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Abstract

We investigate how chaotic time series generated as orbits of the logistic

map can be regularized by assuming continuous growth over short time in-

tervals after fixed instants. In doing so, we obtain a Feigenbaum-like scenario

which visualizes a period bisection transition away from chaos to asymptotic

stability and finally ODE-like behavior. Several well-known results on pop-

ulation models and unimodal maps with negative Schwarzian derivative are

applied.
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1 Introduction

Suppose we are given a real-valued time series (xn)n∈N0 which might serve as a
model for the size or biomass of a population. We assume in our scenario that
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this time series behaves “irregularly” in the sense that it is non-monotone or even
forms a dense set in some compact interval, which is fulfilled, e.g., for iterates of
a chaotic mapping.

On the other hand from a modeling perspective, under idealized conditions,
i.e., in a lab, without influence of a fluctuating environment or other interacting
species, and neglecting spatial effects, the growth of a single population usually
allows a quite successful description using scalar first-order autonomous ordi-
nary differential equations (ODEs)

ẋ = f(x) . (1.1)

Their dynamical behavior, however, is trivial since all solutions are monotone
yielding single point limit sets. Hence, an “irregular” sequence (xn)n∈N0 as above
can never be obtained from the time-1-map of a solution φ to (1.1) via φ(n) = xn

for discrete times n ∈ N0.

This motivates the basic question of this paper: Is it possible to “regularize”
the growth of a population whose size is given by the time series (xn)n∈N0 as fol-
lows: At the discrete times n, we isolate the population from its environment and
consequently realize its continuous growth following (1.1) over a time interval of
fixed length h ∈ [0, 1]. Clearly, for h = 0, we did not interfere, but is there a (min-
imal) length h > 0 such that the population growth is regular, e.g., monotone,
convergent or asymptotically periodic? Due to the isolation of a species from its
environment, we interpret the behavior over [n, n+ h], n ∈ N0, as hibernation.

Indeed, through the course of the paper, we retreat to the following simpli-
fied situation: An archetypical example of complex and chaotic behavior in form
of topological transitivity, dense orbits and sensitive dependence on initial con-
ditions is given by the dynamics of the well-known logistic map or difference
equation (cf., e.g., [HK01, Ela00])

xn+1 = 4xn(1− xn) , (1.2)

whose right-hand side is an unimodal mapping on the compact interval [0, 1].
With a biological (or ecological) motivation, this problem has been studied in the
survey paper [May76]. Thus, we use forward orbits generated by the logistic
difference equation as our irregular sequence (xn)n∈N0 .

On the other hand, (1.2) can be considered as forward Euler-discretization of

ẋ = 3x− 4x2 (1.3)
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with step-size 1. As an autonomous and scalar ODE, the dynamics of (1.3) is
trivial, and using separation of variables, we obtain for the solution flow

φ(t, x0) =
3e3tx0

3 + 4(e3t − 1)x0

. (1.4)

In order to associate continuous growth of (1.3) to the sequence (xn)n∈N0 gen-
erated by (1.2), we proceed as follows: Given an initial point x0, we suppose that
our population grows continuously following (1.3) over the interval [0, h] with
h ∈ [0, 1). Then we switch to discrete behavior and replace the ODE (1.3) by its
forward Euler discretization with step-size 1−h, so that the size of the population
at time 1 is given by

x1(h) = φ(h, x0) + (1− h)φ(h, x0)(3− 4φ(h, x0)) .

Thereafter, the growth starting at x1(h) is assumed to be continuous on the in-
terval [1, 1 + h], and we successively iterate this dynamical process to obtain a
sequence (xn(h))n∈N0 depending on h. It is our goal to study the asymptotic be-
havior of this sequence under variation of h.

The paper is organized as follows. In the ensuing section, we discuss con-
nections of our approach to dynamic equations on time scales and introduce the
notion of a time scale homotopy. In Section 3, basic properties of the family gen-
erating by the above dynamical process are treated, and in Sections 4 and 5, we
analyze both the dynamical and bifurcation situation, respectively. The proofs in
Section 4 are an application of various tools for one-dimensional mappings which
can be found in the textbooks [Ela00,HK01,Sed03,Wig90] to a certain extend, but
also in more advanced references like [BC92, Guc79, MS93, MT88, Sin78]. To pro-
vide some further context, we refer to [Thu01] for a well-written survey on the
topic of unimodal mappings.

We can summarize our results: The behavior of the above dynamical process
can be classified into three regimes. In the unimodal regime for values of h close
to 0, one observes irregular dynamical behavior known from mappings includ-
ing dense and periodic orbits. On the other side, in the monotone regime for h
near 1, the behavior resembles that of scalar autonomous ODEs, in the sense that
solutions are monotone or might not exist on the whole axis. Ultimately, in the in-
termediate regime one still has convergence to a fixed point — yet, it might not be
monotone. In particular, we are able to obtain precise values for the boundaries
of these three parameter regimes distinguished by characteristic dynamics.
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To conclude this introduction, we remark that a somewhat inverse situation
to our approach has been considered in [YM79]. Here, it is shown that Euler-
discretizations of ODEs (1.1) are chaotic in the sense of [LY75], provided the step-
size is sufficiently large and a, for instance, unimodal right-hand side f .

2 Relation to time scale dynamics

The above scenario possesses discrete as well as continuous features. Obviously,
so-called dynamic equations on time scales (cf. [Hil90, BP01]) are predestinated
to describe such situations of hybrid dynamics. As key observation, we note that
both the discrete logistic equation (1.2), as well as the continuous ODE (1.3) are
special cases of the general dynamic equation

x∆ = 3x− 4x2 (2.1)

for the respective time scales T = Z and T = R. Its solution satisfying the initial
condition x(τ) = ξ will be denoted by ϕ(·, τ, ξ).

Keeping this in mind, the analysis in the paper can be rephrased as follows:
We study a homotopy between the two above time scales Z and R, which is given
by the family of time scales

Th :=
⋃
k∈Z

[k, k + h] for all h ∈ [0, 1] ,

and we discuss the dynamical behavior of (2.1) on this family. Here, h ∈ [0, 1]

serves as a bifurcation parameter. Obviously, Th exhibits both discrete and con-
tinuous behavior for h ∈ (0, 1). With this underlying time scale, the general solu-
tion ϕ of (2.1) satisfies the relation

ϕ(n+ 1, n, ξ) = φ(h, ξ) + (1− h)φ(h, ξ)[3− 4φ(h, ξ)] =: Fh(ξ)

for all n ∈ N0, and consequently ϕ(n, 0, ξ) = F n
h (ξ), where the iterates F n

h are
defined recursively by as composition

F 0
h (x) := x, F n+1

h := Fh ◦ F n
h for all n ∈ N0 .

Hence, instead of dealing with solutions to dynamic equations as (2.1), we can
restrict to the analysis of a one-dimensional discrete dynamical system (F n

h )n∈N0 .

Nonetheless, the investigation of dynamic equations under variation of the
time scale is an interesting topic extending the classical approach of generalizing
ODE or difference equation results to time scales. We hope that this short article
provides a small contribution and stimulates further research into this direction.
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3 Basic Properties

Throughout the remaining paper, we reduce our stability and bifurcation analysis
for the hybrid dynamical process described above to an investigation of the cor-
responding time-1-map. It is given by a one-dimensional map Fh : [0,∞) → R,
or equivalently the scalar autonomous difference equation

xn+1 = Fh(xn) , (3.1)

with right-hand side

Fh(ξ) := φ(h, ξ) + (1− h)φ(h, ξ)[3− 4φ(h, ξ)], φ(h, ξ) =
3e3hξ

3 + 4(e3h − 1)ξ
,

where h ∈ [0, 1] serves as a parameter. Above all, we summarize some basic
properties of analytic function Fh:

• First, it is easy to derive the limit relation

y∞(h) := lim
x→∞

Fh(x) =
3e3h(e3h + 3h− 4)

4(e3h − 1)2
for all h ∈ (0, 1] ;

note also that limx→∞ F0(x) = −∞. The function y∞ : (0, 1] → R is strictly
increasing with the unique zero h1 = 1

3
(4−W (e4)) ≈ 0.36 (see Figure 1 (left)).

Here and in the following, W : [−e−1,∞)→ [−1,∞) denotes the Lambert W
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Figure 1: Graph of the functions y∞ (left) and x∗ (right)

function, which is the inverse of the function x 7→ xex. It is strictly increasing
and for further properties, as well as applications ofW , we refer to [CG+96].
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• The nonlinear equation Fh(x) = 0 has the trivial solution x = 0 indepen-
dently of h ∈ [0, 1], and it additionally possesses a positive solution

x∗(h) :=
3(3h− 4)

4(e3h + 3h− 4)
for all h < h1.

Moreover, x∗ : [0, h1)→ [1,∞) is strictly increasing (see Figure 1 (right)).

• The function Fh attains a unique positive maximum given by

ymax(h) :=
(3h− 4)2

16(1− h)
for all h ∈ [0, h2)

at the critical point

xmax(h) :=
3

4

3h− 4

3h− 4 + e3h(3h− 2)
, (3.2)

where h2 ≈ 0.73 denotes the unique solution of the transcendental equation
e3h = 4−3h

3h−2
in [0, 1]. The function xmax : [0, 1] → R has a pole at h2, which is

the unique minimum of ymax : [0, 1)→ [0,∞) (see Figure 2). In addition, we
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Figure 2: Graph of the functions ymax (left) and xmax (right)

compute for the second derivative

F ′′h (xmax(h)) =
1

162

e−6h
(
3h− 4 + e3h(3h− 2)

)4

(h− 1)3 , (3.3)

and this expression is clearly nonzero for all h ∈ [0, h2). Therefore, the criti-
cal point xmax(h) of Fh is non-flat (cf. [Thu01]).
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Further simple calculations culminate in the subsequent theorem, whose elemen-
tary proof is omitted (see Figure 3).

Theorem 3.1 (zeros of Fh). The function Fh : [0,∞)→ R has the following properties:

1. For h = 0, the function F0 has a unique positive zero x∗(0) = 1 and achieves its
unique maximum ymax(0) = 1 at xmax(0) = 1

2
.

2. For h ∈ (0, h1), the function Fh has a unique positive zero x∗(h) > 1, achieves its
unique maximum ymax(h) < 1 at xmax(h) ∈ (0, x∗(h)) and converges to the value
y∞(h) < 0 as x→∞.

3. For h = h1, the function Fh has no positive zero, achieves its unique maximum
ymax(h1) at xmax(h1) and converges to 0 as x→∞.

4. For h ∈ (h1, h2), the function Fh has no positive zero, achieves its unique maximum
ymax(h) ∈ (3

4
, 1) at xmax(h) ≤ 1

2
and converges to y∞(h) > 0 as x→∞.

5. For h ∈ [h2, 1], the function Fh is strictly increasing and converges to y∞(h) > 0

as x→∞.
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Figure 3: Representative graph of the function Fh for h ∈ [0, h1) (left), h ∈ [h1, h2)

(middle) and h ∈ [h2, 1] (right)

In the subsequent sections, we have to restrict our map Fh : [0,∞) → R to
certain intervals Ih ⊆ [0,∞) which are forward invariant, i.e., Fh(Ih) ⊆ Ih. Hence,
for such an interval Ih, also the restriction Fh : Ih → Ih is well-defined.

The above Theorem 3.1 implies that, if h ∈ [0, h1), then we have

Fh([0, x∗(h)]) ⊆ [0, 1] ⊆ [0, x∗(h)],
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and this means that the compact interval [0, x∗(h)] is forward invariant. Moreover,
for h ∈ [h1, 1], the unbounded interval [0,∞) is invariant, and we define

Ih :=

[0, x∗(h)] for h ∈ [0, h1) ,

[0,∞) for h ∈ [h1, 1] .

Obviously, the unit interval [0, 1] is also invariant for h ∈ [0, h1), but we have
chosen Ih as above, since then Fh is unimodal for h ∈ [0, h1). Recall that the
definition of a unimodal function is given as follows (cf. also, e.g., [MS93, p. 92]):

Definition 3.2 (unimodal function). A function f : I → I on an interval I ⊆ R is
called unimodal, if it is piecewise monotone with a unique maximum at an interior
point and f(∂I) ⊆ ∂I .

Corollary 3.3. For h ∈ [0, h1), the mapping Fh : Ih → Ih is unimodal.

Proof. This follows from Theorem 3.1.

As easily seen, the function Fh : Ih → Ih has two fixed points, and generically
their stability can be determined using the derivative F ′h. Nevertheless, in the
critical nonhyperbolic case where F ′h has absolute value 1, we make use of the
Schwarzian derivative of Fh defined by

SFh(x) :=
F ′′′h (x)

F ′h(x)
− 3

2

(
F ′′h (x)

F ′h(x)

)2

.

The Schwarzian derivative of the function Fh turns out to be negative, i.e., Fh is
a so-called S-unimodal mapping, which is defined to be a unimodal mapping with
negative Schwarzian derivative.

Lemma 3.4. For all h ∈ [0, h1) and x ∈ [0, x∗(h)), we have SFh(x) < 0.

Proof. The condition SFh(x) < 0 is equivalent to

3F ′′h (x)2 − 2F ′h(x)F ′′′h (x) > 0,

which in turn allows the representation

3F ′′h (x)2 − 2F ′h(x)F ′′′h (x)

=
1296(e3h)2(

3 + 4xe3h − 4x
)8 ·

[
− 12 + 16x+ 9h+ 21e3h − 12hx− 8xe3h − 8x(e3h)2

+ 12h(e3h)2x− 18he3h
]
·
[
− 108 + 96x+ 81h+ 252e3h − 72hx− 72xe3h
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− 96x(e3h)2 + 144h(e3h)2x− 216he3h

− 32x2e3h + 64x2 − 48hx2 − 32x2(e3h)2 + 48hx2
(
e3h
)2]

=
1296(e3h)2(

3 + 4xe3h − 4x
)8f1(x, h)f2(x, h)

with the factors

f1(x, h) =− 12 + 9h+ 21e3h − 18he3h + 4[4− 3h− 2e3h − 2(e3h)2 + 3h(e3h)2]x,

f2(x, h) =− 108 + 81h+ 252e3h − 216he3h

+ 24[4− 3h− 3e3h − 4(e3h)2 + 6h(e3h)2]x

+ 16[4− 2e3h − 3h− 2(e3h)2 + 4h(e3h)2]x2 .

One can check that f1 and f2 are positive functions for the prescribed values of x
and the parameter h, which implies the assertion.

The behavior of the functions Fh allows the following dichotomy: For param-
eters h ∈ [0, h1), it is a unimodal mapping on the compact interval Ih = [0, x∗(h)],
and we speak of the unimodal regime. However, for h ∈ [h1, 1], the functions
Fh : [0,∞) → [0,∞) fall into the class of population models, and the parame-
ter range [h1, 1] is denoted as population model regime. The notion of a population
model itself is due to [Cul81]:

Definition 3.5 (population model). A function f : [0,∞) → [0,∞) is called popu-
lation model, if f(0) = 0, there exists a unique positive fixed point x∗ of f with

f(x) > x for all x ∈ (0, x∗), f(x) < x for all x ∈ (x∗,∞)

and if f has a maximum xmax ∈ (0, x∗), then f decreases monotonously on (x∗,∞).

Corollary 3.6. For h ∈ [h1, 1], the mapping Fh : Ih → Ih is a population model.

Proof. This again results from Theorem 3.1.

The population model regime has a subset [h2, 1] (with h2 defined as above)
for which Fh is strictly increasing from 0 to y∞(h) <∞; in this situation, we speak
of the monotone regime. The above Figure 3 illustrates three representative graphs
of the function Fh in these regimes.
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4 Dynamics

For the reader’s convenience, before studying dynamical properties of the au-
tonomous difference equation (3.1), we summarize various notions from the the-
ory of scalar C1-mappings f : I → I defined on intervals I ⊆ R.

A subset Ω ⊆ I is called invariant, if f(Ω) = Ω. An example of an invariant
set is the ω-limit set of a point x ∈ I given by

ωf (x) :=
⋂
n∈N

{fk(x) ∈ I : k > n}.

For an invariant set Ω, we can define its domain (or basin) of attraction

Af (Ω) := {x ∈ I : ωf (x) ⊆ Ω}.

With given p ∈ N, a p-periodic point x∗ ∈ I of f is a fixed point of the p-th iterate
fp; the period p is called minimal, provided fn(x∗) 6= x∗ for all n ∈ {1, . . . , p − 1}.
Moreover, x∗ ∈ I is said to be (cf., for instance, [HK01, Ela00, Sed03])

• stable, if for every ε > 0, there exists a δ > 0 such that

fpn((x∗ − δ, x∗ + δ) ∩ I) ⊆ (x∗ − ε, x∗ + ε) for all n ∈ N0,

• unstable, if x∗ is not stable,

• attracting, if the interior of Af ({fn(x∗)}p−1
n=0) is nonempty,

• nearly attracting, if |(fp)′(x∗)| ≤ 1,

• asymptotically stable, if x∗ is stable and attracting.

It is shown in [Sed03, p. 31, Corollary 2.1.3] that the notions of asymptotic stability
and attractivity are equivalent — this is characteristic for the scalar situation.

Finally, a forward invariant set Ω ⊆ I is said to be a metric attractor, if the
sets Af (Ω) and Af (Ω)\Af (Ω′) have positive Lebesgue measure for every forward
invariant set Ω′, which is strictly contained in Ω (cf. [Mil85]).

Theorem 4.1 (fixed points of Fh). The function Fh : [0,∞)→ R has exactly two fixed
points. While the trivial point 0 is unstable for h ∈ [0, 1], the fixed point x∗ = 3

4
fulfills:

1. For h ∈ [0, h∗) the fixed point x∗ is unstable,

10
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2. for h ∈ [h∗, 1] the fixed point x∗ is asymptotically stable,

where h∗ = 1
3
(2−W (e2)) ≈ 0.15 is in the unimodal regime.

Proof. The function Fh has exactly the three fixed points 0, 3
4

and 31−4e3h+3he3h

4(e3h−1)2
,

where the latter one is negative. We set x∗ := 3
4

and compute

F ′h(0) = (4− 3h)e3h, F ′h(x∗) = (3h− 2)e−3h .

Taking into account that |F ′h(x∗)| < 1 for h ∈ (h∗, 1], as well as |F ′h(x∗)| > 1 for
h ∈ [0, h∗), this implies the assertions for all h 6= h∗ (note that F ′h∗(x

∗) = −1). Fur-
thermore, due to Lemma 3.4 and h∗ < h1, the Schwarzian derivative SFh∗(x

∗) < 0

yields that the nontrivial fixed point x∗ is asymptotically stable for h = h∗ (see
[Ela00, Theorem 1.5, p. 24] or [MS93, Theorem 6.1, p. 155]).

The results we obtained in Section 3 for the mapping Fh consecutively enable
us to employ the whole arsenal of tools for monotone, unimodal or S-unimodal
maps on intervals. Above all, unimodal functions with negative Schwarzian have
various nice properties, and e.g., Singer’s Theorem (see, e.g., [Sin78,MS93,Ela00])
leads to the next assertion.

Theorem 4.2. In the unimodal regime h ∈ [0, h1), equation (3.1) has

1. at most one attracting periodic orbit, and

2. at most three periodic orbits which are nearly attractive.

Proof. ad 1.: We apply [MS93, Corollary to Theorem 6.1, p. 156]. This is possible,
since the trivial fixed point 0 is repelling (note that F ′h(0) = e3h(4 − 3h) > 1 for
every h ∈ [0, 1]) and, by Lemma 3.4, the map Fh is unimodal with a negative
Schwarzian derivative.
ad 2.: This follows from [MT88, p. 511].

Another property of unimodal maps with negative Schwarzian is that such
mappings have no wandering intervals. An interval J ⊂ Ih is said to be a wander-
ing interval for the function Fh if the intervals {J, Fh(J), Fh(Fh(J)), . . . } are pair-
wise disjoint and J is not contained in the basin of an attracting periodic orbit.

Theorem 4.3. In the unimodal regime h ∈ [0, h1), equation (3.1) has no wandering
intervals.

11
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Proof. We apply [Guc79]. Since Fh is unimodal with negative Schwarzian deriva-
tive (cf. Lemma 3.4), we only have to check that xmax(h) is non-flat. This, never-
theless, is a consequence of (3.3).

Due to a result from [BL91], unimodal maps with negative Schwarzian
derivative and a non-flat critical point come in only a few different flavors:

Theorem 4.4. In the unimodal regime h ∈ [0, h1), equation (3.1) has a unique metric
attractor Ωh ⊆ Ih such that Ωh = ωFh

(x) for Lebesgue almost all x ∈ Ih. The attractor is
of one of the following types:

• an attracting periodic orbit,

• a Cantor set of measure zero, or

• a finite union of intervals with a dense orbit;

in the first two cases, one has Ωh = ωFh
(xmax(h)).

Proof. See [BL91].

In the population model regime, the dynamical behavior of (3.1) is much sim-
pler. We obtain the following global attraction result for the nontrivial fixed point:

Theorem 4.5. In the population model regime h ∈ [h1, 1], one has AFh
(3

4
) = (0,∞).

Proof. We aim to use various results and distinguish several cases:

• In case h ≥ h2, the function Fh is strictly increasing by Theorem 3.1, and
consequently, there exists no maximum in (0, 3

4
). Thus, we can apply [Cul81,

Theorem 1(a)] yielding the assertion.

• In case 2
3
< h ≤ h2, the point xmax(h), where Fh achieves its unique maxi-

mum, satisfies 3
4
< xmax(h). This can be deduced from the explicit form of

the function xmax given in (3.2). Therefore, Fh has no maximum in (0, 3
4
),

and again, [Cul81, Theorem 1(a)] yields the assertion.

• In the remaining case h1 ≤ h ≤ 2
3
, we argue with [Cul88, Theorem 2] and

indicate that (3.1) has no 2-cycle of minimal period 2. Indeed, the corre-
sponding fixed point equation F 2

h (x) = x is explicitly solvable, yielding
three nontrivial solution branches x1(h), x2(h) and x3(h), where x3(h) = 3

4
is
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the uniquely determined fixed point of Fh. Due to their algebraic complex-
ity, we do not state the expressions for x1 and x2, but we remark that these
two solutions are negative for h > h∗. We refer to Figure 4 for an illustra-
tion of the positive solutions (h < h∗). Consequently, we have no positive
2-periodic cycle with minimal period 2 for h ≥ h1 > h∗, which finishes the
proof of this theorem.

0,25
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0,75

0,0

0,5

0,1 0,150,05 0,2

1,0

h

x

Figure 4: Graph of the solution branches x1 and x2 from the proof of Theorem 4.5
yielding periodic orbits for (3.1) with minimal period 2

A further simplification of the dynamical behavior occurs in the monotone
regime [h2, 1]. Here, the function Fh is strictly increasing and converges towards
the limit y∞(h) ≥ 3

4
as x→∞. Therefore, Fh : [0,∞)→ [0, y∞(h)) is bijective, and

the restriction Fh|[0,3/4] is a self-mapping. This implies that Fh allows no points of
period p > 1, and (3.1) has the behavior of a scalar autonomous ODE.

Theorem 4.6. In the monotone regime h ∈ [h2, 1], equation (3.1) satisfies:

1. For initial values x0 ∈ {0, 3
4
}, there exists a unique constant solution (xn)n∈Z,

2. for initial values x0 ∈ (0, 3
4
), there exists a unique strictly increasing complete

solution (xn)n∈Z connecting the fixed points 0 and 3
4
,

3. for initial values x0 >
3
4
, the forward solution (xn)n∈N0 is strictly decreasing to 3

4
.

13
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Proof. From Theorem 3.1, we know that the mapping Fh is strictly increasing.
Then [HK01, p. 82, Lemma 3.14] guarantees that forward solutions to (3.1) are
monotone sequences. Together with the considerations preceding this theorem,
we obtain the assertion.

5 Bifurcation

In the proof of the above Theorem 4.5, we observed that Fh admits 2-periodic cy-
cles for parameters h ∈ [0, h∗). In addition, Theorem 4.1 says that the asymptotic
stability of the fixed point 3

4
of Fh is lost at h = h∗. These observations suggest

that this loss of stability inside the unimodal regime is associated with a flip (or
period doubling) bifurcation.

Theorem 5.1 (flip bifurcation). At h∗ = 1
3
(2 −W (e2)), the fixed point 3

4
undergoes a

subcritical flip bifurcation.

Proof. We check the corresponding conditions stated in, e.g., [Wig90, p. 373] or
[Sed03]. They basically require to detect a bifurcation of pitchfork type for the
second iterate mapping G(h, x) := Fh(Fh(x)). We obtain F ′h∗(

3
4
) = −1,

∂G

∂h
(h∗, 3

4
) = 0 ,

∂2G

∂2x
(h∗, 3

4
) = 0 ,

∂2G

∂x∂h
(h∗, 3

4
) = −W (e2) + 1

W (e2)
6= 0 ,

∂3G

∂3x
(h∗, 3

4
) = −64

3

(
W (e2) + 1

W (e2)2

)2

6= 0 ,

which implies the claimed subcritical flip bifurcation.

Apart from this flip bifurcation, there is a series of further subcritical period
doubling bifurcations for h < h∗. In addition, we obtain a similar Feigenbaum
diagram as the well-known one for the logistic map x 7→ hx(1− x), h ∈ [0, 4] (see
Figure 5). Finally, the appearance of a window with 3-periodic points for Fh is
illustrated in Figure 6. There is numerical evidence that these 3-periodic points
exist in the unimodal regime for h ∈ [0, 0.02257]. Thus, the celebrated Sharkovskii
theorem (see, for example, [MS93, Ela00, HK01, Sed03]) guarantees the existence
of points with arbitrary period and Fh is chaotic in the sense of [BC92] with cor-
responding dynamical consequences, like the existence of a homoclinic point or
positive topological entropy. Moreover, [Kie98, p. 154, Satz 4.4.2] ensures that
Fh is also topologically transitive, has dense periodic orbits and sensitive depen-
dence on initial conditions, i.e., is chaotic in the sense of [Dev89]. This, in turn,
furthermore implies chaos in the sense of [LY75] (cf. [Kie98, p. 159, 4.4.4 Satz]).
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Figure 5: Feigenbaum diagram for Fh
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