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Abstract. The dichotomy spectrum is a crucial notion in the theory
of dynamical systems, since it contains information on stability and
robustness properties. However, recent applications in nonautonomous
bifurcation theory showed that a detailed insight into the fine structure
of this spectral notion is necessary. On this basis, we explore a help-
ful connection between the dichotomy spectrum and operator theory.
It relates the asymptotic behavior of linear nonautonomous difference
equations to the point, surjectivity and Fredholm spectra of weighted
shifts. This link yields several dynamically meaningful subsets of the
dichotomy spectrum, which not only allows to classify and detect bifur-
cations, but also simplifies proofs for results on the long term behavior
of difference equations with explicitly time-dependent right-hand side.
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1. Nonautonomous hyperbolicity

Depending on the purpose of inquiry, the spectrum of a bounded linear opera-
tor can be decomposed into subsets in various different ways. First, this is due
to the fact that sometimes the spectrum is too coarse and only appropriate
subsets yield desirable information. Second, when it comes to a classifica-
tion of the solution behavior for nonlinear equations (in Banach spaces) on
a local basis, Fredholm, surjectivity and point spectra of Fréchet derivatives
become relevant in order to apply miscellaneous analytical tools. The goal of
this paper is to illustrate a significant application of operator theory to the
field of dynamical systems. Indeed, we study certain subsets of the so-called
dichotomy spectrum using corresponding results on weighted shift operators.

Weighted shift operators. In operator and spectral theory, weighted shift
operators on sequence spaces are frequently encountered for illustrative and
didactical reasons. They are sometimes even called the ”Building Block” of
operator theory and often serve as valuable source for (counter-) examples.
This consequently led to a rich theory and a quite comprehensive understand-
ing of their spectral properties; for an introduction see [Lam71, Shi74].

Beyond that it turned out that weighted shifts feature useful applica-
tions in systems theory. They include a characterization of stability, observ-
ability and detectability properties for linear time-varying difference equa-
tions (cf. [KKP85, PI97, Wir98] and the references therein) in terms of spec-
tral properties for matrix- or operator-weighted shifts. For instance, [KKP85,
Thm. 4.5] show that a nonautonomous linear difference equation

xk+1 = Akxk (∆)

is uniformly asymptotically stable, if and only if the weighted shift operator

(TAφ)k := Ak−1φk−1 for all k ∈ Z

has spectral radius r(TA) < 1. This suggests a strong connection between
the asymptotic behavior of linear dynamical systems (∆) and operator the-
oretical concepts, i.e. the spectrum of a shift operator on certain ambient
sequence spaces. We point out that such a bridge was probably first observed
by Mather in [Mat68] (see also the monographs [CL99, HL05]). Related ideas
were later taken up by [BAG91, AM96], who characterize the spectrum σ(TA)
for difference eqns. (∆) defined on the whole integer axis Z, as the union of
up to d concentric annuli, where d is the finite dimension of the state space
for (∆). The radii of these annuli are so-called Bohl exponents and [BAG91]
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obtain explicit forms of the spectrum σ(TA) for constant, periodic, asymp-
totically constant and scalar sequences Ak. An identical description of the
set σ(TA) using local spectral theory can be found in [Bou06, Thm. 2.4] and
a characterization of weighted operator-shifts satisfying the single value ex-
tension property (SVEP for short) is given in [BC04]. Moreover, in [GKK96]
the similarity of weighted shifts TA is discussed for several sequences Ak.

The previously described shape of the spectrum changes when dealing
with unilateral shifts. In this situation σ(TA) becomes a solid disc, whereas
the essential spectrum σF (TA) inherits the above structure as union of rings
and is therefore invariant under compact perturbations. This is shown in
[BAG93] or [LJS01] by means of Fredholm properties of the shift operator

T+
A φ = (0, A0φ0, A1φ1, . . .);

note that also [BAG92] tackle these problems and relate them to Stein equa-
tions. Unitary equivalence for T+

A is studied in [Lam71], local spectral theory
for matrix-weighted shifts was investigated in [Li94] and finally, [LJS01] char-
acterize Banach reducibility.

Exponential dichotomies. A further fruitful field of applications for weighted
shifts is the recent theory of nonautonomous dynamical systems. Indeed,
gaps in the above spectra are dynamically important, since they induce a
hyperbolic splitting for difference eqns. (∆). This means there exist two com-
plementary bundles of subspaces containing solutions to (∆) with a particu-
lar exponential growth behavior in forward resp. backward time (cf. [AM96,
Lemma 1]). In a dynamical systems language this splitting means that (∆)
has an exponential dichotomy (ED for short). The spectral notion corre-
lated to an ED is called dichotomy spectrum ΣED(A) ⊂ R associated to
a linear nonautonomous differential or difference equation (cf. [SS78] resp.
[BAG91, AS01]) — equivalently one also speaks of the dynamical or Sacker-
Sell spectrum. In stability theory the dichotomy spectrum extends the role
of the classical spectrum σ(A) from an autonomous setting xk+1 = Axk to
a general time-dependent set-up of general eqns. (∆). Indeed, owing to the
rotational invariance of spectra for shift operators, [Pöt09] and [BAG93] ob-
served the crucial relations

ΣED(A) = σ(TA) ∩ (0,∞), ΣED(A) = σF (T+
A ) ∩ (0,∞) (1.1)

relating dichotomy spectra of a linear difference eqn. (∆) to the spectra of a
weighted shift on an appropriate sequence space.

Continuation and bifurcation. This concept of an ED is of crucial relevance
to understand the long-term behavior of dynamical systems. For instance,
it ensures that entire solutions φ∗ = (φ∗k)k∈Z to nonlinear nonautonomous
difference equations

xk+1 = fk(xk, λ) (1.2)

can be continued in parameters λ and it yields (uniform) stability concepts.
In addition, it guarantees the persistence of invariant subspaces under a suf-
ficiently large and germane class of nonlinear perturbations giving rise to
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invariant manifold theorems. Therefore, an ED represents the correct hyper-
bolicity notion for an effective geometric theory in a nonautonomous frame-
work and we legitimately denote (∆) as hyperbolic, if it admits an ED. When
dealing with nonlinear difference eqns. (1.2), linear problems (∆) typically
occur as variational equations with Ak = D1fk(φ∗k, λ

∗) along φ∗. One speaks
of a hyperbolic solution φ∗, if the associated operator

(S1φ)k := φk+1 −Akφk for all k ∈ Z

is invertible or equivalently, 1 6∈ σ(TA). It was first observed in [Hen81, p. 239,
Thm. 7.6.5] that this assertion is tantamount to an ED of the variational
equation on Z. Thus, by means of the relations (1.1), the long term behavior
of (∆), as well as (1.2) can be studied using classical spectral theory for TA.

On the other hand, when interested in the behavior of (1.2) under vary-
ing parameters λ, nonhyperbolicity 1 ∈ ΣED(A) becomes a necessary con-
dition for bifurcation of bounded entire solutions. Nevertheless, for sufficient
conditions it turned out in this context that a more detailed insight into the
fine structure of the dichotomy spectrum is required. First, this observation is
due to the fact that hyperbolicity of (∆) is not a generic property anymore,
like it is in the classical case of finite-dimensional autonomous or periodic
eqns. (∆). While the set of hyperbolic equations is open (see e.g. [Hen81,
p. 232, Thm. 7.6.7]), it is not dense — one can actually construct whole neigh-
borhoods of nonhyperbolic systems (∆) (cf. [Pöt10a, p. 149, Exam. 3.4.34]
or Exam. 5.3). Second, appropriate subsets of the dichotomy spectrum allow
to classify nonautonomous bifurcations. This can be understood when S1 is
the Fréchet derivative of an operator formulation for (1.2) evaluated in φ∗:

• In case S1 is an index 0 Fredholm operator, a whole array of tools from
classical branching theory becomes available via Lyapunov-Schmidt re-
duction (cf. [Zei93, Chapt. 8], [Zei95, Sect. 5.12] or [Pöt10b]).
• Provided S1 looses its invertibility but remains onto, then the surjective

implicit function theorem (cf. [Zei93, p. 177, Thm. 4.H]) applies. This
yields sufficient conditions for the branching of whole families of entire
solutions and the so-called shovel bifurcation pattern (see [Pöt11a]).
• Finally, if S1 is not Fredholm, more specific tools from dynamical sys-

tems theory rather than comparatively crude functional analysis become
important (for a survey we refer to [Ras07]).

These applications underline the importance of appropriate subsets of the
(dichotomy) spectrum, namely essential, surjectivity and point spectra. To
our knowledge, this is the first paper suggesting and investigating such a
decomposition of ΣED(A). In this endeavor we largely benefit from known
results for the corresponding spectra of weighted shifts here.

Our paper is therefore structured into five sections. After introducing
our terminology, Sect. 2 contains some basic facts on EDs and the weaker
trichotomies, as well as the associated spectra; in particular, the trichotomy
spectrum has not been investigated before. Difference equations on semi-
axes are studied in Sect. 3. We tackle the question when dichotomies can be
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extended to larger intervals (a new result in discrete time), and character-
ize Fredholm properties of weighted shifts in terms of EDs. As a result, we
observe that the dichotomy spectrum is related to the Fredholm and surjec-
tivity spectra of T+

A . This yields certain properties of the dichotomy spectrum
(upper-semicontinuity, `0-roughness), where proofs are drastically simplified,
and an explicit formula for ΣED(A) when the coefficient matrices Ak are
upper-triangular. Our subsequent Sect. 4 addresses similar questions for dif-
ference eqns. (∆) defined on the whole integer axis. Due to the occurrence of
point spectrum, the resulting spectral theory is richer than in the semiaxis
situation. We give a short proof relating EDs and Fredholm properties (the
stronger general result [LT05, Thm. 1.6] has a much more involved proof and
is given for slightly different sequence spaces), which is new in discrete time.
The connection to operator theory not only simplifies proofs of known results
(e.g. the `∞-roughness of exponential trichotomies), but also provides novel
insights as, e.g., the meagerness of discontinuity points for the dichotomy
spectra. We relate all the studied dichotomy spectra in Cor. 4.31. Finally,
we address difference equations with an almost periodic coefficient sequence
and show that most of the dichotomy spectra for such problems coincide.
This drastically simplifies the spectral theory for these (and in particular au-
tonomous or periodic) problems. The concluding Sect. 5 demonstrates our re-
sults using various examples, including noninvertible and infinite-dimensional
ones. For instance, we illustrate the upper-semicontinuity of dichotomy spec-
tra or show that the dichotomy spectrum for equations defined on the whole
axis needs not to be invariant under compact perturbations (cf. Exam. 5.6).

Let us close this motivation with the following remarks and perspectives:

• In the operator theoretical literature [Lam71, BAG91, BAG92, BAG93,
Li94, LJS01, BC04, Bou06] the weighted shift operators TA and T+

A are
typically studied on the Hilbert space of square-summable sequences `2.
To a large extend, we instead focus on the Banach space `∞ of bounded
sequences. This choice is well-motivated from a dynamical systems point
of view, where bounded solutions are of obvious interest, rather than
somehow artificial `2-solutions or -perturbations.
• While we are exclusively dealing with the discrete time case of difference

equations, an extension of our theory to a large class of evolutionary
differential equations is possible. The key to such an endeavor are results
like [Hen81, p. 229, Exam. 10], [HM01, Thm. 4.8] or [LT05, Thm. 1.4
and Lemma 1.5].

Notation. Throughout the paper, we suppose that X,Y are Banach spaces,
whose norm and induced operator norm on the space of bounded operators
L(X,Y ) are denoted by |·|. The dual space to X is X ′, 〈·, ·〉 stands for the
duality product and furthermore X⊥0 for the annihilator of a subset X0 ⊂ X.
We write N(T ) ⊂ X for the kernel and R(T ) ⊂ Y for the range of a linear
operator T ∈ L(X,Y ) and T ′ ∈ L(Y ′, X ′) for its dual operator. Abbreviat-
ing L(X) := L(X,X) and GL(X,Y ) := {T ∈ L(X,Y ) : T is invertible} we
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define the following subsets

GL(X) := GL(X,X),

Ls(X) := {S ∈ L(X) : S is onto} ,
Lp(X) := {S ∈ L(X) : S is one-to-one} ,
LF (X) := {S ∈ L(X) : S is Fredholm} ,
LF0

(X) := {S ∈ L(X) : S is Fredholm with index 0} ;

note that the first four of them are regularities in the sense of [Mül07, pp. 51ff],
while the set LF0(X) merely defines an upper-semiregularity (cf. [Mül00] and
[Mül07, pp. 211ff]). Given a bounded operator S ∈ L(X) we introduce the
reduced minimum modulus (cf. [Mül07, pp. 97ff])

Γ(S) := inf {c > 0 : ‖Sx‖ ≥ cdist(x,N(S)) for all x ∈ X}
and the surjectivity modulus (cf. [Mül07, p. 86])

k(S) := sup {r ≥ 0 : rBX ⊂ SBX} ,
where BX is the closed unit ball in X centered around 0. We make use of the
following induced spectra:

σ(S) := {λ ∈ C : S − λ id 6∈ GL(X)} for the spectrum,

σs(S) := {λ ∈ C : S − λ id 6∈ Ls(X)} for the surjectivity spectrum,

σp(S) := {λ ∈ C : S − λ id 6∈ Lp(X)} for the point spectrum and

σF (S) := {λ ∈ C : S − λ id 6∈ LF (X)} ,
σF0

(S) := {λ ∈ C : S − λ id 6∈ LF0
(X)} for the Fredholm spectra;

note that σs(S) is also denoted as (approximate) defect spectrum, σF0
(S) as

Weyl spectrum and σF (S), σF0
(S) as essential spectra of S.

Let I be a discrete interval, i.e. the intersection of a real interval with
the integers Z, and I′ := {k ∈ I : k + 1 ∈ I}. In particular, we define the
discrete intervals I+κ := [κ,∞)∩ I and I−κ := (−∞, κ]∩ I for κ ∈ I. Often it is
convenient to write I±κ for either I+κ or I−κ and we proceed similarly with our
further notation. Typically, I will be unbounded to avoid trivialities.

We denote by `∞(I, X), or for brevity `∞, the space of bounded se-
quences φ = (φk)k∈I in X, `0 is the subspace of limit zero sequences (in case
I = Z we mean the two-sided limit) and `00 the space of sequences with only
finitely many nonzero elements. One has the inclusions `00 ⊂ `0 ⊂ `∞ and
`0 is a closed subspace of `∞, in which `00 is dense. Moreover, `p ⊂ `0 is the
space of p-summable sequences, p ≥ 1. Finally as convention, the norm on
spaces of sequences with values in X is denoted as ‖·‖.

2. Exponential dichotomy and trichotomy

We consider a nonautonomous linear difference eqn. (∆) in a Banach space
X with coefficient operators Ak ∈ L(X), k ∈ I′. Such discrete equations
generate a transition operator Φ : {(k, l) ∈ I× I : l ≤ k} → L(X), i.e. for
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each instant κ ∈ I the sequence Φ(·, κ) : I+κ → L(X) is the unique forward
solution to the initial value problem Xk+1 = AkXk, Xκ = id in L(X) and
thus given by

Φ(k, l) :=

{
Ak−1 · · ·Al, l < k,

id, k = l;

in the invertible case

Ak ∈ GL(X) for all k ∈ I′ (2.1)

we supplement this definition by setting

Φ(k, l) := A−1
k · · ·A

−1
l−1 for all k < l.

Remark 2.1. (1) We call a difference eqn. (∆) or its transition operator Φ
eventually compact, if there exists an m ∈ N such that Φ(k, l) is compact for
k, l ∈ I satisfying k−l ≥ m. This situation typically occurs when dealing with
temporal discretization of diffusion equations (cf. [Hen81, p. 196, Exam. 10∗])
or retarded functional differential equations (cf. [HVL93, p. 91, Cor. 6.2]).

(2) One says a difference equation

yk+1 = Bkyk (2.2)

with coefficient operators Bk ∈ L(Y ), k ∈ I′, is kinematically similar to (∆),
if there exists a sequence (Ck)k∈I of operators Ck ∈ GL(Y,X) satisfying

Ck+1Bk = AkCk for all k ∈ I′ (2.3)

and also the boundedness condition supk∈I max
{
|Ck| ,

∣∣C−1
k

∣∣} < ∞ holds.
Such sequences are denoted as Lyapunov transformations.

(3) The solution space Λ := {(φk)k∈I : φk+1 ≡ Akφk on I′} for (∆) is
linear. If one of the conditions

• I = Z+
κ ,

• I is unbounded below and (2.1)

holds, then ξ 7→ Φ(·, κ)ξ is a vector space isomorphism from X onto Λ.

The following notions aim to capture the geometrical behavior of (∆).
For a discrete interval I unbounded above we define the stable bundle

V+ :=

{
(κ, ξ) ∈ I×X : sup

κ≤k
|Φ(k, κ)ξ| <∞

}
consisting of forward bounded solutions to (∆). Dually, for discrete intervals
I unbounded below the unstable bundle is given by

V− :=

{
(κ, ξ) ∈ I×X :

there exists a solution φ = (φk)k∈I of
(∆) with φκ = ξ and supk≤κ |φk| <∞

}
and consists of solutions which exist and are bounded in backward time; in the
invertible case (2.1) one has V− =

{
(κ, ξ) ∈ I×X : supk≤κ |Φ(k, κ)ξ| <∞

}
.

Finally, for I = Z we can introduce the center bundle

V0 := V− ∩ V+
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consisting of entire bounded solutions to (∆). Since we frequently deal with
subsets V ⊆ I×X, it is convenient use the convenient notation for its κ-fiber

V(k) := {x ∈ X : (k, x) ∈ V} for all k ∈ I.

An exponential dichotomy or trichotomy is a concept to provide a con-
venient characterization of the vector bundles V+, V− and V0. More precisely,
a sequence of projections Pk ∈ L(X), k ∈ I, is denoted as invariant projector
of (∆), provided Pk+1Ak = AkPk for all k ∈ I′ holds and a regular invariant
projector additionally satisfies the regularity condition

Ak|R(Pk) : R(Pk)→ R(Pk+1) is bijective for all k ∈ I′. (2.4)

Using mathematical induction and [Yos80, p. 77, Corollary] this yields

Φ̄(k, l) := Φ(k, l)|R(Pl) ∈ GL(R(Pl), R(Pk)) for all l ≤ k,

we denote the bounded inverse of Φ̄(k, l) by Φ̄(l, k), l ≤ k, and point out that
the ranges R(Pk) have constant dimension for all k ∈ I.

Definition 2.2. A difference eqn. (∆) or the associated transition operator Φ
is said to have an exponential trichotomy (ET for short) on I, if

(i) there exist invariant projectors Pk, Qk satisfying PkQk = QkPk = 0
such that Qk, id−Pk −Qk are regular,

(ii) there exist reals K ≥ 1, α ∈ (0, 1) and a κ ∈ I such that (with k, l ∈ I)

|Φ(k, l)Pl| ≤ Kαk−l for all l ≤ k,∣∣Φ̄(k, l)Ql
∣∣ ≤ Kα|k−l| for all κ ≤ l ≤ k or k ≤ l ≤ κ, (2.5)∣∣Φ̄(k, l)[id−Pl −Ql]
∣∣ ≤ Kαl−k for all k ≤ l.

In case Qk ≡ 0 one speaks of an exponential dichotomy (ED for short) and
the Morse index ι of an ED is the (constant) dimension of N(Pk).

Remark 2.3. (1) The above ET notion is stronger than the frequently used
trichotomy concept from [SS76], where the estimate (2.5) is replaced by∣∣Φ̄(k, l)Ql

∣∣ ≤ K for all k, l ∈ I. (2.6)

While (2.6) captures the classical situation of a constant (or periodic) coeffi-
cient sequence Ak in (∆) with semi-simple eigenvalues (Floquet multipliers)
on the complex unit circle, the notion in Def. 2.2 is due to [EJ98, Pap91]. It
is intrinsically nonautonomous and strongly related to EDs on semiaxes.

Indeed, an ET on I is essentially equivalent to EDs on both semiaxes
(see [EJ98, Lemma 2] for finite-dimensional invertible equations):

Proposition 2.4. If a difference eqn. (∆) admits

(a) an ET on I with projectors Pk, Qk, then it has an ED on I+κ with pro-
jector P+

k = Pk +Qk, an ED on I−κ with projector P−k = Pk and

P−κ = P−κ P
+
κ = P+

κ P
−
κ , (2.7)
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(b) an ED on I+κ with projector P+
k , an ED on I−κ with P−k satisfying (2.7)

and fulfills (2.1), then it admits an ET on I with

Pk = Φ(k, κ)P−κ Φ(κ, k), Qk = Φ(k, κ)[P+
κ − P−κ ]Φ(κ, k). (2.8)

Remark 2.5. The condition (2.7) is equivalent to X = R(P+
κ ) +N(P−κ ).

Proof. (a) It is easy to see that the projections P+
κ , P

−
κ defined above fulfill

the relation (2.7). We show the backward time estimate for the ED on I−κ ,∣∣Φ̄(k, l)[id−P−l ]
∣∣ =

∣∣Φ̄(k, l)[Ql + id−Pl −Ql]
∣∣

≤
∣∣Φ̄(k, l)Ql

∣∣+
∣∣Φ̄(k, l)[id−Pl −Ql]

∣∣ (2.5)

≤ 2Kαl−k

for all k ≤ l ≤ κ and the other estimates can be established similarly.

(b) Due to (2.1) we can extend the projectors P+
k := Φ(k, κ)P+

κ Φ(κ, k)

for k < κ and P−k := Φ(k, κ)P−κ Φ(κ, k) for k > κ on the whole axis I. Thus,
for arbitrary k, l ∈ I we obtain

|Φ(k, l)Pl|
(2.8)
=

∣∣Φ(k, l)Φ(l, κ)P−κ Φ(κ, l)
∣∣

(2.7)
=

∣∣Φ(k, κ)P+
κ Φ(κ, l)Φ(l, κ)P−κ Φ(κ, l)

∣∣
(2.8)

≤
∣∣Φ(k, l)P+

l

∣∣ |Pl| ≤ K2αk−l for all κ ≤ l ≤ k,

|Φ(k, l)Pl|
(2.7)
=

∣∣Φ(k, κ)P+
κ P
−
κ Φ(κ, l)

∣∣
(2.8)

≤
∣∣Φ(k, κ)P+

κ

∣∣ ∣∣Φ(κ, l)P−l
∣∣ ≤ K2αk−l for all l ≤ κ ≤ k,

|Φ(k, l)Pl|
(2.8)
=

∣∣Φ(k, κ)P+
κ Φ(κ, k)Φ(k, κ)P−κ Φ(κ, l)

∣∣
(2.8)

≤
∣∣P+
k

∣∣ ∣∣Φ(k, l)P−l
∣∣ ≤ K2αk−l for all l ≤ k ≤ κ

and consequently the first trichotomy inequality. The remaining two estimates
in (2.5) follow along the same lines. �

Corollary 2.6. Under (2.1) one can replace κ ∈ I in (2.5) by any other κ̄ ∈ I.

Proof. Let κ̄ ∈ I. Since the eqn. (∆) has an ET, using Prop. 2.4(a) we con-
clude EDs on I+κ with P+

k = Pk+Qk, as well as on I−κ with P−k = Pk satisfying
(2.7). Due to (2.1) these dichotomies can be extended to the discrete intervals
I+κ̄ and I−κ̄ by means of the projectors

P+
k := Φ(k, κ)[Pκ +Qκ]Φ(κ, k), P−k := Φ(k, κ)PκΦ(κ, k)

satisfying P−κ̄ P
+
κ̄ = Φ(κ̄, κ)Pκ[Pκ+Qκ]Φ(κ, κ̄) = Φ(κ̄, κ)PκΦ(κ, κ̄) = P−κ̄ and

P+
κ̄ P
−
κ̄ = P−κ̄ . Thus, Prop. 2.4(b) ensures an ET on I with κ̄ instead of κ. �

Lemma 2.7. Let λ ∈ C \ {0}. A scaled difference equation xk+1 = λAkxk
admits an ET on I, if and only if xk+1 = |λ|Akxk is exponentially trichotomic
on I with the same data Pk, Qk, K,α and κ.
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Proof. Given a nonzero λ ∈ C, the transition operator of xk+1 = λAkxk reads
as Φλ(k, l) = λk−lΦ(k, l) for all l ≤ k. Then it is straight forward to show
that the estimates (2.5) are inherited between the equations in question. �

Along with (∆) we consider the scaled difference equation

xk+1 = 1
γAkxk for reals γ > 0, (∆γ)

with transition operator Φγ(k, l) := γl−kΦ(k, l) and invariant vector bundles

V+
γ :=

{
(κ, ξ) ∈ I×X : sup

κ≤k
|Φ(k, κ)ξ|γκ−k <∞

}
,

V−γ :=

{
(κ, ξ) ∈ I×X :

there exists a solution φ = (φk)k∈I of (∆)
with φκ = ξ and supk≤κ |φk|γκ−k <∞

}
.

We clearly have V± = V±1 and define

• the dichotomy spectrum

ΣED(A) := {γ > 0 : Φγ does not have an ED on I} ,

• the trichotomy spectrum

ΣET (A) := {γ > 0 : Φγ does not have an ET on I} ,

• the dichotomy resolvent ρED(A) := (0,∞) \ ΣED(A)

of a linear eqn. (∆). In case 1 6∈ ΣED(A) one calls (∆) hyperbolic on I. One
also introduces the forward resp. backward dichotomy spectrum

Σ±κ (A) =
{
γ > 0 : Φγ does not have an ED on I±κ

}
⊂ ΣED(A)

for κ ∈ I and deduces the obvious inclusions

Σ+
k (A) ⊂ Σ+

κ (A), Σ−κ (A) ⊂ Σ−k (A) for all κ ≤ k. (2.9)

Proposition 2.8. One has ΣET (A) ⊂ ΣED(A) and for every k ∈ I it is

(a) Σ+
k (A) ∪ Σ−k (A) ⊂ ΣED(A),

(b) Σ+
k (A) ∪ Σ−k (A) ⊂ ΣET (A) under (2.1).

Proof. First, one clearly has the inclusion ΣET (A) ⊂ ΣED(A) and our asser-
tion (a) is evident from the above. Concerning (b), due to Prop. 2.4(a) we
obtain the implications

γ 6∈ ΣET (A) ⇔ Φγ has an ET on I ⇒ Φγ has EDs on I+κ and I−κ ,

where κ ∈ I can depend on γ. However, Cor. 2.6 allows us to choose κ equal
to any given k ∈ I and we conclude

γ 6∈ ΣET (A) ⇔ γ 6∈ Σ+
k (A) and γ 6∈ Σ−k (A),

which is equivalent to assertion (b). �

The structure of the above dichotomy spectra resembles the autonomous
case, where eigenvalue moduli correspond to spectral intervals and generalized
eigenspaces become invariant vector bundles. Precisely, one has:



Fine Structure of the Dichotomy Spectrum 11

Theorem 2.9 (spectral theorem). The dichotomy spectrum of (∆) is closed in
(0,∞). If I is unbounded, then ΣED(A) is either empty or in case dimX <∞
the disjoint union of 1 ≤ n ≤ dimX closed spectral intervals. Precisely, one
either has ΣED(A) = ∅, ΣED(A) = (0,∞) or one of the four cases

ΣED(A) =


[α1, β1]

or

(0, β1]

∪ [α2, β2] ∪ . . . ∪ [αn−1, βn−1] ∪


[αn, βn]

or

[αn,∞)

with reals 0 < αj ≤ βj < αj+1. Finally, for I = Z one has the Whitney sum

n⊕
j=1

Uj = Z×X

with nontrivial invariant vector bundles Uj := V+
γj ∩ V

−
γj−1

. The growth rates

are chosen according to γj ∈ (βj , αj+1) and γ0 ∈ ρED(A) such that (0, γ0) ⊂
ρED(A); if this is not possible, define U1 := V+

γ1 .

Remark 2.10. (1) If (∆) has bounded forward growth, i.e. the estimate

ω+ := sup
k∈I
|Ak| <∞ (2.10)

holds, then ΣED(A) ⊂ (0, ω+]. In applications, this is a legitimate assump-
tion, since nonautonomous linear problems (∆) often occur as variational
eqn. xk+1 = D1fk(φ∗k, λ)xk of a nonlinear problem (1.2) along a bounded
reference solution φ = (φ∗k)k∈I. Then (2.10) holds under natural assumptions
on the nonlinearity fk, i.e. D1fk(·, λ) maps bounded sets into bounded sets
uniformly in k ∈ I. This justifies that we often assume (2.10) in the follow-
ing. On the other hand, provided a difference eqn. (∆) has bounded backward
growth, i.e. beyond (2.1) the estimate

ω− := sup
k∈I

∣∣A−1
k

∣∣ <∞ (2.11)

holds, then (0, ω−) ∩ Σ(A) = ∅ (see [AS02, Thm. 2.1]). Hence, under both
conditions (2.10) and (2.11) the dichotomy spectrum is compact.

(2) If (∆) has an ET with Qk 6= 0, then [α, α−1] ⊂ ΣED(A).
(3) A different dichotomy spectrum was introduced in [AS01] based on

the weaker dichotomy concept from [AK01]. Here, a difference eqn. (∆) or Φ
is said to have an exponential forward dichotomy (EFD for short), provided
there exist reals α ∈ (0, 1), K ≥ 1 and an invariant projector (Pk)k∈I, which
is additionally a bounded sequence, such that

|Φ(k, l)Plx| ≤ Kαk−l |Plx| , K−1αl−k |[id−Pl]x| ≤ |Φ(k, l)[id−Pl]x|

holds for all x ∈ X and l ≤ k. An EFD does not even require the regularity
condition (2.4), but as shown in [AK01, Exam. 2.7], it has the disadvantage
of not being robust w.r.t. `∞-perturbations. The resulting spectrum

Σ̂ED(A) := {γ > 0 : Φγ does not have an EFD on I} ,
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satisfies Σ̂ED(A) ⊂ ΣED(A) and this inclusion can be strict in the sense that

Σ̂ED(A) might consist of up to 1+dimX disjoint spectral intervals (cf. [AS01,

Thm. 3.4] for details). Under (2.1) however, one has Σ̂ED(A) = ΣED(A).

Proof. Due to [AS02, Lemma 2.1] the dichotomy spectrum is closed. For the
remaining assertions, see [AS01, Thm. 3.4] and [AS02, Spectral theorem]. �

3. Equations on semiaxes

Throughout the section, we fix an instant κ ∈ Z and focus on linear difference
eqns. (∆) where the time axis I is of the form Z+

κ or Z−κ . As mentioned
above, an ET on such an unbounded discrete interval provides a geometrical
characterization of the invariant vector bundles V+,V−.

Proposition 3.1. Suppose a difference eqn. (∆) admits an ET on I.
(a) If I is unbounded above, then

V+(κ) =

{
ξ ∈ X : lim

k→∞
Φ(k, κ)ξ = 0

}
= R(Pκ +Qκ),

(b) if I is unbounded below, then

V−(κ) =

{
ξ ∈ X :

there exists a solution φ = (φk)k∈Z−κ to

(∆) with φκ = ξ and limk→−∞ φk = 0

}
= N(Pκ),

and the above convergence assertions are even exponential.

Remark 3.2. (1) If a difference eqn. (∆) is eventually compact and the discrete
interval I is unbounded below, then all the fibers V−(k), k ∈ Z−κ , share the
same finite dimension (cf. [Pöt10a, p. 142, Prop. 3.4.24]).

(2) Under (2.1) the above characterizations hold for all κ ∈ I.

Proof. We only prove assertion (b) since (a) can be shown analogously. Due
to Prop. 2.4(a) our difference eqn. (∆) admits an ED on Z−κ with projector
Pk and by [Pöt10a, Rem. 3.4.18] we have N(Pκ) = V−γ (κ), if γ ∈ (α, α−1).
For γ ∈ (α, 1) one has exponential convergence to 0 and our claim results. �

Our following result gives criteria that an ED on a semiaxis I can be
extended to a larger discrete interval J as long as J \ I remains finite. Under
(2.1) this is possible by simply extending the invariant projector using

Pk := Φ(k, κ)PκΦ(κ, k) for all k ∈ J \ I.
Without the strict invertibility assumption (2.1) we obtain the following
discrete-time counterpart to [Lin86, Lemma 2.3, 2.4]:

Proposition 3.3. Let κ, κ ∈ Z with κ < κ < κ and suppose that a difference
eqn. (∆) admits an ED on I with projector Pk.

(a) If I = Z−κ , N(Φ(κ, κ)|N(Pκ)) = {0}, the subspaces Φ(k, κ)N(Pκ) ⊂ X
are closed for κ < k ≤ κ̄ and Φ(κ, κ)N(Pκ) ⊂ X is complemented, then
(∆) has an ED on the extended interval Z−κ .
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(b) If I = Z+
κ and the subspaces Φ(κ, κ)−1R(Pκ), R(Pκ) ⊂ X have the same

finite codimension, then (∆) has an ED on the extended interval Z+
κ .

Remark 3.4. (1) In Hilbert spaces X the subspaces Φ(κ, κ)N(Pκ) are com-
plemented, provided they are closed.

(2) For an eventually compact difference eqn. (∆) we know that the
images Φ(κ, κ)N(Pκ) are finite-dimensional by Rem. 3.2(1) and thus comple-
mented. Moreover, the spaces Φ(k, κ)N(Pκ) are closed for all k ≥ κ.

Proof. (a) Let κ ≤ κ. Above all, we define the subspaces

X+
k :=

{
N(Pk), k ≤ κ,
Φ(k, κ)N(Pκ), κ ≤ k ≤ κ

which are closed due to our assumption, and the regularity of id−Pk shows
that dimX+

k , k ≤ κ, is constant. Moreover, Φ(k, l) : X+
l → X+

k is a topolog-

ical isomorphism for l ≤ k ≤ κ. By assumption, X+
κ is complemented and we

denote by X−κ the corresponding closed subspace with X+
κ ⊕X

−
κ = X. Since

Φ(κ, κ) is continuous, the preimages X−k := Φ(κ, k)−1X−κ , k ≤ κ, are closed
subspaces of X with the following properties:

• Given ξ ∈ X+
k ∩X

−
k we obtain Φ(κ, k)ξ ∈ X+

κ ∩X
−
κ , thus Φ(κ, k)ξ = 0

and so ξ = 0, since Φ(κ, k) is an isomorphism between X+
k and X+

κ .

• Let ξ ∈ X with a representation Φ(κ, k)ξ = η1 + η2 for η1 ∈ X+
κ ,

η2 ∈ X−κ . Then there exists a ξ1 ∈ X+
k with η1 = Φ(κ, k)ξ1 and therefore

Φ(κ, k)[ξ − ξ1] = η2 ∈ X−κ , which guarantees ξ − ξ1 ∈ X−k .

From this we conclude the relation

X = X+
k ⊕X

−
k for all k ≤ κ

and define the complementary projectors P̄k, Q̄k ∈ L(X) by virtue of the
relations R(P̄k) = X+

k and R(Q̄k) = X−k for all k ≤ κ. Both, P̄k, Q̄k are
invariant projectors of (∆) for k ≤ κ. Since R(Q̄k) = R(Qk) implies

QκQ̄κ = Q̄κ, Q̄kQk = Qk,

we deduce the equation

Q̄k = Q̄k(Qk + Pk) = Qk + Q̄kPk = Qk + Φ(k, κ)Q̄κΦ(κ, k)Pk

= Qk + Φ(k, κ)QκQ̄κΦ(κ, k)Pk for all k ≤ κ.

In connection with the exponential limit relations

lim
k→−∞

Φ(κ, k)Pk = 0, lim
k→−∞

Φ̄(k, κ)Qκ = 0

this implies that the difference Q̄k−Qk decays to 0 exponentially as k → −∞.
Due to the relation P̄k −Pk = id−Q̄k − (id−Qk) = Qk − Q̄k the same holds
for the difference P̄k − Pk and there exists a constant M ≥ 0 such that

max
{∣∣P̄k∣∣ , ∣∣Q̄k∣∣} ≤M for all k ≤ κ.
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First, we get an ED of (∆) on the finite set {κ, . . . , κ}. Second, due to Q̄kQk =
Qk we have P̄k = P̄k(Pk +Qk) = P̄kPk + P̄kQ̄kQk = P̄kPk and obtain∣∣Φ(k, l)P̄l

∣∣ =
∣∣P̄kΦ(k, l)

∣∣ =
∣∣P̄kPkΦ(k, l)

∣∣ ≤MKαk−l

for all l ≤ k ≤ κ, while we derive the remaining dichotomy inequality∣∣Φ(l, k)Q̄k
∣∣ =

∣∣Φ(l, k)QkQ̄k
∣∣ ≤ |Φ(l, k)Qk|

∣∣Q̄k∣∣ ≤ KMαk−l

for all l ≤ k ≤ κ. This guarantees that (∆) also has an ED on Z+
κ w.r.t. the

projector P̄k. Combining the results on the two intervals implies (a).
(b) Let κ ≤ κ. We define the subspaces

X+
k :=

{
R(Pk), k ≤ κ,
Φ(κ, k)−1R(Pκ), κ ≤ k ≤ κ

and our assumption yields m := codimX+
κ = codimX+

κ < ∞. By [Mül07,

p. 398, Thm. A.1.25(ii)] we can choose a closed subspace X−κ with X+
κ ⊕X−κ =

X and define X−k := Φ(k, κ)X−κ for k ≥ κ. In order to verify the direct sum

X+
k ⊕X

−
k = X for all κ ≤ k (3.1)

we proceed in two steps:

• We first verify X+
k ∩X

−
k = {0} for k ≥ κ: If ξk ∈ X+

k ∩X
−
k , then there

exists a ξ ∈ X−κ such that ξk = Φ(k, κ)ξ.

For k ≤ κ, by definition of X+
k it is Φ(κ, k)ξk ∈ X+

κ and this implies
ξ ∈ X+

κ . Thus, ξ = 0 and ξk = 0.
On the other hand, for κ < k it is

Φ(k, κ)Φ(κ, κ)ξ = Φ(k, κ)ξ = ξk ∈ X+
k = R(Pk),

then Φ(k, κ)ξ ∈ R(Pk), which yields ξ ∈ X+
κ . We conclude ξ = ξk = 0.

• We proceed to prove (3.1). Given ξ ∈ X−κ \ {0} we get Φ(k, κ)ξ 6= 0 for

κ ≤ k, since otherwise ξ ∈ X+
κ and also X+

κ ∩X−κ = {0}, which is a con-

tradiction. Furthermore, Φ(k, κ)X−κ = X−k , κ ≤ k, is an m-dimensional

subspace of X. For κ ≤ k one has codimX+
k = codimR(Pk) = m

and hence, (3.1) holds for κ ≤ k. Then the claim X+
k + X−k = X for

κ ≤ k < κ follows as in part (a) of the proof.

By virtue of the decomposition (3.1) we can define complementary projections
P̄k, Q̄k ∈ L(X) such that R(P̄k) = X+

k and R(Q̄k) = X−k for κ ≤ k. The

invariance of X+
k , X

−
k ensures that also P̄k and Q̄k are invariant w.r.t. (∆).

For κ ≤ k it is R(Pk) = R(P̄k), thus PkP̄k = P̄k, P̄kPk = Pk and consequently

P̄k = P̄kPk + P̄kQk = Pk + P̄kΦ(k, κ)Φ̄(κ, k)Qk

= Pk + Φ(k, κ)P̄κΦ̄(κ, k)Qk = Pk + Φ(k, κ)PκP̄κΦ̄(κ, k)Qk.

Since our dichotomy estimates imply the exponential limit relations

lim
k→∞

Φ(k, κ)Pκ = 0, lim
k→∞

Φ̄(κ, k)Qk = 0,
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also the differences P̄k−Pk and Qk− Q̄k decay to 0 exponentially as k →∞.
Thus, there exists a real M ≥ 0 such that

max
{∣∣P̄k∣∣ , ∣∣Q̄k∣∣} ≤M for all κ ≤ k.

This enables us to establish the first dichotomy estimate∣∣Φ(k, l)P̄l
∣∣ =

∣∣Φ(k, l)PlP̄l
∣∣ ≤ KMαk−l for all κ ≤ l ≤ k,

while the second one is more involved: Due to Q̄k = Q̄kQk + Q̄kPk = Q̄kQk
we have

Φ(k, l)
[
Q̄lΦ̄(l, k)QkQ̄k

]
= Q̄kΦ(k, l)Φ̄(l, k)QkQ̄k = Q̄kQkQ̄k

= Q̄k = Φ(k, l)Φ̄(l, k)Q̄k for all κ ≤ l ≤ k.

Since Φ(k, l) is an isomorphism from R(Q̄l) onto R(Q̄k), we can deduce

Φ̄(l, k)Q̄k = Q̄kΦ̄(l, k)QkQ̄k

and obtain the second dichotomy estimate∣∣Φ(l, k)Q̄k
∣∣ =

∣∣Q̄lΦ(l, k)QkQ̄k
∣∣ ≤M2Kαk−l for all κ ≤ l ≤ k.

It remains to verify an ED on the finite set {κ, . . . , κ}. This, however, follows
since Q̄k is regular on the above interval and the claim results by combining
the results on both intervals. �

The subsequent corollary corresponds to [Pöt10a, p. 141, Cor. 3.4.23].

Corollary 3.5. The dichotomy projector Pk of (∆) on I and the dichotomy
projector P̄k on the extended discrete intervals from Prop. 3.3 converge to
each other exponentially in the corresponding time direction.

Proof. See the above proof of Prop. 3.3. �

The following result provides sufficient conditions such that the dicho-
tomy spectrum is preserved when passing over to a larger interval:

Proposition 3.6. Let κ, κ ∈ I with κ < κ < κ.

(a) If I = Z−κ and (∆) is eventually compact with Aκ−1, . . . , Aκ ∈ L(X)
being one-to-one, then Σ−κ (A) = Σ−κ (A).

(b) If I = Z+
κ and for all closed subspaces Y ⊂ X with m = codimY < ∞

also codim Φ(κ, κ̄)−1Y = m holds, then Σ+
κ (A) = Σ+

κ (A).

Proof. (a) Let κ < κ. For every fixed γ 6∈ Σ−κ (A) we obtain that (∆γ) has an
ED on Z−κ with projector Pk. By Rem. 3.2(1) we have dimN(Pκ) < ∞ and
thus Φ(κ, κ)N(Pκ) is complemented with Φ(k, κ)N(Pκ) being closed. Our
injectivity assumption ensures N(Φ(κ, κ)) = {0} and so Prop. 3.3(a) can be
employed, which yields an ED of (∆γ) on Z−κ , i.e. γ 6∈ Σ−κ (A). Therefore, we
have the inclusion Σ−κ (A) ⊂ Σ−κ (A) and the claim follows with (2.9).

(b) Our assumption yields that Φ(κ, κ)−1R(Pκ) and R(Pκ) have the
same finite codimension. Hence, Prop. 3.3(b) ensures an ED of (∆γ) on Z+

κ ,

which means γ 6∈ Σ+
κ (A). As above, the assertion results with (2.9). �
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3.1. Multiplication operators

We suppose that (Ck)k∈I is a sequence of bounded operators Ck ∈ L(Y,X)
satisfying supk∈I |Ck| <∞. This ensures that the multiplication operator

(MCφ)k := Ckφk for all k ∈ I
satisfies the inclusion MC ∈ L(`(I, Y ), `(I, X)), where ` stands for one of the
symbols `p, 1 ≤ p ≤ ∞. Under the additional assumptions Ck ∈ GL(X,Y )

with supk∈I
∣∣C−1
k

∣∣ <∞ one even has the inclusion MC ∈ GL(`(I, Y ), `(I, X)).

Lemma 3.7. Let I be unbounded and (Ck)k∈I be a sequence of compact oper-
ators Ck ∈ L(Y,X). If

lim
|k|→∞
k∈I

|Ck| = 0,

then the multiplication operator MC ∈ L(`∞(I, Y ), `∞(I, X)) is compact.

Proof. We define the operators Mn
C ∈ L(`∞(I, Y ), `∞(I, X)) by

(Mn
Cφ)k :=

{
Ckφk, |k| ≤ n,
0, |k| > n

and obtain that each Mn
C is compact. Due to the limit relation

‖MC −Mn
C‖ ≤ sup

|k|>n
|Ck| −−−−→

n→∞
0

also MC is compact (cf. [Yos80, p. 278, Thm. (iii)]). �

3.2. Shift operators

For the discrete half line I = Z+
κ , we can introduce the weighed shift

(T+
A φ)k :=

{
0, k = κ,

Ak−1φk−1, k > κ,

while in case I = Z−κ we work with the unilateral weighted shift operator

(T−A φ)k := Ak−1φk−1.

Both are defined on one of the sequence spaces ` = `p(I, X), 1 ≤ p ≤ ∞;
for bounded forward growth (2.10) they fulfill the inclusion T±A ∈ L(`). In

particular, the spectrum σ(T±A ) ⊂ C is rotationally invariant w.r.t. 0 and
independent of the choice for `. This is shown in [AM96, Thm. 1] for I = Z,
but the proof carries over to arbitrary unbounded discrete intervals I. Indeed,
thanks to [AM96, Thm. 5] and [AMZ94, Thm. 1(i)] the spectrum and spectral
radius r of T+

A are related to the upper Bohl exponent of (∆) as follows

r(T+
A ) = lim

n→∞
sup
k∈Z+

κ

n
√
|Φ(k + n, k)|.

Let us introduce further linear operators S+
λ , S

−
λ : `→ `,

(S+
λ φ)k := φk+1 − 1

λAkφk, if I = Z+
κ ,

(S−λ φ)k := φk − 1
λAk−1φk−1, if I = Z−κ
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for complex λ 6= 0. Clearly, S+
λ and S−λ are well-defined and bounded under

our bounded forward growth assumption (2.10). The operators S+
1 and S−1

frequently occur in the literature (see, e.g. [Bas00, Lemma 2, 3]), since their
left resp. right inverse is the solution operator to the inhomogeneous equation

xk+1 = Akxk + bk, (3.2)

where (bk)k∈I′ is an X-valued sequence in `. This is motivated by

Proposition 3.8. Suppose that (2.10) holds. A difference eqn. (∆) has an ED
on Z±κ , if and only if S±1 ∈ L(`∞) is onto and V±(κ) is complemented.

Remark 3.9. (1) In a Hilbert space X it is sufficient to assume the closedness
of V±(κ), a void assumption in finite-dimensional spaces X.

(2) The same characterization holds, if S±1 is defined on the spaces `p,
p ≥ 1 (see [HH06, Thm. 3.2]), and V±(κ) is replaced by the `p-stable space{

x ∈ X :
∑
k∈I
|Φ(k, κ)x|p <∞

}
.

Under (2.11), the special case p = 2, dimX <∞ is due to [BAG93, Thm. 3.1].

Proof. We apply [HM01, Thm. 3.2] for the time axis Z+
κ , whereas the claim

in case Z−κ follows analogously. �

Next we show that S±1 being Fredholm implies an ED on the correspond-
ing semiaxis Z±κ . This requires some preliminaries:

Lemma 3.10. If b ∈ `00 and (2.1) hold, then (3.2) has a solution in `00.

Proof. First of all, we consider the case I = Z+
κ . Using the variation of con-

stants formula (cf. [Pöt10a, p. 100, Thm. 3.1.16(a)]) every forward solution
φ of eqn. (3.2) allows the representation

φk = Φ(k, κ)φκ +

k−1∑
n=κ

Φ(k, n+ 1)bn for all κ ≤ k.

Since the inhomogeneity b has finite support, there exists an integer K ≥ κ
with bk = 0 for all k ≥ K and we see

φk = Φ(k, κ)φκ +

∞∑
n=κ

Φ(k, n+ 1)bn for all K ≤ k.

Thus, φ is eventually zero if and only if φκ = −
∑∞
n=κ Φ(κ, n+ 1)bn.

In the dual situation I = Z−κ one employs [Pöt10a, p. 100, Rem. 3.1.17]
in order to see that a backward solution φ of (3.2) is eventually zero if and

only if φκ =
∑κ−1
n=−∞Φ(κ, n+ 1)bn. �

For our subsequent considerations we need the dual difference equation

xk = A′k+1xk+1 (∆′)
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with variables xk in the dual space X ′. It has uniquely determined backward
solutions and its corresponding transition operator Φ′ satisfies

Φ′(k, l) = Φ(l + 1, k + 1)′ for all k ≤ l.

Since S±1 : `∞ → `∞ is continuous, the pre-image E := (S±1 )−1`0 is a
closed subspace of `∞ and we define T := S±1 |E ∈ L(E, `0). The following
result allows us to characterize the kernel of the dual operator T ′ : `′0 → E′.

Lemma 3.11. If (2.1) holds, then N(T ′) = {0}.

Proof. Given an arbitrary b ∈ `00, our Lemma 3.10 implies b ∈ R(S±1 ) and
thus b ∈ R(T ). This means there exists a φ ∈ E with b = Tφ and therefore

µ(b) = µ(Tφ) = (T ′µ)(φ) = 0 for all µ ∈ N(T ′). (3.3)

We deduce µ(b) ≡ 0 on `00 and since `00 ⊂ `0 is dense, µ(b) ≡ 0 on `0. �

At this point we arrive at a discrete version of the results from [Pal88].

Proposition 3.12. Suppose (2.1) and (2.10) hold. If S±1 ∈ L(`∞) is semi-Fred-
holm, then a difference eqn. (∆) has an ED on the corresponding semiaxis.

Remark 3.13. (1) In combination with Prop. 3.8, a semi-Fredholm operator
S±1 is in fact onto and therefore satisfies codimR(S±1 ) = 0.

(2) For dimN(S±1 ) < ∞ the closed subspace N(S±1 ) is complemented
(see [Mül07, p. 398, Thm. A.1.25(i)]). Indeed, if Π ∈ L(X) denotes a pro-
jection onto V±(κ), then {φ ∈ `∞ : Πφκ = 0} is a complement. From (1) we
can conclude that S±1 is semi-Fredholm, if and only if it is Fredholm.

(3) Let Pk denote an invariant projector associated to the ED from
Prop. 3.12. By definition, the kernel N(S±1 ) consists of the bounded solutions
to eqn. (∆) and in case dimX <∞ we obtain from Prop. 3.1:

• For I = Z+
κ one has N(S+

1 ) ∼= V+(κ) = R(Pκ) and dimN(S+
1 ) <∞.

• For I = Z−κ it is N(S−1 ) ∼= V−(κ) = N(Pκ) and dimN(S−1 ) <∞.

Proof. For I = Z+
κ the semi-Fredholm property of S+

1 shows that R(S+
1 ) is

closed. Hence, also the range R(T ) is closed and [Kat80, p. 24, (3.37)] gives

R(T )⊥ = {µ ∈ `′0 : µ(φ) = 0 for all φ ∈ R(T )} = N(T ′).

Thanks to Lemma 3.11(a) it is N(T ′) = {0} and by the Hahn-Banach theo-
rem we obtain R(T ) = `0. This means that for every inhomogeneity b ∈ `0
there exists a solution φ ∈ `∞ of (3.2) and [HM01, Thm. 3.2] (this reference
gives the proof only for `∞, but the interested reader might verify that the
arguments also hold for the space `0) implies that (∆) has an ED on Z+

κ . The
proof for the negative semiaxis I = Z−κ is similar. �
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3.3. Dichotomy spectra

Up to this point we collected technical preliminaries to analyze the dichotomy
spectrum for difference eqns. (∆) on semiaxes. Now the main observation of
this section is the fact that the dichotomy spectrum on semiaxes is essential
spectrum; we will see that the (point) spectrum of T±A is of minor importance.
In order to show this, the concept of a regularity (cf. [Mül07, pp. 51ff]) allows
a unified treatment of the spectra σs(T

±
A ) and σF (T±A ). Here, we often (and

particularly in proofs) abbreviate σ = σ(T±A ) and proceed accordingly with
the other (dichotomy) spectra.

First, the mapping γ 7→ S−γ between (0,∞) and L(`) is analytic. As in

case of the usual spectrum, for I = Z−κ and σ(T−A ) having a positive distance
from the origin in C, one can apply an ambient spectral mapping theorem
(see [Kim02, Thm. 1.2]) to deduce

σs(S
−
γ ) = 1− 1

γσs(T
−
A ), σs(T

−
A ) = γ − γσs(S−γ ) for all γ > 0.

The surjectivity spectrum of (∆) read as

Σ±s (A) :=
{
γ > 0 : S±γ is not onto

}
and we will study its properties. Thereto, for later reference, we observe

Lemma 3.14. The set Ls(X) is open in L(X).

Proof. If a mapping T ∈ L(X) is onto, then its surjectivity modulus satisfies
k(T ) > 0 (cf. [Mül07, p. 86, Thm. 9.4]). Thus, since k : L(X)→ R is contin-
uous (cf. [Mül07, p. 88, Prop. 9.9]), there is a neighborhood U ⊂ L(X) of T
on which k remains positive and so every S ∈ U is onto. �

Lemma 3.15. Suppose that (2.10) holds. If I = Z−κ and dimX < ∞, then
σs(T

−
A ) is rotationally invariant w.r.t. 0 and compact.

Proof. Choose ` = `∞(Z−κ , X). Because subspaces of finite-dimensional spaces
are complemented (cf. [Mül07, p. 398, Thm. A.1.25(i)]), we can obtain from
Prop. 3.8 for λ 6= 0 that

λ 6∈ σs ⇔ T−A − λ id ∈ L(`) is onto

⇔ ∀ψ ∈ ` : ∃φ ∈ ` : T−A φ− λφ = ψ

⇔ ∀ψ ∈ ` : xk = 1
λAk−1xk−1 + 1

λψk has a solution in `

⇔ xk+1 = 1
λAkxk has an ED on Z−κ

⇔ xk+1 = e−iµ

λ Akxk has an ED on Z−κ ⇔ eiµλ 6∈ σs

for µ ∈ R, and so σs = eiµσs. Since Ls(`) is a regularity, due to Lemma 3.14
the compactness of σs follows from [Mül07, p. 55, Prop. 6.9]. �

Theorem 3.16. Suppose that (2.10) holds and dimX <∞.

(a) If I = Z+
κ , then Σ+

s (A) = Σ+
κ (A).

(b) If I = Z−κ , then Σ−s (A) = Σ−κ (A) = σs(T
−
A ) ∩ (0,∞).
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Proof. First, in a finite-dimensional space X the fibers V±(κ) are comple-
mented. Given γ > 0 thanks to Prop. 3.8 the following is equivalent,

γ 6∈ Σ±s ⇔S±γ ∈ L(`) is onto ⇔ Φγ has an ED on Z±κ ⇔ γ 6∈ Σ±κ ,

which yields the claimed relations Σ±s = Σ±κ . For the remaining assertion
in (b), the proof of Lemma 3.15 together with Prop. 3.8 and Lemma 2.7
guarantees for λ 6= 0 that

λ 6∈ σs ⇔ xk+1 = 1
λAkxk has an ED on Z−κ

⇔ xk+1 = |λ|−1
Akxk has an ED on Z−κ ⇔ |λ| 6∈ Σ−κ .

Hence, λ ∈ σs if and only if |λ| ∈ Σ−κ . From Lemma 3.15 we see that the
surjectivity spectrum σs is rotationally symmetric; the assertion holds. �

Next we introduce the Fredholm spectrum

Σ±F (A) :=
{
γ > 0 : S±γ is not Fredholm

}
and obtain the following useful relation. It states that the dichotomy spec-
trum on semiaxes is actually essential spectrum:

Proposition 3.17. If (2.10) holds and dimX <∞, then

(a) Σ±F (A) ⊂ Σ±s (A) = Σ±κ (A),

(b) Σ±F (A) = Σ±s (A) = Σ±κ (A) under (2.1).

Remark 3.18. In [BAG93, Cor. 3.4] it is shown that Σ+
κ (A) = σF (T+

A )∩(0,∞)

holds for T+
A defined on `2 and dimX <∞.

Proof. Referring to Thm. 3.16 one has Σ±s = Σ±κ .
(a) For γ 6∈ Σ±s the operator S±γ is onto. Due to dimX < ∞ its kernel

must be finite-dimensional and thus S±γ is Fredholm, i.e. γ 6∈ Σ±F .

(b) Let γ 6∈ Σ±F . Thanks to (2.1) and Prop. 3.12 the scaled difference
eqn. (∆γ) admits an ED on Z±κ . Therefore, Prop. 3.8 ensures that S±γ is onto

and this means γ 6∈ Σ±s . The claim follows with assertion (a). �

The assumption (2.10) allows us to introduce the concept of upper-semi-
continuity for various dynamical spectral notions Σ(A). This is understood
in terms of a limit relation limB→A dist(Σ(B),Σ(A)) = 0, where

• on the space of all linear eqns. (∆) satisfying (2.10) we use the norm

‖A‖ := sup
k∈I
|Ak|

• dist(Σ1,Σ2) := supx1∈Σ1
infx2∈Σ2

|x1 − x2| for subsets Σ1,Σ2 ⊂ R de-
notes their Hausdorff-semidistance.

Corollary 3.19. For I = Z−κ the spectra Σ−s (A) = Σ−κ (A) fulfill

(a) Σ−κ (A) ∪ {0} is compact,
(b) Σ−κ (A) is upper-semicontinuous.
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Proof. Referring to [Mül07, p. 233, C.22.2] we know that σs 6= ∅ is compact
and satisfies the inclusions ∂σ ⊂ σs ⊂ σ. Moreover, the upper-semicontinuity
of σs follows from Lemma 3.14 and [Mül07, p. 55, Prop. 6.9]. These properties
carry over to Σ−s , since Thm. 3.16(b) shows Σ−s = σs ∩ (0,∞) and therefore
Prop. 3.17(a) implies the assertions. �

Using the Fredholm spectrum Σ±F (A) it is possible to obtain a counter-
part to Cor. 3.19 for the forward dichotomy spectrum. It requires

Lemma 3.20. The sets LF (X) and LF0(X) are open in L(X).

Proof. This follows from [Mül07, p. 158, Thm. 16.11]. �

Lemma 3.21. Suppose that (2.1) and (2.10) hold. If I = Z+
κ and dimX <∞,

then σF (T+
A ) is rotationally invariant w.r.t. 0 and compact.

Proof. We choose ` = `2(Z+
κ , X). This allows us to apply [BAG92, Thm. 1.1]

in order to deduce the equivalence

λ 6∈ σF ⇔ T+
A − λ id ∈ L(`) is Fredholm

⇔ xk+1 = 1
λAkxk has an ED on Z+

κ

⇔ xk+1 = e−iµ

λ Akxk has an ED on Z+
κ ⇔ eiµλ 6∈ σF

for all µ ∈ R, which implies σF = eiµσF . Moreover, LF (`) is a regularity and
Lemma 3.20 with [Mül07, p. 55, Prop. 6.9] ensures that σF is compact. �

Theorem 3.22. Suppose that (2.1), (2.10) hold and dimX < ∞. If I = Z+
κ ,

then Σ+
κ (A) = σF (T+

A ) ∩ (0,∞).

Remark 3.23 (kinematic similarity). If two difference eqns. (∆) and (2.2) are
kinematically similar by virtue of the Lyapunov transform (Ck)k∈Z±κ , then

MCT
±
B = T±AMC

with an invertible multiplication operator MC . Hence, T±A and T±B have
the same surjectivity spectrum σs, as well as Fredholm spectrum σF . From
Thm. 3.22 and Thm. 3.16(b) we can therefore conclude that the dichotomy
spectra Σ±κ are invariant under kinematic similarity.

Proof. Again, suppose T+
A is defined on `2 = `2(Z+

κ , X). As in the proof of
Lemma 3.21 we obtain using Lemma 2.7 that

λ 6∈ σF ⇔ xk+1 = 1
λAkxk has an ED on Z+

κ

⇔ xk+1 = |λ|−1
Akxk has an ED on Z+

κ ⇔ |λ| 6∈ Σ+
κ

holds for all λ 6= 0. Hence, λ ∈ σF if and only if |λ| ∈ Σ+
κ . Refereeing to

Lemma 3.21, σF is rotationally symmetric and the assertion holds. �

Corollary 3.24. For I = Z+
κ the spectra Σ+

s (A) = Σ+
κ (A) fulfill

(a) Σ+
κ (A) ∪ {0} is compact,

(b) Σ+
κ (A) is upper-semicontinuous.
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Proof. Thanks to [Mül07, p. 55, Prop. 6.9] and Lemma 3.20 the Fredholm
spectrum σF (T+

A ) is compact and upper-semicontinuous. By Thm. 3.22 we

have Σ+
F = σ(T+

A ) ∩ (0,∞) and then these properties carry over to Σ+
κ . �

For scalar difference equations

xk+1 = akxk (S)

with a coefficient sequence (ak)k∈I of nonzero complex numbers it is possible
to compute dichotomy spectra explicitly. Provided both (ak)k∈I and (a−1

k )k∈I
are bounded, then due to [BAG91, p. 660] one has

Σ±κ (a) =
[
β−Z±κ

(a), β+

Z±κ
(a)
]

for all κ ∈ Z. (3.4)

The boundary points of this interval are Bohl exponents for (ak)k∈I given by

β−I (a) := lim
n→∞

inf
k∈I

n

√√√√k+n−1∏
i=k

|ai|, β+
I (a) := lim

n→∞
sup
k∈I

n

√√√√k+n−1∏
i=k

|ai|. (3.5)

Then the dichotomy spectrum of an upper-triangular system (∆) allows an
explicit representation given by the diagonal elements:

Corollary 3.25. If every Ak ∈ L(Kd) is upper-triangular with bounded diago-
nal sequences (ank )k∈Z+

κ
, n = 1, . . . , d, in C \ {0}, then

Σ+
κ (A) =

d⋃
n=1

Σ+
κ (an).

If also each
(

1
ank

)
k∈Z+

κ
is bounded, then Σ+

κ (an) =
[
β−Z+

κ
(an), β+

Z+
κ

(an)
]
.

Proof. We refer to [LJS01, Thm. 2.2] for the relation σF (T+
A ) =

⋃d
n=1 σF (T+

an)
and the claim follows with Thm. 3.22. �

The following conclusion addresses perturbed difference equations

xk+1 = [Ak +Bk]xk (P )

with an operator sequence Bk ∈ L(X), k ∈ I.

Corollary 3.26 (`0-roughness of EDs). Let (P ) fulfill (2.1). If all the operators
Bk ∈ L(X), k ∈ Z±κ , are compact and satisfy limk→±∞ |Bk| = 0 in the
respective time direction, then Σ±κ (A) = Σ±κ (A+B).

Proof. Due to Lemma 3.7 the operator MB ∈ L(`∞) is compact.
(I) We begin with the case I = Z+

κ and show two inclusions:
(⊂) Let γ 6∈ Σ+

F (A). This means S+
γ ∈ L(`∞) is Fredholm and by [Mül07,

p. 158, Thm. 16.9(iii)] also S+
γ + 1

γMB is Fredholm, i.e. γ 6∈ Σ+
F (A+B).

(⊃) Conversely, for γ 6∈ Σ+
F (A + B) the operator S+

γ + 1
γMB is Fredholm,

and the compactness of −MB ensures that also S+
γ = (S+

γ + 1
γMB) − 1

γMB

is Fredholm, i.e. γ 6∈ Σ+
F (A).
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(II) For I = Z−κ we define the backward shift operator S ∈ L(`∞) given
by (Sφ)k := φk−1 and observe that also the composition TB = SMB is
compact (cf. [Mül07, p. 149, Thm. 15.2(iii)]). Then Σ−F (A) = Σ−F (A+B) can
be deduced as above with MB replaced by TB .

Since (∆) and (P ) fulfill (2.1) the claim follows from Prop. 3.17(b). �

4. Equations on the whole axis

In this section, we investigate difference eqns. (∆) defined on the whole dis-
crete axis I = Z. This ensures that various results of the previous Sect. 3
apply, since an ED on Z trivially implies an ED on a semiaxis. For instance,
Prop. 3.1 guarantees the Whitney sum decomposition Z×X = V+ ⊕ V−.

Yet, the present situation is different, since an ED on Z is a significantly
stronger assumption than an ED on a semiaxis. Consequently the dichotomy
spectrum ΣED(A) on I = Z is typically larger than Σ±κ (A). In particular, it
does not need to coincide with the surjectivity or Fredholm spectra, which
ensures a richer dynamical spectral theory.

We begin with the observation that for an ET on Z we can derive a
geometrical characterization of the center bundle V0 (cf. Prop. 3.1):

Proposition 4.1. If a difference eqn. (∆) admits an ET on Z, then

V0(κ) =

{
ξ ∈ X :

there exists a solution φ = (φk)k∈Z to
(∆) with φκ = ξ and limk→±∞ φk = 0

}
= R(Qκ)

and the convergence assertions are even exponential.

Remark 4.2. (1) If a difference eqn. (∆) admits an ED on Z, then the center
bundle V0 becomes trivial.

(2) The center bundle V0 has finite dimension, if (∆) is eventually com-
pact (cf. [Pöt10a, p. 142, Prop. 3.4.24]).

Proof. Due to V0(κ) = V+(κ) ∩ V−(κ) the claim results from Prop. 3.1. �

The following result captures a situation dual to the above Prop. 2.4
and is a discrete infinite-dimensional counterpart to [Pal06, Lemma 1]:

Proposition 4.3. Let κ ∈ Z and suppose (∆) admits an ED on Z+
κ with

projector P+
k and an ED on Z−κ with P−k .

(a) If (∆) has no nontrivial bounded solution on Z and R(P+
κ ) +N(P−κ ) is

complemented, then

P+
κ = P−κ P

+
κ = P+

κ P
−
κ . (4.1)

(b) If (4.1) holds, then (∆) has no nontrivial solution bounded on Z.

Remark 4.4. The condition (4.1) guarantees R(P+
κ )∩N(P−κ ) = {0}. On the

other hand, the subspace R(P+
κ )+N(P−κ ) ⊂ X is closed and thus in a Hilbert

space X always complemented.
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Proof. Thanks to Prop. 3.1 we have the dynamical characterizations

R(P+
κ ) =

{
ξ ∈ X : sup

k≥κ
|Φ(k, κ)ξ| <∞

}
,

N(P−κ ) =

{
ξ ∈ X :

there exists a bounded solution
φ = (φk)k∈Z−κ of (∆) with φκ = ξ

}
.

(a) Since eqn. (∆) has no nontrivial bounded solution on Z, we obtain
R(P+

κ ) ∩ N(P−κ ) = {0}. Thus, by assumption R(P+
κ ) ⊕ N(P−κ ) is comple-

mented and one has X = R(P+
κ )⊕N(P−κ )⊕Y for a closed subspace Y ⊂ X.

Because the kernel N(P+
κ ) (resp. the range R(P−κ )) can be any closed sub-

space complementary to R(P+
κ ) (resp. N(P−κ )), we may choose

N(P+
κ ) = Y ⊕N(P−κ ), R(P−κ ) = R(P+

κ )⊕ Y.

This yields N(P−κ ) ⊂ N(P+
κ ), R(P+

κ ) ⊂ R(P−κ ) and hence (4.1) holds.
(b) If φ = (φk)k∈Z is an entire bounded solution of (∆), then we have

φκ ∈ R(P+
κ ) ∩N(P−κ ) and consequently

φκ = P+
κ φκ

(4.1)
= P+

κ P
−
κ φκ = P+

κ 0 = 0.

Since φ is contained in V−, i.e. φk ∈ N(P−k ) for all k ≤ κ, one gets φ = 0. �

4.1. The operator TA

For a sequence space ` = `p(Z, X), 1 ≤ p ≤ ∞, we introduce the bilateral
weighted shift operator

TA : `→ `, (TAφ)k := Ak−1φk−1,

which fulfills the inclusion TA ∈ L(`) under bounded forward growth (2.10).
Its spectrum σ(TA) ⊂ C is rotationally invariant w.r.t. the origin in C and
independent of the sequence space ` (cf. [AM96, Thm. 1]). For the spectrum
and spectral radius r one again obtains the upper Bohl exponent (for this,
see [AM96, Thm. 5] and [AMZ94, Thm. 1(i)])

r(TA) = lim
n→∞

sup
k∈Z

n
√
|Φ(k + n, k)|.

Asymptotic properties of a difference eqn. (∆) are closely connected to the
shift operator TA (see [BAG91, AM96, Pöt09]). Indeed, (1.1) relates its spec-
trum σ(TA) to the dichotomy spectrum ΣED(A) of (∆) (cf. [Pöt09, Thm. 1]).
This enables us study the dichotomy spectrum by means of perturbation the-
ory for linear operators (see, e.g. [Kat80]) applied to TA ∈ L(`). For instance,
we obtain its upper-semicontinuity and rediscover Thm. 2.9 in

Theorem 4.5. Suppose d := dimX <∞ and that (2.10) holds.

(a) If A−1
k exists for all k ∈ Z with (2.11), then there exists an 1 ≤ n ≤ d

and reals 0 < βj−1 < αj ≤ βj such that

σ(TA) =

n⋃
j=1

{z ∈ C : αj ≤ |z| ≤ βj} .
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(b) If A−1
k does not exist for some k ∈ Z or (2.11) is violated, then there

exists an 1 ≤ n ≤ d and reals 0 ≤ βj−1 < αj ≤ βj such that

σ(TA) = {z ∈ C : |z| ≤ β1} ∪
n⋃
j=2

{z ∈ C : αj ≤ |z| ≤ βj} .

Remark 4.6 (Bohl exponents). (1) The statement (a) in Thm. 4.5 is also
shown in [BAG91, Thm. 0.3.1], with TA being defined on `2.

(2) A counterpart to Thm. 4.5(a) for the Fredholm spectrum of T+
A (as

an operator on `2) is due to [BAG91, Thm. 2.1.6].
In both cases, the moduli of boundary points to the intersection σ(TA)∩(0,∞)
resp. σF (T+

A ) ∩ (0,∞) are Bohl exponents for (∆).

Proof. See [AM96, Thm. 4]. �

4.2. The operator Sγ

For ` = `∞(Z, X) let us introduce another linear operator

Sλ : `→ `, (Sλφ)k := φk+1 − 1
λAkφk (4.2)

with a complex scaling parameter λ 6= 0. Clearly, Sλ is well-defined and
continuous under our bounded forward growth assumption (2.10).

In particular, also the linear operator S1 is often encountered in the
literature (see e.g. [Hen81, p. 230, Thm. 7.6.5]), since its inverse is the solution
operator to the inhomogeneous eqn. (3.2), provided (bk)k∈Z is a bounded
sequence in X. This is motivated by

Proposition 4.7. Suppose that (2.10) holds. A difference eqn. (∆) has an

(a) ED on Z, if and only if S1 ∈ GL(`∞),
(b) ET on Z, if and only if S1 ∈ L(`∞) is onto.

Proof. (a) See [Hen81, p. 230, Thm. 7.6.5].
(b) A proof can be found in [EJ98, Thm. 4] (or [Pap91, Prop. 1]) for

finite-dimensional spaces X and invertible operators Ak. However, the inter-
ested reader might check that the arguments apply as well for general Banach
spaces X and under the regularity condition on Qk, id−Pk −Qk. �

Corollary 4.8. Let κ ∈ Z. A difference eqn. (∆) has an ED on Z, if and only
if it admits EDs on Z+

κ with P+
k and on Z−κ with P−k satisfying

R(P+
κ )⊕N(P−κ ) = X.

Proof. The direction (⇒) is trivial. For the converse, see [Bas00, Cor. 2]. �

For a finite dimensional center bundle V0 the above Prop. 4.7(b) pro-
vides conditions that the operator S1 is Fredholm (with index dimV0). More
general, sufficient criteria for S1 to be Fredholm are given in

Proposition 4.9. Let κ ∈ Z. If (∆) has EDs on Z+
κ and Z−κ with respective

Morse indices ι+ and ι−, then S1 ∈ L(`∞) is Fredholm with index ι− − ι+.

Proof. See [Bas00, Thm. 8]. �
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Our next objective is to show that also the converse of Prop. 4.9 holds,
i.e. the fact that S1 being Fredholm implies EDs on both semiaxes. This
requires some preliminaries:

Lemma 4.10. Let b ∈ `00 and suppose (2.1) holds. Then an inhomogeneous
eqn. (3.2) has a solution in `00, if and only if

∑
n∈Z Φ(κ, n+ 1)bn = 0.

Proof. On the axis Z we combine the results of Lemma 3.10 for I = Z+
κ and

I = Z−κ in order to see that an entire solution to (3.2) is in `00, if and only if

κ−1∑
n=−∞

Φ(κ, n+ 1)bn = φκ = −
∞∑
n=κ

Φ(κ, n+ 1)bn,

which means
∑
n∈Z Φ(κ, n+ 1)bn = 0. �

With the continuous linear operator S1 now given in (4.2), we introduce
the closed subspace E := S−1

1 `0 and the operator T := S1|E ∈ L(E, `0) in
order to characterize the kernel of the dual operator T ′ : `′0 → E′.

Lemma 4.11. Let dimX <∞. If (2.1) holds, then the kernel N(T ′) consists
of all µ ∈ `′0 such there exists an entire solution ψ′ ∈ `1 to (∆′) such that

µ(b) =
∑
n∈N
〈ψ′n, bn〉 for all b ∈ `0. (4.3)

Proof. Since the state space X is assumed to be finite-dimensional, we iden-
tify it with Rd (for real X) or Cd (for complex spaces X) equipped with the
canonical basis e1, . . . , ed. We have to establish two inclusions:
(⊂) Let µ ∈ N(T ′) and suppose (θk)k∈Z is a real sequence in `00 with positive
values and

∑
k∈Z θk = 1. Given a sequence b ∈ `00 we define

b̃k := bk − θk
∑
n∈N

Φ(k + 1, n+ 1)bn for all k ∈ Z. (4.4)

At once we observe b̃ ∈ `00 and due to∑
k∈Z

Φ(κ, k + 1)b̃k
(4.4)
=

∑
k∈Z

Φ(κ, k + 1)bk

−
∑
k∈Z

Φ(κ, k + 1)θk
∑
n∈Z

Φ(k + 1, n+ 1)bn

=
∑
k∈Z

Φ(κ, k + 1)bk −
∑
k∈Z

θk
∑
n∈Z

Φ(κ, n+ 1)bn

=
∑
n∈Z

Φ(κ, n+ 1)bn

(
1−

∑
k∈Z

θk

)
= 0

our Lemma 4.10 implies b̃ ∈ R(S1) and b̃ ∈ R(T ). As in (3.3) one gets

µ(b̃) = 0 for all µ ∈ N(T ′). (4.5)
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We apply the functional µ : `0 → K to (4.4) and obtain using (4.5) that

µ(b) = µ

(
θ·
∑
n∈Z

Φ(·+ 1, n+ 1)bn

)
. (4.6)

Now we define the sequence ψ′ = (ψ′k)k∈Z by

ψ′k :=

d∑
i=1

µ(θ·Φ(·+ 1, κ)ei)Φ(κ, k + 1)′ei for all k ∈ Z,

which, as linear combination of solutions to (∆′), also solves the dual differ-
ence eqn. (∆′) on Z. In addition, we deduce the desired identity

∑
n∈Z
〈ψ′n, bn〉 =

∑
n∈Z

〈
d∑
i=1

µ(θ·Φ(·+ 1, κ)ei)Φ(κ, n+ 1)′ei, bn

〉

=
∑
n∈Z

〈
d∑
i=1

µ(θ·Φ(·+ 1, κ)ei)ei,Φ(κ, n+ 1)bn

〉

=

〈
d∑
i=1

µ(θ·Φ(·+ 1, κ)ei)ei,
∑
n∈Z

Φ(κ, n+ 1)bn

〉

=

〈µ(θ·Φ(·+ 1, κ)e1)
...

µ(θ·Φ(·+ 1, κ)ed)

 ,
∑
n∈Z

Φ(κ, n+ 1)bn

〉

=

d∑
i=1

µ(θ·Φ(·+ 1, κ)ei)e
′
i

∑
n∈Z

Φ(κ, n+ 1)bn

=

d∑
i=1

µ

(
θ·Φ(·+ 1, κ)eie

′
i

∑
n∈Z

Φ(κ, n+ 1)bn

)

= µ

(
θ·Φ(·+ 1, κ)

d∑
i=1

eie
′
i

∑
n∈Z

Φ(κ, n+ 1)bn

)

= µ

(
θ·
∑
n∈Z

Φ(·+ 1, n+ 1)bn

)
(4.6)
= µ(b) for all b ∈ `00.

Using (4.3) we moreover have
∣∣∑

n∈Z 〈ψ′n, bn〉
∣∣ = µ(b) ≤ |µ| ‖b‖ for all b ∈ `00

and therefore
∑
n∈Z |ψ′n| ≤ |µ|. Both the mappings µ and b 7→

∑
n∈Z 〈ψ′n, bn〉

are bounded linear functionals on `0, which coincide on the dense subset `00.
Thus, the relation (4.3) holds on the whole space `0.

(⊃) Conversely, let ψ′ ∈ `1 be a solution of (∆′). One has ψ′ ∈ `0 and
µ : `0 → K defined via (4.3) satisfies µ ∈ `′0. Given φ ∈ E we obtain

(T ′µ)(φ) = µ(Tφ) =
∑
n∈Z
〈ψ′n, φn+1 −Anφn〉
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=
∑
n∈Z

(
〈ψ′n, φn+1〉 −

〈
ψ′n−1, φn

〉)
+
∑
n∈Z

〈
ψ′n−1 −A′nψ′n, φn

〉
= lim
n→∞

〈ψ′n, φn+1〉 − lim
n→−∞

〈ψ′n, φn+1〉+
∑
n∈Z

〈
ψ′n−1 −A′nψ′n, φn

〉
= 0

and our claim follows. �

We arrive at the converse to Prop. 4.9. It is a discrete counterpart of
the continuous time results from [Pal88]. See [LT05, Thm. 1.6] for a stronger
version valid for difference equations in reflexive infinite-dimensional Banach
spaces and the sequence spaces `0 and `p, requiring a more involved proof.

Proposition 4.12. Let κ ∈ Z, suppose (2.1), (2.10) hold and dimX < ∞. If
S1 ∈ L(`∞) is semi-Fredholm, then a difference eqn. (∆) has EDs on both
half lines Z+

κ and Z−κ with respective Morse indices ι+ and ι−. Furthermore,
for the Fredholm index it is indS1 = ι− − ι+.

Remark 4.13. Let P−k and P+
k denote the invariant projectors associated to

the ED on Z−κ resp. Z+
κ . Then [Pöt10b, Cor. 2.5] implies the relations:

(1) dimN(S1) = dim(R(P+
κ ) ∩ N(P−κ )), which yields dimN(S1) < ∞

for eventually compact Φ (see Rem. 3.2(1)) or for dimX <∞.
(2) codimR(S1) = dim(R(P+

κ ) + N(P−κ ))⊥ and consequently the rela-
tion codimR(S1) <∞ in case dimX <∞. Hence, in finite-dimensional state
spaces X the operator S1 is Fredholm, if and only if it is semi-Fredholm.

Proof. We define d := dimX < ∞. Above all, R(S1) is closed, since the
operator S1 is semi-Fredholm (cf. [Zei93, p. 366, Prop. 8.14(2)]). Hence, also
the range R(T ) is closed and by [Kat80, p. 24, (3.37)] we have

R(T )⊥ = {µ ∈ `′0 : µ(φ) = 0 for all φ ∈ R(T )} = N(T ′).

Due to [Zei95, p. 294, Prop. 6(ii)] it is

R(T ) = ⊥N(T ′) = {φ ∈ `0 : µ(φ) = 0 for all µ ∈ N(T ′)} .

Referring to the duality Lemma 4.11 this means that b ∈ R(T ) holds if and
only if (4.3) is satisfied for all solutions φ′ ∈ `1 of (∆′).

Let ψ1, . . . , ψm be a basis for the space
{
ψ ∈ `1 : ψk ≡ A′k+1ψk+1 on Z

}
of entire solutions to (∆′) in `1. We define the linear functionals

αi : `0(Z−κ )→ K, αi(φ) :=

κ−1∑
n=−∞

〈
ψin, φn

〉
for all 1 ≤ i ≤ m

βj : `0(Z−κ )→ K, βj(φ) := φjκ for all 1 ≤ j ≤ d,

where φj is the jth component of φ. Suppose that we have the representation∑m
i=1 γiαi =

∑d
j=1 δjβj with scalars γi, δj ∈ K. Setting ψ :=

∑m
i=1 γiψ

i yields

κ−1∑
n=−∞

〈ψn, gn〉 =

m∑
i=1

γiαi(g) =

d∑
j=1

δjb
−,j
κ for all b− ∈ `0(Z−κ ). (4.7)
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Under the assumption ψ 6= 0 we can choose b− ∈ `0(Z−κ ) such that b−κ = 0,
but 〈ψn, b−n 〉 > 0 for all n < κ. Consequently, (4.7) implies the contradiction

0 <
∑κ−1
n=−∞ 〈ψn, b−n 〉 =

∑d
j=1 δjb

−,j
κ = 0 and thus ψ = 0. Moreover, the

linear independence of ψ1, . . . , ψm shows γ1 = . . . = γm = 0 and we have

d∑
j=1

δjb
−,j
κ = 0 for all b− ∈ `0(Z−κ ).

For every 1 ≤ j ≤ d we choose b−,lκ := δlj and conclude that δj = 0. Hence,
the linear functionals α1, . . . , αn and β1, . . . , βd are linearly independent. This
guarantees that for each given b+ ∈ `0(Z+

κ ) we can construct a b− ∈ `0(Z−κ )

satisfying b+κ = b−κ and
∑κ−1
n=−∞

〈
ψin, b

−
n

〉
= −

∑∞
n=κ

〈
ψin, b

+
n

〉
for 1 ≤ i ≤ m.

We define the sequence b = (bk)k∈Z,

bk :=

{
b+k , k ≥ κ,
b−k , k < κ

and clearly obtain the relations b ∈ `0 and
∑
n∈Z

〈
ψin, bn

〉
= 0 for 1 ≤ i ≤ m.

Therefore, b ∈ R(T ), which means that (3.2) possesses a bounded entire
solution. Restricting to Z+

κ yields that xk+1 = Akxk + b+k has a bounded
entire solution. Since this holds for all b ∈ `0(Z+

κ ), we conclude from [HM01,
Thm. 3.2] (this result is formulated only for `∞, but the proof extends to the
required case `0) that (∆) admits an ED on Z+

κ . A dual argument shows that
eqn. (∆) has also an ED on Z−κ and the proof is complete. �

4.3. Dichotomy spectra

We now analyze various subsets of the dichotomy spectrum which are im-
portant in nonautonomous bifurcation theory (cf. [Ras07, Pöt10b, Pöt11a]).
In doing so, we observe that the spectral theory for equations on the whole
integer axis is richer than its previous counterpart dealing with semiaxes.

Anew, the concept of a regularity (cf. [Mül07, pp. 51ff]) allows a uni-
fied treatment, since the spectra σ(TA), σs(TA), σF (TA), σp(TA) fit into the
related axiomatic spectral theory. Similarly, σF0(TA) is induced by an upper-
semiregularity (cf. [Mül07, pp. 211ff]).

4.3.1. The spectrum. We define the spectrum of a difference eqn. (∆) by

Σ(A) := {γ > 0 : Sγ is not invertible}

and obtain that it coincides with the dichotomy spectrum ΣED(A). This
relates the dynamical property of an ED for (∆) to the invertibility of a
bounded linear operator Sγ and motivates the given terminology ”spectrum”:

Theorem 4.14. If (2.10) holds, then ΣED(A) = Σ(A) = σ(TA) ∩ (0,∞).

Remark 4.15. One speaks of discrete spectrum, provided the set Σ(A) consists
of isolated points. This situation typically occurs for autonomous or periodic
difference eqns. (∆) (cf. [BAG91, Thm. 4.1]).
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Proof. Due to Prop. 4.7(a) one has the chain of equivalences

γ 6∈ Σ ⇔ Sγ is invertible ⇔ Φγ has an ED on Z ⇔ γ 6∈ ΣED

and the remaining assertion is simply our relation (1.1). �

Throughout the remaining section, we will frequently assume (2.10) and
therefore the previous Thm. 4.14 allows us to identify the spectrum Σ(A) with
the dichotomy spectrum ΣED(A).

4.3.2. The point spectrum. We first introduce the point spectrum

Σp(A) := {γ > 0 : dimN(Sγ) > 0}

of a difference eqn. (∆). As dynamical interpretation, γ ∈ Σp(A) means that
a scaled eqn. (∆γ) possesses nontrivial bounded entire solutions.

Lemma 4.16. If (2.10) holds, then σp(TA) is rotationally invariant w.r.t. 0.

Proof. Let ` = `p(Z, X), 1 ≤ p ≤ ∞. For λ 6= 0 this yields

λ ∈ σp ⇔ ∃φ ∈ ` \ {0} : TAφ = λφ

⇔ xk+1 = 1
λAkxk has a nontrivial solution φ ∈ `

⇔ xk+1 = e−iµ

λ Akxk has a nontrivial solution φ ∈ `
⇔ eiµλ ∈ σp for all µ ∈ R

and thus σp = eiµσp. �

Theorem 4.17. If (2.10) holds, then Σp(A) = σp(TA) ∩ (0,∞).

Proof. As in the proof of Lemma 4.16 we deduce with Lemma 2.7 that

λ ∈ σp ⇔ xk+1 = 1
λAkxk has a nontrivial solution in `

⇔ xk+1 = |λ|−1
Akxk has a nontrivial solution in `

⇔ |λ| ∈ Σp(A) for all λ 6= 0;

consequently the claim follows. �

The following result ensures that in absence of point spectrum, the
dichotomy spectrum of (∆) is invariant under compact perturbations. This
distinguishes Σ(A) from the dichotomy spectra on semiaxes, which are always
invariant under compact perturbations (cf. Cor. 3.26). A further related result
can be found in [Pöt11b, Thm. 4]:

Proposition 4.18. Suppose (2.10) holds. If the operators Bk ∈ L(X), k ∈ Z,
are compact and satisfy limk→±∞ |Bk| = 0, then

Σ(A+B) \ Σp(A+B) ⊂ Σ(A), Σ(A) \ Σp(A) ⊂ Σ(A+B).



Fine Structure of the Dichotomy Spectrum 31

Proof. (I) Let γ 6∈ Σ(A), i.e. eqn. (∆γ) admits an ED. Then [Hen81, p. 235,
Thm. 7.6.9] implies that either the scaled perturbed equation

xk+1 = γ−1[Ak +Bk]xk (Pγ)

admits an ED or (Pγ) has a nontrivial bounded solution. This, in turn, means
either γ 6∈ Σ(A+B) or γ ∈ Σp(A+B). The first claimed inclusion is just the
logical contraposition to this.

(II) Now we perturb (P ) with −Bk and obtain the original system (∆).
Indeed, if γ 6∈ Σ(A + B), then again [Hen81, p. 235, Thm. 7.6.9] guarantees
that either (∆γ) has an ED or nontrivial bounded solutions exist. Equiva-
lently, either γ 6∈ Σ(A) or γ ∈ Σp(A). This shows the second inclusion. �

4.3.3. The surjectivity spectrum. The surjectivity spectrum of (∆) reads as

Σs(A) := {γ > 0 : Sγ is not onto}

and one trivially obtains Σ(A) = Σp(A) ∪ Σs(A).

Lemma 4.19. If (2.10) holds, then σs(TA) is rotationally invariant w.r.t. 0
and compact.

Proof. Let ` = `∞(Z, X). We obtain from Prop. 4.7(b) with λ 6= 0 that

λ 6∈ σs ⇔ TA − λ id ∈ L(`) is onto

⇔ ∀ψ ∈ ` : ∃φ ∈ ` : TAφ− λφ = ψ

⇔ ∀ψ ∈ ` : xk = 1
λAk−1xk−1 + 1

λψk has a solution in `

⇔ xk+1 = 1
λAkxk has an ET on Z

⇔ xk+1 = e−iµ

λ Akxk has an ET on Z ⇔ eiµλ 6∈ σs

for µ ∈ R, and consequently σs = eiµσs. It remains to show the compactness
of σs: For this, note that Ls(`) is a regularity and due to Lemma 3.14 the
claim follows from [Mül07, p. 55, Prop. 6.9]. �

Theorem 4.20. If (2.10) holds, then ΣET (A) = Σs(A) = σs(TA) ∩ (0,∞).

Proof. The first relation ΣET = Σs follows from Prop. 4.7(b). From the proof
of the above Lemma 4.19 we obtain with Lemma 2.7 that

λ 6∈ σs ⇔ xk+1 = 1
λAkxk has an ET on Z

⇔ xk+1 = |λ|−1
Akxk has an ET on Z ⇔ |λ| 6∈ Σs

for all λ 6= 0, and consequently the claim. �

Corollary 4.21. The surjectivity spectrum Σs(A) is nonempty and fulfills:

(a) ∂Σ(A) ⊂ Σs(A) ⊂ Σ(A),
(b) Σs(A) ∪ {0} is compact,
(c) Σs(A) is upper-semicontinuous.
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Remark 4.22 (`∞-roughness of ETs). The upper-semicontinuity of the spec-
tra ΣET = Σs implies that the weak hyperbolicity condition 1 6∈ ΣET (A)
persists when perturbing (∆) with an operator sequence Bk ∈ L(X), k ∈ Z,
where supk∈Z |Bk| is sufficiently small. Equivalently, if (∆) has an ET, than
also (P ) has an ET; this is a quick proof of [Pap91, Prop. 2].

Proof. Using Thm. 4.20 the proof follows as in Cor. 3.19. �

Next we determine difference eqns. (∆) for which dichotomy and tricho-
tomy spectra coincide. First, this is the case for discrete spectra Σ(A). For the
sake of a second sufficient condition, we introduce the Lyapunov exponents

λ−l (A, x) := lim inf
n→−∞

1
n
√
|Φ(n, κ)x|

, λ+
u (A, x) := lim sup

n→∞

n
√
|Φ(n, κ)x|

with some given x ∈ X \ {0}, κ ∈ Z.

Corollary 4.23. Suppose that (2.1) holds. If one of the conditions

• the cardinality of the point spectrum fulfills #Σp(A) ≤ dimX <∞,
• λ−l (A, x) ≤ λ+

u (A, x) for all x ∈ X \ {0}
is satisfied, then Σ(A) = ΣET (A) = Σs(A).

Proof. Note that TA has the SVEP, if and only if

• the cardinality of Σp(A) = σp(TA) ∩ (0,∞) (cf. Thm. 4.17) does not
exceed dimX (cf. [Li94]), or
• λ−l (A, x) ≤ λ+

u (A, x) for all x ∈ X \ {0} (cf. [BC04, Thm. 2.1]).

In both cases, [Mül07, p. 142, Cor. 14.17] implies σ(TA) = σs(TA) and the
claim follows with Thm. 4.20. �

4.3.4. Fredholm spectra. We finally introduce the Fredholm spectra

ΣF0(A) := {γ > 0 : Sγ is not Fredholm or of index 6= 0} ,
ΣF (A) := {γ > 0 : Sγ is not Fredholm} ⊂ ΣF0

(A),

which are closely related to EDs on semiaxes (cf. Sects. 3.2 and 4.2).

Lemma 4.24. Let dimX <∞ and suppose (2.1) holds. If (2.10) is satisfied,
then the Fredholm spectra σF (TA) and σF0

(TA) are rotationally invariant
w.r.t. 0 and compact.

Proof. Let λ 6= 0 and ` = `∞(Z, X). We define the backward shift operator
(Sφ)k := φk−1 and obtain the relation SSλ = λ id−TA. From S ∈ GL(`) we
conclude that SSλ is Fredholm if and only if Sλ has this property; in addition
indSλ = ind(SSλ) holds true. Hence, using Props. 4.9 and 4.12 we deduce

λ 6∈ σF0 ⇔ TA − λ id ∈ L(`) is Fredholm with index 0

⇔ Sλ ∈ L(`) is Fredholm with index 0

⇔ xk+1 = 1
λAkxk has an ED on Z+

κ and Z−κ
with the same Morse indices

⇔ xk+1 = eiµ

λ Akxk has an ED on Z+
κ and Z−κ
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with the same Morse indices

⇔ eiµλ 6∈ σF0
for all µ ∈ R.

Thus, σF0 = eiµσF0 and similarly σF = eiµσF . Because LF (`) is a regularity,
σF must be compact by Lemma 3.20, as well as [Mül07, p. 55, Prop. 6.9].
The compactness of σF0

follows from [Mül07, p. 218, Exam. 23.21(ii)]. �

Theorem 4.25. Let dimX <∞ and suppose (2.1) holds. If (2.10) is satisfied,
then ΣF (A) = σF (TA) ∩ (0,∞) and ΣF0

(A) = σF0
(TA) ∩ (0,∞).

Proof. As in the proof of Lemma 4.24 one shows with Lemma 2.7 that

λ 6∈ σF0
⇔ xk+1 = 1

λAkxk has an ED on Z+
κ and Z−κ

with the same Morse indices

⇔ xk+1 = |λ|−1
Akxk has an ET on Z

with the same Morse indices ⇔ |λ| 6∈ ΣF0

for all λ 6= 0. By Lemma 4.24 the set σF0
is rotationally symmetric and we

get the claim for σF0
. The assertion for σF results analogously. �

Corollary 4.26. The Fredholm spectra ΣF (A) and ΣF0
(A) are nonempty and

(a) ΣF (A) ⊂ ΣF0
(A) ⊂ Σ(A) and max ΣF (A) = max ΣF0

(A),
(b) both ΣF (A) ∪ {0}, ΣF0

(A) ∪ {0} are compact,
(c) ΣF (A) and ΣF0(A) are upper-semicontinuous,
(d) if 0 ∈ σ(TA) is not an isolated point or 0 6∈ σ(TA), then ∂Σ(A) ⊂ ΣF (A).

Remark 4.27. (1) We equip the compact sets C(C) := {S ⊂ C : S is compact}
of C with the Hausdorff metric. It follows from [Mül07, p. 57, Thm. 6.14] that
the set of discontinuity points for the set-valued mapping σF : L(Y )→ C(C)
is of first category in L(Y ), Y being a Banach space. From this we con-
clude that also the set of discontinuity points for ΣF is meager in the space
of eqns. (∆) satisfying (2.10). A similar statement holds for the dichotomy
spectra Σ±κ , Σs and Σ. This indicates that numerical methods to approximate
Σ(A) (cf. [Hül10]) remain reliable despite the upper-semicontinuity of Σ.

(2) E.g. the assumption of Thm. 4.5(a) yields the conclusion in (d).

Proof. Let ` = `∞(Z, X). First of all, thanks to [Aie04, p. 133] one immedi-
ately has ∅ 6= σF and the inclusions σF ⊂ σF0

⊂ σ are clear. Using [EE87,
p. 44, Cor. 4.11] the essential spectral radii fulfill maxλ∈σF |λ| = maxλ∈σF0

|λ|.
The set LF (`) is a regularity and Lemma 3.20 with [Mül07, p. 55, Prop. 6.9]
yield that σF is upper-semicontinuous; since LF0 is an upper-semiregularity
and Lemma 3.20 this property of σF0 is shown in [Mül07, p. 215]. Due to
the punctured neighborhood theorem (cf. [Mül07, p. 171, Thm. 18.7]) one
knows that the difference ∂σ \ σF consists of isolated points in σ. However,
thanks to the rotational invariance of σ, this is only possible for the origin.
By assumption, 0 is not isolated and ∂σ \ σF = ∅ implies ∂σ ⊂ σF . Now the
assertions follow from Lemma 4.24 and Thm. 4.25. �
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Corollary 4.28. Let (P ) fulfill (2.1). If all the operators Bk ∈ L(X), k ∈ Z,
are compact and satisfy limk→±∞ |Bk| = 0, then ΣF (A) = ΣF (A + B) and
ΣF0(A) = ΣF0(A+B).

Proof. The proof for the Fredholm spectrum ΣF follows as in Cor. 3.26. Fur-
thermore, the claim also holds for ΣF0 since compact perturbations do not
affect the index of a Fredholm operator (cf. [Zei93, p. 366, Prop. 8.14(3)]). �

The following result shows that the dichotomy spectrum Σ(A) can be
significantly larger than the union of the dichotomy spectra Σ+

κ (A)∪Σ−κ (A).
This is due to the occurrence of point and surjectivity spectrum.

Proposition 4.29. Let κ ∈ Z. If (2.10) is satisfied, then

(a) Σ+
κ (A) ∪ Σ−κ (A) ⊃ ΣF (A) ⊂ ΣF0

(A),
(b) Σ+

κ (A) ∪ Σ−κ (A) = ΣF (A), provided dimX <∞ and (2.1) holds.

Proof. (a) The inclusion ΣF ⊂ ΣF0 is trivial. Moreover, γ 6∈ Σ+
κ and γ 6∈ Σ−κ

means that (∆γ) has EDs on both half lines Z+
κ and Z−κ . Thus, thanks to

Prop. 4.9 the operator Sγ is Fredholm, i.e. γ 6∈ ΣF ; this shows ΣF ⊂ Σ+
κ ∪Σ−κ .

(b) Conversely, for γ 6∈ ΣF the operator Sγ is Fredholm. By Prop. 4.12
the scaled eqn. (∆γ) has EDs on both semiaxes Z+

κ and Z−κ , i.e. γ 6∈ Σ+
κ and

γ 6∈ Σ−κ ; this establishes Σ+
κ ∪ Σ−κ ⊂ ΣF and the claim follows with (a). �

Corollary 4.30. If every Ak ∈ L(Kd) is upper-triangular with bounded diago-
nal sequences (ank )k∈Z, n = 1, . . . , d, in C \ {0}, then

ΣF (A) =

d⋃
n=1

Σ+
κ (an) ∪

d⋃
n=1

Σ−κ (an).

If also each
(

1
ank

)
k∈Z+

κ
is bounded, then Σ+

κ (an) =
[
β−Z+

κ
(an), β+

Z+
κ

(an)
]
.

Proof. Since the diagonal elements ank of Ak do not vanish, (2.1) is satisfied.

With the aid of [LJS01, Thm. 2.2] we deduce σF (TA) =
⋃d
n=1 σF (Tan) and

then the assertion is a combination of Thm. 4.25 and Prop. 4.29(b). Finally,
the explicit form for Σ+

κ (an) follows from (3.4). �

Our subsequent result relates the dichotomy spectra introduced so far:

Corollary 4.31. In case dimX <∞ and (2.1) one has the inclusions

Σp ⊂ Σp ∪ Σs
‖

Σ+
κ ∪ Σ−κ = ΣF ⊂ ΣF0 ⊂ ΣED = Σs ∪ ΣF0

∩ ‖
∂ΣED ⊂ Σs = ΣET ⊂ Σp ∪ ΣF0

Remark 4.32. We abbreviate La := GL, σa := σ, Σa := Σ.
(1) The different dichotomy spectra defined above satisfy{
γ > 0 : Sγ 6∈

⋂
α∈A

Lα(`∞)

}
=
⋃
α∈A

Σα for all A ⊂ {a, s, p, F, F0} .
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This follows from [Mül07, p. 51, Thm. 6.3(i) and p. 215], since Lα(`∞) is a
regularity for α ∈ {a, s, p, F} and an upper semi-regularity for α = F0.

(2) Under the assumption dist(0, σ(TA)) > 0 guaranteed e.g. by (2.11),
there holds a spectral mapping theorem for the spectra σα(TA), α ∈ {a, s, F}.
This means

σα(Sλ) = 1− 1
λσα(TA), σα(TA) = λ− λσα(Sλ) for all λ 6= 0

are satisfied with α ∈ {a, s, F}; concerning a proof we refer to the standard
spectral mapping theorem [Yos80, p. 227, Cor. 1] for α = a, [Kim02, Thm. 1.2]
for α = s and [Aie04, pp. 148–148, Cor. 3.61(ii)] for α = F .

(3) For discrete dichotomy spectra, ∂Σ(A) = Σ(A) is satisfied and the
dichotomy spectra Σs(A), ΣET (A) coincide with Σ(A). Moreover, under the
additional assumption of Cor. 4.26(d) one also has ΣF (A) = ΣF0(A) = Σ(A).

Remark 4.33 (kinematic similarity). (1) Note that for kinematically similar
difference eqns. (∆) and (2.2) it is

MCTB = TAMC ,

with the corresponding Lyapunov transformation (Ck)k∈Z and the invert-
ible multiplication operator MC . Thus, T±A and T±B have the same spec-
tra σ, σp, σs, σF and σF0

. For this reason all the induced dichotomy spectra
Σ,Σp,Σs,ΣF and ΣF0 are invariant under kinematic similarity.

(2) Kinematic similarity defines an equivalence relation on the class of
all difference eqns. (∆); its equivalence classes were characterized in [GKK96].

Proof. Thanks to Thm. 4.20, Cors. 4.21(a), 4.26(a) and Prop. 4.29 it only
remains to show the following nontrivial relations:

(ΣF ⊂ Σs) If γ 6∈ Σs the operator Sγ is onto. Thus, codimR(Sγ) = 0
and dimX <∞ guarantees dimN(Sγ) <∞. Hence, Sγ is Fredholm.

(Σ = Σs ∪ΣF0
) The relation γ 6∈ Σ means that Sγ is invertible, i.e. the

operator Sγ is onto and Fredholm with index 0, i.e. γ 6∈ Σs and γ 6∈ ΣF0 .
(Σ = Σp ∪ ΣF0) Similarly, γ 6∈ Σ means that Sγ is invertible, i.e. Sγ is

one-to-one and Fredholm with index 0, i.e. γ 6∈ Σp and γ 6∈ ΣF0
. �

4.4. Almost periodic equations

A frequently studied situation is the case of difference eqns. (∆) with an al-
most periodic coefficient sequence (Ak)k∈Z in L(X). This means that for all
ε > 0 there exists an inclusion length lε ∈ N such that for every m ∈ Z there
is a κ ∈ {m, . . . ,m+ lε} such that supk∈Z |Ak+κ −Ak| < ε. An almost peri-
odic difference eqn. (∆) satisfies the boundedness assumption (2.10). Clearly,
this class contains autonomous, as well as periodic equations, and features a
simplified spectral theory. This is due to the essential

Theorem 4.34. Let dimX < ∞. An almost periodic difference eqn. (∆) ad-
mits an ED on Z under one of the conditions

• (2.1) is satisfied and (∆) has an ET,
• (∆) has an ED

on a sufficiently large discrete (but finite) interval.
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Proof. We only show the ET case, since otherwise the claim follows directly
from [Tka96, Thm. 2]. Let a difference eqn. (∆) have an ET on the finite
interval I. Due to assumption (2.1) and Cor. 2.6 we can choose κ = min I in
Def. 2.2. Then Prop. 2.4(a) ensures that (∆) admits an ED on I and thanks
to [Tka96, Thm. 2] this ED extends to the whole axis Z. �

Corollary 4.35. Under (2.1) an almost periodic difference eqn. (∆) fulfills

Σ(A) = Σ+
κ (A) = Σ−κ (A) = ΣET (A) = Σs(A) = ΣF (A) = ΣF0

(A).

Proof. Let γ ∈ Σ±κ , i.e. (∆γ) does have an ED on a semiaxis Z±κ . Referring to
Thm. 4.34 we deduce that (∆γ) admits an ED on Z and consequently γ 6∈ Σ.
This yields the inclusion Σ ⊂ Σ±κ and thanks to Σ±κ ⊂ ΣF ,ΣF0 ,Σs ⊂ Σ the
claim follows from Cor. 4.31. �

5. Examples

In general, the concrete form of dichotomy spectra can be obtained only on a
numerical level (cf. [Hül10]). However, for scalar, autonomous, periodic and
asymptotically autonomous equations on Z, explicit formulas for ΣED(A)
have been derived in [BAG91, Sect. 0.4] — provided (2.1) holds.

In this section, we illustrate our above theoretical results and focus on
a finer insight. Our initial examples concern scalar difference equations

xk+1 = akxk (S)

with a real sequence (ak)k∈Z. We first tackle a noninvertible situation:

Example 5.1. Let α−, α+ ∈ R and consider (S) with the particular sequence

ak :=


α−, k < 0,

0, k = 0,

α+, k > 0.

In case α+ = α− = 0 it is not hard to see that Σ(a) = Σ±κ (a) = ∅. Otherwise,
it is clear that we have Σ±κ (a) = {|α±|} for κ ∈ Z±1 . More interesting is it to
obtain, e.g., Σ+

κ (a) for κ < 1. Thereto, we suppose one-sided time I = Z+
κ and,

for simplicity, |α−| ≤ |α+|. For the spectral notion from Rem. 2.10(3), as in

[AS01, Exam. 4.1] we obtain Σ̂ED(a) = (0, |α−|]∪{α+} for κ < 1 sufficiently
small. Using Rem. 2.10(1) and (3) we see (0, |α−|]∪{α+} ⊂ Σ+

κ (a) ⊂ (0, |α+|]
and since Σ+

κ (a) consist of at most one interval (cf. Thm. 2.9), this yields

Σ+
κ (a) = (0, |α+|] .

As claimed in (2.9), we see that one-sided dichotomy spectra can grow when
the dichotomy interval is increased. Moreover, the `0-roughness from Cor. 3.26
does not hold without invertibility (2.1), since {|α+|} = Σ+

κ (a+ b) ( Σ+
κ (a)

with the perturbation sequence

bk :=

{
α+, κ ≤ k ≤ 0,

0, 0 < k.
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Now we focus on two-sided time I = Z and [Bas00, Thm. 1] yields

Σ(a) = (0,max {|α−| , |α+|}] .
Since every entire solution φ to xk+1 = γ−1akxk fulfills φk = 0 for k ∈ Z+

1 , it
is bounded in forward time. Moreover, the backward bounded solutions can
be identified with Prop. 3.1(b) (provided an ED on Z−0 ) and this sums up to

Σp(a) = (0, |α−|] .
Referring to [Bas00, Thm. 8] the Fredholm spectra become

ΣF (a) = {|α−| , |α+|} , ΣF0
(a) = [min {|α−| , |α+|} ,max {|α−| , |α+|}]

and an analysis of the Fredholm and surjectivity properties for Sγ yields

ΣET (a) = Σs(a) = (0, |α+|] ∪ {max {|α−| , |α+|}} ,
where we have used Thm. 4.20.

All our following examples will be invertible:

Example 5.2. Let (ak)k∈Z be a bounded sequence of nonzero reals such that
also (a−1

k )k∈Z is bounded, i.e. (2.11) holds. We introduce Lyapunov exponents

λ−l (a) := lim inf
n→∞

n

√√√√ −1∏
i=−n

|ai|, λ+
u (a) := lim sup

n→∞

n

√√√√n−1∏
i=0

|ai|,

as well as Bohl exponents β±Z (a) defined in (3.5) (cf. also [BAG91]). First of

all, thanks to [BAG91, Thm. 0.4.14] we have Σ(a) =
[
β−Z (a), β+

Z (a)
]

and due

to Cor. 4.23 it is Σ(a) = Σs(a) = ΣET (a) =
[
β−Z (a), β+

Z (a)
]
, if λ−l (a) ≤ λ+

u (a).
Using Rem. 4.33(1) also the scaled difference equation

xk+1 = ckakx; (5.1)

has the same dichotomy spectra, provided (ck)k∈Z satisfies

1
M ≤

k∏
i=l

|ci| ≤M for all l ≤ k

with some real M > 0; this is due to [GKK96, Thm. 3.1] guaranteeing that
the scalar eqns. (S) and (5.1) are kinematically similar (cf. Rem. 4.33(1)).

The following example shows that the Fredholm spectrum ΣF (A) can
be smaller than ΣF0

(A) and illustrates a breakdown of the point spectrum.

Example 5.3. Given reals α−, α+ 6= 0, we determine the various dichotomy
spectra for asymptotically constant scalar difference eqn. (S) with

ak :=

{
α−, k < 0,

α+, k ≥ 0.
(5.2)

• The dichotomy spectra (for all κ ∈ Z, cf. [BAG91, Thm. 0.4.6])

Σ±κ (a) = {|α±|} , Σ(a) = [min {|α−| , |α+|} ,max {|α−| , |α+|}] .
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• The point spectrum

Σp(a) =

{
[|α+| , |α−|] , |α+| ≤ |α−| ,
∅, else.

• The surjectivity and trichotomy spectrum (cf. Thm. 4.20)

Σs(a) = ΣET (a) =

{
{|α−| , |α+|} , |α+| < |α−| ,
[|α−| , |α+|] , |α−| ≤ |α+| .

• The Fredholm spectra

ΣF (a) = {|α−| , |α+|} , ΣF0
(a) = [min {|α−| , |α+|} ,max {|α−| , |α+|}] .

The constellation |α+| < |α−| typically occurs for supercritical shovel bifur-
cations (see [Pöt11a]), which are caused by the fact that 1 is an isolated point
of the surjectivity spectrum.

Next we deal with 2-dimensional difference equations

xk+1 = Ak(λ)xk (5.3)

depending on a real parameter λ and write Σ(λ) etc. for its dichotomy spectra.

Example 5.4. Let α, β be fixed nonzero reals and we investigate (5.3) with

Ak(λ) :=

(
α λk
0 β

)
, λk :=

{
λ, k ≥ 0,

0, k < 0.

Due to its upper triangular form one has constant one-sided dichotomy spec-
tra Σ+

0 (λ) = Σ−0 (λ) = {|α| , |β|} and Prop. 4.29 yields ΣF (λ) = {|α| , |β|}
for every λ ∈ R. In order to derive the other spectra, we compute the scaled
transition matrix Φγ of (5.3) for several cases:

• |α| < |β|: One has

Φγ(k, 0) = γ−k


(
αk

λγ
α−β (αk−βk)

0 βk

)
, k ≥ 0,(

αk 0
0 βk

)
, k ≤ 0

(5.4)

and the resulting stable resp. unstable fibers

V+
γ (0) =


R2, |β| ≤ γ,
R× {0} , |α| ≤ γ < |β| ,
{0} , γ < |α| ,

V−γ (0) =


{0} , |β| < γ,

{0} × R, |α| < γ ≤ |β| ,
R2, γ ≤ |α| .

• |β| < |α|: The scaled transition operator is given in (5.4) and we obtain

V+
γ (0) =


R2, |α| ≤ γ,
R
(

λγ
β−α

)
, |β| ≤ γ < |α| ,

{0} , γ < |β| ,
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V−γ (0) =


{0} , |α| < γ,

R× {0} , |β| < γ ≤ |α| ,
R2, γ ≤ |β| .

• α = β: Here, the scaled transition operator reads as

Φγ(k, 0) = γ−k


(
αk k

λγ
α αk

0 αk

)
, k ≥ 0,(

αk 0
0 αk

)
, k ≤ 0

and this gives us

V+
γ (0) =


R2, |α| < γ,

R× {0} , |α| = γ,

{0} , γ < |α| ,
V−γ (0) =

{
{0} , |α| < γ,

R2, γ ≤ |α| .

• α = −β: The scaled transition operator becomes

Φγ(k, 0) = γ−k


 αk

λγ
α αk

0, k is even

−1, k is odd

0 αk

 , k ≥ 0,(
αk 0
0 αk

)
, k ≤ 0

and this leads to

V+
γ (0) =

{
R2, |α| ≤ γ,
{0} , γ < |α| ,

V−γ (0) =

{
{0} , |α| < γ,

R2, γ ≤ |α| .

In all of the above cases one has V+
γ (0) ⊕ V−γ (0) = R2 for γ 6∈ {|α| , |β|}.

Referring to the above Cor. 4.8, this immediately yields a discrete dichotomy
spectrum Σ(λ) = {|α| , |β|} and Cor. 4.31 ensures

ΣF0
(λ) = Σs(λ) = ΣET (λ) = {|α| , |β|} ;

moreover, (∆γ) has nontrivial bounded entire solutions for γ ∈ {|α| , |β|} and
consequently Σp(λ) = {|α| , |β|} for all λ ∈ R.

In the previous example the dichotomy spectra turned out to be inde-
pendent of the parameter λ ∈ R. In general this needs not to be true, even for
triangular difference equations and parameter dependence only in the upper
triangular entries. Beyond that we now illustrate that the Fredholm spectra
ΣF (λ), ΣF0

(λ) can be strictly smaller than Σs(λ) or Σ(λ).

Example 5.5. Let δ be a nonzero real number and consider (5.3) with

Ak(λ) :=

(
ak λk
0 a−1

k

)
, ak :=

{
δ, k ≥ 0,
1
δ , k < 0,

λk :=

{
λ, k ≥ 0,

0, k < 0.

The matrices Ak, k ≥ 0, are the ones of Exam. 5.4 with α = δ, β = 1
δ , while

Ak, k < 0, coincide with the ones discussed in Exam. 5.4 with α = 1
δ , β = δ.
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Therefore, we obtain constant spectra Σ+
0 (λ) = Σ−0 (λ) =

{
|δ| , 1

|δ|

}
and using

Prop. 4.29 also ΣF (λ) =
{
|δ| , 1

|δ|

}
for all λ ∈ R.

• |δ| < 1: One has the fibers

V+
γ (0) =


R2, 1

|δ| ≤ γ,
R× {0} , |δ| ≤ γ < 1

|δ| ,

{0} , γ < |δ| ,
V−γ (0) =


{0} , 1

|δ| < γ,

R× {0} , |δ| < γ ≤ 1
|δ| ,

R2, γ ≤ |δ|

and the relation V+
γ (0)⊕V−γ (0) = R2 holds for γ 6∈

[
|δ| , 1

|δ|

]
. Hence, we

conclude the spectrum Σ(λ) =
[
|δ| , 1

|δ|

]
for all λ ∈ R. With γ ∈ Σ(λ)

it is dim(V+
γ (0) ∩ V−γ (0)) = 1 and since the elements of V+

γ (0) ∩ V−γ (0)

yield bounded entire solutions to (∆γ), one has Σp(λ) =
[
|δ| , 1

|δ|

]
. For

rates γ 6∈
{
|δ| , 1

|δ|

}
the operator Sγ is Fredholm and Prop. 4.9 yields

indSγ = 0 for γ ∈
(
|δ| , 1

|δ|

)
which implies ΣF0

(λ) =
{
|δ| , 1

|δ|

}
. Finally,

the criterion from Prop. 4.7(b) and Cor. 4.31 ensure

ΣET (λ) = Σs(λ) =
[
|δ| , 1

|δ|

]
for all λ ∈ R.

• 1 < |δ|: In this situation the fibers read as

V+
γ (0) =


R2, |δ| ≤ γ,
R
( λγδ

1−δ2
)
, 1
|δ| ≤ γ < |δ| ,

{0} , γ < 1
|δ| ,

V−γ (0) =


{0} , |δ| < γ,

{0} × R, 1
|δ| < γ ≤ |δ| ,

R2, γ ≤ 1
|δ|

and for γ 6∈
{
|δ| , 1

|δ|

}
we have

V+
γ (0) + V−γ (0) =

{
R2, λ 6= 0,

{0} × R, λ = 0,

V+
γ (0) ∩ V−γ (0) =

{
{0} , λ 6= 0,

{0} × R, λ = 0.

Therefore, the dichotomy and point spectrum become

Σ(λ) = Σp(λ) =


{

1
|δ| , |δ|

}
, λ 6= 0,[

1
|δ| , |δ|

]
, λ = 0,

which exemplifies their upper-semicontinuity. Moreover, as opposed to
EDs on semiaxes, for λ 6= 0 the dichotomy spectrum is not the union
of the spectra associated to the diagonal elements. Due to the discrete
dichotomy spectrum, Cor. 4.31 implies

ΣF0(λ) = Σs(λ) = ΣET (λ) =
{

1
|δ| , |δ|

}
for all λ 6= 0.
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For the parameter λ = 0 we obtain as above that ΣF0
(0) =

{
|δ| , 1

|δ|

}
,

whereas using Prop. 4.7(b) and Cor. 4.31 one sees

Σs(0) = ΣET (0) =
[

1
|δ| , |δ|

]
.

• δ = 1: This gives us

V+
γ (0) =


R2, 1 < γ,

R× {0} , γ = 1,

{0} , γ < 1,

V−γ (0) =

{
{0} , 1 < γ,

R2, γ ≤ 1

and for γ 6= 1 one has V+
γ (0)⊕V−γ (0) = R2; hence Σ(λ) = {1} is discrete

and accordingly Cor. 4.31 guarantees

Σs(λ) = ΣET (λ) = ΣF0
(λ) = {1} for all λ ∈ R.

The difference eqn. (∆) has nonzero bounded entire solutions, the op-
erator S1 possesses a nontrivial kernel and we finally get Σp(λ) = {1}.

• δ = −1: This leads to

V+
γ (0) =

{
R2, 1 ≤ γ,
{0} , γ < 1,

V−γ (0) =

{
{0} , 1 < γ,

R2, γ ≤ 1.

As above we obtain the relation

Σs(λ) = ΣET (λ) = ΣF0(λ) = Σp(λ) = {1} for all λ ∈ R.

Our next example shows that in contrast to one-sided dichotomy spectra
(cf. Cor. 3.26), the dichotomy spectrum on the whole integer axes is not
necessarily invariant under compact perturbations.

Example 5.6 (compact perturbation). Suppose that δ, ε are fixed nonzero
reals satisfying |ε| < 1 < |δ|. We consider (5.3) with

Ak(λ) :=

(
ak λk
0 a−1

k

)
, ak :=

{
δ, k ≥ 0,
1
δ , k < 0

, λk := λ

{
εk, k ≥ 0,

0, k < 0.

In the above Exam. 5.5 we obtained the dichotomy spectrum

Σ(0) =
[

1
|δ| , |δ|

]
and now we consider the matrix sequence

(
0 λk
0 0

)
, k ∈ Z, as compact pertur-

bation of xk+1 = Ak(0)xk (cf. Lemma 3.7). Due to Cors. 3.26 and 4.28 such
perturbations do neither affect the one-sided dichotomy spectra Σ±0 (λ), nor
the Fredholm spectra ΣF (λ),ΣF0

(λ). Nevertheless, they do have an effect on
the dichotomy spectrum Σ(λ). This can be seen as follows: For γ > 0 the
scaled transition matrix of the perturbed equation with λ 6= 0 reads as

Φγ(k, 0) = γ−k
(
δk

λδ
δ2−ε

(
δk−( εδ )

k
)

0 δ−k

)
for all k ≥ 0
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yielding the fibers (see the case |δ| > 1 in Exam. 5.5)

V+
γ (0) =


R2, |δ| ≤ γ,
R
(

δλ
ε−δ2

)
, 1
|δ| ≤ γ < |δ| ,

{0} , γ < 1
|δ| ,

V−γ (0) =


{0} , |δ| < γ,

{0} × R, 1
|δ| < γ ≤ |δ| ,

R2, γ ≤ 1
|δ| .

Hence, for scaling values γ 6∈
{
|δ| , 1

|δ|

}
we have V+

γ (0) ⊕ V−γ (0) = R2 and

Cor. 4.8 shows that Φγ admits an ED on Z. This manifests a shrinking in the
dichotomy spectrum under compact perturbations, since we can conclude

Σ(λ) =


{

1
|δ| , |δ|

}
, λ 6= 0,[

1
|δ| , |δ|

]
, λ = 0.

Much of this paper dealt with difference eqns. (∆) in finite-dimensional
spaces X. Actually, to our knowledge, there are no studies on the dichotomy
spectrum in discrete time with dimX =∞. In order to illuminate this situa-
tion somewhat, we close with remarks and examples illustrating two extreme
cases in the spectral theory for (∆) with an infinite-dimensional state space:

• In general one cannot expect a nice characterization of Σ(A) like in the
Thms. 2.9 or 4.5. Indeed, for dimX = ∞ it is possible to obtain any
compact subset of (0,∞) as dichotomy spectrum, where corresponding
examples can be constructed as follows: Suppose that S ⊂ (0,∞) is an
arbitrary nonempty compact set and define Ω := {λ ∈ C : |λ| ∈ S}. On
the Banach space X := C0(Ω) of continuous complex-valued functions
vanishing at the boundary of Ω, equipped with the sup-norm, we de-
fine the multiplication operator (Aφ)(t) := tφ(t). It is clearly bounded
A ∈ L(X) and in [EN00, p. 241, 1.5 Examples(ii)] it is shown that
σ(A) = Ω. Since the dichotomy spectrum of the autonomous difference
equation xk+1 = Axk is given by the moduli of the spectral points to
this particular coefficient operator A, our construction yields Σ(A) = S.
• On the other hand, e.g. compactness properties of the coefficient oper-

ators yields a more regular spectrum; for continuous time linear skew-
product semiflows this was illustrated in [CL94, Lei00]. The latter ref-
erence deals with scalar parabolic equations

ut = a(t)uxx + b(t)u (5.5)

on the unit interval (0, 1), where the coefficient functions a : R→ (0,∞),
b : R→ R are assumed to be continuous with limits limt→±∞ a(t) = α±,
limt→±∞ b(t) = β± and α− ≤ α+, β− ≤ β+. Equipped with ambi-
ent boundary conditions ux(t, 0) = ux(t, 1) = 0 (Neumann type) resp.
u(t, 0) = u(t, 1) (Dirichlet type), the PDE (5.5) can be formulated as
abstract evolution equation in the Hilbert space X = L2[0, 1] generat-
ing an exponentially bounded and instantly compact evolution operator
U(t, s) ∈ L(X), s ≤ t. We associate a difference eqn. (∆) in L2[0, 1]
with coefficients Ak := U(k + 1, k), k ∈ Z. Based on the precise in-
formation on the dichotomy spectrum for the continuous time problem
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from [Lei00, Lemma 1.1], the corresponding dichotomy spectrum Σ(A)
consists of countably many compact intervals accumulating at 0. This
resembles the situation of compact operators, where eigenvalues rather
than spectral intervals accumulate at 0.
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