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Abstract. We explore a planar discrete-time model from population dynamics subject to a
general aperiodic time-varying environment in order to illustrate the recent theory of nonautonomous
dynamical systems. Given such a setting, the mathematical standard tools from classical dynamical
systems and bifurcation theory cannot be employed, since for instance equilibria typically do not
exist or eigenvalues yield no stability information. For this reason, we apply a combination of recent
analytical and numerical techniques adequate to tackle such situations.
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1. Nonautonomous models. Mathematical models to describe evolutions with
discrete time-steps are formulated in terms of recursions (or difference equations)

xn+1 = fλ(xn), (1.1)

where xn represents a vector containing, for instance in the life sciences, sizes or
densities of populations or biochemical substances involved at time n ∈ Z. Naturally,
equations (1.1) contain parameters λ describing the influence of the environment on
the models. In population dynamics, such factors might be seasonal and governed
by the weather, describe possible catastrophes (floods, storms), unspecific predators,
parasites, inner or intra-specific competition, social stress or infective diseases. They
might, as well, capture dosing and control strategies including harvesting, hunting or
the use of pesticides.

The complexity of these influences suggests that constant parameters λ in (1.1)
are hardly realistic. As an improvement one should better work with time-varying
parameter sequences λn and thus equations of the form

xn+1 = fλn
(xn). (1.2)

However, the drawback and challenge of such a nonautonomous framework (1.2) is
that the classical mathematical theory of dynamical systems turns out to be hardly
applicable. For instance, periodic solutions of (1.1) obtained from the fixed point
relation x = f

p
λ(x), p ∈ N, typically fail to be periodic solutions to (1.2) (for general

parameter sequences), eigenvalues are of no use for indicating stability properties, and
forward limit sets or attractors are not invariant. Hence, in absence of equilibria, what
should classical bifurcation theory or numerical continuation software be applied to?

For the above reasons, an extension of the conventional dynamical systems theory
is required. It is based on the leitmotiv that equilibria or periodic solutions to (1.1)
persist as bounded entire solutions to (1.2) under moderately sized time-varying pa-
rameter sequences. These entire solutions also reflect the particular temporal forcing,
i.e. for example almost periodic (almost automorphic, asymptotically constant, etc.)
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parameter sequences (λn)n∈Z in (1.2); thus one also speaks of nonautonomous equilib-
ria. In this sense, for instance a bifurcation is understood as a change in the structure
or attraction properties of such entire solutions. We point out that an analogous
theory as presented here also exists in the setting of continuous time nonautonomous
dynamical systems (cf. [3, 18, 19, 22]). Yet, for the sake of conceptual clarity we have
restricted to a discrete-time set-up.

Our considerations are based on an autonomous model






xn+1 =
αxn

1 + xn + βyn
,

yn+1 = yne
γ−δxn−yn

(∆′)

from [6] (see also [20, 16]) describing the interaction between two populations by
coupling a Beverton-Holt with a Ricker equation. This system is interesting from
an ecological point of view, since according to [6] it yields a counterexample to the
so-called exclusion principle indicating that one species goes extinct, provided there
exists no fixed point in the interior of the first quadrant. The latter holds for general
d-dimensional systems, when exclusively Beverton-Holt- resp. Ricker-type equations
are present, but [6, Sect. 4] demonstrates that for certain parameter constellations co-
existence is possible in form of a period-2-solution in the open first quadrant, although
there is no fixed-point in (0,∞)2.

Nevertheless, our goal is to a minor extend biologically motivated and should
rather be seen as a contribution to nonautonomous and numerical dynamics. From
this mathematical perspective alone, (∆′) is a rewarding prototype example featuring
dynamical behavior of different complexity, since it links the fully understood and dy-
namically well-behaved Beverton-Holt model xn+1 = αxn

1+xn
with the possibly chaotic

Ricker difference equation yn+1 = yne
γ−yn (cf. [24]).

In this paper, we extend the above autonomous set-up and study (∆′) in an
environment with bounded but otherwise arbitrary temporal fluctuations in the pa-
rameters α, β, γ, δ. This requires various recent techniques from nonautonomous dy-
namics (cf. [19, 25]) in order to obtain information on the forward, as well as the
pullback dynamics and the corresponding attractors. Changes in them are caused by
multiple nonautonomous bifurcation scenarios (see [22, 30, 11, 26]), among which we
particularly address counterparts to transcritical and flip (period doubling) bifurca-
tions. The associate stability transitions are described using Bohl exponents which are
boundary points of the dichotomy (also known as Sacker-Sell) spectrum (see [32] and
[2, 1, 13]). Gaps in the dichotomy spectrum in turn give rise to invariant manifolds
and we particularly perform a nonautonomous center manifold reduction (cf. [29]). In
this endeavor it turns out at an early stage that up-to-date numerical techniques are
indispensable, when quantitative information on the dichotomy spectrum [12, 13] or
the continuation of bounded entire solutions [10, 14] is required. Also explicit pertur-
bation bounds for the persistence of hyperbolicity under nonautonomous forcing are
given in a representative special case. In conclusion, only a combination of analytical
and numerical methods yields a necessary insight into the long-term behavior of our
in fact merely 2-dimensional, but nonautonomous dynamical system.

For the reader’s convenience, we summarized some basic, as well as required new
results on nonautonomous dynamics, in the appendix.

2. Preliminaries and the model. Throughout the paper, let us suppose that I
denotes a discrete interval unbounded above, i.e. the intersection of a real interval with
the integers Z. For a sequence (an)n∈I we briefly write aI. The symbol ℓ∞ denotes
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the space of bounded, and ℓ1 (resp. ℓ0) of absolutely summable sequences (resp. those
with limit 0). Moreover, we abbreviate the nonnegative half-axis R+ := [0,∞).

Initial point is a general planar Beverton-Holt Ricker model






vn+1 =
α1
nvn

αn + β1
nvn + γ1nwn

,

wn+1 = wne
α2

n−β2
nvn−γ2

nwn

in discrete time n ∈ I and with parameter sequences αI, α
i
I
, βi

I
, γi

I
, i = 1, 2. Related

autonomous models, where both components are of Beverton-Holt- or of Ricker-type,
have been suggested in [4]. In combining these two kinds of nonlinearities, we are
able to recover both possible behaviors in a single model. However, this type of
problem has also been investigated in [6, 16] with a focus on biological and ecological
implications. Consequently our approach has more than just a didactical motivation.

First, we get rid of several parameters and simplify this model to its canonical

form. By means of the abbreviations xn :=
β1
n

αn
vn, yn := γ2nwn the reduced model is

(
xn+1

yn+1

)

= Fn(xn, yn), Fn(x, y) :=

(
anx

1+x+bny
,

yecn−dnx−y

)

(∆)

with the right-hand side Fn : R2
+ → R2

+, n ∈ I, and parameter sequences

an :=
α1
nβ

1
n+1

αn+1β1
n

, bn :=
γ1n
αnγ2n

,

cn := α2
n + ln

(
γ2n+1

γ2n

)

, dn :=
αnβ

2
n

β1
n

.

Referring to this simplification, we can exclusively consider (∆) with the right-hand
side Fn from now on. In addition, let us impose the global assumption throughout the
paper that the real parameter sequences aI, bI, cI, dI in (∆) are bounded; furthermore
aI, bI, dI are supposed to have positive values, while cI can be nonnegative.

A solution (ξI, ηI) of (∆) is a sequence satisfying (ξn+1, ηn+1) = Fn(ξn, ηn). Given
an initial time n0 ∈ I and initial states x̄, ȳ ≥ 0, we denote the forward solution to (∆)
satisfying the initial condition xn0

= x̄, yn0
= ȳ by ϕ(·;n0, x̄, ȳ) and its components by

ϕ1, ϕ2. Further basics from nonautonomous dynamics are summarized in Appendix A.
We start with general remarks on the stability of solutions to nonautonomous

difference equations. For a solution (ξI, ηI) to (∆), the variational equation reads as
(
xn+1

yn+1

)

= F ′
n(ξn, ηn)

(
xn
yn

)

(V )

with the coefficient matrix

F ′
n(ξ, η) =

(
an(1+bnη)
(1+ξ+bnη)2

− anbnξ
(1+ξ+bnη)2

−dnηe
cn−dnξ−η ecn−dnξ−η(1− η)

)

for all n ∈ I, ξ, η ≥ 0.

Since we are interested in a robust analysis it is preferable to deal with uniform sta-
bility properties of solutions (ξI, ηI) to (∆). They are determined by the dichotomy
spectrum Σ(ξI, ηI) (for this, see Appendix B.2) of (V ), which indicates uniform asymp-
totic stability of a solution (ξI, ηI), i.e. the fact that (ξI, ηI) is uniformly attractive

∃ρ > 0 : ∀ε > 0 : ∃N ∈ N0 : (x̄, ȳ) ∈ Bρ(ξn0
, ηn0

) ⇒ ϕ(n;n0, x̄, ȳ) ∈ Bε(ξn, ηn)
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for all n0 ∈ I, n ≥ n0 +N , as well as uniformly stable

∀ε > 0 : ∃δ > 0 : ∀n0 ∈ I : (x̄, ȳ) ∈ Bδ(ξn0
, ηn0

) ⇒ ϕ(n;n0, x̄, ȳ) ∈ Bε(ξn, ηn)

for all n ≥ n0.
Theorem 2.1.
(a) If Σ(ξI, ηI) ⊆ [0, 1), then (ξI, ηI) is uniformly asymptotically stable.
(b) If there exists a spectral interval σ+ ⊆ Σ(ξI, ηI) with min σ+ > 1, then (ξI, ηI)

is unstable. Moreover, in case I = Z there exists an unstable fiber bundle.
Proof. See [26, Props. 3.9 and 3.10].
For analogy reasons, a solution (ξI, ηI) to (∆) is called a (nonautonomous)
• sink, if maxΣ(ξI, ηI) < 1,
• saddle, if I = Z and there exist two nonempty disjoint σ1, σ2 ⊆ (0,∞) with

Σ(ξI, ηI) = σ1 ∪ σ2, maxσ1 < 1 < minσ2,

• source, if 1 < minΣ(ξI, ηI).

Returning to the concrete planar system (∆), it has the trivial equilibrium (0, 0)
and both coordinate axes are forward invariant. Hence, in order to understand (∆)
we initially investigate its behavior restricted to the x- and y-axes.

Restricted to the x-axis, (∆) is a scalar nonautonomous Beverton-Holt equation

xn+1 = fn(xn), fn(x) :=
anx

1 + x
, (BH)

while the restriction to the y-axis results in a nonautonomous Ricker equation

yn+1 = gn(yn), gn(y) := yecn−y. (R)

Given these scalar systems, we illustrate basic nonautonomous tools for analyzing their
dynamics. First we note that their right-hand sides have at 0 the Taylor expansions

fn(x) = an

∞∑

i=0

(−1)ixi+1, gn(y) = ecn
∞∑

i=0

(−1)iyi+1

i!

with convergence radii 1 resp. ∞; see Fig. 2.1.

x1 2 3 4

1
x

1+x

xe
−x

e
−1

Fig. 2.1. Right-hand sides of the Beverton-Holt model (BH) for an = 1 (black), and the Ricker
model (R) for cn = 0 (red).

The function fn : R+ → R+ is monotone increasing with limit an > 0, whereas
gn : R+ → R+ is increasing for y < 1 with maximum ecn−1 at y = 1 and monotone
decreasing to 0 for y > 1. Using their common properties, we immediately find
invariant and pullback absorbing sets (see Appendix A for the required terminology):
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Theorem 2.2 (pullback attractor). Let I = Z and hn : R+ → R+, n ∈ Z, be
continuous. If rZ is a bounded sequence such that 0 ≤ hn(z) ≤ rn for all n ∈ Z,
z ≥ 0, then the nonautonomous set Z := {(n, z) ∈ Z× R+ : 0 ≤ z ≤ rn−1} is forward
invariant and pullback absorbing w.r.t. the scalar difference equation

zn+1 = hn(zn).

Furthermore, the so-called pullback attractor

Z∗ := {zZ ∈ ℓ∞ : zn+1 = hn(zn) on Z} ⊆ Z

is compact, invariant, connected and pullback attracts all bounded subsets of Z×R+.
Proof. Since hn(R+) ⊆ [0, rn] holds true for all n ∈ Z it follows that the nonau-

tonomous set Z is forward invariant and pullback absorbing.
The ω-limit set ωZ of the absorbing set Z is invariant, pullback attracting and

satisfies the inclusion ωZ ⊆ Z by [25, p. 19, Thm. 1.3.9]. Furthermore, [25, p. 14,
Thm. 1.2.25] guarantees compactness and [25, p. 20, Cor. 1.3.11] its connectedness.
Finally, the dynamical characterization [25, p. 17, Thm. 1.3.4] implies Z∗ = ωZ .

3. Nonautonomous Beverton-Holt model. Let us first consider the dynam-
ics of the nonautonomous Beverton-Holt equation (BH) in detail (cf. Fig. 3.1). Given
an initial pair (n0, x̄) ∈ I× R+, we denote its solution satisfying the initial condition
xn0

= x̄ by x(·;n0, x̄) and obtain the following properties:
• The nonautonomous set I×{0} is invariant, while {(n, x) ∈ I×R+ : x ≤ an−1}
and {(n, x) ∈ I× R : 0 < x ≤ an−1} are forward invariant w.r.t. (BH).

• Due to the monotonicity of each fn, one has the comparison principle

0 ≤ x̄1 < x̄2 ⇒ x(n; n̄, x̄1) < x(n; n̄, x̄2) for all n̄ ≤ n.

In particular, the Beverton-Holt equation (BH) is order-preserving.
• If I = Z, then Thm. 2.2 applies with rn = an and the pullback absorbing set

X := {(n, x) ∈ Z× R+ : 0 ≤ x ≤ an−1}

yielding the pullback attractor X ∗
a :=

{

xZ ∈ ℓ∞ : xn+1 = anxn

1+xn
on Z

}

.

x x x

fn(x) fn(x) fn(x)

an

an

an

an − 1

Fig. 3.1. Right-hand side fn : R+ → R+ of the Beverton-Holt equation (BH) for an ∈ (0, 1)
(left), an = 1 (center) and an > 1 (right).

3.1. Pullback attractor of (BH). In the autonomous Beverton-Holt equation

xn+1 = f(xn), f(x) :=
αx

1 + x
(BH’)
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with the right-hand side f : R+ → R+ and a parameter α > 0, the trivial solution
transcritically bifurcates into the equilibrium α−1, as α increases through the critical
value 1. For α = 1 it follows from [5, p. 478, Thm. A.3] that 0 is still asymptotically
stable. Thus, its pullback attractor becomes

X ∗
α =

{

Z× {0} , α ∈ (0, 1],

Z× [0, α− 1] , α > 1
(3.1)

and for α > 1 every solution starting in the open interval (0, α − 1) is a strictly
increasing heteroclinic connection between the fixed points 0 and α− 1.

Our next goal are similar information on the structure of the above nonautono-
mous set X ∗

a for arbitrary time-varying sequences aI. Here, it is helpful to introduce

Φa(n,m) :=







an−1 · · · am, m < n,

1, n = m,

a−1
n · · · a−1

m−1, n < m

(3.2)

and that the solutions of the Beverton-Holt equation (BH) are explicit:
Lemma 3.1. The Beverton-Holt equation (BH) has the explicit solution

x(n;n0, x̄) =







x̄Φa(n, n0)

1 + x̄
∑n−1

i=n0
Φa(i, n0)

, n0 ≤ n, x̄ ≥ 0,

x̄Φa(n, n0)

1− x̄
∑n0−1

i=n Φa(i, n0)
, n < n0

(3.3)

and x̄ ≥ 0 satisfying x̄
∑n0−1

i=n Φa(i, n0) < 1.
Proof. Let x̄ ≥ 0. It holds that x(n0;n0, x̄) = x̄ and moreover we get

x(n+ 1;n0, x̄)
(3.3)
=

x̄
∏n

i=n0
ai

1 + x̄
∑n

i=n0

∏i−1
j=n0

aj

(3.2)
=

anx̄Φa(n, n0)

1 + x̄
∑n−1

i=n0

∏i−1
j=n0

aj + x̄Φa(n, n0)

(3.3)
=

anx(n;n0, x̄)

1 + x(n;n0, x̄)
for all n0 ≤ n.

In order to obtain the relation for times n < n0 one has to solve

x̄ = x(n;n0, x(n0;n, x̄)) = x(n;n0, ξ) for all n0 < n

w.r.t. the variable ξ and arrives at the second formula given in (3.3).
A particularly important solution of (BH) results in the pullback limit n0 → −∞.
Lemma 3.2. For I = Z the Beverton-Holt equation (BH) has the entire solution

ξ∗n =
1

∑n−1
i=−∞ Φa(i, n)

for all n ∈ Z

and the following holds: If there exists an n ∈ Z such that
(a)

∏n−1
i=−∞ ai = ∞, then the solution ξ∗

Z
is pullback attracting in Z× (0,∞).

(b)
∏n−1

i=−∞ ai = 0 or

0 < inf
i<n

Φa(n, i) ≤ sup
i<m≤n

Φa(m, i) <∞, (3.4)

then the zero solution is pullback attracting in Z× R+.
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Proof. (a) For x̄ > 0 we have the limit relation

lim
n0→−∞

x̄Φa(n, n0)

1 + x̄
∑n−1

i=n0
Φa(i, n0)

= ξ∗n for all n ∈ Z

which, together with Lemma 3.1 and
∏n−1

i=−∞ ai = ∞, follows for n0 ≤ n from

x(n;n0, x̄)
(3.3)
=

x̄Φa(n, n0)

1 + x̄
∑n−1

i=n0
Φa(i, n0)

=
1

1
x̄
Φa(n0, n) +

∑n−1
i=n0

Φa(i, n)

by passing over to the limit n0 → −∞.
(b) Similarly to (a), the condition

∏n−1
i=−∞ ai = 0 yields limn0→−∞ x(n;n0, x̄) = 0

for all x̄ ≥ 0. Under the assumption (3.4) we abbreviate

a− := inf
i<n

Φa(n, i), a+ := sup
i<m≤n

Φa(m, i)

and deduce

0 ≤ x(n;n0, x̄)
(3.3)
=

x̄Φa(n, n0)

1 + x̄
∑n−1

i=n0
Φa(i, n0)

≤
a+x̄

1 + x̄
∑n−1

i=n0
a−

−−−−−→
n0→−∞

0.

Being a pullback solution, Thm. A.1 ensures that ξ∗
Z
solves (BH).

Remark 3.3 (sufficient conditions). (1) Lemma 3.2(a) occurs for sequences aZ
satisfying β(aZ) > 1, where β denotes the lower Bohl exponent, cf. Appendix B.1.

(2) Otherwise, for coefficient sequences aZ with upper Bohl exponent β(aZ) < 1,
Lemma 3.2(b) applies. Subexponential pullback convergence to 0 occurs under (3.4).

After these preparations we are in a position to characterize the set X ∗
a :

Theorem 3.4 (pullback attractor of (BH)). For I = Z the pullback attractor of
the Beverton-Holt equation (BH) is given by

X ∗
a =

{

Z× {0} ,
∏n−1

i=−∞ ai = 0 or (3.4),

{(n, x) : 0 ≤ x ≤ ξ∗n} ,
∏n−1

i=−∞ ai = ∞.

Remark 3.5. If one restricts to initial values x̄ > 0 the entire solution ξ∗
Z
becomes

pullback attracting in the sense that ωB = ξ∗
Z
holds for all bounded B ⊆ Z× (0,∞).

Proof. Under
∏n−1

i=−∞ ai = 0 or (3.4) the assertion follows immediately from

Lemma 3.2(b). In case
∏n−1

i=−∞ ai = ∞ we can apply Thm. A.3 and its Cor. A.4 with
the bounded sequences x−n := 0, x+n := an and the nonautonomous set X . It obviously
holds that ξ−n = x−n = 0 and as in the proof of Lemma 3.2 one shows that

ξ+n = lim
k→−∞

x(n; k, ak) = ξ∗n for all n ∈ Z.

We next illustrate that Thm. 3.4 captures the autonomous situation as well.
Example 3.6 (attractor change in (BH’)). For an ≡ α on Z one has Φa(n, n0) =

αn−n0 and therefore the pullback attractor X ∗
α precisely changes at α = 1 (cf. (3.1)).

In particular,

ξ∗n =
1

∑n−1
i=−∞

∏n−1
j=i

1
α

= α− 1 for all n ∈ Z, α > 1
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and accordingly the entire solution ξ∗
Z
degenerates to the fixed point α− 1.

In addition, the explicit representation (3.3) shows that structural assumptions
(periodicity, almost periodicity, asymptotic constancy) on the coefficient sequence aZ
carry over to the entire solution ξ∗

Z
and hence the pullback attractor X ∗

a .
While the nonhyperbolic case α = 1 was easily settled in the autonomous situa-

tion, the following example shows that for corresponding critical Bohl exponents

β(aZ) = β(aZ) = 1 (3.5)

a distinction between the attractors X ∗
a is more subtle in a time-variant setting:

Example 3.7. Let p ∈ R and consider coefficient sequences

aj :=

{∣
∣
∣
j−1
j

∣
∣
∣

p

, j < 0,

1, j ≥ 0

with the limit behavior

n−1∏

j=i

aj =
n−1∏

j=i

∣
∣
∣
∣

j − 1

j

∣
∣
∣
∣

p

=

∣
∣
∣
∣

i− 1

min{n,−1}

∣
∣
∣
∣

p

−−−−→
i→−∞







0, p < 0,

1, p = 0,

∞, p > 0

and Bohl exponents fulfilling (3.5). In case p < 0 we derive from Lemma 3.2(b) that
the trivial solution is pullback attracting. Nonetheless, from the explicit expression

ξ∗n =
1

∑n−1
i=−∞

∣
∣
∣

n
i−1

∣
∣
∣

p for all n < 0

we observe that ξ∗
Z
degenerates to the trivial solution for all p ≤ 1. However, for

exponents p > 1 the nontrivial entire solution ξ∗
Z
becomes pullback attracting.

The change of the pullback attractors from Thm. 3.4 is understood as bifurcation
in (BH). Indeed, one can illustrate the different approaches to a nonautonomous tran-
scritical bifurcation from [22, 30] in the parameter-dependent Beverton-Holt model

xn+1 =
an(λ)xn
1 + xn

. (BHλ)

3.2. Transcritical bifurcation.

3.2.1. The case an(λ) = λ
pn+1

pn
. We choose the parameter sequence

an(λ) = λ
pn+1

pn
, where 0 < p− ≤ pn ≤ p+ <∞ for all n ∈ Z. (3.6)

In this case, the entire solution introduced in Lemma 3.2 simplifies to

ξ∗n(λ) =
λnpn

∑n−1
i=−∞ λipi

,

and a plot of this solution for different parameter sequences pZ is given in Fig. 3.2. It
clearly illustrates that the attractivity of the trivial solution gets transferred to a non-
trivial constant, periodic, asymptotically constant resp. entire solution of (BHλ) as λ
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passes through the critical value 1, if the parameter sequence (pn)n∈Z has the corre-
sponding time-dependence. Note that the heteroclinic choice of (pn)n∈Z in Fig. 3.2(c)
leads to an(λ) = λ for n 6= 19 and a19 = 3λ, which explains the homoclinic behavior
of the solution ξ∗(λ).

n

n

n

n

λ

λ

λ

λ

ξ∗n(λ)

ξ∗n(λ)

ξ∗n(λ)

ξ∗n(λ)

(a) (b)

(c) (d)

Fig. 3.2. Nonautonomous transcritical bifurcation for the Beverton-Holt equation (BHλ) with
(a) pn ≡ 1, (b) pn = 1 + 1

2
sin πn

5
, (c) pn = 1

2
(n < 20) and pn = 3

2
(n ≥ 20), (d) pn = 1 + 1

2
rn

with randomly chosen rn ∈ [−1, 1].

In [11], the model function

xn+1 = hn(xn, λ), where hn(x, λ) =
λx

1 + pn

λ
x
, 0 < p− ≤ pn ≤ p+ <∞

is introduced that undergoes a nonautonomous transcritical bifurcation at λ = 1, as
defined in [22] and [30]. Via the kinematic transformation Tn(x) =

pn

λ
x we get

Tn+1 ◦ hn ◦ T−1
n (x) =

λ
pn+1

pn
x

1 + x
,

which is our Beverton-Holt model (BHλ) with an(λ) = λ
pn+1

pn
. Due to this topological

equivalence, (BHλ) also exhibits a transcritical bifurcation at λ = 1.
In the nonhyperbolic case λ = 1 one obtains

0∏

i=−∞

ai(1) =
0∏

i=−∞

pi+1

pi
∈ (0,∞),

and by Lemma 3.2(b), all solutions of (BHλ) pullback converge to 0. Thus, the trivial
solution is pullback attractive for all parameters 0 < λ ≤ 1.



10 THORSTEN HÜLS AND CHRISTIAN PÖTZSCHE

3.2.2. The case an(λ) = 1 + λαn. We deal with sequences an := 1 + λαn

and a bounded αI. For λ = 0 equation (BHλ) becomes autonomous and the unique
equilibrium 0 is globally asymptotically stable. Provided the sequence is uniformly
positive (or negative) it is possible to verify a transcritical bifurcation as understood
in [30]. This means that attraction and repulsion radii of the trivial solution to (BHλ)
decay to 0 as λ→ 0.

3.3. Forward behavior. Since pullback attractors essentially capture the dy-
namical behavior in the past of a difference equation (cf. [17] and Ex. 3.12 below), we
separately address the forward dynamics of (BH). First, one recaptures the feature
that all forward solutions to the autonomous problem (BH’) converge to the trivial
solution for parameters α ∈ (0, 1]. Second, it is worth to point out that already the
stability of the linearization xn+1 = anxn implies an attractive zero solution to (BH):

Proposition 3.8. If Φa(·, n0) ∈ ℓ∞ for a n0 ∈ I, then

lim
n→∞

x(n; n̄, x̄) = 0 for all n̄ ∈ I, x̄ ≥ 0.

Note that the above assertion holds for a Bohl exponent β(aI) < 1, whereas β(aI) > 1
enforces the trivial solution of (BH) to be unstable (cf. Thm. 2.1(b)).

Proof. Let n̄ ∈ I. Due to the inclusion ℓ1 ⊆ ℓ0 one has the decomposition

ℓ∞ = ℓ0 ∪ (ℓ∞ \ ℓ0) = ℓ0 ∪ (ℓ∞ \ ℓ1)

and therefore it suffices to consider the following two cases:
(I) Φa(·, n0) ∈ ℓ0: Thanks to the elementary estimate fn(x) =

anx
1+x

≤ anx for all
n ∈ I and x ≥ 0, mathematical induction implies the inequalities

0 ≤ x(n; n̄, x̄) ≤ x̄Φa(n, n̄) = x̄Φa(n0, n̄)Φa(n, n0) for all n̄ ≤ n, x̄ ≥ 0 (3.7)

and the claim follows in the limit n→ ∞.
(II) Φa(·, n0) ∈ ℓ∞ \ ℓ1: Here we can deduce

0 ≤ x(n; n̄, x̄)
(3.3)
=

x̄Φa(n, n̄)

1 + x̄
∑n−1

i=n̄ Φa(i, n̄)
≤

x̄Φa(n0, n̄) supn0≤k Φa(k, n0)

1 + x̄Φa(n0, n̄)
∑n−1

i=n̄ Φa(i, n0)
−−−−→
n→∞

0

and consequently obtain the assertion.
The assumption of Prop. 3.8 ensures that all forward solutions to (BH) converge

towards the trivial solution. An alternative summability condition — always fulfilled
in the hyperbolic autonomous case α 6= 1 (see Ex. 3.11) — that forward solutions
approach each other is given in

Proposition 3.9. If limn→∞

(
∑n−1

j=n0
Φa(j, n)

)
∑n−1

i=n0
Φa(i, n0) = ∞ holds for

a n0 ∈ I, then

lim
n→∞

(x(n;n0, x̄1)− x(n;n0, x̄2)) = 0 for all 0 < x̄1, x̄2. (3.8)

Proof. For x̄1 = x̄2 there is nothing to prove. Given reals 0 < x̄2 < x̄1 the explicit
representation from Lemma 3.1 yields

0 ≤ x(n;n0, x̄1)−x(n;n0, x̄2)
(3.3)
=

x̄1Φa(n, n0)

1 + x̄1
∑n−1

i=n0
Φa(i, n0)

−
x̄2Φa(n, n0)

1 + x̄2
∑n−1

i=n0
Φa(i, n0)
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=
(x̄1 − x̄2)Φa(n, n0)

(

1 + x̄1
∑n−1

i=n0
Φa(i, n0)

)(

1 + x̄2
∑n−1

i=n0
Φa(i, n0)

)

≤
x̄1 − x̄2

x̄1x̄2

(
∑n−1

j=n0
Φa(j, n)

)
∑n−1

i=n0
Φa(i, n0)

−−−−→
n→∞

0,

by the assumed divergence condition. Interchanging x̄1 and x̄2 in the above estimate
finally yields the claim for 0 < x̄1 ≤ x̄2, as well.

In the autonomous case (BH’) and for α > 1 all nontrivial solutions converge to
the fixed point α− 1 in forward time. This behavior persists for the nonautonomous
Beverton-Holt equation (BH) with α− 1 replaced by the entire solution ξ∗

Z
:

Corollary 3.10. If I = Z and the limit relations

lim
j→−∞

Φa(n0, j) = ∞, lim
n→∞





n−1∑

j=n0

Φa(j, n)





n−1∑

i=n0

Φa(i, n0) = ∞

hold for a n0 ∈ Z, then limn→∞ (x(n;n0, x̄)− ξ∗n) = 0 for all x̄ > 0.
Proof. Set x̄1 := x̄ and x̄2 := ξ∗n0

in (3.8) and use Lemma 3.2.
For autonomous equations forward and pullback asymptotics coincide:
Example 3.11 (autonomous situation). Suppose that an ≡ α on Z holds with

some α > 0. In case α = 1 the asymptotic equivalence (and convergence to 0) follows
from Prop. 3.8. On the other hand, for α 6= 1, one gets Φa(n, j) = αn−j and





n−1∑

j=n0

Φa(j, n)





n−1∑

i=n0

Φa(i, n0) =
1− αn0−n

α− 1

αn−n0 − 1

α− 1

=
αn−n0 + αn0−n − 2

(α− 1)2
−−−−→
n→∞

∞.

Hence, in case α ∈ [0, 1) all solutions converge to 0 in forward time. However, for
α > 1 the above Cor. 3.10 applies and yields forward convergence to the nontrivial
fixed point α− 1. In conclusion, the behavior from (3.1) occurs.

To illustrate that forward and pullback behavior of a nonautonomous equation
(BH) can be different in general, we consider

Example 3.12. Take a bounded sequence pZ as in (3.6), choose a fixed α− ∈ (0, 1)
and consider λ > 0 as bifurcation parameter. We define the sequence

an(λ) :=
pn+1

pn

{

λ, n ≥ 0,

α−, n < 0
for all n ∈ Z

in (BHλ) and an easy computation implies

Φa(n,m) =
pn

pm







λn−m, 0 ≤ m ≤ n,

λnα−m
− , m < 0 ≤ n,

αn−m
− , m ≤ n < 0.

The boundedness of pZ and the choice of α− ∈ (0, 1) yields limm→−∞ Φa(n,m) = 0
and by Thm. 3.4 the Beverton-Holt equation (BHλ) has the pullback attractor Z×{0}
for all λ > 0. Yet, solutions starting in x̄ > 0 converge towards the entire solution
ξ∗n(λ) in forward time, which needs not to be the trivial one.
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4. Nonautonomous Ricker model. We focus on a nonautonomous Ricker
equation (R) with right-hand side gn : R+ → R+ (cf. Fig. 4.1) for bounded sequences
cI in R+. Given pairs (n0, ȳ) ∈ I×R+, let us write y(·;n0, ȳ) for the general solution
to (R) and obtain

• The nonautonomous set I× {0} is invariant, while I×R+ and I× (0,∞) are
forward invariant w.r.t. (R).

• All forward solutions are bounded, i.e. it is

0 < y(n;n0, ȳ) ≤
ecn−1

e
for all n > n0, ȳ > 0, (4.1)

while backward solutions to initial values ȳ > ecn

e
do not exist.

• Comparing the Beverton-Holt and Ricker model for an = ecn , we immediately
see that (cf. Fig. 2.1)

0 < y(n;n0, ȳ) ≤ x(n;n0, ȳ)
(3.3)
=

ȳ
∏n−1

i=n0
eci

1 + ȳ
∑n−1

i=n0

∏i−1
j=n0

ecj
,

and one particularly has the estimate

0 < y(n;n0, ȳ) ≤ ȳ

n−1∏

j=n0

ecj for all n ≥ n0, ȳ > 0. (4.2)

• Due to the assumption cn ≥ 0 one deduces 1 ≤ β(ecI) ≤ β(ecI).

y y y

gn(y) gn(y) gn(y)

1 1 1

e
cn

e

e
cn

e

e
cn

e

cncn

Fig. 4.1. Right-hand side gn : R+ → R+ of the Ricker equation (R) for cn ∈ (0, 1) (left),
cn = 1 (center) and cn > 1 (right).

As for the Beverton-Holt equation (BH) we obtain for I = Z from Thm. 2.2:
• The nonautonomous set

Y :=
{

(n, y) ∈ Z× R : 0 ≤ y ≤ e
cn−1

e

}

is forward invariant and pullback absorbing w.r.t. (R).
• The set Y∗

c of all bounded entire solutions to (R) is invariant, compact, con-
nected, it pullback attracts bounded subsets of Z×R+ and satisfies Y∗

c ⊆ Y.
Nevertheless, since (R) fails to be order-preserving in general (see Fig. 4.1) the dy-
namics inside of Y∗

c might be chaotic (cf. [24]).

4.1. Pullback attractor of (R). For the autonomous Ricker equation

yn+1 = g(yn), g(y) := yeγ−y (R’)
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with the right-hand side g : R+ →
[
0, eγ−1

]
the nontrivial equilibrium γ is asymp-

totically stable for γ ∈ (0, 2). Then one observes a flip bifurcation into a 2-periodic
orbit, as γ crosses the critical value 2. For γ = 2 the right-hand side g of (R’) has
a negative Schwarzian Sg(2) = −1 and [5, p. 479, Thm. A.4] implies that γ = 2 is
still an asymptotically stable fixed point of (R’). Moreover, as γ increases through 1,
monotonicity of the solutions is lost. We observe that the pullback attractor is

Y∗
γ =

{

Z× [0, γ] , γ ∈ (0, 1],

Z×
[
0, e

γ

e

]
, γ > 1

and at least for γ ≤ 1 every solution starting in (0, γ) is a strictly increasing hetero-
clinic connection between the fixed points 0 and γ.

We now approach the corresponding nonautonomous problem:
Lemma 4.1. If supn∈I cn ≤ 1, then the Ricker equation (R) is order preserving

on the forward invariant set I× [0, 1] and its forward solutions satisfy

ȳ1 < ȳ2 ⇒ y(n;n0, ȳ1) < y(n;n0, ȳ2) for all n0 ≤ n, ȳ1, ȳ2 ∈ [0, 1].

Proof. Due to cn ≤ 1 one has ecn−1 ≤ 1 for all n ∈ I and (4.1) implies that the
set I × [0, 1] is forward invariant w.r.t. (R). Moreover, gn|[0,1] is strictly increasing
and consequently the forward solutions are order-preserving.

Theorem 4.2. Let I = Z. The pullback attractor of the Ricker equation (R) is

Y∗
c =

{

{(n, y) : 0 ≤ y ≤ η∗n} , supn∈Z cn ≤ 1,
{

(n, y) : 0 ≤ y ≤ ecn−1

e

}

, 1 ≤ infn∈Z cn

with the pullback solution η∗
Z
given by

η∗n := lim
k→−∞

y(n; k, 1) for all n ∈ Z. (4.3)

Proof. (I) First, we note that cn ≤ 1 implies the inclusion Y ⊆ Z × [0, 1] and
Lemma 4.1 guarantees that also Z × [0, 1] is forward invariant and pullback absorb-
ing. Moreover, the dynamical characterization of the pullback attractor as the set
consisting of all bounded entire solutions implies Y∗

c = ωY = ωZ×[0,1]. Finally, be-
cause (R) is order preserving in Z× [0, 1], the claim results from Cor. A.4.

(II) In the complementary situation cn ≥ 1 for all n ∈ Z, the pullback absorbing
set Y turns out to be invariant. Hence, Cor. A.2 implies the claim.

Although for time-varying coefficients cn no nontrivial equilibrium of (R) exists,
Thm. 4.2 shows that Y∗

c has a similar structure as in the autonomous situation, namely

Y∗
c = {(n, y) : 0 ≤ y ≤ η∗n}

with an entire bounded solution η∗
Z
to (R) — at least in case cn ≤ 1. Let us next show

that the pullback solution η∗
Z
from (4.3) remains well-defined for a larger parameter

regime, without essentially weakening its attraction properties.
This requires to introduce the Lambert-W -function W : [−e−1,∞) → [−1,∞),

i.e. the inverse of x 7→ xex restricted to [−1,∞).
Lemma 4.3. If the sequence cI satisfies (cf. Fig. 4.2 (left))

ỹ := 1−W (e−1)
︸ ︷︷ ︸

≈0.72

≤ min
{

cn, gn

(
e
cn−1

e

)}

for all n ∈ I, (4.4)
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then the following holds true:
(a) (R) possesses a forward invariant nonautonomous set

Ỹc :=
{

(n, y) : ỹ ≤ y ≤ max
{

1, e
cn−1

e

}}

.

(b) For all n̄ ∈ I and ȳ1, ȳ2 ∈ Ỹc(n̄) one has

|y(n; n̄, ȳ1)− y(n; n̄, ȳ2)| ≤





n−1∏

j=n̄

ecj−2



 |ȳ1 − ȳ2| for all n̄ ≤ n. (4.5)

cn−1

cn

0 1 2

1

2

0 1 2
y

|g′
n
(y)|

0

e
cn−2

e
cn

ỹ

Fig. 4.2. Parameter pairs (cn−1, cn) satisfying assumption (4.4) (left) and a plot of |g′n| to
illustrate the value ỹ ≈ 0.72 from the proof of Lemma 4.3 (right).

Proof. The derivative of gn is g′n(y) = (1 − y)ecn−y and consequently |g′n(·)| has
the global maximum ecn ≥ 1 (for y = 0) and the local maximum ecn−2 (for y = 2, cf.
Fig. 4.2 (right)). Moreover, one easily sees that the equation |g′n(y)| = ecn−2 possesses
the two solutions ỹ = 1−W (e−1) and 2. This particularly implies

max
ỹ≤y

|g′n(y)| = ecn−2 for all n ∈ I. (4.6)

(a) We show the forward invariance of Ỹc. Due to (4.4) one has ỹ ≤ cn and thus

ỹ ≤ gn(ỹ) for all n ∈ I (4.7)

(cf. Fig. 4.1), yielding the inclusions

gn(Ỹc(n)) = gn

([

ỹ,max
{

1, e
cn−1

e

}])

⊆
[

min
{

gn(ỹ), gn

(

max
{

1, e
cn−1

e

})}

,max
{
1, e

cn

e

}]

⊆
[

min
{

gn(ỹ), gn

(
e
cn−1

e

)}

,max
{
1, e

cn

e

}]

(4.7)

⊆
[

min
{

ỹ, gn

(
ecn−1

e

)}

,max
{
1, e

cn

e

}]

(4.4)

⊆
[
ỹ,max

{
1, e

cn

e

}]
= Ỹc(n+ 1) for all n ∈ I.

(b) In order to show (4.5) we proceed by induction. The claim obviously holds
for n = n̄. In the induction step n→ n+ 1 we obtain from the mean value estimate

|y(n+ 1; n̄, ȳ1)− y(n+ 1; n̄, ȳ2)|
(R)
= |gn(y(n; n̄, ȳ1))− gn(y(n; n̄, ȳ2))|
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(4.6)

≤ ecn−2 |y(n; n̄, ȳ1)− y(n; n̄, ȳ2)| ≤





n∏

j=n̄

ecj−2



 |ȳ1 − ȳ2|

for all ȳ1, ȳ2 ∈ Ỹc(n̄).

Having Lemma 4.3 at hand, the uniform bounds on cZ in Thm. 4.2 can be weak-
ened for the price of a smaller domain of attraction.

Proposition 4.4. Let I = Z. If cZ satisfies (4.4) and
∏n0−1

j=−∞ ecj−2 = 0 holds
for one n0 ∈ Z, then the pullback solution η∗

Z
given in (4.3) solves (R) and pullback

attracts the nonautonomous set Ỹc.

Proof. For each fixed n ∈ Z our assumptions combined with

|y(n; k1, 1)− y(n; k2, 1)| = |y(n; k1, 1)− y(n; k1, y(k1; k2, 1))|

(4.5)
=





n∏

j=k1

ecj−2



 |1− y(k1; k2, 1)|

for all k2 ≤ k1 ≤ n (resp. an analogous estimate for k1 ≤ k2 ≤ n) readily yield that
(y(n; k, 1))k≤n is a Cauchy sequence in the complete space Ỹc(n) and thus convergent.

Hence, by Thm. A.1 the sequence η∗
Z
solves (R). Moreover, (4.5) also implies that Ỹc

is pullback attracted by η∗
Z
.

In Fig. 4.3 we depicted the absorbing set Ỹc and the entire bounded solution η∗
Z

for different sequences cZ fulfilling the assumptions of Prop. 4.4. Again it is indicated
that structural properties of cZ (constancy, periodicity, etc.) get transferred to the
absorbing set and the pullback solution η∗

Z
:

0 10 20 30 40

1

2

3

0 10 20 30 40

1

2

3

0 10 20 30 40

1

2

3

0 10 20 30 40

1

2

3

n

n

n

n

cn

cncn

cn

Fig. 4.3. The pullback absorbing sets Ỹc (blue shaded) containing the entire solutions η∗
Z
(red

dots) for sequences cn ≡ 3

2
(top left); cn = 3

2
+ 1

2
sin πn

5
(10-periodic, top right); cn = 2 (n < 20)

and cn = 1 (n ≥ 20, bottom left); cn = 3

2
+ 1

2
rn (rn ∈ [−1, 1] randomly chosen, bottom right).

For 200 starting points yi0, i = 1, . . . , 200, we computed the maximal distance
between corresponding forward orbits en := maxi,j=1,...,200 |y(n, 0, y

i
0)− y(n, 0, yj0)| in

Fig. 4.4. In addition, parameter sequences are considered that (on purpose) do not
satisfy the assumptions of Lemma 4.3. The convergence of these solutions towards
each other in case (b) and (c) indicates that (4.4) might be of technical nature.
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0 5 10 15 20 25 30

10
−10

10
0

0 10 20 30 40 50

10
−10

10
0

0 20 40 60 80

10
−10

10
0

0 50 100 150 200

10
−5

10
0

n n

nn

en en

enen

(a) (b)

(c) (d)

Fig. 4.4. Maximal distance en between 200 solutions of (R) for (a): y0 ∈ (ỹ, 3], cI ∈ [ỹ, 2]I,
(b): y0 ∈ (0, 3], cI ∈ [0, 2]I, (c): y0 ∈ (0, 3], cI ∈ [0, 3]I and (d): y0 ∈ (0, 3], cI ∈ [0, 4]I, where the
parameter sequences are uniformly distributed.

Another possibility to obtain entire solutions to (R) in the pullback attractor
Y∗
c follows from a perturbation argument: For γ 6= 2 the nontrivial equilibrium γ of

the autonomous equation (R’) persists as an entire bounded solution to (R) locally.
Quantitatively one has

Theorem 4.5. Suppose that I = Z, γ 6= 2 and choose ν ∈ (0, 1). If ε, ρ > 0 fulfill

2eγ

|γ − 2|

e2ρ − 1

ρ

(

ρ+
ε

2

)

≤ ν,
2ρ

|γ − 2|

(
1 + eγ+ρ

)
≤ ε(1− ν),

then for every parameter sequence cZ satisfying supn∈Z |cn − γ| < ρ there exists a
unique bounded solution ηZ of (R) such that supn∈Z |ηn − γ| < ε.

Proof. We subdivide the proof into two steps:
(I) First, we introduce the functions g,G : R+ × R+ → R,

g(y, γ) := yeγ−y, G(y, γ) := gy(y, γ) = (1 − y)eγ−y.

The elementary estimate
∣
∣(n− t)eγ−t

∣
∣ ≤ neγ for all t ≥ 0, n ∈ N, γ ∈ R (4.8)

yields |G(y, γ)| ≤ eγ and therefore the partial derivative gy(·, γ) is globally bounded.
For all y, ȳ ≥ 0 and γ > 0 the mean value theorem implies

|g(y, γ)− g(ȳ, γ)| ≤

∫ 1

0

|gy(y + t(ȳ − y), γ)| dt |y − ȳ| ≤ eγ |y − ȳ| . (4.9)

In addition, the derivative of G reads as G′(y, γ) = (y − 2, 1 − y)eγ−y. Choosing an
arbitrary ρ > 0, again the mean value theorem implies

|gy(y, γ)− gy(ȳ, γ̄)| ≤

∫ 1

0

∣
∣
∣
∣
G′(y + t(ȳ − y), γ + t(γ̄ − γ))

(
y − ȳ

γ − γ̄

)∣
∣
∣
∣
dt
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≤

∫ 1

0

|y + t(ȳ − y)− 2| eγ+t(γ̄−γ)−y−t(ȳ−y) dt |y − ȳ|

+

∫ 1

0

|y + t(ȳ − y)− 1| eγ+t(γ̄−γ)−y−t(ȳ−y) dt |γ − γ̄|

(4.8)

≤ 2eγ
∫ 1

0

et(γ̄−γ) dt |y − ȳ|+ eγ
∫ 1

0

et(γ̄−γ) dt |γ − γ̄|

= eγ
eγ̄−γ − 1

γ̄ − γ
(2 |y − ȳ|+ |γ − γ̄|)

≤ eγ
e2ρ − 1

2ρ
(2 |y − ȳ|+ |γ − γ̄|) for all y, ȳ ≥ 0 (4.10)

and γ, γ̄ > 0 with |γ̄ − γ| < 2ρ, since t 7→ et−1
t

is strictly increasing.
(II) For fixed γ > 0 let cZ, c̄Z be sequences in (0,∞) satisfying supn∈Z |cn − γ| < ρ

and supn∈Z |c̄n − γ| < ρ. This implies cn < γ + ρ and |cn − c̄n| < 2ρ for all n ∈ Z,
which yields the estimates

|g(y, cn)− g(ȳ, cn)|
(4.9)

≤ ω0(|y − ȳ|),

|gy(y, cn)− gy(ȳ, c̄n)|
(4.10)

≤ ω1

(

sup
n∈Z

|cn − c̄2| , |y − ȳ|

)

for all y, ȳ ≥ 0, n ∈ Z,

with the real functions ω0(t) := eγ+ρt and ω1(t, s) := eγ e2ρ−1
ρ

(
t+ s

2

)
. Then the claim

follows from the quantitative perturbation result [27, Cor. 2.12].

4.2. Flip bifurcation. Standard results (cf. [31, p. 244, Thm. 3.1]) guarantee
a flip bifurcation for the autonomous equation (R’), i.e. the nontrivial equilibrium γ

bifurcates into an asymptotically stable 2-periodic solution for parameters γ > 2.
To obtain an impression of the behavior in the critical and nonhyperbolic situation

γ = 2, we now investigate the autonomous (R’) under time-varying perturbations

yn+1 = yne
cn(γ)−yn (Rγ)

and suppose the parameter sequence is given as

cn(γ) := γ + εγn for all n ∈ I,

with a bounded sequence γI and a real ε ≥ 0. Even in this perturbed autonomous
situation the basic problem arises that established nonautonomous bifurcation results
(cf., e.g., [22, 30]) require a whole family (parametrized by γ) of bounded entire
solutions η(γ)I along which the bifurcation occurs with ε = 0 and η(0) = γ.

Numerically, we can approximate such bounded solutions η(γ) by solving

yn+1 = yne
cn(γ)−yn, n = n−, . . . , n+ − 1

with projection or periodic boundary conditions yn−
= yn+

.
Assuming hyperbolicity (i.e. an exponential dichotomy of the variational equa-

tion) it turns out that approximation errors decay exponentially fast towards the
midpoint of the finite interval, see [14].

With γn ∈ [−1, 1] chosen randomly, we illustrate the accordingly computed
bounded trajectories η(γ)I in Fig. 4.5 for ε = 0 (left, autonomous case) and ε = 0.02
(right). The dichotomy spectrum of the corresponding linearization

yn+1 = (1 − ηn(γ))e
cn(γ)−ηn(γ)yn
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is illustrated in Fig. 4.6.

nn

ynyn

γγ

2-periodic solutions

Fig. 4.5. Bounded trajectories of the Ricker model (Rγ ) for ε = 0 (left) and ε = 0.02 (right).

0.5 1 1.5
1.5

2

2.5

0.5 1 1.5
1.5

2

2.5

γγ

Fig. 4.6. Dichotomy spectrum for the gray trajectories from Fig. 4.5 for parameters ε = 0 (left)
and ε = 0.02 (right).

Thus, we observe that the autonomous flip bifurcation in (R’) at γ = 2 turns into
a “nonautonomous flip bifurcation” in (Rγ) perturbation strengths ε > 0.

Remark 4.6 (nonautonomous flip bifurcation). Once a reference solution branch
η(γ) is known in a neighborhood of γ = 2, a nonautonomous flip bifurcation can be
approached analytically as follows: As in the autonomous situation, where a period
doubling means a pitchfork bifurcation in the second iterate of (R’), one introduces
the equation of perturbed motion

yn+1 = (yn + ηn(γ))e
cn(γ)−yn−ηn(γ) − ηn+1(γ) =: ĝn(yn, γ)

and applies nonautonomous bifurcation criteria from [22, 30] to the difference equation

yn+1 = Gn(yn, γ), Gn(y, γ) := ĝn+1(ĝn(y, γ), γ)

near γ = 2. Due to the tedious computations we skip the details here.
Before addressing forward convergence of solutions, let us illustrate that the trivial

solution to (R) can be both pullback attracting and unstable simultaneously:
Example 4.7. Let I = Z. For the sequence

cj :=

{

ln j+1
j
, j < −1,

ln 2, j ≥ −1

of positive coefficients, we obtain from (4.2) the limit relation

0 < y(n;n0, ȳ) ≤ ȳ

n−1∏

j=n0

ecj =
n

n0
−−−−−→
n0→−∞

0 for all n < −1, ȳ > 0
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and therefore it is Y∗
c = Z×{0}. However, due to β(ecN) = β(ecN) = 2 our Thm. 2.1(b)

implies that 0 is unstable.

4.3. Forward behavior. Concerning the forward dynamics of the Ricker equa-
tion (R), Thm. 2.1(b) implies that the trivial solution is unstable, provided β(ecI) > 1.
One readily deduces a criterion for asymptotic equivalence of all forward solutions.

Proposition 4.8. Under the assumptions

lim inf
n→∞

cn > 0, lim sup
n→∞

cn < ln 2 + 1 ≈ 1.30

all nontrivial forward solutions to (R) fulfill

lim
n→∞

(y(n; n̄, ȳ2)− y(n; n̄, ȳ1)) = 0 for all n̄ ∈ I, ȳ1, ȳ2 > 0.

Proof. The right-hand side gn of (R) is strictly increasing in [0, 1] and strictly
decreasing on [1,∞). At y = 1 it achieves its global maximum ecn−1.

(I) Thanks to c∗ := lim infn→∞ cn > 0 we can choose

η ∈
(
0,min

{
c∗, 2e

−2
})

and get an N1 ∈ I such that cn ≥ η for all n ≥ N1. This implies gn(η) = ηecn−η ≥ η,
as well as η ≤ ηecn ≤ 2ecn−2 = gn(2) ≤ gn(2 − η), since gn decreases on the closed
interval [1, 2]. Due to c∗ := lim supn→∞ cn < ln 2+1 we can furthermore choose η > 0
so small that cn < ln(2 − η) + 1 holds for almost all n ∈ I, say for every n ≥ N2.
Consequently, it is gn(y) ≤ ecn−1 < 2− η for all y ≥ 0 and we arrive at the inclusion

gn([η, 2 − η]) ⊆ [η, 2− η] for all n ≥ max {N1, N2} .

(II) For every y ∈ [η, 2− η] we obtain

∣
∣
∣
∣

g′n(y)

gn(y)

∣
∣
∣
∣
=

∣
∣
∣
∣

(1− y)

y

∣
∣
∣
∣
=

|1− y|

y
≤

|1− η|

y
for all y ∈ [η, 2− η]

and according to [21, Lemma 2.1] the mappings gn are |1− η|-cave functions. Now
because of the estimate |1− η| < 1 we obtain from [21, Thm. 3.2(ii)] that

lim
n→∞

|y(n; n̄, ȳ1)− y(n; n̄, ȳ2)| = 0 for all n̄ ≥ max {N1, N2}

and ȳ1, ȳ2 ∈ [η, 2 − η]. Since the Ricker equation (R) is permanent (cf. [33]), every
forward solution to (R) eventually enters an interval [η, 2 − η] with sufficiently small
η > 0. Hence, the above limit relation even holds for all n̄ ∈ I and ȳ1, ȳ2 > 0.

An alternative condition on cI for asymptotic equivalence of all solutions is
Proposition 4.9. If cI satisfies (4.4) and

∏∞

j=n0
ecj−2 = 0 for a n0 ∈ I, then

lim
n→∞

(y(n; n̄, ȳ1)− y(n; n̄, ȳ2)) = 0 for all n̄ ∈ I, ȳ1, ȳ2 > 0.

Remark 4.10. The limit relation
∏∞

j=n0
ecj−2 = 0 always holds in the setting of

Prop. 4.8. Indeed, even if c∗ := lim supn→∞ cn < 2, then there exists a N ∈ I such
that cn <

c∗+2
2 < 2 for all n ≥ N and consequently

∏∞

j=n0
ecj−2 = 0.
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Proof. Since
∏∞

j=n0
ecj−2 = 0 implies

∏∞

j=n̄ e
cj−2 = 0 for all n̄ ∈ I, it suffices

to restrict to initial times n̄ = n0. Then, in case ȳ1, ȳ2 ∈ Ỹc(n0) the proof follows
immediately from Lemma 4.3(b).

Let ȳ1, ȳ2 > 0. If the parameter sequence cI satisfies limn→∞ cn = ỹ, then
both solutions converge towards the asymptotic fixed point ỹ. Otherwise, there is
an N(ȳ1, ȳ2) ∈ I such that y(n;n0, ȳ1), y(n;n0, ȳ2) ∈ Ỹc(n0) for all n ≥ N(ȳ1, ȳ2) and
the claim follows from Lemma 4.3(b).

Corollary 4.11. Let I = Z. If the sequence cZ satisfies (4.4) and

n0−1∏

j=−∞

ecj−2 =

∞∏

j=n0

ecj−2 = 0 for some n0 ∈ Z,

then one has the limit relation

lim
n→∞

(y(n;n0, ȳ)− η∗n) = 0 for all ȳ ∈ Ỹc(n0).

Proof. Set ȳ1 := ȳ and ȳ2 := η∗n0
in (4.5).

5. Global Dynamics. In this section, we tackle the planar system (∆) to obtain
information on its global dynamics. Above all, the first (and biologically relevant)
quadrant R2

+ is forward invariant w.r.t. (∆), i.e. each mapping Fn : R2
+ → R2

+, n ∈ I,
is well-defined. As above, ϕ = (ϕ1, ϕ2) is the general solution of (∆).

5.1. Pullback attractor. Lemma 5.1. For I = Z the nonautonomous set

A :=
{

(n, x, y) ∈ R
2 : 0 ≤ x ≤ an−1, 0 ≤ y ≤ ecn−1

e

}

is forward invariant and pullback absorbing w.r.t. (∆).
Proof. For arbitrary reals x, y ≥ 0 one has

0 ≤
anx

1 + x+ bny
≤

anx

1 + x
≤ an, 0 ≤ yecn−dnx−y ≤ yecn−y ≤

ecn

e
(5.1)

and thus the right-hand side of (∆) satisfies Fn(R
2
+) ⊆ A(n+1) for n ∈ Z. By means

of (5.1), induction yields ϕ(n;n0,R
2
+) ⊆ A(n) for n0 < n and A is pullback absorbing.

In particular, Fn(A(n)) ⊆ A(n+ 1) and consequently A is also forward invariant.
Theorem 5.2 (pullback attractor for (∆)). If I = Z, then the set A∗ of all

bounded entire solutions to (∆) is invariant, compact, connected, it pullback attracts
every bounded nonautonomous subset of Z× R2

+ and satisfies A∗ ⊆ A.
Proof. On the basis of Lemma 5.1 the proof follows along the lines of Thm. 2.2

applying the corresponding results from [25].
Since both coordinate axes are forward invariant w.r.t. (∆), the nonautonomous

set A∗ contains the pullback attractors X ∗
a of (BH) and Y∗

c of (R) in the sense that

X ∗
a × {0} ⊆ A∗, {0} × Y∗

c ⊆ A∗ (5.2)

and also Z× {(0, 0)} ⊆ A∗.
Lemma 5.3. For all ξ, η ≥ 0 one has the estimates

0 ≤ ϕ1(n;n0, ξ, η) ≤ x(n;n0, ξ) for all n0 ≤ n, (5.3)

0 ≤ ϕ2(n;n0, ξ, η) ≤
ecn

e
for all n0 < n.
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Proof. The second estimate is essentially a consequence of the forward invariance
of A shown in Lemma 5.1. The first estimate follows by induction: It obviously holds
for n = n0. Concerning the induction step n→ n+ 1 one has

0 ≤ ϕ1(n+ 1;n0, ξ, η)
(∆)
=

anϕ1(n;n0, ξ, η)

1 + ϕ1(n;n0, ξ, η) + bnϕ2(n;n0, ξ, η)

≤ fn(ϕ1(n;n0, ξ, η)) ≤ fn(x(n;n0, ξ)) = x(n+ 1;n0, ξ),

since fn is strictly increasing, and this completes the proof.
Our following result is a criterion ensuring that the pullback behavior of the planar

difference equation (∆) is dominated by the Ricker dynamics of (R):

Theorem 5.4. Let I = Z. If
∏n0−1

j=−∞ aj = 0 for a n0 ∈ Z, then A∗ = {0} × Y∗
c .

Proof. The set {0} × Y∗
c is closed and a combination of Lemma 5.3 with (3.7)

shows that {0} × Y∗
c is pullback attracting. Then [25, p. 19, Thm. 1.3.9(b)] implies

A∗ ⊆ {0} × Y∗
c and the claim follows together with (5.2).

Lemma 5.5. Let I = Z. If supn∈Z cn ≤ 1, then (∆) is order-preserving (w.r.t. the
south-east cone C := R+ × (−∞, 0]) on the forward invariant and pullback absorbing
set

A0 :=
{
(n, x, y) ∈ Z× R

2
+ : x ≤ an−1, y ≤ 1

}
.

Remark 5.6. In the terminology of [34], Lemma 5.5 shows that (∆) is compet-
itive on A0.

Proof. The estimates (5.1) imply that A0 is forward invariant and as a superset
of A, by Lemma 5.1 also pullback absorbing. Thus, (∆) defines a difference equation
in the nonautonomous set A0. With arbitrary pairs (x, y) ∈ C we derive

F ′
n(ξ, η)

(
x

y

)

=

(
an(1+bnη)
(1+ξ+bnη)2

− anbnξ
1+ξ+bnη

−dnηe
cn−dnξ−η ecn−dnξ−η(1− η)

)(
x

y

)

∈ C for all n ∈ I

and ξ ≥ 0, η ∈ [0, 1]. Therefore, the derivative F ′
n(ξ, η) is positive (w.r.t. the cone C)

and the criterion [9, Lemma 2.2] ensures that Fn|A0(n) is order-preserving.
Theorem 5.7. Let I = Z. If supn∈Z cn ≤ 1, then the pullback attractor of (∆)

fulfills

A∗ ⊆

{

(n, ξ, η) ∈ Z× R
2
+ : ξ ≤ lim

k→−∞
x(n; k, ak−1), η ≤ lim

k→−∞
y
(
n; k, e

ck−1

e

)
}

.

Proof. We use the terminology from the above proof of Lemma 5.5, where the
south-east cone C induces a partial ordering

(x1, y1) � (x2, y2) :⇔ x1 ≤ y1 and y2 ≤ y1

on R2. Let us apply Thm. A.3 to the sequences (x−n , y
−
n ) := (0, e

cn−1

e
) and (x+n , y

+
n ) :=

(an−1, 0) satisfying (x−n , y
−
n ) � (x+n , y

+
n ) for all n ∈ Z. The resulting set A0 is forward

invariant and consequently Thm. A.3 yields the entire solutions

ζ−n := lim
k→−∞

ϕ(n; k, (0, e
cn−1

e
)) =

(
0

limk→−∞ y(n; k, e
ck−1

e
)

)

,
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ζ+n := lim
k→−∞

ϕ(n; k, (ak−1, 0)) =

(
limk→−∞ x(n; k, ak−1)

0

)

for all n ∈ Z. Hence, thanks to Cor. A.4 we deduce the claimed inclusion

A∗ ⊆
{
(n, x, y) ∈ Z× R

2
+ : ζ−n � (x, y) � ζ+n

}

=

{

(n, ξ, η) ∈ Z× R
2
+ : ξ ≤ lim

k→−∞
x(n; k, ak−1), η ≤ lim

k→−∞
y(n; k, e

cn−1

e
)

}

and the proof is completed.
Corollary 5.8. If

∏n0−1
j=−∞ aj = ∞ for a n0 ∈ Z and cZ satisfies (4.4), then

A∗ ⊆
{
(n, x, y) ∈ Z× R

2
+ : x ≤ ξ∗n, y ≤ η∗n

}
.

Proof. On the one hand, by Lemma 3.2(a) we see that ξ∗
Z
is pullback attracting

w.r.t. (BH) and hence limk→−∞ x(n; k, ak−1) = ξ∗n holds true for every n ∈ Z. On

the other hand, because of cn ≤ 1 one has
∏n−1

j=−∞ ecj−2 = 0 and the set Ỹc from

Lemma 4.3 allows the inclusion
(
n, e

cn−1

e

)
∈ Ỹc. By Prop. 4.4, in particular the

sequence
(
n, e

cn−1

e

)
is pullback attracted to η∗

Z
and thus limk→−∞ y(n; k, e

ck−1

e
) = η∗n

is satisfied for all n ∈ Z.

5.2. Forward behavior. Since the right-hand side of (∆) is globally bounded,
we obtain that all its forward solutions are bounded and immediately contained in
the invariant rectangle (cf. (5.1))

[

0, sup
n∈I

an

]

×
[
0, esupn∈I

cn−1
]
.

The subsequent results illustrate the role of the parameter aI in the extinction of
one species x or y. Indeed, a Beverton-Holt equation (BH) with an attractive trivial
solution (see Prop. 3.8) guarantees an asymptotically vanishing population x for (∆):

Theorem 5.9 (extinction of x). If Φa(·, n0) ∈ ℓ∞ for a n0 ∈ I, then

lim
n→∞

dist (ϕ(n;n0, x̄, ȳ), {0} × R+) = 0 for all x̄, ȳ ≥ 0.

Proof. Thanks to Prop. 3.8 and Lemma 5.3 one has

0 ≤ dist(ϕ(n;n0, x̄, ȳ), {0} × R+) = ϕ1(n;n0, x̄, ȳ)
(5.3)

≤ x(n;n0, x̄) −−−−→
n→∞

0

and therefore the claim.
On the other hand, sufficiently large values of aI in comparison to cI (cf. (5.4) for

a concretization) yield to extinction of the y-species in the full equation (∆):

Theorem 5.10 (extinction of y). If there exists an s > 0 such that

lim sup
n→∞

ecn

asn
max

{

(sbn)
se

1
bn

−s
,
(

s
dn

)s
edn−s

}

< 1, (5.4)

then limn→∞ dist (ϕ(n;n0, x̄, ȳ),R+ × {0}) = 0 for all x̄, ȳ > 0.
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Remark 5.11. If the sequence bI is eventually constant to a value β > 0, one
can choose s := β−1 and the condition (5.4) becomes

lim sup
n→∞

ecn

as
n

(
1

βdn

) 1
β edn−β < 1.

For dI being eventually equal to δ > 0, the choice s := δ allows to simplify (5.4) to

lim sup
n→∞

ecn

as
n
(δbn)

δe
1
bn

−δ
< 1;

this is based on the fact that the functions s 7→ (sbn)
se

1
bn

−s
and s 7→

(
s
dn

)s
edn−s

attain their global minimum 1 on (0,∞) for s = b−1
n resp. s = dn.

Proof. Following [6, Thm. 5.2] we define V (x, y) := y
xs . In order to show that V

is a Lyapunov function for the nonautonomous equation (∆) on (0,∞)2 one has

V (Fn(x, y))

V (x, y)
=
ecn

asn
vn(x, y) for all n ∈ I

with vn(x, y) := (1+x+ bny)
se−dnx−y defined on R2

+. As in [6, Thm. 5.2] one derives

• bndn ≥ 1 implies that vn(x, y) ≤ vn

(

0, sbn−1
bn

)

= (sbn)
se

1
bn

−s

• bndn ≤ 1 implies that vn(x, y) ≤ vn

(
s−dn

dn
, 0
)

=
(

s
dn

)s
edn−s

for all n ∈ I, x, y ≥ 0. Therefore, our assumptions imply

V (Fn(x, y))

V (x, y)
≤
ecn

asn
max

{

(sbn)
se

1
bn

−s
,
(

s
dn

)s
edn−s

}

,

thanks to (5.4) there exist µ ∈ (0, 1), N ∈ I with V (Fn(x,y))
V (x,y) ≤ 1−µ for all n ≥ N and

x, y > 0. Because of V (Fn(x, y)) − V (x, y) ≤ −µV (x, y) ≤ 0 for all n ≥ N , x, y > 0
this establishes V as Lyapunov function for (∆) in the sense of [23, p. 49, Def. 7.1].
Since all solutions to (∆) are bounded, [23, p. 50, Thm. 7.2] yields

ϕ(n;n0, x̄, ȳ) −−−−→
n→∞

{
(x, y) ∈ R

2
+ : V (x, y) = 0

}
= R+ × {0} for all x̄, ȳ > 0

and the proof is complete.

6. Nonautonomous equilibria and stability. Our next objective is a more
detailed understanding of the dynamics in the pullback attractor A∗ for (∆). The
starting point for our investigations are the equilibria of the autonomous system (∆′)
and their stability, especially with regard to their persistence when passing over to
the full nonautonomous problem (∆). Since the corresponding linearizations are time-
variant, it is well-known (cf., e.g., [5, p. 190, Ex. 4.17]) that eigenvalues in general do
not yield stability information. Hence, the appropriate tools for stability investigations
are the dichotomy spectrum and Bohl exponents (cf. [1, 13]); for readers unfamiliar
with this concept, we have summarized some essential aspects in Appendix B. When
dealing with Bohl exponents let us implicitly assume that the associated sequences
have bounded inverses (cf. (B.1)).

We start our analysis with the trivial equilibrium and continue with increasingly
more involved cases.
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6.1. The trivial equilibrium. The trivial equilibrium (0, 0) of (∆) exists for
all parameter constellations and yields the linearization

F ′
n(0, 0) =

(
an 0
0 ecn

)

in the variational equation (V ). Since all F ′
n(0, 0) are diagonal, the dichotomy spec-

trum is the union of the spectra for the diagonal elements (cf. Prop. B.5), i.e.

Σ(0, 0) =
[
β(aI), β(aI)

]
∪
[
β(ecI), β(ecI)

]
.

Due to 1 ≤ β(ecI) this offers the following possibilities for the local asymptotics of
(∆) near the origin, i.e. the stability properties of the trivial solution (cf. Thm. 2.1):

• In the Beverton-Holt-stable case β(aI) < 1 < β(ecI) it is unstable, despite the
x-axis as stable direction. For I = Z the y-axis becomes the unstable fiber
bundle and the origin is a saddle.

• Finally, for min
{
β(aI), β(e

cI)
}
> 1 it is unstable in form of a source.

6.2. The Beverton-Holt equilibrium. For a constant sequence an ≡ α > 0
the difference equation (∆) has the so-called Beverton-Holt equilibrium (α − 1, 0),
which is only present for values α ≥ 1. The linearization

F ′
n(α− 1, 0) =

(
1
α

1−α
α
bn

0 ecn−(α−1)dn

)

for all n ∈ I

is upper-triangular and yields the dichotomy spectrum

Σ(α− 1, 0) =

{{
1
α

}
∪
[
β(ecI−(α−1)dI), β(ecI−(α−1)dI)

]
, α > 1,

{1} ∪
[
β(ecI), β(ecI)

]
, α = 1.

On a semiaxis I this holds due to Prop. B.5(a), because here the dichotomy spectrum
is determined by the corresponding diagonal system, as well as for I = Z, since one
spectral interval is a singleton and therefore Prop. B.6(b) applies.

See Fig. 6.1 (left) for a visualization of Σ(α−1, 0) for different α: An intersection
of the green and red shapes with a horizontal line indicates the spectrum Σ(α− 1, 0)
for a particular value of α. The red curve illustrates the singleton spectral interval
{

1
α

}
, while the green shape represents the interval

[
β(ecI−(α−1)dI), β(ecI−(α−1)dI)

]
.

0 1 2 3
1

1.5

2

a
lp
h
a

α

0 1 2 3
0

1
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3

δ

Fig. 6.1. The dashed vertical line indicates the stability boundary:
Left: Dichotomy spectrum Σ(α − 1, 0) for an ≡ α ∈ [1, 2] with cn := 1 (n ≥ 0), cn := 0.5 (n < 0)
and dn := 2 + sinn. It indicates uniform asymptotic stability for α > 1.5.
Right: Dichotomy spectrum Σ(ξ∗

Z
, 0) for dn ≡ δ ∈ [0, 3] with an := 2 (n ≥ 0), an := 1.5 (n < 0),

cn := 1 (n ≥ 0), cn := 0.5 (n < 0). It indicates uniform asymptotic stability for δ > 1.
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Fig. 6.2. Hyperbolic behavior in (6.1): (h1) sink, (h2)

saddle-point and (h3) source, or with switched spectral intervals
σ1 and σ2

This allows the following choices determining the asymptotic behavior near the
equilibrium (α− 1, 0) for varying α > 1 (note 1

α
∈ (0, 1)):

• If β(ecI−(α−1)dI) < 1, then (α− 1, 0) is a uniformly asymptotically stable sink
and the nonautonomous set Z× {(α− 1, 0)} is a local pullback attractor for
(∆); a sufficient condition for this behavior is β(ecI) < (α− 1)β(edI). Hence,
an unstable behavior is enforced by choosing the coupling sequence cI larger.

• if 1 < β(ecI−(α−1)dI), then (α − 1, 0) becomes unstable with the y-axis as
unstable direction, and for I = Z even a saddle. Due to Prop. B.1 a sufficient
condition for this behavior is (α− 1)β(edI) < β(ecI).

For time-varying coefficients aI, the planar system (∆) does not have an equi-
librium on the x-axis anymore. Nonetheless, on the whole integer axis I = Z we
know from Sect. 3 that the Beverton-Holt equilibrium (α− 1, 0) persists as the entire
bounded solution (ξ∗

Z
, 0) given in Lemma 3.2. Stability of the corresponding entire

solution (ξ∗
Z
, 0) can be obtained from the variational equation (cf. (V ))

(
xn+1

yn+1

)

= F ′
n(ξ

∗
n, 0)

(
xn
yn

)

, F ′
n(ξ, 0) =

(
an

(1+ξ)2 − anbnξ
(1+ξ)2

0 ecn−dnξ

)

, (6.1)

where the dichotomy spectrum fulfills (cf. Prop. B.5 and Prop. B.6(b))

Σ(ξ∗Z, 0)

{

= σ1 ∪ σ2, σ1 ∩ σ2 has no interior points,

⊆ σ1 ∪ σ2, otherwise

with the spectral intervals

σ1 :=
[

β
(

aZ

(1+ξZ)2

)
, β
(

aZ

(1+ξZ)2

)]

, σ2 :=
[
β
(
ecZ−dZξZ

)
, β
(
ecZ−dZξZ

)]
.

Keeping the parameter sequence dZ constant to the value δ > 0, Fig. 6.1 (right)
visualizes Σ(ξ∗

Z
, 0) for different values of δ. The spectral intervals σ1 are in red, while

σ2 are marked in green for varying δ.
Depending on the location of σ1, σ2 ⊆ (0,∞) we also illustrated the stability

properties of the Beverton-Holt solution (ξ∗
Z
, 0) in Fig. 6.2. In particular, under the

condition maxΣ(ξ∗
Z
, 0) < 1 (this corresponds to Fig. 6.2(h1)) the nonautonomous set

{
(n, ξ∗n, 0) ∈ Z× R

2
+ : n ∈ Z

}

is a local pullback attractor of the planar equation (∆), whereas (ξ∗
Z
, 0) becomes

unstable for minσ1 > 1 or minσ2 > 1 (see Fig. 6.2(h2) or (h3)).
More subtle are the nonhyperbolic situations described in Fig. 6.3. Provided there

exists a gap between the spectral intervals σ1 and σ2 such that

max σ1 < minσ2 ≤ 1, 1 ∈ σ2 (6.2)
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Fig. 6.3. Nonhyperbolic behavior in (6.1): One spectral
interval is a subset of (0, 1) ⊆ R, while 1 is contained in another
spectral interval (n1) or touches it (n2)

R

R

σ1

σ1

σ2

σ2

0 1

(n1)

(n2)

(see Fig. 6.3(n1), or with σ1 and σ2 exchanged), one can determine stability properties
for (ξ∗

Z
, 0) by means of a reduction to a center fiber bundle.

To exemplify this nonautonomous center manifold reduction we rely on
Lemma 6.1. Let I = Z. Under one of the assumptions

(i) β(aZe
dZξ∗

Z
−cZ

(1+ξ∗
Z
)2 ) < 1 or

(ii) 1 < β(aZe
dZξ∗

Z
−cZ

(1+ξ∗
Z
)2 )

the variational equation (6.1) is kinematically similar to the diagonal system

(
xn+1

yn+1

)

=

( an

(1+ξ∗n)
2 0

0 ecn−dnξ
∗

n

)(
xn
yn

)

(6.3)

by means of the kinematic transformation TZ with Tn :=
(

1 −t∗n
0 1

)

and

t∗n :=







−
∑n−1

j=−∞

ajbjξ
∗

j e
djξ∗j −cj

(1+ξ∗j )
2

∏n−1
i=j+1

aie
diξ

∗
i −ci

(1+ξ∗i )
2 , if (i) holds,

∑∞

j=n

ajbjξ
∗

j e
djξ

∗
j −cj

(1+ξ∗j )
2

∏j
i=n

(1+ξ∗i )
2eci−diξ

∗
i

ai
, if (ii) holds

(6.4)

for all n ∈ Z.
Proof. During the present proof we abbreviate

αn :=
an

(1 + ξ∗n)
2
, βn := −

anbnξ
∗
n

(1 + ξ∗n)
2
, γn := ecn−dnξ

∗

n ;

note that theses sequences, as well as
aZbZξ

∗

Z
edZξ∗

Z
−cZ

(1+ξ∗
Z
)2 = βZ

γZ

are bounded. In order to

determine the bounded sequence t∗
Z
, one applies the kinematic transformation TZ to

the variational equation (6.1) and obtains a linear difference equation
(
xn+1

yn+1

)

=

(
αn αnt

∗
n + βn − γnt

∗
n+1

0 γn

)(
xn
yn

)

,

which has the diagonal form (6.3), provided t∗
Z
fulfills the scalar linear inhomogeneous

equation t∗n+1 = αn

γn
t∗n + βn

γn
; here the inhomogeneity is assumed to be bounded. Due

to [25, p. 153, Thm. 3.5.4], under (i) (meaning β(αZ

γZ

) < 1) or (ii) (corresponding to

1 < β(αZ

γZ

)) this problem possesses a unique bounded solution t∗
Z
given by (6.4).

From now on we consider the nonhyperbolic case by assuming that the spectral
intervals σ1, σ2 fulfill (6.2).

Proposition 6.2 (reduced equation). Let I = Z. If

β
(

aZ

(1+ξZ)2

)
< β

(
ecZ−dZξZ

)
≤ 1, β

(
aZ

(1+ξZ)2

)
< β

(
ecZ−dZξZ

)2
, (6.5)

then the stability properties of the solution (ξ∗
Z
, 0) to the planar system (∆) correspond

to the stability of the trivial solution to the scalar equation (the reduced equation)

yn+1 = ecn−dnξ
∗

n

(

yn − (1 + dnt
∗
n)y

2
n +

(1 + dnt
∗
n)

2 − dnωn

2
y3n +O(y4n)

)

(6.6)
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uniformly in n ∈ Z with

t∗n = −

n−1∑

j=−∞

ajbjξ
∗
j e

djξ
∗

j−cj

(1 + ξ∗j )
2

n−1∏

i=j+1

aie
diξ

∗

i −ci

(1 + ξ∗i )
2
,

ωn =

n−1∑

j=−∞

hj

n−1∏

i=j+1

aie
2diξ

∗

i −2ci

(1 + ξ∗i )
2

and hj :=
2e

djξ
∗
j −2cj

(

aj(bj+t∗j )e
djξ

∗
j (bjξ

∗

j −t∗j )+e
cj t∗j+1(1+ξ∗j )

3(djt
∗

j+1)
)

(1+ξ∗j )
3 .

Proof. We proceed in three steps:
(I) First of all, our assumptions imply the estimate

β

(
aZe

dZξ
∗

Z
−cZ

(1 + ξ∗
Z
)2

)
(B.5)

≤
β( aZ

(1+ξ∗
Z
)2 )

β(ecZ−dZξ
∗

Z )
< 1

and therefore we are in the situation of Lemma 6.1(i). Then the difference equation
of perturbed motion for (∆) w.r.t. the solution (ξ∗

Z
, 0) becomes

(
xn+1

yn+1

)

= Fn(xn + ξ∗n, yn)− Fn(ξ
∗
n, 0)

and applying the kinematic transformation TZ from Lemma 6.1 yields

{

xn+1 =
an[xn+(t∗n−bnξ

∗

n)yn]
(1+ξ∗n)(1+xn+bnyn+ξ∗n+ynt∗n)

− ynt
∗
n+1e

cn−dn(xn+ξ∗n+t∗nyn)−yn ,

yn+1 = yne
cn−dn(xn+ξ∗n+t∗nyn)−yn .

(II) This planar system has the trivial solution and our assumptions guarantee
the existence of a center-unstable fiber bundle W ⊆ Z × U , U ⊆ R2 being an open
neighborhood of (0, 0), whose fibers W(n) are graphs of functions wn : U0 → R defined
on a neighborhood U0 ⊂ R of 0 uniformly in n ∈ Z (see [25, p. 259, Thm. 4.6.4(b)
and p. 260, Rem. 4.6.5(2)]). Due to the reduction principle [25, p. 267, Thm. 4.6.15]
stability properties of (ξ∗

Z
, 0) are determined by those of the trivial solution to the

reduced equation

yn+1 = yne
cn−dn(wn(yn)+ξ∗n+t∗nyn)−yn . (6.7)

Now the right inequality in (6.5) guarantees that each such function wn is of differ-
entiability class C2. Hence, Taylor’s theorem in connection with wn(0) = 0 and the

tangentiality property w′
n(0) = 0 yields the representation wn(y) =

w′′

n(0)
2! y2 + O(y3)

uniformly in n ∈ Z. Given this, a Taylor expansion in the right-hand side of (6.7)
implies the claimed representation (6.6), where we have abbreviated ωn := w′′

n(0).
(III) It remains to establish the expression for the Taylor coefficient ωn. The

following argument is based on the fact that the mappings wn defining the center-
unstable fiber bundle W fulfill the invariance equation (cf. [29])

wn+1

(

yecn−dn(wn(y)+ξ∗n+yt∗n)−y
)

=
an[wn(y) + (t∗n − bnξ

∗
n)y]

(1 + ξ∗n)(1 + wn(y) + bny + ξ∗n + yt∗n)
− yt∗n+1e

cn−dn(wn(y)+ξ∗n+t∗ny)−y
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for every y ∈ U0 and n ∈ Z. The above Taylor expansion of wn as ansatz in the
invariance equation shows that the coefficients ωn indeed satisfy the linear difference
equation (see [29, Thm. 4.2(b)])

ωn+1 = an
e2dnξ

∗

n−2cn

(1 + ξ∗n)
2
ωn + 2an

ednξ
∗

n−2cn(bn + t∗n)(bnξ
∗
n − t∗n)

(1 + ξ∗n)
3

+ 2ednξ
∗

n−cnt∗n+1(1 + dnt
∗
n),

whose unique bounded solution is given by the expression stated above.
A further analysis of the reduced equation (6.6) requires appropriate stability

criteria for nonautonomous scalar difference equations with nonhyperbolic linear part.

6.3. The Ricker equilibrium. In the situation of a constant parameter se-
quence cn ≡ γ the so-called Ricker equilibrium (0, γ) to (∆) is present for γ ≥ 0,
yielding a variational equation (V ) with lower-triangular coefficient matrix

F ′
n(0, γ) =

(
an

1+γbn
0

−γdn 1− γ

)

.

Reasoning as above, due to a singleton as spectral interval, the dichotomy spectrum
is determined by the diagonal elements (cf. Prop. B.6 and B.1)

Σ(0, γ) = {|1− γ|} ∪
[

β( aI

1+γbI
), β( aI

1+γbI
)
]

.

Consequently, (0, γ) is unstable for γ > 2 because of Thm. 2.1(b). A more detailed
analysis of the Ricker equilibrium (0, γ) reads as follows:

• For γ ∈ (0, 2) and β( aI

1+γbI
) < 1 it is a uniformly asymptotically stable sink.

• For γ ∈ (0, 2) and 1 < β( aI

1+γbI
) it is unstable and for I = Z even a saddle.

• If γ > 2 and β( aI

1+γbI
) < 1, then (0, γ) is unstable and for I = Z a saddle.

Moreover, due to a flip bifurcation in (R’) at γ = 2, there exists an asymp-
totically stable 2-periodic solution to (∆) on the y-axis for small γ − 2 > 0.

• If γ > 2 and 1 < β( aI

1+γbI
) it is an unstable source. For I = Z the 2-periodic

solution to (∆) existing for small γ − 2 > 0 becomes a saddle.
This analysis shows that a strong coupling, i.e. large values of the sequence bI in (∆),
yield a stabilization of the Ricker equilibrium (γ, 0). See Fig. 6.4 for an illustration of
Σ(γ, 0) as a function of the parameter γ. Here, the singleton spectral interval {|1− γ|}

is in red, while
[

β( aI

1+γbI
), β( aI

1+γbI
)
]

is in green.

0 0.5 1 1.5 2
0

1

2

3

γ

Fig. 6.4. Dichotomy spectrum Σ(0, γ) for cn ≡ γ ∈ [0, 2.5] with an := 1 + 0.5 cosn and bn := 2
(n ≥ 0), bn := 1 (n < 0). It indicates uniform asymptotic stability for γ ∈ (0, 2).
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For nonconstant sequences cZ, Sect. 4 provides conditions that the equilibrium γ

of (R’) persists as the pullback solution η∗
Z
for (R) given in (4.3). Hence, a similar

stability analysis is possible for the solution (0, η∗
Z
) to (∆), as we have done it for the

entire Beverton-Holt solution (ξ∗
Z
, 0). In the hyperbolic case this is possible on basis

of the dichotomy spectrum alone, while nonlinear effects (and thus a center-unstable
fiber bundle) come into play, if a dominant spectral interval contains 1. We do not
give the details.

Nonetheless, the basic difference to the above situation is that there exists no
explicit expression for η∗

Z
anymore. During the whole analysis one rather has to work

with a numerical approximation for η∗
Z
.

6.4. The coexistence equilibrium. We restrict to the autonomous situation

(∆′) first, where there exists a coexistence equilibrium (ξ⋆, η⋆) :=
(

α−βγ−1
1−βδ

,
δ(1−α)+γ

1−βδ

)

for βδ 6= 1. Thanks to [6, Lemma 5.1] we know that γ < (α − 1)δ (yielding asymp-
totic stability of Beverton-Holt equilibrium) and 1 + βγ < α (implying the Ricker
equilibrium to be unstable) ensure that (ξ⋆, η⋆) is not contained in (0,∞)2.

Due to the linearization

F ′(ξ⋆, η⋆) =
1

1− βδ

(
βγ−αβδ+1

α

β(1−α+βγ)
α

δ(αδ − γ − δ) 1− γ − (1− α+ β)δ

)

nonhyperbolicity occurs in one of the three cases:
• 1 is an eigenvalue of F ′(ξ⋆, η⋆). Since the remaining eigenvalue λ fulfills

detF ′(ξ⋆, η⋆) = λ, trF ′(ξ⋆, η⋆) = 1 + λ,

this form of nonhyperbolicity is given if and only if βγ = α− 1 or αδ = γ+ δ,
i.e. (ξ⋆, η⋆) is contained in one of the coordinate axes.

• −1 is an eigenvalue of F ′(ξ⋆, η⋆). For the remaining eigenvalue λ this means

detF ′(ξ⋆, η⋆) = −λ, trF ′(ξ⋆, η⋆) = −1 + λ

and such a form of nonhyperbolicity occurs if and only if

α2δ + αβγδ − 4αβδ − αγ + 2α− βγ2 − βγδ + 2βγ − γ − δ + 2 = 0.

• F ′(ξ⋆, η⋆) has a pair of complex-conjugated eigenvalues λ, λ̄ of modulus 1.
Consequently, the parameters have to satisfy

1 = detF ′(ξ⋆, η⋆), trF ′(ξ⋆, η⋆) = 2ℜλ.

In the complimentary hyperbolic situation, the coexistence equilibrium (ξ⋆, η⋆) of
(∆′) will persist as an entire bounded solution (ξ, η)(a, b, c, d)Z to (∆) satisfying

sup
n∈Z

‖(ξ, η)(a, b, c, d)n − (ξ∗, η∗)(α, β, γ, δ)‖ < ε,

when the constant parameters α, β, γ, δ > 0 are replaced by time varying sequences
aZ, bZ, cZ resp. dZ (see [14, Lemma 2] or [27, Thm. 2.17] for details), if

sup
n∈Z

max {|an − α| , |bn − β| , |cn − γ| , |dn − δ|} < ρ
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for small ρ > 0. In fact, as in Thm. 4.5 one can give an estimate for the size of ε, ρ > 0.
However, since this is essentially a technical extension of the proof for Thm. 4.5, we
omit the details.

Finally, Fig. 6.5 illustrates the discussed equilibria in the autonomous setup (left)
as well as corresponding bounded solutions for a nonautonomous choice of parameters.
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Fig. 6.5. Left: Equilibria and trajectories starting nearby (in red) for α = 1.5, β = 0.1,
γ = δ = 1. Right: The corresponding nonautonomous diagram with randomly perturbed parameters.

The coexistence equilibrium (ξ⋆, η⋆) of (∆′) is created via bifurcations from the
two extinction equilibria (α − 1, 0) and (0, γ). In the next section, we investigate to
what extend this bifurcation scenario persists in the nonautonomous situation of (∆).

7. Bifurcation. The above Sects. 3 and 4 provided a quite detailed insight on
the dynamics of the nonautonomous Beverton-Holt equation (BH) resp. the Ricker
equation (R) in terms of their attractors X ∗

a and Y∗
c . Thus, the uncoupled equations

{

xn+1 = anxn

1+xn
,

yn+1 = yne
cn−yn

simply form a product system and therefore its pullback attractor is A∗ = X ∗
a × Y∗

c .
In particular, bifurcation phenomena in (BH) or (R) carry over to A∗.

Another source yielding changes in the dynamics of (∆) are the coupling sequences
bI and dI. For the sake of a bifurcation analysis, we restrict to the respective time-
constant case bn ≡ β and δn ≡ δ and interpret β or γ as bifurcation parameters.

7.1. Beverton-Holt entire solution. First, we investigate the behavior near
the entire solution (ξ∗

Z
, 0) to the planar difference equation

{

xn+1 = anxn

1+xn+bnyn
,

yn+1 = yne
cn−δxn−yn

(∆δ)

being a special case of (∆) with constant coupling dn ≡ δ.
Let us interpret δ as bifurcation parameter to study the loss of stability in the

Beverton-Holt solution (ξ∗
Z
, 0) as the coupling strength δ changes. If we assume the

estimate β
(

aZ

(1+ξ∗
Z
)2

)
≤ β

(
ecZ−δξ∗

Z

)
, then according to Prop. B.6 and following Sect. 6.2

the associate dichotomy spectrum reads as

Σ(ξ∗Z, 0) =
[

β
(

aZ

(1+ξ∗
Z
)2

)
, β
(

aZ

(1+ξ∗
Z
)2

)]

∪
[

β
(
ecZ−δξ∗

Z

)
, β
(
ecZ−δξ∗

Z

)]

.
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From now on, we suppose that

β
(

aZ

(1+ξ∗
Z
)2

)
< β

(
ecZ−δ∗ξ∗

Z

)
, β

(
ecZ−δ∗ξ∗

Z

)
= 1 (7.1)

holds for some critical value δ∗ > 0. A reduction to the center-unstable fiber bundle
as in Sect. 6.2 yields that the bifurcation in (∆δ) is determined by the scalar equation

yn+1 = ecn−δ∗ξ∗n
[
(1− (δ − δ∗)ξ∗n)yn − (1 + δ∗ξ∗n)y

2
n

]
+O((δ − δ∗)2yn, (δ − δ∗)y2n, y

3
n)

uniformly in n ∈ Z. This indicates a transcritical bifurcation as δ decreases through
the critical value δ∗.

One can verify the spectral assumption (7.1) numerically with the algorithm from
Appendix B.1. Let rZ ∈ [−0.05, 0.05]Z be a uniformly distributed random sequence.
For n ∈ Z we choose the parameters an = rn+1.5, bn = rn+0.1, cn = rn+1, δ = 2.5
and obtain from our numerical experiments:

β
(

aZ

(1+ξ∗
Z
)2

)
= 0.66771 < β

(
ecZ−δξ∗

Z

)
= 0.77618, β

(
ecZ−δξ∗

Z

)
= 0.78163.

For δ∗ = 2 the assumptions (7.1) are approximately satisfied:

β
(

aZ

(1+ξ∗
Z
)2

)
= 0.66771 < β

(
ecZ−δ∗ξ∗

Z

)
= 0.99781, β

(
ecZ−δ∗ξ∗

Z

)
= 1.00250.

Note that neither the bounded Beverton-Holt trajectory ξ∗
Z
, nor the Ricker trajectory

depend on δ. For δ < 2 a bounded coexistence trajectory exists, that bifurcates from
the Beverton-Holt and Ricker solution, respectively, see Fig. 7.1. The coexistence
trajectory is attracting and can be computed via forward iteration, instead of solving
boundary value problems as described in Section 4.2.
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Fig. 7.1. Coexistence trajectories (cyan) for fixed bn = rn +0.1 and various values of δ ∈ [0, 2]
(left) and for fixed δ = 1 and various values of bn = rn + b, b ∈ [0, 1] (right).

7.2. Ricker equilibrium. Let us eventually investigate also the behavior of the
Ricker equilibrium (0, γ) to the planar difference equation

{

xn+1 = anxn

1+xn+βyn
,

yn+1 = yne
γ−dnxn−yn ,

(∆β)

where γ ∈ (0, 2) is assumed to be fixed from now on, while β > 0 will be considered
as bifurcation parameter. Referring to Sect. 6.3 this yields the dichotomy spectrum

Σ(0, γ)
(B.3)
= {|1− γ|} ∪

1

1 + γβ

[
β(aZ), β(aZ)

]
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and the critical stability situation maxΣ(0, γ) = 1 precisely holds for the parameter

β∗ = β(aZ)−1
γ

. As β passes through β∗ one can observe a subcritical shovel bifurcation

(see [26, Thm. 3.15(a)]); this quite coarse bifurcation scenario precisely means
• For β < β∗ the additional assumption β(aN) < 1 + γβ implies that (0, γ)
is asymptotically stable and, provided β(aZ−) = 1 + γβ∗, embedded into a
1-parameter family of bounded entire solutions to (∆β).

• For β = β∗ the additional assumption β(aN) < 1+γβ∗ = β(aZ) ensures (0, γ)
to be asymptotically stable.

• For β > β∗ the Ricker equilibrium is (locally) the unique bounded entire
solution to (∆β) in a neighborhood of (0, γ).

See Fig. 7.2 for the dichotomy spectra yielding a subcritical shovel bifurcation.
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Fig. 7.2. Dichotomy spectra Σ(0, γ) for I = N (left), I = Z (center) and I = Z− (right) for
various values of β ∈ [3, 5] with coefficients an := 2 + sin ln(1 + n), n > 0 and an := 5 (n ≤ 0),
γ = 0.9, dn := 1 + 0.5 sinn and consequently β∗ = 40

9
.

Appendix A. Nonautonomous discrete dynamics. Let J be a discrete
interval unbounded below, J′ := {k ∈ J : k + 1 ∈ J} and Ω ⊆ Rd. Suppose that the
mapping Fn : Ω → Ω, n ∈ J′, is continuous. Given a pair n0 ∈ J, x̄ ∈ Ω, we write
ϕ(·;n0, x̄) for the forward solution to the nonautonomous difference equation

xn+1 = Fn(xn) (A.1)

satisfying the initial condition xk0
= x̄ and denote it as general solution to (A.1). A

solution to (A.1) existing on the whole discrete integer axis is called an entire solution.

A.1. Pullback attraction. First of all, one has
Theorem A.1 (pullback solution). Let x̄J denote a sequence in Ω. If the limits

ξ∗n := lim
k→−∞

ϕ(n; k, x̄k)

exist for all n ∈ J, then also this so-called pullback solution ξ∗
J
solves (A.1).

Proof. Due to the continuity of Fn one has

ξ∗n+1 = lim
k→−∞

ϕ(n+ 1; k, x̄k)
(A.1)
= lim

k→−∞
Fn(ϕ(n; k, x̄k))

= Fn

(

lim
k→−∞

ϕ(n; k, x̄k)

)

= Fn(ξ
∗
n) for all n ∈ J

′

and this completes the proof.
A subset A ⊆ J× Ω is denoted as nonautonomous set with the n-fibers

A(n) := {x ∈ Ω : (n, x) ∈ A} for all n ∈ J.



A NONAUTONOMOUS BEVERTON-HOLT RICKER MODEL 33

For the cartesian product of two nonautonomous sets A,B ⊆ J× Ω we define

A× B :=
{
(n, x, y) ∈ J× Ω2 : (x, y) ∈ A(n)× B(n)

}
.

One says a nonautonomous set A (cf. [25]) is
• bounded, if there exists a ρ > 0 such that A(n) ⊆ Bρ(0) ⊆ Rd for all n ∈ J,
• compact (resp. connected), if each fiber A(n) ⊆ Ω, n ∈ J, is compact (resp.
connected),

• forward invariant, if Fn(A(n)) ⊆ A(n+ 1) for all n ∈ J′,
• invariant, if Fn(A(n)) = A(n+ 1) for all n ∈ J′,
• pullback absorbing, if for every bounded nonautonomous set B there is a
K ∈ N0 such that ϕ(n;n−k,B(n−k)) ⊆ A(n) holds for all n ∈ J and k ≥ K.

For given A, the nonautonomous set ωA defined by the fibers

ωA(n) :=
⋂

m≥0

⋃

k≥m

ϕ(n;n− k,A(k − n)) for all n ∈ J

is called the ω-limit set of A. When A is pullback absorbing, one denotes the nonau-
tonomous set P := ωA as pullback attractor of (A.1).

Corollary A.2. If A is invariant, then ωA = A.
Proof. The invariance of A implies

ωA(n) =
⋂

m≥0

⋃

k≥m

ϕ(n;n− k,A(k − n)) =
⋂

m≥0

⋃

k≥m

A(n) = A(n) for all n ∈ J

and this finishes the proof.

A.2. Order-preserving difference equations. A cone C ⊆ Rd is a closed
subset satisfying λC ⊆ C for λ ≥ 0, C + C ⊆ C and C ∩ (−C) = {0}; we define the
partial order

x � y :⇔ y − x ∈ C for all x, y ∈ R
d.

A difference equation (A.1) is called order-preserving, if one has the implication

x � y ⇒ Fn(x) � Fn(y) for all n ∈ J
′, x, y ∈ Ω

and consequently mathematical induction yields the implication

x̄ � ȳ ⇒ ϕ(n;n0, x̄) � ϕ(n;n0, ȳ) for all n0 ≤ n, x, y ∈ Ω. (A.2)

The following result is a discrete-time counterpart to [3, pp. 257–258, Lemma 9.3]:
Theorem A.3. Assume that (A.1) is order-preserving. If x−

J
, x+

J
are sequences

in Ω such that the nonautonomous set

A :=
{
(n, x) ∈ J× Ω : x−n � x � x+n

}

is forward invariant, then there exist entire solutions ξ−
J
, ξ+

J
to (A.1) being minimal

resp. maximal in the following sense: Every entire solution xJ of (A.1) in A fulfills

x−n � ξ−n � xn � ξ+n � x+n for all n ∈ J

and A contains in particular at least one entire solution.
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Proof. Let n ∈ J be fixed. Since the set A is forward invariant one obtains

x−n � ϕ(n; k, x+k ) = ϕ(n; l, ϕ(l; k, x+k ))
(A.2)

� ϕ(n; l, x+l ) for all k ≤ l ≤ n

and thus the sequence yk := ϕ(n; k, x+k ), k ≤ n, in Ω is decreasing and bounded below
by x−n . Therefore (cones in finite-dimensional spaces are regular), it is convergent and
thanks to Thm. A.1 the pullback solution ξ+n := limk→−∞ ϕ(n; k, x+k ) solves equation
(A.1) on J. Similarly, one verifies that also the limit ξ−n := limk→−∞ ϕ(n; k, x−k ) exists
and defines an entire solution to (A.1).

Corollary A.4. If (A.1) is order-preserving and has a bounded and pullback
absorbing set A, then the pullback attractor A∗ fulfills

A∗ ⊆
{
(n, x) ∈ J× Ω : ξ−n � x � ξ+n

}
.

Moreover, equality holds in case {(n, x) ∈ J× Ω : ξ−n � x � ξ+n } is invariant.
Proof. (I) First, [25, p. 19, Thm. 1.3.9] shows that the pullback attractor A∗ = ωA

exists with A∗ ⊆ A. Hence, it is bounded, [25, p. 17, Cor. 1.3.4] implies that A∗

consists of all bounded entire solutions to (A.1) and thus

A∗ ⊆ {(n, x) ∈ J× Ω : ξ−n � x � ξ+n } =: A0.

(II) If A0 is invariant, then Cor. A.2 implies ωA0
= A0 = A0 and with (I) this

yields A∗ ⊆ A0 = ωA0
⊆ ωA = A∗ (cf. [25, p. 9, Prop. 1.2.13(a)]), i.e. A∗ = A0.

Appendix B. Nonautonomous hyperbolicity.

B.1. Bohl exponents. Let aI = (an)n∈I be a real or complex sequence and
suppose I is a discrete interval unbounded above. For simplicity we assume

0 < inf
n∈I

|an| ≤ sup
n∈I

|an| <∞ (B.1)

throughout. Let us define the lower resp. upper Bohl exponent of aI by

β(aI) := lim
n→∞

inf
k∈I

n

√
√
√
√

k+n−1∏

i=k

|ai|, β(aI) := lim
n→∞

sup
k∈I

n

√
√
√
√

k+n−1∏

i=k

|ai|. (B.2)

Thanks to (B.1) we know that both Bohl exponents are finite and the limits in (B.2)
exist due to [2, Lemma 3.1]. Moreover, they fulfill the following elementary

Proposition B.1. For unbounded subintervals J ⊆ I it is β(aI) ≤ β(aJ) ≤

β(aJ) ≤ β(aI) and

β(λaI) = |λ| β(aI), β(λaI) = |λ| β(aI) for all λ ∈ C. (B.3)

If the sequences aI, bI additionally both satisfy (B.1), then the following relations hold

β(aIbI) ≤ β(aI)β(bI), β(aIbI) ≥ β(aI)β(bI), (B.4)

β

(
aI

bI

)

≤
β(aI)

β(bI)
, β

(
aI

bI

)

≥
β(aI)

β(bI)
. (B.5)

Proof. The claimed inequality for the Bohl exponents on different intervals I and
J immediately follows from elementary properties of sup and inf; so does (B.3). A
proof of the remaining inequalities is left to the interested reader.
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Example B.2. Let J := [κ,∞) ∩ Z with some κ ∈ Z.
(1) For a constant sequence an :≡ α, α ∈ C, all Bohl exponents coincide, i.e.,

β(aJ) = β(aJ) = β(aZ) = β(aZ) = |α| .

(2) Also in case of an ω-periodic, ω ∈ N, sequence aZ one deduces

β(aJ) = β(aJ) = β(aZ) = β(aZ) =
ω
√

|aκ · · · aκ+ω−1|.

(3) For a sequence an satisfying limn→±∞ an = α± it is

β(aJ) = β(aJ) = |α+| , β(aZ) = min {|α−| , |α+|} , β(aZ) = max {|α−| , |α+|} .

(4) In the situation an := 3−sgnn+sin ln(1+ |n|) the sequence (sin ln(1+ |n|))n∈I

comes arbitrarily close to the values ±1 on increasingly larger intervals. Hence, it is

β(aJ) = 1, β(aJ) = 3,

β(aZ) = 1, β(aZ) = 5.

(5) For a bounded sequence cI one has

β(ecI) = exp

(

lim
n→∞

1

n
inf
k∈I

k+n−1∑

i=k

ci

)

, β(ecI) = exp

(

lim
n→∞

1

n
sup
k∈I

k+n−1∑

i=k

ci

)

.

Remark B.3 (computation of Bohl exponents). For the geometric means

βn,k(aI) :=
n

√
√
√
√

k+n−1∏

i=k

|ai|,

one has

lnβn,k(aI) =
1

n

k+n−1∑

i=k

ln |ai|.

We consequently find approximations of lnβ(aI) and lnβ(aI) by computing

sup
k∈I

lnβn,k(aI) and inf
k∈I

lnβn,k(aI) for sufficiently large n ∈ N,

respectively. Note the recursion

lnβn,k+1(aI) = lnβn,k(aI) +
1

n
ln

∣
∣
∣
∣

ak+n

ak

∣
∣
∣
∣
,

which allows to compute the sequence (βn,k)k∈I efficiently.
For the sequence aI defined in Ex. B.2(4), we obtained the results from Tab. B.1

demonstrating that larger values of n for fixed I do not yield convergence (caused by
the exponential increase in the “period” of the sin ◦ ln-function). Indeed, for infinite
I theoretical considerations guarantee that the approximations infk∈I βn,k(aI) to β(aI)

are increasing, while the approximations supk∈I βn,k(aI) to β(aI) are decreasing as
n→ ∞. These monotonicity properties can serve as an indicator for convergence and
suggest to increase both n, as well as the length of I during the computation of Bohl
exponents.

On the other hand, for the almost periodic sequence an = cosn, Tab. B.2 indicates
that the approximations to β(aI) actually increase, while those to β(aI) decrease to 1

2 .
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n β(aI) β(aI)

10 1.00000000116 2.99999936133
102 1.00000011725 2.99993721913
103 1.00001172586 2.99377387672
104 1.00117000882 2.95027314483

n β(aI) β(aI)

10 1.00000000116 4.99999936133
102 1.00000011725 4.99993721934
103 1.00001172586 4.99377593377
104 1.00117000882 4.94711156401

Table B.1
Ex. B.2(4) with I = [1, 106] (left) and I = [−106, 106] (right).

n β(aI) β(aI)

102 0.42625376980 0.52837200045
103 0.48989566883 0.50335789629
104 0.49640107150 0.50116706302
105 0.49992964104 0.50021543720

n β(aI) β(aI)

102 0.42625376980 0.52837200045
103 0.48989566883 0.50335789629
104 0.49640107150 0.50116706302
105 0.49992964104 0.50021544123

Table B.2
an = cosn with I = [0, 106] (left) and I = [−106, 106] (right).

B.2. Exponential dichotomies. Let AI = (An)n∈I denote a bounded sequence
of square matrices An ∈ Rd×d. The associated linear difference equation

xn+1 = Anxn (L)

induces an evolution operator

Φ(n,m) :=

{

An−1 · · ·Am, m < n,

I, n = m.

A difference equation (L) is said to possess an exponential dichotomy (ED for short,
cf. [8]) on I, if there exists a sequence (Pn)n∈I of projections in Rd×d (i.e. Pn = P 2

n)
and real numbers α ∈ (0, 1), K ≥ 1, such that

(a) Pn+1An = AnPn and An|N(Pn) : N(Pn) → N(Pn+1) is invertible,
(b) ‖Φ(n,m)Pm‖ ≤ Kαn−m for all m ≤ n,
(c)

∥
∥Φ̄(n,m)[I − Pm]

∥
∥ ≤ Kαm−n for all n ≤ m, and Φ̄(n,m) : N(Pm) → N(Pn),

n ≤ m, being the inverse of Φ(m,n)|N(Pn).

Geometrically, an ED is a hyperbolic splitting of the extended state space I×Rd for (L)
into a stable vector bundle Vs :=

{
(n, x) ∈ I× Rd : x ∈ R(Pn)

}
and a complementary

unstable vector bundle Vu :=
{
(n, x) ∈ I× Rd : x ∈ N(Pn)

}
. When restricted to the

invariant set Vs, a dichotomous equation (L) becomes uniformly asymptotically stable.
On this basis, we define the dichotomy spectrum

Σ(AI) =
{
γ > 0 : xn+1 = γ−1Anxn does not have an ED on I

}

and the dichotomy resolvent ρ(A) := (0,∞)\Σ(A). Referring to [1, Spectral theorem],
the dichotomy spectrum consists of up to d disjoint spectral intervals and reads as

Σ(AI) =

{

(0, b1]

[a1, b1]
∪

k⋃

i=2

[ai, bi]

with real numbers 0 < a1 ≤ b1 < a2 ≤ . . . ≤ bk for some integer k ≤ d. A spectral
interval (0, b1] can occur, if some inverse A−1

n does not exist or supn∈I

∥
∥A−1

n

∥
∥ = ∞.



A NONAUTONOMOUS BEVERTON-HOLT RICKER MODEL 37

There is a close relation between the dichotomy spectrum and Bohl exponents,
which we are going to explore next:

Proposition B.4. Given a real sequence aI satisfying (B.1), the dichotomy
spectrum of a scalar equation

xn+1 = anxn (B.6)

is Σ(aI) = [β(aI), β(aI)] with the Bohl exponents β(aI) and β(aI).
Proof. Above all, the evolution operator Φa(n,m) of (B.6) is given by (3.2).

Hence, the scaled difference equation xn+1 = γ−1anxn has an ED on I if and only if,
there exist reals K ≥ 1, α ∈ (0, 1) such that

γm−n |Φa(n,m)| ≤ Kαn−m or γn−m |Φa(m,n)| ≤ Kαn−m for all m ≤ n

⇔ |Φa(n,m)| ≤ K(αγ)n−m or
1

K

(
α

γ

)m−n

≤ |Φa(n,m)| for all m ≤ n

⇔ n

√
√
√
√

k+n−1∏

j=k

|aj| ≤ K
1
nαγ or

1

K
1
n

γ

α
≤ n

√
√
√
√

k+n−1∏

j=k

|aj | for all k ∈ I, n ≥ 0

⇔ sup
k∈I

n

√
√
√
√

k+n−1∏

j=k

|aj| ≤ K
1
nαγ or

1

K
1
n

γ

α
≤ inf

k∈I

n

√
√
√
√

k+n−1∏

j=k

|aj | for all n ≥ 0.

(I) In the limit n→ ∞ this immediately implies

β(aI)

α
≤ γ or γ ≤ αβ(aI). (B.7)

(II) Conversely, if we choose an arbitrary q > 1, then (B.7) implies that there
exists an Nq ∈ N0 such that

sup
k∈I

n

√
√
√
√

k+n−1∏

j=k

|aj | ≤ q
1
nαγ or

1

q
1
n

γ

α
≤ inf

k∈I

n

√
√
√
√

k+n−1∏

j=k

|aj | for all n ≥ Nq

and proceeding as in the chain of equivalences above, we obtain

γm−n |Φa(n,m)| ≤ qαn−m or γn−m |Φa(m,n)| ≤ qαn−m for all Nq ≤ n−m.

By choosing an appropriate constant Q ≥ q, using the boundedness assumption on aI
and (B.1), it is easy to see that these inequalities extend to

γm−n |Φa(n,m)| ≤ Qαn−m or γn−m |Φa(m,n)| ≤ Qαn−m for all m ≤ n.

(III) If we combine the steps (I) and (II), the scaled equation xn+1 = γ−1anxn
has an ED on I, if and only if (B.7) holds. The logical contraposition to this statement

is that γ ∈ Σ(aI) is equivalent to γ ∈
(

αβ(aI),
β(aI)
α

)

for all α ∈ (0, 1), i.e.

γ ∈
⋂

α∈(0,1)

(

αβ(aI),
β(aI)
α

)

= [β(aI), β(aI)]

and consequently the claim Σ(aI) = [β(aI), β(aI)].
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In order to meet the purposes of this paper we now restrict to two dimensions:
Proposition B.5. If (L) has a diagonal coefficient sequence

An =

(
an

bn

)

for all n ∈ I

with bounded diagonal sequences aI, bI, then
(a) Σ(AI) = Σ(aI) ∪ Σ(bI),
(b) Σ(AI) =

[
β(aI), β(aI)

]
∪
[
β(bI), β(bI)

]
, provided aI, bI satisfy (B.1).

Proof. We define the linear operators

Lγ ∈ L(ℓ∞(R2)), (Lγφ)n := φn+1 − γ−1Anφn, (B.8)

La
γ ∈ L(ℓ∞(R)), (La

γφ)n := φn+1 − γ−1anφn,

Lb
γ ∈ L(ℓ∞(R)), (Lb

γφ)n := φn+1 − γ−1bnφn.

(I) Suppose that I is bounded below. Due to [15, Thm. 3.2] we obtain

γ 6∈ Σ(A) ⇔ Lγ is onto ⇔ ∀ψ ∈ ℓ∞(R2) : ∃φ ∈ ℓ∞(Rd) : Lγφ = ψ

⇔ ∀ψ ∈ ℓ∞(R2) : xn+1 = γ−1Anxn + ψn has a bounded solution φ

⇔ ∀ψa, ψb ∈ ℓ∞(R) : xn+1 = an

γ
xn + ψa

n and xn+1 = bn
γ
xn + ψb

n have

bounded solutions φa, φb

⇔ ∀ψa, ψb ∈ ℓ∞(R) : ∃φa, φb ∈ ℓ∞(R) : La
γφ

a = ψa and Lb
γφ

b = ψb

⇔ La
γ , L

b
γ are onto

⇔ xn+1 = an

γ
xn and xn+1 = bn

γ
xn have an ED ⇔ γ 6∈ Σ(aI) ∪ Σ(bI),

yielding claim (a) in the logical contraposition. Claim (b) results using Prop. B.4.
(II) The situation I = Z can be shown similarly with the characterization [8,

p. 230, Thm. 7.6.5] applied to the operators Lγ and La
γ , L

b
γ .

We remind the reader of the symmetric difference of two sets M1,M2 defined as

M1 △M2 := (M1 ∪M2) \ (M1 ∩M2),

containing all elements which are either inM1 or inM2. We note that the intersection
of sets distributes over the symmetric difference, i.e. for arbitrary sets M one has

(M1 △M2) ∩M = (M1 ∩M)△ (M2 ∩M). (B.9)

Proposition B.6. Let I = Z. If (L) has an upper triangular coefficient sequence

An =

(
an cn
0 bn

)

for all n ∈ Z

and aZ, bZ, cZ are bounded sequences, then the following holds true:
(a) Σ(aZ)△ Σ(bZ) ⊆ Σ(AZ) ⊆ Σ(aZ) ∪ Σ(bZ).
(b) If Σ(aZ) ∩ Σ(bZ) has no interior points, then Σ(AZ) = Σ(aZ) ∪Σ(bZ).
Remark B.7. (1) The same assertion holds for difference equations (L) with

lower triangular coefficient matrices.
(2) An alternative condition guaranteeing Σ(AZ) = Σ(aZ) ∪ Σ(bZ) is 1 6∈ Σ(aZ

bZ
)

(in the upper triangular case) resp. 1 6∈ Σ( bZ
aZ

) (in the lower triangular case).
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Proof. Let us introduce a weighted shift operator TA ∈ L(ℓ∞(R2)) as

(TAφ)n := An−1φn−1 =

(
an−1φ

1
n−1 + cn−1φ

2
n−1

bn−1φ
2
n−1

)

for all n ∈ Z.

If we define the bounded projection P ∈ L(ℓ∞(R2)), (Pφ)n :=
(
φ1
n

0

)
and the closed

subspaces X := R(P ), Y := N(P ) of ℓ∞(R2), then the following holds true

(TAPφ)n =

(
an−1φ

1
n−1

0

)

, (TA(I − P )φ)n =

(
cn−1φ

2
n−1

bn−1φ
2
n−1

)

for all n ∈ Z,

as well as ℓ∞(R2) = X ⊕ Y . Furthermore, TA can be represented as block-diagonal

operator TA =
(

Ta C
0 Tb

)

∈ L(X ⊕ Y ) with

Ta ∈ L(X), Tb ∈ L(Y ), C ∈ L(Y,X),

(Taφ)n := an−1φn−1, (Tbφ)n := bn−1φn−1, (Cφ)n := cn−1φn−1.

(a) Due to [7, Cor. 4] one has σ(Ta)△ σ(Tb) ⊆ σ(TA) ⊆ σ(Ta) ∪ σ(Tb) and thus
the first claimed inclusion follows from (B.9), if we set Ma := σ(Ta), Mb := σ(Tb),
M := R+ and make use of Σ(AZ) = σ(TA)∩R+ and corresponding relations for Ta, Tb
(cf. [28, (1.1)]). The second claimed inclusion follows directly using [28, (1.1)].

(b) Thanks to the relation σ(Ta) ∩ σ(Tb) = {λ ∈ C : |λ| ∈ Σ(aZ) ∩ Σ(bZ)} and
our assumption on interior points, the intersection σ(Ta)∩σ(Tb) ⊆ C is a finite union
of circles centered around 0 (or empty) and has thus no interior points. Hence, [7,
Cor. 8] ensures σ(TA) = σ(Ta) ∪ σ(Tb) and again [28, (1.1)] yields the claim.

The following example ultimately illustrates that Prop. B.6(b) fails without the
additional assumption on interior points:

Example B.8. We investigate (L) on Z with upper-triangular coefficients.
(1) In the situation

An :=

{

A+, n ≥ 0,

A−, n < 0,
, A+ :=

(
2 1
0 1

2

)

, A− :=

(
1
2 0
0 2

)

the diagonal sequences of An fulfill Σ(aZ) = Σ(bZ) = [ 12 , 2] (see Prop. B.4), whereas
Σ(AZ) =

{
1
2 , 1
}
(cf. [28, Exam. 5.5]).

(2) Prop. B.6(b) can be used to detect gaps in the dichotomy spectrum. In case

An :=

{

A+, n ≥ 0,

A−, n < 0,
, A+ :=

(
4 0
0 2

)

, A− :=

(
1 1
0 3

)

the diagonal sequences of An imply Σ(aZ) = [1, 4], Σ(bZ) = [2, 3] (see Prop. B.4).
Hence, it is [1, 2) ∪ (3, 4] ⊆ Σ(AZ) ⊆ [1, 4], which holds for Σ(AZ) = [1, 2] ∪ [3, 4].
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