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Abstract

The standard obstacles in developing a bifurcation theory for nonautonomous

differential equations are the lack of steady state equilibria and the insignifi-

cance of eigenvalues in stability investigations. For this reason, various different

techniques have been proposed to specify changes in the qualitative behavior of

time-dependent dynamical systems. In this paper, we investigate and compare

several approaches to nonautonomous bifurcations using SIR-like models from

epidemiology as a paradigm. These models are sufficiently simple to allow ex-

plicit solutions to a large extent and consequently enable a detailed discussion

of the different results.
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1. Introduction

Many phenomena in the life sciences crucially depend on time-varying fac-

tors. They might be intrinsic caused by a temporally fluctuating environment,

or extrinsic due to control or regulation strategies. Provided these phenomena

allow a description in form of evolutionary differential equations, the mathemat-

ical models consequently have to be nonautonomous. Hence, a thorough analy-

sis of such problems requires a generalization of the classical dynamical systems

theory due to several of its limitations. Among them are the facts that eigen-

values do not yield stability information anymore or that steady state equilibria
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1Partially supported the DFG grant KL 1203/7-1, the Ministerio de Ciencia e Innovación
(Spain) grant MTM2008-00088 and the Junta de Andalućıa grant P07-FQM-02468
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might not exist. In particular, the concept of a bifurcation in nonautonomous

systems is far from being well-understood and various different approaches ap-

pear in the literature. They range from stability transitions [26] over changes

in the structure of minimal sets [19] to essentially analytical approaches [22].

To illustrate this we consider a classical and well-known model from math-

ematical epidemiology in form of the SIR equations (cf., e.g., [18, 16, 20, 14]),

in which the coefficients are allowed to be time-dependent. There is a strong

biological motivation to include time-dependent coefficients into epidemiological

models. Certainly the probability to contract a disease is hardly constant over

time and it depends rather on the season (indicating periodic coefficients in (∗)
below). Moreover, in childhood diseases, for instance, the school calendar must

also be taken into account, thus making it necessary to consider more general

time dependencies (see [30, 8, 29]).

The goal of the present paper is two-fold. Firstly, the SIR equations are

sufficiently simple and therefore an ideal vehicle to exemplify and illustrate

some fundamental principles from the recently developed theory of (determinis-

tic) nonautonomous dynamical systems (see, for instance, [13]). Secondly, and

more specifically, they allow different corresponding concepts of a bifurcation for

nonautonomous ordinary differential equations (ODEs) to be presented clearly

without technical distractions.

An immediate issue is the lack of steady state solutions, which requires

the set of possible candidates for bifurcating objects to be enlarged. Three

approaches have been proposed in the literature: [17] and [24] investigate entire

bounded solutions, while [26] is based of changes in attraction rates, and finally

[19] looks at changes in dynamically minimal sets reflecting the characteristics

of the time-forcing.

Our aim is to apply these approaches as well as geometrical tools such as

nonautonomous center manifold reductions to appropriate SIR models. Four

appendices provide background material on basic concepts from the field of

nonautonomous dynamics, including Bohl exponents as a substitute for eigenval-

ues, the process and skew-product formulations of nonautonomous systems and

their attractors, as well as a transcritical bifurcation result due to [26] and cen-

ter integral manifolds. We consider both the intuitive process (two-parameter

semi-group) formulation of nonautonomous dynamical systems, since it is the

most natural generalization of the (semi-)groups known from the autonomous

theory, and the alternative formulation of skew-product flows (cf. [28]). Here

the references [9, 10, 22] deal with bifurcation problems in nonautonomous sys-

tems; the “small-coefficient assumption” in [11, 7] does not, however, fit into our

setting, while the results in [17, 26, 19, 24] are tailor-made for it. A nonauto-

nomous center manifold theory [3, 21, 25] becomes important since [17, 26, 19]

are limited to scalar ODEs. Finally, our approach is based on preparations from

[14] providing some required stability conditions, which were generalized in [2]
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to equations under the effect of diffusion.

The SIR equations are a classical model describing the spread of an epi-

demic in a population, which is partitioned into S (susceptibles), I (infected)

and R (recovered) individuals. Such models will be investigated here under

time-variable parameters or deterministic forcing in the model, so that the total

population N(t) = S(t) + I(t) + R(t) need not be constant. In a temporally

fluctuating environment it turns out to be crucial, which temporal horizon is

of importance, i.e., on which time interval J the dynamical behavior is of in-

terest. Biologically, J might be finite, but mathematics often requires J to be

unbounded in at least one time direction, i.e. of the form

R+ := [0,∞), R− := (−∞, 0].

Fluctuations will be achieved first through a temporal forcing term given by

a function q : J → R taking nonnegative bounded values, i.e., q(t) ∈ [q−, q+]

for all t ∈ J for some 0 ≤ q− ≤ q+, and later with a time varying interaction

coefficient γ between the S and I variables.

The general SIR model investigated here is a 3-dimensional system of ODEs
Ṡ = aq(t)− aS + bI − γ(t)

SI

N(t)
,

İ = −(a+ b+ c)I + γ(t)
SI

N(t)
,

Ṙ = cI − aR,

(∗)

where the parameters a, b and c are positive constants. Later they will also be

allowed to vary in time within suitable nonnegative bounds. This means that

solutions with nonnegative initial values remain nonnegative. Moreover, from a

technical perspective, the functions q, γ : J → R are typically assumed to be

continuous or essentially bounded.

Adding both sides of the system (∗) gives the scalar nonautonomous ODE

Ṅ = a(q(t)−N) (1.1)

for the total population N , which has the general solution

N(t) = N0e
−a(t−t0) + ae−at

∫ t

t0

q(s)eas ds (1.2)

satisfying N(t0) = N0. Since ae−at
∫ t
t0
eas ds = 1 − e−a(t−t0), by the positivity

bounds on q(t) the integral in (1.2) takes values between

q−
(

1− e−a(t−t0)
)
≤ ae−at

∫ t

t0

q(s)eas ds ≤ q+
(

1− e−a(t−t0)
)

for all t ≥ t0.

This means the total population is bounded from above and below, specifically

q− +
(
N0 − q−

)
e−a(t−t0) ≤ N(t) ≤ q+ +

(
N0 − q+

)
e−a(t−t0).
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Figure 1: Simplex slap Σ±
3

Hence the simplex slab (see Fig. 1)

Σ±3 =
{

(S, I,R) ∈ R3 : S, I,R ≥ 0, N = S + I +R ∈ [q−, q+]
}

attracts all populations starting outside it and populations originating within it

remain there. When the forcing term q(t) is not identically equal to a constant,

the simplex slab Σ±3 will, in fact, absorb outside populations in a finite time

and will be positively invariant (rather than strictly invariant), so attention can

be restricted to the dynamics in Σ±3 . Moreover, Σ±3 then contains an attractor,

which, in the present time-varying framework, is a pullback attractor (cf. [13,

pp. 37ff, Chapt. 3]).

Due to its nonautonomous character the ODE (1.1) has no steady state so-

lutions, but has what Chueshov [5] called a nonautonomous equilibrium solution

in a random dynamical systems set-up. It is found by taking the pullback limit

in (1.2) (i.e., as the initial t0 → −∞ with the current time t held fixed, see [13]),

namely

N?
a (t) = ae−at

∫ t

−∞
q(s)eas ds. (1.3)

This concept requires the interval J to be unbounded from below. The nonau-

tonomous equilibrium N?
a also forward attracts all other solution of the linear

ODE (1.1), i.e.,

|N(t)−N?
a (t)| = e−a(t−t0) |N(t0)−N?

a (t0)| → 0 as t→∞,

if J is also unbounded from above, so J = R. In particular, (1.3) reduces to the

nontrivial equilibrium N?
a (t) ≡ q on J for constant functions q, which clearly

reflects the leitmotiv that the steady state equilibria of autonomous equations

persist as bounded entire solutions for time-varying parameters (cf. [23]).

2. The SI equations with variable population

Suppose that the interaction coefficient γ in (∗) is constant and, for simplic-

ity, assume that the R component is not present in (∗) and c = 0, which means

4



solutions can then be determined explicitly. The equations (∗) reduce to
Ṡ = aq(t)− aS + bI − γ SI

N(t)
,

İ = −(a+ b)I + γ
SI

N(t)
.

(∗2)

Without an infected population I0 = 0, then I(t) ≡ 0. Hence the S face of

Σ±2 =
{

(S, I) ∈ R2 : S, I ≥ 0, S + I ∈ [q−, q+]
}

(see Fig. 2) is invariant and the equations reduce to the scalar linear problem

Ṡ = aq(t)− aS, (2.1)

which has the general solution

S(t) = e−a(t−t0)S0 + ae−at
∫ t

t0

q(s)eas ds

with S(t0) = S0. As with (1.1) above, (2.1) has no steady state solution (unless

q(t) is constant), but it possesses a nonautonomous equilibrium S?a that is again

found by taking the pullback limit (i.e., as t0 → −∞ with t held fixed), namely

S?a(t) = ae−at
∫ t

−∞
q(s)eas ds,

provided J is unbounded below. When J = R, this also forward attracts all

other solution of the S equation in the I = 0 face exponentially, i.e.,

|S(t)− S?a(t)| → 0 as t→∞.

Σ±
2

q− q+ S

I

S?a

Σ±
2

q− q+ S

I

S?a

(S∗
γ , I

∗
γ)(S∗

γ , I
∗
γ)

t t

Figure 2: The simplex slap Σ±
2 (shaded in grey) and nonautonomous equilibria to (∗2):

Left: (S?a , 0) is globally asymptotically stable for γ ≤ a+ b
Right: (S∗

γ(t), I∗γ (t)) is globally asymptotically stable for γ > a+ b

In particular, the full SI dynamics in (∗2) has no steady state solution,

but a nonautonomous equilibrium solution (S?a(t), 0). We say such a solution
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is (globally asymptotically) stable w.r.t. a set A ⊆ R2, if it fulfills the usual

corresponding stability definition with initial values taken from A rather than

the full state space. The following results are taken from [14], where merely

stability rather than bifurcation issues were tackled.

Proposition 2.1. [14, Lemma 1] The nonautonomous equilibrium (S?a(t), 0) of
(∗2) is globally asymptotically stable w.r.t. Σ±2 when γ ≤ a + b. It is unstable
w.r.t. Σ±2 , when γ > a+ b.

Proposition 2.2. [14, Lemma 2] The nonautonomous equilibrium (S∗γ(t), I∗γ (t))
of (∗2), where

S∗γ(t) = N?
a (t)− I∗γ (t), I∗γ (t) =

e(γ−a−b)t

γ
∫ t
−∞

e(γ−a−b)s

N?
a (s)

ds

and N?
a (t) is from (1.2), is globally asymptotically stable w.r.t. the interior of

Σ±2 for γ > a+ b.

If the contact rate γ increases through the critical value a+ b, there is thus

a change of stability from the infection-free solution (S?a(t), 0) to the nontrivial

solution (S∗γ(t), I∗γ (t)) (cf. Fig. 2). It is a folklore result from the autonomous

theory that this goes hand in hand with a bifurcation occurring at γ = a+b. In-

deed, for the autonomous special case with constant q the asymptotically stable

steady state equilibrium (S?a , 0) = (q, 0) undergoes a transcritical bifurcation

into the steady state equilibrium

(S∗γ , I
∗
γ ) =

q

γ
(a+ b, γ − a− b).

For time-varying q, a similar classification is possible. First, this requires a

nonautonomous center manifold reduction described in Appendix D (and thus

with J unbounded below) together with a suitable bifurcation result allowing

time-dependent parameters. We illustrate this using the approach from [26],

where a bifurcation means a change in the attraction and repulsion radii. An

application of the terminology from Appendix B.1 to the problem (∗2) yields:

Theorem 2.3 (transcritical bifurcation in (∗2)). If J is unbounded below, then
there exists a neighborhood Γ ⊆ R of the critical parameter γ∗ = a+ b such that
for all γ ∈ Γ the disease-free nonautonomous equilibrium (S?a(t), 0) to (∗2)

(a) is J-attractive for γ < a+b and J-repulsive for γ > a+b. In case γ = a+b
and J = R, it is unstable.

(b) undergoes a bifurcation in the sense that its corresponding radii of J-at-
traction and -repulsion satisfy

lim
γ↗a+b

ρ+
γ (S?a(t), 0) = 0 = lim

γ↘a+b
ρ−γ (S?a(t), 0).

The fact that the disease-free solution is unstable for γ = a + b does not

contradict Proposition 2.1, since Theorem 2.3 takes a whole R2-neighborhood

of (S?a(t), 0) into account, rather than only initial values in the simplex slab Σ±2 .
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Proof. After some preliminaries, the proof consists of three steps. By assump-
tion, the nonautonomous equilibrium S?a(t) of (2.1) satisfies q− ≤ S?a(t) ≤ q+

for all t ∈ J . Denote the right-hand side of (∗2) by

F (t, S, I) :=

aq(t)− aS + bI − γ SI

S + I

−(a+ b)I + γ
SI

S + I

 .

Then the equation of perturbed motion for (∗2) corresponding to the entire
bounded solution (S?a(t), 0) is given by the planar nonautonomous system

(
Ṡ

İ

)
= f(t, S, I), f(t, S, I) :=

−aS + bI − (a+ b+ λ)
(S + S∗a(t))I

S + S∗a(t) + I

−(a+ b)I + (a+ b+ λ)
(S + S∗a(t))I

S + S∗a(t) + I

 ,

where we substituted γ = a+ b+ λ. It has the trivial solution for all λ ∈ R.

(I) To perform a nonautonomous center manifold reduction, as in Appendix D
we augment the above ODE with λ̇ = 0 and apply the transformationy1

y2

y3

 :=

1 1 0
0 1 0
0 0 1

SI
λ


which gives the 3-dimensional system

ẏ = Ay + F (t, y) (2.2)

with A := diag(−a, 0, 0) and the nonlinearity

F (t, y) :=


0

y2
−(a+ b)y2 + y3(y1 − y2 + S?a(t))

y1 + S?a(t)
0

 .

By Appendix D the nonautonomous system (2.2) in R3 has a 2-dimensional
center integral manifold W ⊆ J × R3 given as the graph y1 = w(t, y2, y3) of a
smooth mapping w and the ODE (2.2) reduced to W therefore becomes

ẏ2 = y2
y3(w(t, y2, y3)− y2 + S?a(t))− (a+ b)y2

w(t, y2, y3) + S?a(t)
=: g(t, y2, y3).

Taking into account y3 = λ (constant) and the identity w(t, 0, λ) ≡ 0 as well as
D(2,3)w(t, 0, 0) ≡ 0 on J (cf. (d1)), the reduced equation is

ẏ2 = λy2 −
a+ b+ λ

S?a(t)
y2

2 + r(t, y2, λ) (2.3)

with

r(t, y2, λ) :=
λ(w(t, y2, λ)− y2 + S?a(t))− (a+ b)y2

w(t, y2, λ) + S?a(t)
y2 − λy2 +

a+ b+ λ

S?a(t)
y2

2 .

(II) To verify a transcritical bifurcation in (2.3) we make use of Theorem C.1,
whose notation we mimic in the following. First, r(t, 0, λ) ≡ 0. We now succes-
sively verify the assumptions of Theorem C.1.
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(i) The linearized equation ẏ2 = λy2 has the transition mapping Φλ(t, s) =
eλ(t−s), we choose K = 1 and the functions γ+(λ) = γ−(λ) = λ are
monotone increasing.

(ii) With (D.7) we compute the second order term D2
2g(t, 0, λ) = −2 (a+ b+

λ)/S?a(t), which is strictly negative for λ near 0. This gives the estimates

−a+ b+ λ

q−
≤ inf
t∈J

(
−a+ b+ λ

S?a(t)

)
≤ sup

t∈J

a+ b+ λ

S?a(t)
≤ −a+ b+ λ

q+

and therefore

−∞ < lim
λ→0

inf
t∈J

(
−a+ b+ λ

S?a(t)

)
≤ lim
λ→0

sup
t∈J

(
−a+ b+ λ

S?a(t)

)
≤ −a+ b

q+
< 0.

(iii) It remains to check the conditions on the remainder in the third order
Taylor approximation of g near x = 0. For this purpose, we deduce

D3
2g(t, x, λ) =

a+ b+ λ

(w0 + S?a(t))4

(
− 6x2S?a(t)w2w1 + x2S?a(t)2w3

+ 2x2S?a(t)w0w3 − 12xS?a(t)w2
1 + 6S?a(t)2w1 + 12S?a(t)w0w1

+ 6xS?a(t)2w2 + 12xS?a(t)w0w2 + 6x2w3
1 − 6x2w0w2w1

+ x2w2
0w3 − 12xw0w

2
1 + 6w2

0w1 + 6xw2
0w2

)
with the terms wj := Dj

2w(t, x, λ), 0 ≤ j ≤ 3, which are uniformly
bounded in a tubular set R × U , where U ⊆ R2 is a neighborhood of 0.
Together with the boundedness of S?a this guarantees that the two limit
relations assumed in Theorem C.1 are fulfilled.

Therefore, Theorem C.1 applies to the scalar equation (2.3).

(III) The attraction/repulsion properties of (S?a , 0) are a consequence of the
reduction principle (see [3] or [13, Theorem 6.25]) guaranteeing that the behavior
of (2.3) extends the the planar equation (∗2).

It remains to show that the nonautonomous equilibrium (S?a(t), 0) is unstable
for γ = a + b. This follows from the reduction property (d3) of W. Indeed, in
case λ = 0 and referring to (2.3), the reduced differential equation becomes
ẏ2 = −(a+ b)y2

2/S
?
a(t) +O(y3

2) uniformly in t ∈ R, with unstable zero solution.
Again, by the reduction principle, this stability property extends to (∗2).

Such an observation corresponds to Propositions 2.1 and 2.2, where the

asymptotic stability of the solution (S?a(t), 0) is transferred to (S∗γ(t), I∗γ (t)).

3. The SI equations with variable interaction

Consider the SI equations in (∗) for a constant driving q and thus with a

constant limiting population

N(t) = S(t) + I(t) ≡ 1 on J, (3.1)

8



but now with a time-variable interaction term γ(t). For the sake of a bifurcation

analysis we suppose that γ : J → R depends on a real parameter λ and write

instead γλ. In particular, we assume that γλ : J → [γ−, γ+] is a continuous

function, where 0 < γ− ≤ γ+; hence (∗) becomesṠ = a− aS + bI − γλ(t)SI,

İ = −(a+ b)I + γλ(t)SI.
(∗3)

This planar ODE (∗3) has the disease-free steady state equilibrium solution

(S?(t), I?(t)) ≡ (1, 0) on J

for all parameters λ. On adding, the equations reduce to the autonomous ODE

Ṅ = a− aN,

which has the globally asymptotically stable steady state solution N?(t) ≡ 1.

This allows the analysis to be restricted to the compact 2-simplex

Σ2 =
{

(S, I) ∈ R2 : S, I ≥ 0, S + I = 1
}
.

Equation (∗3) can be reduced to a Bernoulli differential equation

İ = (γλ(t)− a− b)I − γλ(t)I2, (∗3.1)

which has the explicit solution

I(t) =
exp

(∫ t
t0

[γλ(s)− a− b] ds
)

1 + I0
∫ t
t0
γλ(s) exp

(∫ s
t0

[γλ(r)− a− b] dr
)
ds

satisfying I(t0) = I0. Taking the pullback limit t0 → −∞, the planar system

(∗3) possesses the nonautonomous equilibrium (I∗λ(t), S∗λ(t)),

I∗λ(t) =

(∫ t

−∞
γλ(r)e−

∫ t
r
γλ(s)−a−b ds dr

)−1

, S∗λ(t) = 1− I∗λ(t). (3.2)

For constant interaction rates γλ(t) ≡ λ on J we obtain

I∗λ(t) ≡ λ− a− b
λ

, S∗λ(t) ≡ a+ b

λ
.

This is the nontrivial equilibrium to what is then the autonomous equation (∗3).

3.1. Disease-free equilibrium

In [14] it was shown that the disease-free steady state equilibrium (S?, I?) =

(1, 0) is globally asymptotically stable w.r.t. Σ2 when γ+ ≤ a+ b; it is unstable

when γ− > a + b. In order to determine the stability of the trivial solution

without such uniformity assumptions on the function γλ, we need the concepts

of upper and lower Bohl exponents, that are defined in Appendix A.
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Proposition 3.1. The disease-free equilibrium (1, 0) to (∗3) is uniformly asymp-
totically stable for βJ(γλ) < a+ b and unstable for β

J
(γλ) > a+ b.

In the following we sometimes use the convenient abbreviation

γ + [α, β] := [α+ γ, β + γ] for all α, β, γ ∈ R.

Proof. Due to (3.1) we can restrict to the scalar equation (∗3.1). Since both
a and b are constant in time, thanks to (A.1) the linear part of (∗3.1) has the
dichotomy spectrum −a−b+[β

J
(γλ), βJ(γλ)]. Propositions 3.9 and 3.10 of [24]

then imply the claim.

This result indicates a bifurcation in (∗3.1) (and thus (∗3)) for interaction

rates γλ, when the Bohl exponents satisfy β
J

(γλ) = a+ b or βJ(γλ) = a+ b. A

more detailed analysis in this direction will be given now.

The first result is based on a skew-product formulation of (∗3) resp. (∗3.1),

i.e., the nonautonomity in (∗) is induced by a driving-system on a compact

metric space Ω. The required terminology is introduced in Section B.2 of the

Appendix. More precisely, this means the interaction coefficient γλ becomes

γλ(t) = Γ(φt(ω), λ) for all t ∈ J = R

with a function Γ : Ω×R→ R and a compact space Ω. The flow φt : Ω→ Ω is

assumed to be minimal and uniquely ergodic w.r.t. a unique ergodic measure m0

satisfying m0(Ω) > 0. Writing Iλ(·; ι, ω) for the solution to the corresponding

initial value problem

İ = (Γ(φt(ω), λ)− a− b)I − Γ(φt(ω), λ)I2, I(0) = ι,

we see that (∗3.1) generates a local skew-product flow Φtλ : R×Ω→ R×Ω with

Φtλ(ι, ω) :=

(
Iλ(t, ι, ω)

φt(ω)

)

on R×Ω. We use the terminology in Section B.2, in particular Ḃr(a) and Br(a)

represent, respectively, the open and closed balls about a of radius r.

Theorem 3.2 (transcritical bifurcation in (∗3) I). Let J = R. If there exists
a neighborhood V ⊆ R of 0 such that Γ, D2Γ : Ω × V → R are continuous and
satisfy

Γ(ω, λ) > 0, D2Γ(ω, λ) > 0 for all (ω, λ) ∈ Ω× V,
then the disease-free equilibrium (1, 0) to (∗3) undergoes a transcritical bifurca-
tion at the critical parameter λ∗ = 0 as follows: There exists a δ > 0 and a
compact neighborhood U ⊆ Σ2 of (1, 0) such that

(a) The set O := {(1, 0)} × Ω is the unique Φ0-minimal set in U × Ω and a
nonhyperbolic copy of the base.
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(b) For all λ ∈ Ḃδ(0) the set U × Ω contains exactly one Φλ-invariant set
besides O, namely

Mλ =
{(

1− Ĩλ(ω), Ĩλ(ω), ω
)

: ω ∈ Ω
}
. (3.3)

Here, Mλ varies continuously in the parameter λ ∈ Bδ(0). Furthermore,
both O and Mλ are hyperbolic copies of the base and have opposite-sign
Lyapunov exponents

Λ(0) =

∫
Ω

Γ(ω, λ) dm0(ω)− (a+ b)m0(Ω),

Λ(Ĩλ) =

∫
Ω

Γ(ω, λ)(1− 2Ĩλ(ω)) dm0(ω)− (a+ b)m0(Ω).

(c) The limit limλ→0 supω∈Ω

∣∣∣Ĩλ(ω)
∣∣∣ = 0 holds.

Proof. (I) We mimic the notation of [19, Section 4.1] and write the right-hand
side of the scalar ODE (∗3.1) accordingly in the form İ = W (φtω, I, λ)I with the
affine function W (ω, I, λ) := Γ(ω, λ)−a−b−Γ(ω, λ)I. Clearly, W is continuous
as are its partial derivatives D2W (ω, I, λ) = −Γ(ω, λ),

D3W (ω, I, λ) = D2Γ(ω, λ)(1− I), D2
2W (ω, I, λ) = 0.

The positivity assumption on Γ(ω, λ) ensures partial derivatives D2W (ω, 0, 0) >
0 and D3W (ω, 0, 0) > 0. Therefore, [19, Theorem 4.4] applies and yields the
nonhyperbolic set {0} × Ω as a unique Φ0-minimal set in U × Ω, which is a
copy of the base. In addition, for λ ∈ Ḃδ(0) the set U ×Ω contains exactly two
Φλ-invariant sets M±λ =

{
(I±λ (ω), ω) : ω ∈ Ω

}
, which, furthermore, are both

hyperbolic copies of the base, vary continuously in the parameter λ ∈ Bδ(0)
and have opposite-sign Lyapunov exponents

Λ(I±λ ) =

∫
Ω

Γ(ω, λ)(1− 2I±λ (ω)) dm0(ω)− (a+ b)m0(Ω).

Moreover, limλ→0 supω∈Ω

∣∣I±λ (ω)
∣∣ = 0.

(II) Since (∗3.1) has the trivial solution, one of the Φλ-minimal sets M±λ from
step (I) is the graph of the function I+

λ (ω) ≡ 0 on Ω. In view of the identity

(3.1), the assertion follows for Ĩλ := I−λ and Mλ as defined in (3.3).

We now discuss two further and different possible bifurcation scenarios:

• A transcritical bifurcation caused by the fact that the amplitude of the

temporal fluctuation is increased.

• A shovel bifurcation due to a change in the range of the fluctuation.

3.1.1. Transcritical bifurcation

We suppose that the interaction term γλ is given by γλ(t) = a + b + λδ(t)

for a continuous function δ : J → R having positive values in [δ−, δ+], where
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0 < δ− ≤ δ+. With λ serving as bifurcation parameter controlling the amplitude

of the interaction coefficient, (∗3.1) reduces to

İ = λδ(t)I − (a+ b+ λδ(t))I2 (∗13.1)

and we obtain

Theorem 3.3 (transcritical bifurcation in (∗3) II). If J is unbounded, then
there exists a neighborhood Λ ⊆ R of the critical parameter λ∗ = 0 such that for
all λ ∈ Λ the disease-free equilibrium (1, 0) to (∗3)

(a) is J-attractive for λ < 0 and J-repulsive for λ > 0. In the case λ = 0 and
J = R, it is unstable.

(b) undergoes a bifurcation in the sense that the corresponding radii of J-at-
traction and J-repulsion satisfy

lim
λ↗0

ρ+
λ (1, 0) = 0 = lim

λ↘0
ρ−λ (1, 0).

An illustration of Theorem 3.3 for a concrete function δ can be seen in Fig. 3.

Remark 1. (1) Restricting to solutions with nonnegative initial values, the
equilibrium (1, 0) is asymptotically stable for λ = 0.
(2) In the biologically irrelevant situation that δ : J → R has negative values in
an interval [δ−, δ+] with δ− ≤ δ+ < 0, a dual version to Theorem 3.3 holds with
attraction/repulsion properties as claimed in Theorem C.1(b).

Proof. Since it is a scalar ODE with trivial solution, we aim to apply Theo-
rem C.1 directly to (∗3.1) with the right-hand side g(t, x, λ) := λδ(t)x− (a+ b+
λδ(t))x2, while the transfers to the full planar system (∗3) follows using (3.1).

(i) First, since D2g(t, 0, λ) = λδ(t), the transition matrix of the linear part is

Φλ(t, s) = exp

(
λ

∫ t

s

δ(r) dr

)
for all s, t ∈ J

and thus we choose γ±(λ) = δ±λ for λ ∈ R. In particular, γ± are strictly
increasing.

(ii) Second, the relation D2
2g(t, 0, λ) = −2(a + b + λδ(t)) together with the

facts a+ b > 0 and δ(t) ∈ [δ−, δ+] ⊆ (0,∞) ensure that assumption (ii) of
Theorem C.1 holds.

(iii) Finally, D3
2g(t, x, λ) ≡ 0 on J × R× R.

Therefore, Theorem C.1(a) applies to (∗13.1) and (3.1) then establishes the claim.

On the other hand, equation (∗13.1) resembles the problems investigated in

[17] and beyond Theorems 3.2 and 3.4 we obtain the additional information:

Theorem 3.4 (transcritical bifurcation in (∗3) III). If J = R, then there exist
neighborhoods U ⊆ R and Λ of λ = 0 so that for all λ ∈ Λ the disease-free
steady state equilibrium (1, 0) of (∗3) undergoes a transcritical bifurcation at
the critical parameter λ∗ = 0 as follows:

12



Figure 3: Nonautonomous transcritical bifurcation in (∗13.1): The trivial solution looses stabil-
ity at the parameter value λ = 0 and a bounded entire solution becomes attractive (parameters

a = b = 1, δ(t) = 4+3.5 sin( t
2

2
) and λ increases from the value −0.1 (top, left) to 0.15 (bottom,

right) in steps of 0.05)

(a) For λ < 0 the equilibrium (1, 0) is pullback attracting and there exists
another entire solution (S∗λ(t), I∗λ(t)) with I∗λ(t) ∈ U ∩ (−∞, 0) for all
t ∈ R, which is asymptotically unstable and satisfies

lim
λ↗0

(S∗λ(t), I∗λ(t)) = (1, 0) for all t ∈ R.

(b) For λ = 0 the equilibrium (1, 0) is (forwards) asymptotically unstable, but
still pullback attracting within Σ2.

(c) For λ > 0 the equilibrium (1, 0) is asymptotically unstable and there exists
another entire solution (S∗λ(t), I∗λ(t)) with I∗λ(t) ∈ U ∩ (0,∞) for all t ∈ R,
which is pullback attracting within Σ2 and satisfies

lim
λ↘0

(S∗λ(t), I∗λ(t)) = (1, 0) for all t ∈ R.

Proof. We mimic the notation of [17, Theorem 7] and denote the right-hand side
of (∗13.1) by G(t, x, λ) := λδ(t)x − (a + b + λδ(t))x2. Obviously, G(t, 0, λ) ≡ 0
and D2G(t, 0, 0) ≡ 0 on R× R. We introduce the abbreviations

f(t) := D2D3G(t, 0, 0) = δ(t), g(t) := − 1
2D

2
2G(t, 0, 0) = a+ b for all t ∈ R,

13



as well as γ(t, λ) := λδ(t). Hence, we can write (∗13.1) as

İ = λf(t)I − [g(t) + γ(t, λ)]I2.

Then all of the assumptions of [17, Theorem 7] are fulfilled.

3.1.2. Shovel bifurcation

Another, somewhat rough, bifurcation scenario occurs when the interaction

function γλ has the form

γλ(t) = a+ b+ λ+ δ(t)

with some continuous function δ. The real bifurcation parameter λ controls the

fluctuation of the interaction coefficient. Here, (∗3.1) reads as

İ = (λ+ δ(t))I − (a+ b+ λ+ δ(t))I2. (∗23.1)

We understand a bifurcation now as a change in the number of bounded entire

solutions to (∗23.1) under variation of λ.

Theorem 3.5 (supercritical shovel bifurcation in (∗3)). If J = R, then there
exist neighborhoods U ⊆ Σ2 of the disease-free steady state equilibrium (1, 0)
and Λ of the critical parameter λ∗ = −βR(δ) such that with λ ∈ Λ:

(a) For λ < −βR(δ) the unique entire bounded solution of (∗3) in U is the
equilibrium (1, 0); it is uniformly asymptotically stable w.r.t. Σ2.

(b) For λ = −βR(δ) and βR+
(δ) < βR(δ) the equilibrium (1, 0) is asymptoti-

cally stable w.r.t. Σ2.

(c) For λ > −βR(δ) and

(c1) if βR+
(δ) < βR(δ), then the equilibrium (1, 0) is asymptotically stable,

and embedded into a 1-parameter family of bounded entire solutions
to (∗3),

(c2) if βR+
(δ) = βR(δ), then the equilibrium (1, 0) is unstable.

Proof. The linearization of the scalar ODE (∗23.1) reads as İ = (λ + δ(t))I and
the corresponding dichotomy spectra are ΣJ(λ) = λ + [β

J
(δ), βJ(δ)]. Hence,

their maxima and minima are increasing with λ and the smaller critical pa-
rameter value is given for λ∗ = −βR(δ). The claim then follows from [24,
Theorem 4.14(b)] in view of (3.1).

Example 3.6. Given strictly decreasing functions δ : R → R with limits
limt→±∞ δ(t) = δ± and reals δ+ < δ−, one deduces from Example A.1 that

βR(δ) = max {δ+, δ−} = δ−, βR+
(δ) = βR+

(δ) = δ+.

Consequently the assertions of Theorem 3.5(a)–(c1) hold, while the assumption
of assertion (c2) is violated. More precisely, for λ < −δ− the trivial solution of
(∗23.1) is uniformly asymptotically stable and the unique bounded entire solution
to (∗23.1). In the critical case λ = −δ− the trivial solution is asymptotically stable
and for λ > −δ− it is embedded into a family of bounded entire solutions. This
is illustrated illustration in Fig. 4(left).
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Figure 4: Shovel bifurcation in (∗23.1) with parameters a = b = 1 and the strictly decreasing

function δ(t) := a+b
π

arctan(−t):
Left (supercritical situation from Ex. 3.6): The uniformly asymptotically stable trivial solu-
tion bifurcates into a 1-parameter family of asymptotically stable solutions as λ grows through
λ∗ = −1 (for parameters λ ∈ {−1.5,−1,−0.5}).
Right (subcritical situation from Ex. 3.8): The asymptotically stable trivial solution is em-
bedded into a 1-parameter family of asymptotically stable solutions and becomes unstable as
λ grows through the value λ∗ = 1 (for parameters λ ∈ {0.5, 1, 1.5}).

Theorem 3.7 (subcritical shovel bifurcation in (∗3)). If J = R, then there exist
neighborhoods U ⊆ Σ2 of disease-free steady state equilibrium (1, 0) and Λ of the
critical parameter λ∗ = −βR(δ) such that with λ ∈ Λ:

(a) For λ < −βR(δ)

(a1) if βR(δ) = βR(δ), then the equilibrium (1, 0) is uniformly asymptoti-

cally stable and the unique entire bounded solution in U of (∗23.1),

(a2) if βR(δ) = βR+
(δ), then the equilibrium (1, 0) is asymptotically stable,

and for βR(δ) < βR−
(δ) it is embedded into an 1-parameter family of

bounded entire solutions to (∗3),

(a3) if βR(δ) < βR+
(δ), then the equilibrium (1, 0) is unstable.

(b) For λ = −βR(δ) and βR(δ) < βR+
(δ) the equilibrium (1, 0) is unstable.

(c) For λ > −βR(δ) the equilibrium (1, 0) is unstable and the unique entire
bounded solution of (∗3) in U .
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Proof. For the critical value λ∗ = −βR(δ) the claims follow as in the above proof
of Theorem 3.5 using [24, Theorem 4.15(a)].

The following example illuminates that a subcritical shovel bifurcation in

(∗23.1) can be interpreted as transcritical bifurcation on the nonnegative semi-

axis J = R+ in the sense of Theorem C.1.

Example 3.8. With the same asymptotically constant function δ : R → R as
in Example 3.6 it follows from Example A.1 that

βR(δ) = δ−, βR(δ) = δ+,

βR−
(δ) = δ−, βR+

(δ) = βR+
(δ) = δ+.

Theorem 3.7 can then be applied to (∗23.1) with the critical parameter value
λ∗ = −δ+. In detail, for λ < −δ+ case (a2) applies, the trivial solution is
asymptotically stable and embedded into a 1-parameter family of bounded entire
solutions. At the critical value λ = −δ+, Theorem 3.7(b) yields no stability
information on the trivial solution, but for λ > −δ+ the trivial solution becomes
unstable and isolated as a bounded entire solution to (∗23.1); see Fig. 4(right).

A further branching process occurs beyond this subcritical shovel bifurcation,
which we will describe now. Since the function δ is asymptotically constant for
t → ∞ with limit δ+, the ODE (∗23.1) is asymptotically autonomous with the
limit system

İ = (λ+ δ+) I − (a+ b+ λ+ δ+) I2.

It is clear that the trivial solution to this autonomous ODE transcritically bi-
furcates into the nontrivial branch (λ + δ+)/(a + b + λ + δ+) at the critical
parameter λ∗ = −δ+. In addition, λ∗ is also a critical value for a transcritical
bifurcation of the zero solution to the nonautonomous ODE (∗23.1) in the sense
of Theorem C.1 on the semi-axis J = R+. Indeed, writing the right-hand side
of (∗23.1) as g(t, x, λ) = (λ+ δ(t))x− (a+ b+ λ+ δ(t))x2 gives

(i) D2g(t, 0, λ) = λ+ δ(t), thus limt→∞D2g(t, 0, λ) = λ+ δ+, so we can write
the linearization of (∗23.1) along the zero solution as ẋ = αλx+ b(t)x with

αλ := λ+ δ+, b(t) := δ(t)− δ+.

Under the summability assumption δ − δ+ ∈ L1(J,R), Proposition A.3
applies and yields

exp

(∫ t

s

D2g(r, 0, λ) dr

)
≤ Ke(λ+δ+)(t−s) for all s, t ≥ 0

with K := exp
(∫∞

0
|δ(r)− δ+| dr

)
. Hence, we can choose the increasing

functions γ±(λ) := λ+ δ+ which satisfy limλ→−δ+ γ±(λ) = 0.

(ii) For the partial derivative D2
2g(t, 0, λ) = −2(a+ b+ λ+ δ(t)), since

a+ b+ λ+ δ+ ≤ a+ b+ λ+ δ(t) ≤ a+ b+ λ+ δ− for all t ≥ 0,

we have

−2(a+b+λ+δ−) ≤ inf
t≥0

D2
2g(t, 0, λ) ≤ sup

t≥0
D2

2g(t, 0, λ) ≤ −2(a+b+λ+δ+)
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and in the limit λ→ −δ+ we obtain

−2(a+ b+ δ− − δ+) ≤ lim
λ→−δ+

inf
t≥0

D2
2g(t, 0, λ)

≤ lim
λ→−δ+

sup
t≥0

D2
2g(t, 0, λ) ≤ −2(a+ b) < 0.

(iii) Since D3
2g(t, x, λ) ≡ 0 the assumption (iii) of Theorem C.1 is also satisfied.

Specifically, Theorem C.1(a) applies to (∗23.1) on J = R+ and shows that the
R+-attractive trivial solution becomes R+-repulsive as λ increases through the
critical value −δ+ and, moreover, that the scalar ODE (∗23.1) exhibits a R+-bi-
furcation with radii satisfying limλ↗−δ+ ρ

+
λ (0) = 0 = limλ↘−δ+ ρ

−
λ (0).

3.2. Endemic equilibrium

Consider now the possibility that a nontrivial equilibrium exists for the SI-

system (∗3), i.e., with I 6= 0. It cannot exist as a steady state, so a nonau-

tonomous equilibrium (S∗λ(t), I∗λ(t)) will be sought. As above, its explicit form

is given in (3.2). A sufficient criterion for its stability can be found in [14,

Lemma 4]. In general, the dynamical behavior of the entire solution I∗λ(t) to

(∗3.1) corresponds to the asymptotics of the trivial solution to the associated

equation of perturbed motion

İ =
[
(1− 2I∗λ(t))γλ(t)− a− b

]
I − γλ(t)I2. (∗3.2)

Since both differential equations (∗3.1) and (∗3.2) share a very similar struc-

ture, the same techniques from [17, 19, 26, 24], as illustrated in the previous

Section 3.1, apply and we will not discuss them explicitly here.

On the other hand, in the Section 3.1 we discussed various stability changes

for the equilibrium (1, 0) to (∗3), as a parameter crosses a critical value, and

stability of (1, 0) is transferred to (S∗λ(t), I∗λ(t)). We therefore expect a dual

behavior of the nontrivial equilibrium here.

4. The SIR model with variable population

In this section we return to the full SIR system (∗), specifically with a vari-

able population, but constant interaction rates, and the asymptotically stable

limiting population N?
a (t) given in (1.3), i.e.,
Ṡ = aq(t)− aS + bI − γ SI

N?
a (t)

,

İ = −(a+ b+ c)I + γ
SI

N?
a (t)

,

Ṙ = cI − aR,

(∗4)

from which it is convenient to eliminate the S variable and just consider the

equations for the I and R variables in (∗4). Essentially, we replace S by the
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q+

Figure 5: Time-dependent triangular sets T2 with fibers T2(t0) and T2(t1)

difference S = N?
a (t)− I −R in the I equation of (∗4) to obtain the IR-system

İ = (γ − a− b− c)I − γ I(I +R)

N?
a (t)

,

Ṙ = cI − aR,
(∗4.1)

where 0 ≤ I, R ≤ N?
a (t), i.e., with solutions in time-dependent triangular sets

T2(t) :=
{

(I,R) : I,R ≥ 0, 0 ≤ I +R ≤ N?
a (t)

}
,

and hence in the common compact subset (see Fig. 5)

T2(t) ⊂
{

(I,R) ∈ R2 : I,R ≥ 0, 0 ≤ I +R ≤ q+
}
.

Proposition 4.1. [14, Lemma 5] The disease-free nonautonomous equilibrium
(S?a(t), 0, 0) to (∗4) with

S?a(t) = N?
a (t) = ae−at

∫ t

−∞
q(s)eas ds,

is globally asymptotically stable w.r.t. Σ±3 for γ ≤ a + b + c and unstable for
γ > a+ b+ c.

The nontrivial dynamics for γ > a+b+c is complicated and could be chaotic.

However, a nonautonomous bifurcation takes place as γ passes through a+b+c

and we might expect a simpler pullback attractor to exist for γ slightly larger

than a + b + c. To specify the kind of nonautonomous bifurcation happening

here, as well as the pullback attractor, we again apply a nonautonomous center

manifold reduction. Nonetheless, differing from the proof of Theorem 2.3 we

now apply the approach of [17] to the scalar reduced equation:

Theorem 4.2 (transcritical bifurcation in (∗4)). If J = R, then there exist
neighborhoods U ⊆ R2 and Γ ⊆ R of a+ b+ c so that for all γ ∈ Γ the disease-
free nonautonomous equilibrium (S?a(t), 0, 0) of (∗4) undergoes a transcritical
bifurcation at the critical parameter γ∗ = a+ b+ c as follows:
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(a) For γ < a + b + c the solution (S?a(t), 0, 0) is pullback attracting and
there exists another entire solution (S?a(t) − I∗γ (t) − R∗γ(t), I∗γ (t), R∗γ(t))
with (I∗γ (t), R∗γ(t)) ∈ U for all t ∈ R, which is asymptotically unstable and
satisfies

lim
γ↗a+b+c

(I∗γ (t), R∗γ(t)) = (0, 0) for all t ∈ R.

(b) For γ = a+ b+ c the solution (S?a(t), 0, 0) is asymptotically unstable, but
still pullback attracting.

(c) For γ > a + b + c the solution (S?a(t), 0, 0) is asymptotically unstable and
there exists another entire solution (S?a(t)−I∗γ (t)−R∗γ(t), I∗γ (t), R∗γ(t)) with
(I∗γ (t), R∗γ(t)) ∈ U for all t ∈ R, which is pullback attracting and satisfies

lim
γ↘a+b+c

(I∗γ (t), R∗γ(t)) = (0, 0) for all t ∈ R.

Proof. Mimicking the strategy from Theorem 2.3, we split the proof into three
parts.
(I) To shorten notation, we substitute λ := γ − a− b− c and attach the trivial
equation λ̇ = 0 to (∗4.1), i.e., we consider the system

İ = λI − γ I(I +R)

N?
a (t)

,

Ṙ = cI − aR,

λ̇ = 0.

Applying the linear transformationIR
λ

 :=

0 a+λ
c 0

1 1 0
0 0 1

y1

y2

y3


to this problem yields the 3-dimensional nonautonomous ODE

ẏ =

−a 0 0
0 0 0
0 0 0

 y + F (t, y), F (t, y) := y2


γ
y2(a+ y3) + c(y1 + y2)

cN?
a (t)

y3 − γ
y2(a+ y3) + c(y1 + y2)

cN?
a (t)

0

 .

As explained in Appendix D this system has a 2-dimensional center integral
manifold W, which is the graph of a smooth function y1 = w(t, y2, y3). In
particular, the first component of the reduced equation (D.3) becomes

ẏ2 = y2

(
y3 − γ

(a+ y3)y2 + c(w(t, y2, y3) + y2)

cN?
a (t)

)
and the fact y3 = λ finally yields the scalar nonautonomous ODE

ẏ = y

(
λ− γ (a+ λ)y + c(w(t, y, λ) + y)

cN?
a (t)

)
=: G(t, y, λ). (4.1)

(II) Our next goal is to apply [17, Theorem 7] to (4.1). Indeed, for the right-hand
side G we have the identities

G(t, 0, λ) = 0, D2G(t, 0, 0)
(d1)
= 0,
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D2D3G(t, 0, 0)
(D.8)
= 1 =: f(t), D2

2G(t, 0, 0)
(d1)
= −2γ(a+ c)

cN?
a (t)

.

With g(t) := γ(a+c)
cN?a (t) it is

γ(a+ c)

cq+
≤ g(t),

cq−

γ(a+ b)
≤ f(t)

g(t)
≤ cq+

γ(a+ b)
for all t ∈ R.

To verify the remaining assumptions of [17, Theorem 7], we apply Taylor’s
theorem (see [15, p. 349]) together with the above relations to arrive at

G(t, y, λ) = D2G(t, 0, λ)y+
1

2

(
D2

2G(t, 0, λ) +

∫ 1

0

(1− h)2D3
2G(t, hy, λ) dh y

)
y2

= λ

(
D2D3G(t, 0, 0) +

∫ 1

0

(1− h)D2D
2
3G(t, 0, hλ) dhλ

)
y

+
1

2

(
D2

2G(t, 0, λ) +

∫ 1

0

(1− h)2D3
2G(t, hy, λ) dh y

)
y2

= λ

(
D2D3G(t, 0, 0) +

∫ 1

0

(1− h)D2D
2
3G(t, 0, hλ) dhλ

)
y

+
1

2

(
D2

2G(t, 0, 0) +

∫ 1

0

D2
2D3G(t, 0, hλ) dhλ

)
y2

+
1

2

∫ 1

0

(1− h)2D3
2G(t, hy, λ) dh y3

= λ (f(t) + λφ(t, λ)) y − (g(t) + γ̂(t, y, λ)) y2

with the functions

φ(t, λ) :=− γ

N?
a (t)

∫ 1

0

(1− h)D2
3w(t, 0, hλ) dh

(D.8)
= 0,

γ̂(t, y, λ) :=
γ

cN?
a (t)

∫ 1

0

(1 + cD2D3w(t, 0, hλ)) dhλ

+
γ

2N?
a (t)

∫ 1

0

(1− h)2
(
3D2

2w(t, hy, λ) + hyD3
2(t, hy, λ)

)
dh y.

Since the partial derivatives Dj
(2,3)w : R × U1 × U2 → R are bounded, we

conclude that the derivatives D2γ̂, D3γ̂ are also bounded R × U1 × U2. This
ensures that also the quotients D2γ̂(t, y, λ)/g(t), D3γ̂(t, y, λ)/g(t) are bounded
above. Hence, the assumptions of [17, Theorem 7] are fulfilled and imply a
transcritical bifurcation in the reduced equation (4.1) at the critical parameter
value λ = 0. The trivial solution bifurcates into an entire solution x∗λ : R → R
of (4.1) and exchanges its stability properties as λ crosses 0.
(III) Now we transfer this result back to the IR system (∗4.1). Recalling the
transformations of step (I), we define

I∗γ (t) :=
γ − b− c

c
x∗γ−a−b−c(t),
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R∗γ(t) := x∗γ−a−b−c(t) + w(t, x∗γ−a−b−c(t), γ − a− b− c)

and conclude from the reduction principle of [3] or [13, p. 133, Theorem 6.25]
that the stability properties of the trivial solution 0 and x∗λ provided in [17,
Theorem 7] are transferred to (I∗γ (t), R∗γ(t)).

5. The SIR model with a variable interaction coefficient

We finally consider the SIR equations (∗) with variable interaction coefficient

γ(t) and constant population N(t) ≡ 1 on an interval J unbounded below, i.e.,
Ṡ = a− aS + bI − γ(t)SI,

İ = −(a+ b+ c)I + γ(t)SI,

Ṙ = cI − aR.

(∗5)

By identity (3.2) the S equation can be eliminated to giveİ = (γ(t)− a− b− c)I − γ(t)I(I +R),

Ṙ = cI − aR.
(∗5.1)

Stability properties of the trivial solution to this planar ODE with nonautono-

mous linear part are given in the next proposition, and carry over to (∗5).

Proposition 5.1. The disease-free steady state equilibrium (1, 0, 0) of (∗5) is
uniformly asymptotically stable w.r.t. Σ3 for βJ(γ) < a+ b+ c and unstable for
β
J

(γ) > a+ b+ c.

Proof. Linearizing (∗5.1) along the trivial solution yields the variational equationİ = (γ(t)− a− b− c)I,

Ṙ = cI − aR.
(5.1)

In view of its lower triangular structure, the corresponding dichotomy spectrum
computes as

ΣJ = {−a} ∪ [β
J

(γ)− a− b− c, βJ(γ)− a− b− c].

The stability assertion then follows from [24, Propositions 4.9 and 4.10].

In the rest of the section we describe the essential ingredients for a bifurcation

analysis of the trivial solution to (∗5.1) and the disease-free equilibrium to (∗5).

For this we consider c > 0 as bifurcation parameter and are interested in the

two critical cases

c = c∗ ∈
{
β
J

(γ)− a− b, βJ(γ)− a− b
}
.
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To perform a center manifold reduction as described in Appendix D, we need

to find a Lyapunov transformation L : J → R2×2 decoupling the linear part of

(∗5.1), which turns out to be possible under the assumption

b < β
J

(γ). (5.2)

We make the ansatz

L(t) :=

(
1 0

`(t) 0

)
(5.3)

where ` : J → R is a C1-function that is to be determined. Applying this

transformation to (5.1) yields the lower triangular system

ẋ =

(
γ(t)− a− b− c 0

˙̀(t) + (γ(t)− b− c)`(t) + c −a

)
x,

which becomes diagonal, if and only if the function ` satisfies the scalar linear

inhomogeneous ODE ˙̀ = (b + c − γ(t))` − c. Assumption (5.2) allows us to

find positive parameters c > 0 such that β
J

(γ) > b + c. This linear ODE thus

possesses a unique bounded solution `c : J → R given by

`c(t) := −c
∫ t

−∞
e(b+c)(t−s) exp

(
−
∫ t

s

γ(r) dr

)
ds.

Since γ : J → R is bounded, we see that ˙̀
c is also bounded. Moreover,

L(t)−1 =

(
1 0

−`(t) 0

)
,

so L : J → R2×2 is a Lyapunov transformation for this choice of `(t) = `c(t).

Next we apply the transformation
( y2
y1

)
= L(t)

(
I
R

)
to (5.1) and arrive at

ẋ =

(
−a 0

0 γ(t)− a− b− c

)
x− γ(t)y2

2(1− `c(t))`c(t)y2 + `c(t)y1

2(1− `c(t))y2 + y1

 .

Denoting the bifurcation parameter c in (∗5), respectively (∗5.1), by λ := c, we

attach the trivial equation λ̇ = 0. This gives us the 3-dimensional ODEẏ1

ẏ2

λ̇

 =

−a 0 0

0 γ(t)− a− b 0

0 0 0


y1

y2

λ


−

γ(t)y2 [2(1− `λ(t))`λ(t)y2 + `λ(t)y1]

λy2 + γ(t)y2 [2(1− `λ(t))y2 + y1]

0

 , (5.4)

the linear part of which has the dichotomy spectrum

ΣJ = {−a, 0} ∪
[
β
J

(γ)− a− b, βJ(γ)− a− b
]
.
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Hence, assumption (5.2) implies that −a < β
J

(γ) − a − b. Consequently there

exist real numbers αs < αc, αs < 0 such that ΣJ∩(αs, αs) = ∅. Appendix D can

then be used to obtain a 2-dimensional center integral manifold y1 = w(t, y2, λ)

for (5.4). Renaming λ as c again, this yields the reduced equation

ẏ2 = (γ(t)− a− b− c)y2 − γ(t)y2 [2(1− `c(t))y2 + w(t, y2, c)]

which has a very similar structure to (∗3.1) or the previously considered reduced

equations (2.3) and (4.1). Hence, the transcritical bifurcation results for scalar

nonautonomous equations from [17, 19, 26] apply.

6. Conclusion

We have essentially discussed three different approaches to describe nonau-

tonomous counterparts [17, 26, 19] to what can be interpreted as a transcritical

bifurcation. Due to its “normal form” ẋ = λa(t)x+ b(t)x2 + o(x3) this kind of

bifurcation appears to be even more typical in a time-variant framework than

in the classical autonomous setting: An identically vanishing coefficient b(t) ≡ 0

represents a higher degeneracy than merely a vanishing real number.

• In the sense of [26], a bifurcation is understood in a dynamical way, i.e.

as loss of attractivity (gain of repulsivity) for the trivial solution as the

parameter crosses a critical value. Here, a certain flexibility concerning the

temporal interval J ∈ {R−,R+,R} is included and allows to understand

the shovel bifurcation of a family of bounded entire solutions from [24] as

transcritical bifurcation on the semiaxis R+.

• The approach of [19] also provides the mentioned continuous exchange

from stability to instability by means of opposite sign Lyapunov exponents.

In addition, it guarantees the existence of two (unique) invariant sets which

generalize the equilibria of the autonomous situation and, being a copy of

the base, additionally reflect the particular time-dependence.

• Likewise, the scenario of [17] yields a plausible analogy to the autonomous

situation: Steady state equilibria are generalized to bounded entire solu-

tions and one observes a change in their stability properties (if needed in

a pullback sense).

Moreover, in order to deal with higher-dimensional ODEs we have exemplified

a nonautonomous center manifold reduction. Technically, dealing with only

transcritical bifurcation does not require to know Taylor coefficients of the center

manifolds explicitly (for this, see [25] however). Our overall analysis was greatly

simplified by the fact that the solutions along which bifurcations occur where

explicitly known.
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Appendices

A. Linear scalar equations

The widely known Lyapunov exponents are a tool to measure the expo-

nential growth of functions. In nonautonomous stability theory, however, it is

advantageous to have information on the uniform exponential growth described

by Bohl exponents.

Let J ⊆ R denote an interval. The upper Bohl exponent of a locally inte-

grable function a : J → R is defined by

βJ(a) := inf

{
ω ∈ R : sup

s≤t, s,t∈J

1

t− s

∫ t

s

(a(r)− ω) dr <∞
}

and the lower Bohl exponent by

β
J

(a) := sup

{
ω ∈ R : sup

t≤s, s,t∈J

1

t− s

∫ t

s

(a(r)− ω) dr <∞
}
.

It is not difficult to see that this is equivalent to the definition in [6, p. 118] and

βJ(λ+ a) = λ+ βJ(a), β
J

(λ+ a) = λ+ β
J

(a) for all λ ∈ R (A.1)

holds. The Bohl exponents are finite when a is integrally bounded, i.e., if

sup
0≤t−s≤1

exp

(∫ t

s

a(r) dr

)
<∞, sup

0≤s−t≤1
exp

(∫ t

s

a(r) dr

)
<∞

(cf. [6, p. 119, Theorem 4.2]) hold, respectively. In addition,

β
J

(a) ≤ β
J′

(a) ≤ βJ′(a) ≤ βJ(a)

for a subinterval J ′ ⊆ J :

Example A.1. The functions ai : R→ R,

a0(t) :≡ α ∈ R, a1(t) = sin t, a2(t) := arctan(−t), a3(t) = sin ln(1 + |t|)

have the Bohl exponents on R, R+ and R−, respectively:

i βR(ai) βR(ai) βR+
(ai) βR+

(ai) βR−
(ai) βR−(ai)

0 α α α α α α
1 0 0 0 0 0 0
2 −π/2 π/2 −π/2 −π/2 π/2 π/2
3 −1 1 −1 1 −1 1

Generalizing the asymptotically constant example a2 to general continuous func-
tions a : R→ R satisfying limt→±∞ a(t) = α± ∈ R gives

βR(a) = max {α−, α+} , βR(a) = min {α−, α+} ,
βR+

(a) = βR+
(a) = α+, βR−(a) = βR−

(a) = α−.
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There is a strong relation between Bohl exponents, exponential dichotomies

(see [4]) and the dichotomy spectrum (see [27]). The last notion can be consid-

ered as the appropriate counterpart to eigenvalue real parts in a nonautonomous

framework. In the simplest situation of the scalar ODE

ẋ = a(t)x (A.2)

one has:

Proposition A.2. If a : J → R is a continuous bounded function, then the
dichotomy spectrum of (A.2) is given by ΣJ(a) = [β

J
(a), βJ(a)].

Proof. Let γ ∈ R, s, t ∈ J and suppose Φ(t, s) = exp
(∫ t

s
a(r) dr

)
is the corre-

sponding transition operator of (A.2). Then the scalar equation

ẋ = [a(t)− γ]x (A.3)

has an exponential dichotomy on J if and only if there exist constants K ≥ 1
and α > 0 such that

Φ(t, s) ≤ Ke(γ−α)(t−s) for all s ≤ t or Φ(t, s) ≤ Ke(γ+α)(t−s) for all t ≤ s,

which is equivalent to the existence of a constant α > 0 such that (cf. (A.1))

βJ(c) + α ≤ γ or γ ≤ β
J

(c)− α.

Thus, contrapositively, γ is in the dichotomy spectrum of (A.3) if and only if

γ ∈
(
β
J

(c)− α, βJ(c) + α
)

for all α > 0,

which yields the assertion.

We close this section with an elementary perturbation result.

Proposition A.3. If α ∈ R and b ∈ C(J,R), then the transition operator Φ of

ẋ = (α+ b(t))x (A.4)

satisfies Φ(t, s) ≤ exp
(
α(t− s) +

∣∣∣∫ ts b(r) dr∣∣∣) for all s, t ∈ J .

Proof. By the variation of constants the transition operator of (A.4) satisfies

Φ(t, s) = eα(t−s) +

∫ t

s

eα(t−r)b(r)Φ(r, s) dr for all s, t ∈ J.

Consequently for all s, t ∈ J

eα(s−t)Φ(t, s) = 1 +

∫ t

s

b(r)eα(s−r)Φ(r, s) dr ≤ 1 +

∣∣∣∣∫ t

s

b(r)eα(s−r)Φ(r, s) dr

∣∣∣∣ .
The result then follows by the Gronwall lemma (cf. [1, p. 90, (6.2)]).
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B. Nonautonomous dynamics

There are two formulations of nonautonomous dynamical systems, processes

and skew-product flows, each of which offers different advantages, see [13].

B.1. Processes

Let Ω ⊆ R× Rd be an open and connected set with the t-fibers

Ω(t) :=
{
x ∈ Rd : (t, x) ∈ Ω

}
.

Given f : Ω→ Rd, we consider a nonautonomous ODE

ẋ = f(t, x) (B.1)

for which solutions exist and are unique. The maximal solutions ϕ(·; t0, x0)

to (B.1) satisfying the initial condition x(t0) = x0, where (t0, x0) ∈ Ω, thus

generate a local process, i.e., a mapping ϕ satisfying

ϕ(t0; t0, x0) = x0, ϕ(t; t0, x0) = ϕ(t; s, ϕ(s; t0, x0))

for all t, s ∈ R in the respective maximal solutions intervals. These intervals

may be finite or bounded from above or below, so one speaks of a local process.

In the following, h denotes the Hausdorff semidistance between nonempty

compact subsets of Rd [13, p. 257]. Using the terminology of [17], a solution

φ : J → U of (B.1) on an interval J which is unbounded below is said to be

• pullback attractive, if there exists a ρ > 0 with

lim
t0→−∞

h
(
ϕ
(
t; t0, Bρ(φ(t0))

)
, {φ(t)}

)
= 0 for all t ∈ J,

• asymptotically unstable, if there exists an instant t0 ∈ J such that{
x0 ∈ Ω(t0) : lim

t→−∞
h(ϕ(t; t0, x0), {φ(t)}) = 0

}
6= {φ(t0)} .

On the other hand, modifying the terminology of [13, pp. 33ff] slightly, a solution

φ : J → Rd of (B.1) is said to be

• J-attractive, if there exists a ρ > 0 with

lim
t→∞

h
(
ϕ
(
t; t0, Bρ(φ(t0))

)
, {φ(t)}

)
= 0 for all t0 ∈ J and J unbounded above,

lim
t0→−∞

h
(
ϕ
(
t; t0, Bρ(φ(t0))

)
, {φ(t)}

)
= 0 for all t ∈ J and J unbounded below,

lim
t→∞

sup
t0∈R

h
(
ϕ
(
t0 + t; t0, Bρ(φ(t0))

)
, φ(t0 + t)

)
= 0 for J = R.

Note that R-attractivity means both R+- and R−-attractive uniformly in

t0 ∈ R and t ∈ R, respectively. The supremum over all these ρ > 0 is

called the J-attraction radius and denoted by ρ+(φ).
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• J-repulsive, if there exists a ρ > 0 with

lim
t→−∞

h
(
ϕ
(
t; t0, Bρ(φ(t0))

)
, {φ(t)}

)
= 0 for all t0 ∈ J and J unbounded below,

lim
t0→∞

h
(
ϕ
(
t; t0, Bρ(φ(t0))

)
, {φ(t)}

)
= 0 for all t ∈ J and J unbounded above,

lim
t→∞

sup
t0∈R

h
(
ϕ
(
t0 − t; t0, Bρ(φ(t0))

)
, φ(t0 − t)

)
= 0 for J = R.

Similarly, R-repulsivity is equivalent to being R−- and R+-repulsive uni-

formly in t0 ∈ R and t ∈ R, respectively. The supremum over all these

ρ > 0 is called J-repulsion radius and denoted by ρ−(φ).

B.2. Skew-product flows

Let X be a nonempty set. A mapping φt : X → X, t ∈ R, is called a flow

on the state space X if

φ0(x) = x, φt+s = φt ◦ φs for all s, t ∈ R, x ∈ X (B.2)

holds. A subset A ⊆ X is said to be φ-invariant if φt(A) = A for all t ∈ R.

In the subsequent considerations and terminology we follow [19] closely. The

Borel-σ-algebra on a metric space X is denoted by B(X), a Borel-measure µ

said to be φ-invariant if µ(φt(B)) = µ(B) holds for all t ∈ R and B ∈ B(X),

and a normalized φ-invariant measure is called φ-ergodic if any φ-invariant set

has measure 0 or 1. In addition, a compact, φ-invariant subset A ⊆ X is called

φ-minimal if it does not properly contain any other compact φ-invariant set. A

minimal flow φ has a minimal state space X. A flow φt on a compact metric

space X is said to be uniquely ergodic if there exists a unique φ-ergodic measure

m0 defined on a complete σ-algebra of X containing the Borel sets B(X).

Suppose Ω is a compact metric space and that the mapping (t, ω) 7→ φt(ω)

is continuous. Consider the nonautonomous ODE

ẋ = f(φt(ω), x) (B.3)

with continuous right-hand side f : Ω × D → Rd, where D is an open subset

of Rd, that guarantees existence and uniqueness of solutions. For fixed ω ∈ Ω,

denote the maximal solution to (B.3) satisfying the initial condition x(0) = x0

by ϕ(·;x0, ω). Then the mapping Φt given by

Φt

(
x

ω

)
:=

(
ϕ(t;x, ω)

φt(ω)

)

defines a local flow on D×Ω, the (local) skew-product flow generated by (B.3).

In this context, φt is called the base flow and one speaks of a local skew-product

flow, since ϕ(·;x, ω) might be defined on an interval being bounded above or

below, with the consequence that the flow properties (B.2) for Φt hold only for

times t in the corresponding maximal existence intervals.
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We say a Φ-minimal set M is a copy of the base if each ω-fiber

M(ω) := {x ∈ D : (x, ω) ∈M} for all ω ∈ Ω

consists of a unique point, in which case it coincides with the graph of a con-

tinuous Φ-invariant curve x̃ : Ω→ R. The latter is a bounded measurable map

satisfying

ϕ(t, x̃(ω), ω) = x̃(φt(ω)) for all (t, ω) ∈ R× Ω.

The existence of a Φ-minimal set turns out to be equivalent to the existence

of a pair (x0, ω) ∈ D × Ω such that ϕ(·;x0, ω) is defined on the whole axis R
as a bounded function, in which case one speaks of a globally bounded Φ-orbit

{(ϕ(t;x0, ω), φt(ω))}t∈R. This, in turn, holds if and only if the set

B :=

{
(x0, ω) ∈ D × Ω : sup

t∈R
‖ϕ(t, x0, ω)‖ <∞

}
is nonempty.

Finally, we restrict to scalar ODEs (B.3), i.e., the situation where D ⊆ R is

an interval, the partial derivative D2f exists as a continuous function and the

mapping (t, ω) 7→ φt(ω) is continuous. Provided B is bounded, it then makes

sense to define the real numbers

φ+(ω) := sup{x : (x, ω) ∈ B}, φ−(ω) := inf{x : (x, ω) ∈ B},

as well as the corresponding sets M± := {(φ±(ω), ω) ∈ D × Ω : ω ∈ Ω}, which

are copies of the base. The Lyapunov exponent of a Φ-invariant curve x̃ : Ω→ R
is defined by

Λ(x̃) :=

∫
Ω

D2f(ω, x̃(ω))dm0(ω).

The curve x̃ is said to be hyperbolic when dΛ(x̃) 6= 0.

C. Nonautonomous bifurcations

Consider a scalar nonautonomous ODE

ẋ = g(t, x, λ) (C.1)

with a continuous right-hand side g : J × U ×Λ→ R defined on an unbounded

interval J , a neighborhood U ⊆ R of 0, and an interval Λ ⊆ R. Also assume

g(t, 0, λ) ≡ 0 on J × Λ,

i.e., (C.1) has the trivial solution for all λ ∈ Λ. The following theorem is a slight

formal modification of [26, Theorem 5.1] or [13, Theorem 8.1, pp. 155–156]:

Theorem C.1 (nonautonomous transcritical bifurcation). Let λ∗ ∈ Λ, K ≥ 1
and suppose g is of class C3 in the second variable. In addition, suppose that
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(i) There exist functions γ−, γ+ : Λ → R, that are both either increasing or
decreasing, with limλ→λ∗ γ−(λ) = limλ→λ∗ γ+(λ) = 0, such that

exp

(∫ t

s

D2g(r, 0, λ) dr

)
≤ Keγ+(λ)(t−s) for all s ≤ t, λ ∈ Λ,

exp

(∫ t

s

D2g(r, 0, λ) dr

)
≤ Keγ−(λ)(t−s) for all t ≤ s, λ ∈ Λ.

(ii) One of the following conditions is fulfilled:

0 < lim inf
λ→λ∗

inf
t∈J

D2
2g(t, 0, λ) ≤ lim sup

λ→λ∗
sup
t∈J

D2
2g(t, 0, λ) <∞,

−∞ < lim inf
λ→λ∗

inf
t∈J

D2
2g(t, 0, λ) ≤ lim sup

λ→λ∗
sup
t∈J

D2
2g(t, 0, λ) < 0.

(iii) The following limit relations hold:

lim
x→0

sup
λ∈(λ∗−|x|,λ∗+|x|)

sup
t∈J

x

∫ 1

0

(1− h)2D3
2g(t, hx, λ) dh = 0,

K lim sup
λ→λ∗

lim sup
x→0

sup
t∈J

x2

max {γ+(λ),−γ−(λ)}

∫ 1

0

(1− h)2D3
2g(t, hx, λ) dh < 1.

Then there exists a neighborhood Λ0 ⊆ Λ of λ∗ such that for λ ∈ Λ0:

(a) For increasing functions γ−, γ+ the zero solution to (C.1) is J-attractive
for λ < λ∗ and J-repulsive for λ > λ∗. The scalar ODE (C.1) admits a
J-bifurcation in the sense that the corresponding radii of J-attraction and
-repulsion satisfy

lim
λ↗λ∗

ρ+
λ (0) = 0 = lim

λ↘λ∗
ρ−λ (0).

(b) For decreasing functions γ−, γ+ the zero solution to (C.1) is J-repulsive
for λ < λ∗ and J-attractive for λ > λ∗. The scalar ODE (C.1) admits a
J-bifurcation in the sense that the corresponding radii of J-repulsion and
-attraction satisfy

lim
λ↗λ∗

ρ−λ (0) = 0 = lim
λ↘λ∗

ρ+
λ (0).

Proof. Due to the smoothness assumption on g we can write

ẋ = a(t, λ)x+ b(t, λ)x2 + r(t, x, λ), (C.2)

where Taylor’s theorem as in [15, p. 349] guarantees a(t, λ) = D2g(t, 0, λ),

b(t, λ) = 1
2D

2
2g(t, 0, λ), r(t, x, λ) =

∫ 1

0

(1− h)2

2
D3

2g(t, hx, λ) dhx3.

Our assumptions guarantee that [26, Theorem 5.1] can be applied to (C.2).
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D. Nonautonomous center manifolds

D.1. Basic ideas

Here we consider a d-dimensional ODE

ẏ = A(t)y + F (t, y) (D.1)

with continuous functions A : J → Rd×d, F : J × U → Rd defined on an

interval J ⊆ R unbounded below and an open neighborhood U ⊆ Rd of 0.

For simplicity, we assume that A is in block-diagonal form A = diag(As, Ac)

and that the transition matrices Φs and Φc associated with the diagonal blocks

As : J → Rs×s and Ac : J → Rc×c, respectively fulfill

‖Φs(t, s)‖ ≤ Keαs(t−s), ‖Φc(s, t)‖ ≤ Keαc(s−t) for all s ≤ t (D.2)

with real numbers K ≥ 1 and αs < αc, where αs < 0. We also introduce

a corresponding splitting F = (Fs, Fc) with functions Fs : J × U → Rs and

Fc : J ×U → Rc of the nonlinearity and suppose that F is of class Cm for some

m ∈ N in the second variable with

F (t, 0) ≡ 0 on J, lim
x→0

D2F (t, x) = 0 uniformly in t ∈ J.

Under the spectral gap condition αs < mαc there is a neighborhood U0 ⊆ Rc of

0 and a continuous mapping w : J×U → Rs of class Cm in the second variable,

which satisfies (cf. [3, 21, 25])

(d1) w(t, 0) ≡ 0 and D2w(t, 0) ≡ 0 on J

(d2) W :=
{

(t, w(t, x), x) ∈ J × Rd : x ∈ U0

}
is locally invariant w.r.t. (D.1),

i.e., a solution φ = (φs, φc) to (D.1) satisfies the implication

(t0, φ(t0)) ∈ W ⇒ (t, φ(t)) ∈ W

for all t ∈ J as long as φc(t) ∈ U0

(d3) the trivial solution of (D.1) has the same stability properties as the zero

solution of the c-dimensional equation reduced to W

ẋ = Ac(t)x+ Fc(t, w(t, x), x). (D.3)

D.2. Parameter-dependent equations

In applications to bifurcation theory, the ODEs under investigation depend

on a parameter λ in an open set Λ ⊆ Rp, i.e., are of the form

ẋ = f(t, x, λ) (D.4)

with a continuous right-hand side f : Ω×Λ→ Rd and an open set Ω ⊆ R×Rd.
We assume that f is of class Cm in (x, λ) with continuous partial derivatives,

that Λ is a neighborhood of 0 and that

30



• (D.4) has the trivial solution, i.e., R×U ⊆ Ω holds for some neighborhood

U ⊆ Rd of 0 and

f(t, 0, λ) ≡ 0 on R× Λ (D.5)

• D2f(t, 0, 0) has the block diagonal form
(
As(t)

Ac(t)

)
with diagonal blocks

satisfying (D.2).

If we extend (D.4) with the trivial equation λ̇ = 0, then the resulting equationẋ = f(t, x, λ),

λ̇ = 0
(D.6)

can be written as a (d + p)-dimensional ODE of the form (D.1). Since (D.5)

implies D3f(t, 0, 0) ≡ 0 on R, we obtain

A(t) :=

(
D2f(t, 0, 0) 0

0 0

)
, F (t, x, λ) :=

(
f(t, x, λ)−D2f(t, 0, 0)x

0

)
and due to our assumptions, the center manifold theory from Subsection D.1

applies with y = (x, λ). In particular, there exists a (c+ p)-dimensional center

integral manifoldW of (D.6), which is graph of a Cm-mapping w : R×U0 → Rs

with U0 ⊆ Rc ×Λ being a neighborhood of 0. From (D.5) we see that (0, λ) are

constant solutions of (D.6), hence the invariance of W implies

w(t, 0, λ) ≡ 0 on Λ, (D.7)

as well as the identities

Dj
3w(t, 0, λ) ≡ 0 on R× Λ, 0 ≤ j ≤ m. (D.8)
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presentation.

References

[1] H. Amann, Ordinary differential equations: An introduction to nonlinear

analysis, Studies in Mathematics 13, de Gruyter, Berlin-New York, 1990.

[2] M. Anguiano & P.E. Kloeden, Asymptotic behaviour in the nonautonomous

SIR equations with diffusion, Comm. Pure. Appl. Anal. 13 (2014), 157–173.

[3] B. Aulbach, A reduction principle for nonautonomous differential equa-

tions, Archiv der Mathematik 39 (1982), 217–232.

[4] W.A. Coppel, Dichotomies in stability theory, Lect. Notes Math. 629,

Springer, Berlin etc., 1978.

31



[5] I. Chueshov, Monotone random systems theory and applications, Lect.

Notes Math. 1779, Springer, Berlin etc., 2002.
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[22] C. Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapu-

nov-Schmidt approach, Discrete Contin. Dyn. Syst. (Series B) 14(2) (2010),

739–776.
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[24] C. Pötzsche, Nonautonomous bifurcation of bounded solutions II: A shovel

bifurcation pattern, Discrete Contin. Dyn. Syst. (Series A) 31(1) (2010)

941–973.
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