments in which Phytophthora grows, and tips
which represent the top of the filaments where actual growth takes place, see
e.g. Fig. 1. We investigate the most striking mechanisms affecting this spread,
and analyse the interaction between tips depending on carbohydrate supply
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as essential alimental impulse. We suppose that the growth of the pathogen is
regulated by offered carbohydrates whether in culture media or in the tissue
of an host. That is the intention of a pathogen — getting alimental nutrients
from the host.

The model structure we base on is the correlated random walk for tips, since
a diffusion approximation is hardly appropriate: In fact, a diffusion approxi-
mation of the spread of entities relies on the assumption that particles rapidly
“forget” their history [22], especially the direction they have been moving in.
This means, in order to use diffusion, it is necessary that the particles often
change direction in a relatively uncorrelated manner. For a general survey of
random walk models in biology we refer to [7] or [32,29].

In fact, the tips of Phytophthora tend to proceed to grow in the direction
they did select, and a change in this direction is rare. Thus, a correlated random
walk is a better model for Phytophthora than a diffusion equation. Fortunately,
such kinds of models have been well investigated [17,18,22,35]. In the present
case, however, some non-standard ingredients are required to model the growth
of Phytophthora in an appropriate way: Basically, new directions do not come
in via the change of a direction by an existing tip, but tips split and the new
tip selects a new direction, while the old tips continuous their straight growth.
Thus, population growth and directional change are intertwined. A second
special ingredient of our model represents the fact that the new tip does not
start to grow at once but only after a small delay. Such a delay was already
observed in 1924 at Botrytis cinerea Pers. [38] and discussed 1994 as apical
dominance in Griffin [16].

Consequently, the first aim of the paper is to provide an appropriate model
framework, and a basic idea about the effects caused by the delay. The second
central question of our modeling approach is the interaction of tips, where
data clearly show a front-like behavior.

Though we are not aware of other models that describe Phytophthora at
the spatial scale addressed here, there is a vast amount of literature addressing
fungal growth in general, or focussing on other fungae. There are many mod-
els for tips and hyphae, using discrete structures resembling stochastic cellular
automata (see e.g. [42], and quotations herein), or based on partial differential
equations (e.g. [8]). Most of these models carry a parabolic structure, either
directly as they consist of parabolic partial differential equations, or as they
are discrete but use a parabolic scaling (see e.g. the review article [9]). At
the end of the day, these models assume a mixture of diffusion and directed
growth of fungae. Meskauskas and coworkers [27] present an approach which
does not incorporate a diffusive component. These ideas are close to the setup
used in the present work. In their model, which is exclusively of algorithmic
nature, tips grow guided and directed by a tropic field, and new directions
arise via branching. In this way, they are able to produce a variety of mor-
phological structures observed for different fungal species. In comparison, the
model discussed in the present work is kept more simple to allow for analytic
treatment of some key features, but complex enough to permit a quantitative,
model-based analysis of experiments.
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2 Model

We denote time by t, a point in the plane by x = (x1, x2) ∈ R2, and the
velocity of a tip by v = (v1, v2) ∈ R2. In a given location and a given time,
the absolute value γ of the velocity is assumed to be the same for all tips, i.e.
v ∈ γS1. We discuss the parameter γ below. Instead of the true velocity, we
use a rescaled velocity in S1, which we denote again by v. This should not lead
to confusion, as we only use this rescaled velocity v ∈ V = S1 from now on.
Let furthermore u(t, x, v) indicate the density of tips at time t, location x and
velocity v. Then the marginal tip density at a certain location and a certain
time reads

u(t, x) =

∫
V

u(t, x, v) dv.

In accordance with data, we assume the tips to grow almost in straight lines (a
tip that once has chosen a certain velocity v keeps this velocity for all times),
and to split at a given rate λ. This is, the spontaneous change of direction of a
tip happens at a very small rate ε, while the new direction is in a narrow cone
around the old direction, given by the kernel K1(v, v′). We assume that tips
are able to measure the tip density: the velocity γ as well as the branching
rate λ depend on u, γ = γ(u), λ = λ(u); we will discuss this assumption later
on. The functions γ(.) and λ(.) are non-increasing functions on u. The new tip
selects the velocity in dependence of the velocity of the “mother” tip. Given the
velocity v′ of the mother, the velocity distribution of the daughter tip is given
by the kernel K2(v, v′). We find that the split branches do not start to grow at
once, but that there is almost always a considerable delay. The tips first grow
at a lower rate until they gain velocity and eventually grow with the same rate
like the primary tips. We model this effect simply as a delay r ≥ 0 in the start
of the growth. This is for sure only a simplifying assumption; a distribution
of velocities, depending on the age of a tip, would be more appropriate. As
we do not expect the conclusions to change essentially by the simplifications
made here, we stick to this more simple model. A direct simulation of the
stochastic process (with more or less arbitrary parameters) and a microscopic
image of Phytophthora can be found in Fig. 1. For simplicity, we did choose
especially ε = r = 0. We find a structural similarity in the the morphology of
Phytophthora and the simulation.

All in all, we describe the spread of tips by the equation

ut(t, x, v)+(vT∇) [γ(u(t, x))u(t, x, v)]

= ε

(
−u(t, x, v) +

∫
V

K1(v, v′)u(t, x, v′) dv′
)

(1)

+ λ(u(x, t− r))
∫
V

K2(v, v′)u(t− r, x, v′) dv′

for all v ∈ S1.
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Fig. 1 Simulation of the stochastic process (left panel, ε = 0 and r = 0) and microscopic
image of Phytophthora (right panel).

3 Running fronts

We aim at a basic understanding of the running fronts that our model may ex-
hibit. In order to obtain analytic results and some insight into the fundamental
structure, we first consider an extreme case yielding an equation simple enough
to be analytically treatable. However, let us first define what we understand
by a “front” in the present context.

Definition 1 A nonnegative function U(τ, v) is denoted as a front with ve-
locity c ∈ [0, supζ∈R+

γ(ζ)], provided u(t, x, v) = U(x1 − ct, v) is non-trivial,

solves (1), and satisfies the relations U(∞, v) ≡ 0,
∫
S1 U(τ, v) dv <∞.

Given a front U for the differential equation (1) with constant functions
γ, λ, we see that U fulfills

(γv1 − c)∂τU(τ, v) + εU(τ, v)

= ε

∫
V

K1(v, v′)U(τ, v′) dv′ + λ

∫
V

K2(v, v′)U(τ + cr, v′) dv′

with v = (v1, 0) and τ = x1 − ct.

3.1 Constant kernels

In this subsection, we replace the kernels in our model (1) by a uniform dis-
tribution, i.e. Ki(v, v

′) ≡ 1/(2π) for i = 1, 2, and thus (1) reduces to

ut(t, x, v) + (vT∇) [γ(u(t, x))u(t, x, v)]

= ε

(
−u(t, x, v) +

1

|V |
u(x, t)

)
+
λ(u(x, t− r)) u(x, t− r)

|V |
. (2)
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If we discard the delay, we are in the classical case of the velocity-jump
process. The assumption of Ki(v, v

′) ≡ constant further simplifies the situ-
ations, s.t. we come close to the equations considered in the papers [35,36].
The difference is that we allow for an unbounded growth — the tips split, but
are never annihilated. For the convenience of the reader, we repeat here the
computations made in [35,36] that determine the velocity of the front.

Remark 1 As we allow for an unbounded growth, we cannot expect the solu-
tion to go to an stationary state for τ → −∞. Also the classical linear diffusion
equation ht = ∆h+αh possesses running fronts with minimal velocity 2

√
αD

that are unbounded for x→ −∞.

Theorem 1 Let the functions λ, γ be constant. If a differential equation (2)
possesses a front of the form

U(τ) :=

∫
V

U(τ, v) dv = Ce−στ (3)

for some real C, σ > 0, σ = σ(c), then one has c ∈
[
γ
√

1− ε2

(λ+ε)2 , γ
)

and

σ ∈ {σ−r , σ+
r } with:

(a) If r = 0, then σ±0 =
εc±
√
ε2c2−λ(γ2−c2)(2ε+λ)

γ2−c2 ,

(b) if r > 0, then σ−r ∈ (0, σ+
0 ) is decreasing in r, while σ+

r ∈ (σ+
0 ,

ε
γ−c ) is

increasing in r.

Proof Assume a front U(τ, v) with U(τ) = Ce−στ exists. We may define the
profile of the front

w(τ, v) = U(τ, v)/U(τ).

For τ ∈ R one has w(τ, ·) ∈ L1(V ) and
∫
V
w(τ, v) dv = 1. The function U(τ, v)

satisfies the equation

(γv1 − c)∂τU(τ, v) + εU(τ, v) =
ε

|V |
U(τ) +

λ

|V |
U(τ + r̂)

with r̂ = rc. Using U(τ, v) = U(τ)w(τ, v) and U
′
(τ) = −σU(τ), we obtain

from the product rule

(γv1 − c)[−σU(τ)w(τ, v) + U(τ)∂τw(τ, v)] + εU(τ)w(τ, v)

=
ε

|V |
U(τ) +

λ

|V |
U(τ + r̂).

Dividing by U(τ) yields (note that U(τ + r̂)/U(τ) = e−r̂σ)

(γv1 − c)[−σw(τ, v) + ∂τw(τ, v)] + εw(τ, v) =
ε+ λe−σr̂

|V |
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and we find a solution constant in time, w0 = w0(v) with

w0(v) =
ε+ λe−σr̂

|V |[ε+ σc− σγv1]
.

A general solution can be represented by w(τ, v) = w0(v)+w̃(τ, v). For w̃(τ, v)
we obtain

(γv1 − c)[−σw̃(τ, v) + ∂τ w̃(τ, v)] + εw̃(τ, v) = 0.

This is, for v1 given s.t. γv1− c 6= 0, the function w̃(τ, v) is either 0 or tends to
infinity for t→∞ or t→ −∞ (depending on the sign of σ− ε

γv1−c ). However,

it is not possible for w̃(τ, v) to grow exponentially fast in τ for a set of non-zero
measure in V , to be non-negative, and to obey the condition

∫
V
w(τ, v) dv ≡ 1.

Thus, w̃(τ, v) = 0, and we explicitly obtain the velocity profile of a front with
exponent −σ given by w0(v).

However, for c given, the exponent cannot be arbitrary but is selected by
the integrability condition

1 =

∫
V

w0(v) dv =
ε+ λe−σr̂

|V |

∫ 2π

0

dϕ

ε+ σc− σγ cos(ϕ)
=

ε+ λe−σcr√
(ε+ σc)2 − (σγ)2

,

whose right hand side is denoted by Hr(σ, c). First, this requires ε+ σc > σγ,
since for ε + σc ≤ σγ, the integral diverges. We find Hr(0, c) = 1 + λ

ε > 1.
Furthermore, limσ→ ε

γ−c−Hr(σ, c) =∞. Thus, in order to obtain a solution of

Hr(σ, c) = 1 in R+, it is necessary that there is σ∗ > 0 s.t. Hr(σ
∗, c) ≤ 1.

Case 1: r = 0. In this case, H0(s, c) = 1 is equivalent to the quadratic
equation

(γ2 − c2)s2 − 2εcs+ λ2 + 2ελ = 0 (4)

having the discriminant δ := 4ε2c2 − 4(γ2 − c2)(λ + 2ε)λ. Thus, in order
to guarantee a real solution to (4) we have to require δ ≥ 0, which implies

c ≥ γ
√

1− ( ε
ε+λ )2. Moreover, the explicit solutions to H0(σ, c) = 1 read as

σ±0 =
εc±

√
δ/4

γ2 − c2
.

Case 2: r > 0. Here it is not possible to determine the solutions of
Hr(σ, c) = 1 in terms of elementary functions. However, we may write

Hr(σ, c) =
ε+ λ√

(ε+ σc)2 − (σγ)2
− λ(1− e−σcr)√

(ε+ σc)2 − (σγ)2
= H0(σ, c)− h(σ).

Thus, Hr(σ, c) < H0(σ, c), and for continuity reasons there must be two solu-
tions σ−r ∈ (0, σ−0 ) and σ+

r ∈ (σ+
0 ,

ε
γ−c ) to the equation Hr(σ, c) = 1 with the

claimed properties. ut
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Corollary 1 If σ∗r denotes the slope corresponding to the minimal velocity c∗r
determined by the conditions

Hr(σ
∗
r , c
∗
r) = 1, D1Hr(σ

∗
r , c
∗
r) = 0, (5)

then the following holds:

(a) If r = 0, then we obtain the relations

c∗0 = γ

√
1− ε2

(λ+ ε)2
= γ

(
1− ε2

2λ2
+O(ε3)

)
,

σ∗0 =
(λ+ ε)

√
λ(λ+ 2ε)

γε
=
λ2

γε
+O(ε).

(b) If r > 0, then one has the expansions

c∗r = c∗0−
εγλ3/2

√
λ+ 2ε

(ε+ λ)2
r+O(r2), σ∗r = σ∗0−

λ5/2
√
λ+ 2ε

3

γε2
r+O(r2).

showing that small delays r > 0 have a decreasing effect on the slope σ∗r
and the velocity c∗r. Moreover, the asymptotic representation

σ∗r ≈
1

rγ
ln

√
λ2r

ε

holds true.

In Figure 2 we have depicted graphs for the Taylor expansions to c∗r and σ∗r
as graphs of ε and r.
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Fig. 2 Taylor approximation of c∗r (left) and σ∗
r (right) in r up to order 2. For simplicity

we have chosen the parameter values γ = 0.1 and λ = 1
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Proof (a) For the sake of a brief notation we abbreviate µ := ε
λ+ε and use

the notation from the proof of Theorem 1 throughout. The velocity c of a
front with r = 0 is contained in the interval [γ

√
1− µ2, γ). It is thus only

necessary to consider the lowest velocity c∗ = γ
√

1− µ2. We find that c∗0 is
characterized by the fact that H0(σ, c) just touches the value one. This holds
for a discriminant δ = 0 and so

σ∗0 =
εc

γ2 − c2
.

As c = γ +O(ε) and γ2 − c2 = γ2ε2/(ε+ λ)2 = (γε/λ)2 +O(ε3), we obtain

σ ∼ ε−1 λ
2

γ
.

We may also compute σ∗0 precisely from H0(σ, c∗) = 1,

(ε+ λ)2 = (ε+ σc∗)2 − (σγ)2 = (ε+ σγ
√

1− µ2)2 − (σγ)2

= ε2 + 2εσγ
√

1− µ2 − σ2γ2µ2

and this is

σ∗0 =
2εγ
√

1− µ2 ∓
√

4ε2γ2 (1− µ2) + 4(ε2 − (ε+ λ)2)γ2µ2

2γ2µ2

=
(λ+ ε)

√
λ(λ+ 2ε)

γε

(b) Inserting the relations σ∗r = σ∗0 +σ1r+O(r2), c∗r = c∗0 +c1r+O(r2) into
our identities (5) for r ≥ 0, yields two linear algebraic equations to determine
the coefficients σ1, c1. We leave their solution to the interested reader, yielding
the claimed expansions for σ∗r , c∗r .

We have

Hr̂(σ, c) =
ε+ λe−σr̂√

(ε+ σc)2 − (σγ)2

with the derivative

D1Hr̂(σ, c) =
−r̂λe−σr̂√

(ε+ σc)2 − (σγ)2
− (ε+ λeσr̂)((ε+ σc)c− σγ2)

[(ε+ σc)2 − (σγ)2]3/2

=
−r̂λe−σr̂

ε+ λeσr̂
ε+ λe−σr̂√

(ε+ σc)2 − (σγ)2

− (ε+ λe−σr̂)((ε+ σc)c− σγ2)

(ε+ λeσr̂)3
(ε+ λe−σr̂)3

[(ε+ σc)2 − (σγ)2]3/2

=
−r̂λe−σr̂

ε+ λe−σr̂
Hr̂(σ)− (ε+ σc)c− σγ2

(ε+ λe−σr̂)2
Hr̂(σ, c)

3.

We aim at pairs (σ, c) satisfying (5). As Hr(σ, c) = 1, we therefore find

−(ε+ λe−σr̂)r̂λe−σr̂ = (ε+ σc)c− σγ2
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and equivalently

0 = σc2 + εc− [σγ2 − (ε+ λe−σr̂)r̂λe−σr̂],

which we solve for c, and find

c =
1

2σ

[
−ε±

√
ε2 − 4σ (−σγ2 + (ε+ λe−σr̂)r̂λe−σr̂)

]
=

1

2σ

[
−ε±

√
ε2 − 4σ(ε+ λe−σr̂)r̂λe−σr̂ + 4σ2γ2

]
.

Since r̂ depends on c, this in fact is a fixed point relation for c. As we require
c ≥ 0, we choose the positive sign in front of the root. We use this result to
formally eliminate c from the equation Hr̂(σ, c) = 1, and find

1 = Hr̂(σ, c) =
ε+ λe−σr̂√

(ε+ σc)2 − (σγ)2

=
ε+ λe−σr̂√

(ε− ε
2 + 1

2

√
ε2 − 4σ(ε+ λe−σr̂)r̂λe−σr̂ + 4σ2γ2)2 − (σγ)2

=
ε+ λe−σr̂√

( ε2 + 1
2

√
ε2 − 4σ(ε+ λe−σr̂)r̂λe−σr̂ + 4σ2γ2)2 − (σγ)2

,

which is equivalent to

[
ε+ λe−σr̂

]2
=

(
ε
2 + 1

2

√
ε2 − 4σ(ε+ λe−σr̂)r̂λe−σr̂ + 4σ2γ2

)2

− (σγ)2. (6)

Any non-negative root of this equation together with the definition of σ in
dependence on c leads to a solution (σ, c) that solves (5).

For ε↘ 0, this equation becomes[
λe−σr̂

]2
= −σr̂

(
λe−σr̂

)2
+ σ2γ2 − (σγ)2 = −σr̂

(
λe−σr̂

)2
,

which implies for any σ(ε) that possesses a finite limit,

lim
ε↘0

σ(ε) = −1/r̂.

With this result, we are able to compute c in the limit ε↘ 0, and find

lim
ε↘0

c(ε) =
r̂

2

√
4λ2e2 + 4γ2/r̂2 =

√
γ2 + λ2r̂2e2.

This is, all solutions for σ that stay finite become negative and correspond
to fronts with a velocity larger than γ. These solutions are not biologically
feasible. As we know that there is a non-negative solution for all ε > 0, this
solution cannot stay finite (otherwise one would find a sequence ε↘ 0 with a
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converging sequence σ(εn), which eventually becomes non-feasible according
to the argument above). This is,

lim
ε↘0

σ(ε) =∞. (7)

For the sake of a more precise understanding of this limit relation, let us
consider (6), which explicitly becomes

ε2 + 2ελe−σr̂ + (λe−σr̂)2 = γεσ +
ε2

4
− σ

(
ε+ λe−σr̂

)
r̂λe−σr̂

+

(
ε

2
+

ε

8σγ

)2

−
(
ε

2
+

ε

8σγ

) (
ε+ λe−σr̂

)
r̂λe−σr̂

γ
.

Being interested in the behavior for ε > 0 close to 0, due to (7) we obtain that
e−σr̂ is small. Hence, restricting to the dominant terms in the above equation
yields

0 ≈ γεσ − σ
(
ε+ λe−σr̂

)
r̂λe−σr̂,

which is equivalent to σ ≈ 1
2r̂ ln

(
λ2r̂
γε

)
. Keeping in mind that c∗r = c = γ+O(ε)

as ε↘ 0 we obtain the claimed asymptotic representation of σ = σ∗r . ut

Remark 2 (a) We do not intend to prove the existence of the fronts described
by the theorem above, nor the non-existence of other fronts. This task can be
attacked by methods that mimic the work in [35,36].

(b) If r = 0 and there exists a running front (3) with velocity γ = c, then

σ =
λ

γ

(
1 +

λ

2
ε−1
)
.

If we consider the limit ε→ 0, the slope of the interface develops a singularity,
and the front fails to exist in the limit.

(c) A similar result can be obtained, if we ask for all fronts U(v, τ) that
can be written in a product form,

U(v, τ) = U(τ)w0(v).

Provided both factors are differentiable, then we obtain exactly the fronts
described in Theorem 1.

(d) We expect that no front with a smaller velocity than the minimal
velocity exists. We furthermore expect that the front with minimal velocity
is stable. This conjecture is based on similar results found for running fronts
obtained in [35].
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3.2 General Kernels

We now drop the assumption that the kernels Ki, i = 1, 2, in (1) are constant
and assume that they are essentially bounded. Our arguments are based on
the Krein-Rutman theorem which requires function spaces with solid cones,
like for instance continuous functions,

C+(V ) := {w ∈ C(V ) : w(v) ≥ 0 for all v ∈ V }.

Let us assume that the integral operators

Ki : C(V )→ C(V ), w 7→
∫
V

Ki(v, v
′)w(v′) dv′, i ∈ {1, 2}

are compact, which holds for kernels Ki satisfying the continuity assumption

lim
v→v0

∫
V

|Ki(v, v
′)−Ki(v0, v

′)| dv′ = 0 for all v0 ∈ V (8)

(cf. [25, p. 247, Thm. 3’]). An example is a kernel of finite rank,

Ki(v, v
′) =

n∑
j=1

gij(v)hij(v
′),

where the nonnegative functions gij are continuous, hij are chosen to be in

L1(V ), and obey the condition

1 =

∫
V

Ki(v, v
′) dv′ =

n∑
j=1

gij(v)

∫
V

hij(v
′) dv′.

Let us assume that both kernels Ki are strictly positive.

Theorem 2 Let the functions λ, γ be constant and suppose the kernels Ki

satisfy (8). If (1) possesses a front of the form (3), then there is a κ∗(ε, r) s.t.
for each velocity c ∈ [κ∗, γ) a running front with the above shape (3) exists.

Proof Let us assume a front U(τ, v) with U(τ) = Ce−στ exists. As in Theo-
rem 1 we may define the profile of the front

w(τ, v) = U(τ, v)/U(τ)

for τ ∈ R, w(τ, ·) ∈ C(V ) and
∫
V
w(τ, v) dv = 1. The function U(τ, v) satisfies

the equation

(γv1 − c)∂τU(τ, v) + εU(τ, v)

= ε

∫
V

K1(v, v′)w(τ, v′) dv′U(τ) + λ

∫
V

K2(v, v′)w(τ + r̂, v′) dv′U(τ + r̂)
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with r̂ = cr. We apply the relations U(τ, v) = U(τ)w(τ, v), U
′
(τ) = −σU(τ),

from which the product rule implies

(γv1 − c)[−σU(τ)w(τ, v) + U(τ)∂τw(τ, v)] + εU(τ)w(τ, v)

= εU(τ)

∫
V

K1(v, v′)w(τ, v′) dv′ + λU(τ + r̂)

∫
V

K2(v, v′)w(τ + r̂, v′) dv′

We again divide by U(τ) and deduce (we observe U(τ + r̂)/U(τ) = e−r̂σ)

(γv1 − c)[−σw(τ, v) + ∂τw(τ, v)] + εw(τ, v)

= ε

∫
V

K1(v, v′)w(τ, v′) dv′ + λe−σr̂
∫
V

K2(v, v′)w(τ + r̂, v′) dv′.

We find a solution constant in time, w0 = w0(v) with

w0(v) =

∫
V

εK1(v, v′) + λe−σr̂K2(v, v′)

[ε+ σc− σγv1]
w0(v′) dv′ =: Tσ[w0](v).

Due to our assumption (8) the operator Tσ : C+(V ) → C+(V ) is strongly
positive and compact. We thus may use the Theorem of Krein-Rutman (see,
e.g., [44, p. 290, Thm. 7.C]) and find that a velocity profile exist if and only if
the spectral radius fulfills ρ(Tσ) = 1. Let us consider the spectral radius closer.

If σ = 0, we find

T0[w] =

∫
V

K1(·, v′)w(v′) dv′ +
λe−σr̂

ε

∫
V

K2(·, v′)w(v′) dv′.

Integrating over v yields
∫
V
T0[w](v) dv = (1 + λe−σr̂

ε )
∫
V
w0(v′) dv′, this is,

1 ∈ L∞ is a left-eigenfunction (or eigenfunction for the adjoint operator) for

eigenvalue ρ(T0) = 1+ λe−σr̂

ε > 1. In the limit σ → ε
γ−c−, we have ρ(Tσ)→∞,

as the kernel develops a pole of first order. All in all, for a valid velocity profile
to exist we need to show that there is σ∗ ∈ (0, ε

γ−c ) s.t. ρ(Tσ∗) < 1.

If we define u0(v) = [ε+ σc− σγv1]w0(v), we find

u0(v) =

∫
V

εK1(v, v′) + λe−σr̂K2(v, v′)

[ε+ σc− σγv′1]
u0(v′) dv′ =: T̂σ,c[u0](v).

We again focus on Perron eigenvalues for the operator T̂σ,c : C+(V )→ C+(V ).
Let us assume that for c1 ∈ (0, γ) an eigenfunction for eigenvalue 1 in C+(V )
exist, if we select σ = σ1 > 0 in an appropriate way. Consider c ∈ (c1, γ). For
monotonicity reasons,

ρ(Tσ1,c) ≤ ρ(Tσ1,c1) = 1.

Note that a Perron eigenvalue ρ(Tσ,c) of the compact operator T̂σ,c depends
continuously on σ for c ∈ (0, γ) fixed. As ρ(T0) > 1 we find some σ2 s.t.
ρ(Tσ2,c) = 1. This is, the set of allowed velocities forms an interval [κ∗(ε, r), γ)
or (κ∗(ε, r), γ). Due to continuity reasons, the smallest velocity is included into
the set of allowed velocities. This is the first part of the proof.
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Next we want to prove that there is an interval of admissible velocities,
indeed. Therefore, take r = 0, and use the boundedness of the contact kernels,
Ki(v, v

′) ≤ k to obtain the upper bound

Tσ,c[u] ≤
(
εk + λe−σr̂k

) ∫
V

u(v′)

[ε+ σc− σγv′1]
dv′ =: G1[u](v′).

The comparison principle of positive, compact operators (see, for instance, [44,
p. 291, Cor. 7.28]) yields ρ(Tσ.c) ≤ ρ(G1). As G1[.] is a rank-one operator (all
functions are mapped to a constant function), the spectral radius reads

ρ(G1) = G1[1] =

∫
V

1

[ε+ σc− σγv′1]
dv′ =

εk + λe−σr̂k√
(ε+ σc)2 − (σγ)2

=: H̃r(σ; c)

The analysis above (see the proof of Theorem 1) reveals that the minimum of
H̃0(·; c) is assumed at σ∗ = εc

γ2−c2 , and

H̃r(σ
∗; c) =

(
εk + λe−σr̂k

)√
1− (c/γ)2 ≤ H0(σ∗; c)

This is, if we let c be arbitrary close to γ, then ρ(Tσ,c) ≤ 1, and thus c is a
feasible strategy for all r > 0. ut
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Fig. 3 Measurement of the delayed growth. Left hand side: the end points and branching
points of some hyphae (indicated by solid dots) are used to estimate the length difference
of mother/daughter branches. The bar is one mm. Right hand side, upper panel: histogram
of the absolute value of the length difference between mother-daughter hyphae (0.5 g/L
glucose). The dotted vertical bar indicates the mean value. Right hand side, lower panel:
Dependency of the mean value for the delay on the glucose concentration.
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4 Material and methods

Next we aim to confirm our theoretical predictions using tangible experiments
in Petri dishes. For this, Phytophthora plurivora was grown in Petri dishes
on M1-agar and in M1-liquid media for examination under microscope us-
ing varied concentrations of glucose. M1 was a chemically defined medium
which contained (g/L): L-asparagine, 0,2; CaCl2, 0.01; FeSO4*7H2O, 0.001;
MgSO4*7H2O, 0.0001; KH2PO4, 0.47; K2HPO4, 0,26; thiaminhydrocloride,
0.001; ZnSO4*7H2O, 0.001; CuSO4*5H2O, 0.00002; NaMoO4*2H2O, 0.00002;
MnCl4*4H2O, 0.00002 and D-glucose varying from 0 up to 21 g/L adding 10
g/L agar to get solid media for usage in Petri dishes. The general conditions
like humidity, and temperature which was set on 200C have been kept con-
stant. The daily increment of hyphal growth of each glucose-treatment was
2D-recorded in a centre line cross on the bottom side of every Petri dish. For
optical analysis 5 Petri dishes were scanned with transmitting light, digitized
and analyzed via Image-J (graphical software, [1]). Additionally eight abutted
pieces along these cross lines were punched out from agar with a cork borer to
verify the consumption of glucose during hyphal expansion. Every four with
the same distance to the centre of the culture from the same dish became
one pooled sample, which was immediately frozen in −800C, lyophilized and
grinded in a ball mill. After adding 1mL of double-distilled water, the liquid
with the solved glucose was filtered through syringe filters and analyzed by
high performance liquide chromatography (HPLC) consisting of an autosam-
pler (S5200, Schambeck SFD, Bad Honnef, Germany), a HPLC-pump (SDS
9404, Schambeck SFD), a column oven (SFD 12560, Schambeck SFD), as
well as a refractive index detector (RI-2000, Schambeck-SFD). Separation of
20 µL of samples was performed on a CARBOsep CHO-820 calcium column
(Transgenomic, Glasgow, UK) maintained at 850C. Outgased Millipore water
was used as a solvent at a constant flow rate of 0.6 mL min-1. Data acquisi-
tion and calculation were performed with the System Gold Nouveau software
(Beckman, Krefeld, Germany). Calibration of the retention times needed for
identification and quantification was done with dilution series of standard so-
lutions in five different concentrations (0.2, 0.4, 0.6, 1,0 or 2,5 mgmL−1) con-
taining glucose. The resulting glucose concentration was related to the original
volume of the used pieces of agar. To test whether hyphae are producing a toxic
or growth inhibiting substance, the paper filtered liquid of M1-media in which
Phytophthora was grown has been added to new Petri dishes with M1-agar
before inoculation. Finally, the growth was compared with a control where
dishes were just treated with water.

5 Parameter estimation

We obtain three parameters (delay, growth rate, split rate) and the exponent
of the interface of the front. This information is interesting as the theory yields
a prediction of the exponent of a front, given the growth, the split rate, the
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delay and the rate at which a tip changes direction. The last parameter is
very small, so that we may use this theoretical relation as a validation for the
model developed.

Delay. In order to obtain an information about the magnitude of the de-
lay, we compared the length of a split depending on the growing behavior in
different concentrations of glucose in M1-media. The length difference between
the two branches is correlated with the delay (see Fig. 3). There are several
problems in this simple method: we approximate the hyphae by straight lines
between branching- and end-points, we can only recognize vaguely if a hyphae
bows away from the focus plane, and the hyphae measured are selected arbi-
trarily and not systematically, bearing the danger of a subjective bias. These
effects may lead to a wrong estimation of length and thus a wrong estimation
of the delay. It is necessary to keep all these problems in mind, in interpreting
the resulting function

r̂(g) = 0.16 mm +
0.29 g mm

g + 1.64 g/L
.

Please note that g (italic) denotes the glucose concentration, while g refers to
the unit “gram”. This is, [g] = g/L.

It is clear that a random delay, stochastically distributed, would be more
appropriate than the fixed delay chosen in the present model. However, the
approach chosen yields some acceptable estimation.

Velocity. The overall velocity of spread has been measured using the
spread of Phytophthora in M1-agar with various glucose concentrations. Al-
though in a radial symmetric setting, Phytophthora spreads in a uniform man-
ner. As we know from microscopic images that the hyphae grow rather in
straight lines, we expect the overall growth velocity to be close to the growth
velocity of single hyphae. Please note that there is still growth at zero glucose
concentration, as the Phytophthora are able to utilize a second carbon source
(asparagine). We obtain a functional dependence of the velocity on the glucose
concentration in the agar (Fig. 4),

γ(g) =
(

2.7 + 1.5 e−0.723 g/(g/L)
)

mm/day;

this function is chosen for phenomenological reasons only.

Split rate. The time course of the number of tips — given a certain glu-
cose concentration — has been determined, and fit by an exponential function.
The rates have been fitted in dependence on the available glucose rate, using
a Hill function. We obtain (Fig. 5),

λ(g) =
11.35 g4.6/ day

g4.6 + (0.96 g/L)4.6
.

Change of direction. It is hard to come up with a precise value for the
rate at which the the hyphae change the direction of growth. Approximately,
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Fig. 4 Velocity of hyphae in dependence of glucose concentration.

they grow in straight lines. Thus, we chose (in comparison with λ, which is
for glucose concentrations above 2g/L roughly 10/day) a rather small rate,
ε = 1/day. This is, the change of direction is assumed to happen 10 times
slower than the branching.
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Fig. 5 Split rate of tips in dependence of glucose concentration.

Validation. The theory predicts the slope of the interface in dependence
of λ, γ and ε via Corollary 1. In order to check this prediction, we determine
the slope of the interface (see Fig. 6). Then, we plot the slope of the interface
over the glucose concentration, together with the prediction of the theory
(Fig. 7). The use of the “best fit” for delay r̂(g) yields an overestimation of
the slope. If we use a delay two times higher, 2r̂(g), and at the same time a
halved split rate, λ(g)/2, we obtain the solid curve that fits surprisingly well.
The factor 2 can be explained by the fact that the model used to obtain the
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Fig. 7 Exponent of the interface of the front. Points: measurements, dashed curve: model
prediction for the delay fitted, solid curve: model prediction for a delay two times higher,
and split rate halved in comparison with the fitted functions.
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slope assumes that all kernels are uniformly distributed on S1. However, if
we consider the “true” kernel for branching, we find its mass concentrated on
angles in [−π/2, π/2]. Only after several (two) branches, the direction of the
tip has no correlation with the direction of its ancestor tip. If we only consider
every nth split, we need to multiply the delay by n, and the split rate by 1/n.

Most likely, the parameter of the model (especially the split rate for tips)
is not appropriate any more if the glucose concentration is below one gram
per liter. Especially the split rate enters in a crucial way the equation; and
the split rate is hard to determine for small glucose concentrations as the the
filament of Phytophthora becomes scanty.

6 Spatial simulations

Now we extend the model (1) from above by the influence of glucose. In order
to obtain a simple simulation model, we suppress the dependencies of the rates
on glucose, but consider the following model

ut(t, x, v) + (vT∇) [γu(t, x, v)] = ε

(
−u(t, x, v) +

∫
V

K1(v, v′)u(t, x, v′) dv′
)

+ λ̂(u(x, t− r), u(x, t))

∫
V

K2(v, v′)u(t− r, x, v′) dv′ (9)

with

λ̂(u(x, t− r), u(x, t)) = λ(umax − u(x, t))+u(x, t− r).

Here, umax is an upper bound suggested by the data (see Fig. 6). This model
is augmented by the diffusion equation for glucose,

gt = D∆g − µu(x, t)

with no-flux boundary conditions and initial condition g(x, 0) = g0. Below
we will extent this model further, incorporating a feedback from glucose to
tips. For the moment, we assume that glucose depletion does not play a role.
Note that we only consider tips, not hyphae. Though we basically assume no
explicit dependency of the parameters on the glucose concentration (we use
approximately the values obtained in the last section for glucose levels above
one gram per liter glucose) and only use fitting by eye, we obtain a reasonable
agreement between experiment and model (see Fig. 8). The parameter values
can be found in Tab. 1.

At this point, we want to make three comments:

(a) The numerical scheme used led to a certain spatial anisotropy caused by
the grid the scheme is based on.

(b) The diffusion coefficient is in agreement with Matsunaga et al. [26] when
taking into account that they measured at 370C but using twice as much
of agar in their membrane. We assume that this is a fixed coefficient when
using for D.
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Fig. 8 Spatial model. The solid points are measurements of glucose concentration, the solid
line the concentration predicted by the model. The dash-dotted vertical lines denote the edge
of the front taken from the experiment, the dotted line the concentration of tips according
to the model.

(c) In the early phase, i.e. up to day 1.55 (resp. between day 1 and day 1.55),
glucose consumption resp. velocity is increased by a factor 4.5. This as-
sumption is in line with experimental experience. Most likely, the agar
plug used to inoculate the agar with Phytophthora provides enough nu-
trient to influence the spread in the initial phase. This observation may
also be connected with a better diffusive transport in that stage of the
experiments.
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Variable Value Meaning
D 0.55 10−6 cm2/sec diffusion coefficient
g0 3.5 g/l initial glucose concentration
γ 0.278 cm/day maximal velocity∗

λ 11/day split rate
ε 1.5/day turning rate
umax 1 U maximal tip concentration in arbitrary units
µ 3/(U day) glucose consumption rate per tip and day
ĝ 0.5 g/l below this glucose level growth and splitting stops

(only model 2)

Table 1 Values used in the spatial model (∗Please note that in the initial phase a higher
velocity had to be assumed, see text).

However, though the geometry of the simulations is slightly skewed, and
the two conditions are not completely consistent, we expect the simulations to
give at least semi-quantitative, valid results.

In order to obtain a deeper understanding of the interaction mechanisms
between tips, confrontation experiments have been performed: two colonies
have been placed in one Petri dish. After a few days, the colonies did grow
close. Interestingly enough, the colony growth stops at the point where the
colonies almost touch. There are several mechanisms possible that could lead
to this behavior: (1) glucose drops below a critical level, (2) tips excrete a
substance that inhibits growth and becomes high concentrated in-between the
colonies, or (3) mechanical communication between tips, to name but a few.

The results of the experiments suggest that there is no significant inhibitory
effect of exudates. And as the colonies do not meet in frontal manner but adjoin
side by side after rounding an object Fig. 9b, the most basic assumption, and
thus the first assumption that is to check, is that growth and movement of
Phytophthora stops if the glucose concentration drops below a certain level.

Figures 4 and 5 indicate that velocity and split rate drops suddenly at
glucose concentration somewhere between 0 and 1 gram per liter. We extend
the model above by a feedback from glucose to tip dynamics. Due to simplicity,
we use an extreme caricature of the observation, and take growth and split
rate to 0 below a certain value in defining

λ̂(u(x, t− r), u(x, t), g) = λ(umax − u(x, t))+u(x, t− r)H(g − ĝ) (10)

γ(g) = γH(g − ĝ)

where H(x) denotes the Heaviside function, that is 0 for x negative and one
elsewhere. This is, if the glucose is above a certain level ĝ, the behavior is
like that of the basic model, while there is no splitting and no growth at
glucose levels below ĝ. Apart of this feedback loop, the parameters are the
same like before (see Tab. 1). The results are shown in Fig. 9c. The densities
are displayed on a one-dimensional section through the colony centers. At the
left hand side, we kept the model (9), while we show at the right hand side
the version with influence of glucose depletion on splitting rate and growth,
according to (10) with critical glucose level of ĝ = 0.5g/liter. We find a nice
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Fig. 9 Confrontation experiments. (a) Petri dishes with two colonies after 6 days with
initial colony distance about 2 cm, (b) initial distance 2 cm but rounding an object. Dashes
mark the daily measurements beginning at the second day. (c) Simulations for (a). Solid
curves: glucose, dashed curve: tip density, both over the symmetry axis of the experiment.
Left hand side: model without influence of glucose on the split rate and velocity of tips.
Right hand side: splitting and growing stops if glucose density drops below 0.5 g/liter.

agreement in that the growth of the colonies stops at the point where the
colonies are about to touch each other.
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7 Conclusion

We have developed a model for the morphology and growth of Phytophthora
plurivora depending on the supply of glucose and based on the correlated
random walk with delay in the growth of newly split tips. In the first part
of the paper, we investigated running fronts corresponding to the spread of
Phytophthora in, say, an infected root, assuming that there is no feedback
concerning defense on the part of the host. Using arguments based upon the
considerations in [35], it is indeed possible to find running fronts if we have
uniform turning kernels. These results have been extended to non-uniform
kernels, using the Krein-Rutman theorem. While the role of the delay in the
growth of new tips is unclear, the analysis shows that this delay affects the
velocity of the front only weakly, but is essentially in forming the slope of the
interface of the front: as growing hyphae only seldom change the direction, the
front tends to be very, very steep. With respect to the application, especially
the influence of the delay on different parameters of the front is of interest: we
find that the observed delay in branching behavior has only a minor influence
on the velocity resp. hyphal length, but a strong influence on the slope of
the front. This finding can be understood intuitively, as the new tips only
contribute to the generation of biomass in a delayed way, and this is not at
the very edge of the front. Thus, the front is less steep and therefore the
efficiency of the front-tips to spread and to find new regions well-supported
with nutrient is not decreased by inter-tip competition. Especially if a region
with low nutrient concentration is traversed, a steep front would decrease the
ability of Phytophthora to find its way through this region into a zone with
better food supply by unnecessary competition. The delay is able to prevent
this undesired behavior. The theoretical dependence of the slope on velocity of
the front, split rate, growth rate and delay can be nicely found in experimental
data.

In the second part of our modeling approach is the interaction of tips
concerning the spatial considerations. The density of hyphae of Phytophthora
behind the interface is invariant so that growth happens at the front. This is,
some factor prevents the tips to grow for ever. If this factor can be manipulated,
this could lead to a way to control Phytophthora. Therefore, the model is
augmented by the dynamics of glucose, and by a feedback of glucose depletion
on the growth rate. Two kinds of experiments are used to validate and calibrate
the model: the growth of one colony and the spatiotemporal distribution of the
glucose concentration is monitored in a Petri dish. The second experiment is a
confrontation experiment: two colonies growing in the same Petri dish. In the
last experiment, the colonies stop to grow at the interface at the time point,
when they almost touch respectively, the first hyphae meet but only when
they grow in frontal manner. These experimental findings can be explained
if we assume that the growth as well as the split rate tends to zero if the
glucose rate drops below a critical level. No further interaction is required since
resources are depleted. Based upon the parameters estimated as input, the
model, augmented with the dynamics of glucose, has been simulated. Basically,
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we find only a weak dependency on the glucose level but at a concentration
between 0 and 1 g/L glucose, the growth- and the split rate breaks down.
The velocity depicted in Fig. 4 is (at low glucose concentrations) only due
to very few hyphae. The range of about 0.5 g/L glucose is in line with the
experimental results that have been used to investigate the dependence of the
model parameters on the glucose concentration (Fig. 4 and Fig. 5). A last
observation shows that also the stop of growth in the center of a colony resp.
behind the interface of a front could be explained in this way: the glucose
data and simulations of a single colony (Fig. 8) shows that within a colony the
glucose concentration is (after 3 days) below this critical value; only the edges
of the front obtain enough glucose to be able to grow further or by any chance
very few single hyphae may be able to grow further in order to search new
sources of nutrient. In addition, the concentration of hyphae and tips behind
the front may reach levels that do not allow a further growth.

All in all, we validated the model developed, checking the predicted slope
of the front in dependence of the parameters measured versus the slope of the
front obtained in the experiments. We find a satisfying agreement with exper-
iments with Phytophthora performed in Petri dishes. The difference between
data and model prediction can be easily explained by the simplicity of the
turning kernels used in the theory.

The hope to reveal an intrinsic factor that stops Phytophthora to grow
seems to fail if an susceptible host is however not able to activate any resistance
mechanism or it is not successful: the only thing that stops Phytophthora is
extreme starvation. And this will never happens in a living plant. The other
way around we could hypothesize that the more aliments are available in
the host tissue, the more efficient the pathogen will act as a sink via direct
consumption of assimilates and increasing costs for repair and regrowth of
damaged tissue. Hosts will be impaired by an enduring starvation and become
susceptible to other stresses and pathogen attack.
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