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Abstract. In their recent paper [Proc. Am. Math. Soc. 139 (2011), no. 3,

999-1012], Barreira and Valls show that the invariant projectors of exponen-
tial dichotomies, and therefore the associated stable and unstable invariant

vector bundles, depend continuously differentiable on parameters, provided

the perturbation is small in the C1-topology.
We give a direct and independent proof of this result and moreover enhance

it in various aspects.

An exponential dichotomy (ED for short) is a hyperbolic splitting of the extended
state space for linear nonautonomous differential or difference equations into two
bundles of linear subspaces: The so-called stable vector bundle consists of all so-
lutions decaying exponentially in forward time, while the complementary unstable
vector bundle consists of all solutions which exist and decay in backward time.
For various reasons, EDs turned out to be an ambient hyperbolicity concept when
dealing with nonautonomous dynamical systems: In stability theory the associated
dichotomy spectrum of a linearization yields the appropriate uniform asymptotic
stability, while gaps in this spectrum give rise to invariant manifolds or fiber bundles
(cf. [KR11]). Moreover, EDs allow to deduce continuation results and thus provide
a necessary condition for bifurcations of entire solutions (cf. [Pöt11, Pöt10b]).

Beyond this, in nonautonomous bifurcation theory it plays a crucial role, how in-
variant projectors or the associated invariant vector bundles for EDs behave under
parameter-variation. First, corresponding results might be instrumental to obtain
a feasible perturbation theory for the dichotomy spectrum. Second, the vector bun-
dles induced by EDs serve as domain for invariant manifolds, whose intersection in
turn gives rise to bifurcating objects, namely entire bounded solutions. Further ap-
plications of parameter-dependent dichotomic equations can be found, for instance,
in [Pal86, San93, Yi93].

Now [BV11] recently proved that dichotomy projectors vary continuously differ-
entiable, provided a dichotomic difference equation is subject to small perturbations
w.r.t. the C1-norm. However, in the light of versatile applications, particularly the
ones sketched above, this C1-closeness assumption is too restrictive and appears to
be of solely technical nature.

In this short note, we therefore demonstrate that the smooth dependence of di-
chotomy projectors on the difference equation is merely a corollary from meanwhile
established proof techniques (cf., for example, [San93, AM96]). Beyond that our
basic Thm. 2 improves [BV11] in various regards:
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• Rather than C1-closeness, which involves a smallness condition on the de-
rivative, we essentially require continuity of the coefficient mapping and its
derivatives in the parameter (see relation (2) below).
• At once general Cm-dependence for 0 ≤ m ≤ ∞ is obtained.
• Finally, we do not assume invertibility of the coefficient operators. Espe-

cially in an infinite-dimensional setting, invertibility is too restrictive, since
discrete-time equations in Banach spaces typically occur as discretizations
of compact semigroups (cf. [Pöt10a]), or as integro-difference equations.

Our mathematical set-up is as follows: Let the state space X be a Banach space
with norm |·| and Λ be an open convex subset of a further Banach space Y . The
Banach algebra of bounded linear operators on X is denoted by L(X) and IX
stands for its unit element, i.e. the identity mapping. A discrete interval I is the
intersection of a real interval with the integers Z and I′ := {k ∈ Z : k + 1 ∈ I}.
Finally, δk,m is the Kronecker symbol.

This paper is centered around linear difference equations

(Lλ) xk+1 = Ak(λ)xk

depending on a parameter λ ∈ Λ and with coefficients Ak : Λ → L(X), k ∈ I′.
Throughout, we impose the global boundedness assumption

sup
k∈I′
|Ak(λ)| <∞ for all λ ∈ Λ,

which is justifiable since nonautonomous difference eqns. (Lλ) typically occur as
variational equations along bounded solutions.

The (forward) solutions to (Lλ) can be expressed in terms of the transition
operator given by Φλ : {(k, l) ∈ I× I : l ≤ k} → L(X),

Φλ(k, l) :=

{
Ak−1(λ) · · ·Al(λ), l < k,

IX , k = l
for all λ ∈ Λ.

Without invertibility assumptions on Ak(λ) ∈ L(X), k ∈ I′, neither backward
solutions to (Lλ) nor the transition operator Φλ(k, l) exists for k < l.

Now keep the parameter λ ∈ Λ fixed. A linear difference eqn. (Lλ) is said to
possess an exponential dichotomy on I (cf. [Hen81, p. 229, Def. 7.6.4]), provided
there exists a sequence of projections Pk(λ) ∈ L(X), k ∈ I, satisfying

Pk+1(λ)Ak(λ) = Ak(λ)Pk(λ) for all k ∈ I′,
Ak(λ) : N(Pk(λ))→ N(Pk+1(λ)) is invertible for all k ∈ I′,

(1)

as well as reals α ∈ (0, 1), K ≥ 1 guaranteeing the hyperbolic splitting

|Φλ(k, l)Pl(λ)| ≤ Kαk−l,
∣∣Φ̄λ(l, k)[IX − Pk(λ)]

∣∣ ≤ Kαk−l for all l ≤ k

and k, l ∈ I. Here, Φ̄λ(k, l) : N(Pl(λ))→ N(Pk(λ)) denotes the extended transition
operator given by

Φ̄λ(k, l) := Ak(λ)|−1
N(Pk(λ)) · · ·Al−1(λ)|−1

N(Pl−1(λ)) for all k < l,

which is well-defined due to the regularity condition (1) and bounded by the open
mapping theorem (cf., e.g., [Yos80, p. 77, Corollary]). For later use it is convenient
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to additionally introduce Green’s function

Gλ(k, l) :=

{
Φλ(k, l)Pl(λ), l ≤ k,
−Φ̄λ(k, l)[IX − Pl(λ)], k < l.

Remark 1 (Uniqueness of invariant projectors). The sequence (Pk(λ))k∈I in L(X)
is denoted as invariant projector for (Lλ). It is well-known (see [Pal88] for the in-
vertible finite-dimensional situation, or [Pöt10a, pp. 137–138, Rems. 3.4.17–3.4.18]
for our setting) that invariant projectors are uniquely determined in case I = Z,
whereas only the stable vector bundle

V+
λ = {(k, x) ∈ I×X : x ∈ R(Pk(λ))}

is unique for I unbounded above and merely the unstable vector bundle

V−λ = {(k, x) ∈ I×X : x ∈ N(Pk(λ))}

being unique for I unbounded below.

The coefficient operators Ak : Λ → L(X) in (Lλ) are said to be of class Cm

uniformly in k ∈ I′, if they are m-times continuously Fréchet-differentiable and the
derivatives satisfy

(2) lim
λ→λ0

sup
k∈I′
|DnAk(λ)−DnAk(λ0)| = 0 for all 0 ≤ n < m+ 1, λ0 ∈ Λ.

This canonical assumption allows us to formulate our main result:

Theorem 2 (smooth roughness of EDs). Let m ∈ N0 ∪ {∞}, suppose that I is an
unbounded discrete interval and that the difference eqn. (Lλ∗) admits an ED on I
for a parameter λ∗ ∈ Λ. If Ak : Λ→ L(X) is of class Cm uniformly in k ∈ I′, then
there exists an open neighborhood Λ0 ⊆ Λ of λ∗, such that the following holds true:

(a) (Lλ) has an ED on I for every λ ∈ Λ0,
(b) the associate invariant projectors Pk : Λ0 → L(X), k ∈ I, are of class Cm.

Remark 3. (1) Based on the quantitative nature of the roughness properties [Hen81,
p. 232, Thm. 7.6.7, Remark] or [Pöt10a, p. 165, Thm. 3.6.5], it is not difficult to
obtain information on the size of the perturbation neighborhood Λ0.

(2) A closer inspection of the following proofs shows that similar persistence
results hold under a Cm,lip-dependence (uniformly in k ∈ I′) of (Lλ) on λ, as well.

(3) Due to the uniformity in assumption (2) (for n = 0), assertion (a) of Thm. 2
is commonly denoted as `∞-roughness. However, it can be shown that EDs per-
sist under a significantly wider class of perturbations (cf. [Hen81, Pal87, Sak94] in
continuous time).

(4) Rather than (Lλ), difference equations of the form xk+1 = Akxk + Bk(λ)xk
are considered in [BV11] with xk+1 = Akxk being exponentially dichotomic. The
interested reader might verify that our subsequent proofs remain essentially unaf-
fected in such a framework, if the global bound supλ∈Λ0

supk∈I′ |Bk(λ)| is sufficiently
small and the perturbation Bk : Λ→ L(X) is of class Cm uniformly in k ∈ I′.

We will verify Thm. 2 below using two different techniques. Since its assertion (a)
is well-known with an abundant literature (see [Pöt10a, p. 185] for a short survey),
we give a precise reference and only sketch the basic ingredients, such that the
detailed arguments required to establish claim (b) become transparent: Our first
proof demands an ED on a semiaxis I, while the second one is valid in case I = Z.
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Dichotomies on semiaxes. The dissertation [San93] contains a constructive ap-
proach to the roughness for EDs (of parabolic evolutionary equations), which re-
ceived a certain popularity since then. It constructs invariant projectors of some
perturbed linear system using a contraction mapping argument. Hence, parameter-
dependent problems can be tackled on basis of the classical uniform contraction
principle (cf., for example, [CH96, p. 25, Thm. 2.2]). Under this premise, in [Pöt10a,
p. 165, Thm. 3.6.5] we derived Thm. 2(a) using a discrete time version of Sandst-
ede’s approach from [San93, p. 8, Lemma 1.1].

Proof. We restrict to the case that the discrete interval I is unbounded above with
minimum κ ∈ Z. The dual situation of I being unbounded below, can be done
analogously. Above all, we set I2+ :=

{
(k, l) ∈ I2 : l ≤ k

}
, I2− :=

{
(k, l) ∈ I2 : k ≤ l

}
and write (Lλ) as

xk+1 = [A∗k +Bk(λ)]xk

with A∗k := Ak(λ∗) and Bk(λ) := Ak(λ)−Ak(λ∗).1 Our assumption implies an ED
of the difference eqn. xk+1 = A∗kxk on I with invariant projector P ∗k ∈ L(X).

(a) Choose reals γ, δ such that α < γ < δ < α−1, define the canonically normed
Banach spaces

L0 :=

{
Ξ : I→ L(X)| sup

k∈I
‖Ξ(k)‖ <∞

}
,

L+
γ :=

{
Ξ : I2+ → L(X)| sup

l≤k
‖Ξ(k, l)‖ γl−k <∞

}
,

L−δ :=

{
Ξ : I2− → L(X)| sup

k≤l
‖Ξ(k, l)‖ δl−k <∞

}
,

as well as the affine-linear operators T 0 : L+
γ ×L−δ ×L0 → L0, T+ : L+

γ ×L2
0 → L+

γ

and T− : L−δ × L2
0 → L−δ given by

T 0(Ξ+,Ξ−, B)(k) := P ∗k −
k−1∑
n=κ

Φλ∗(k, n+ 1)P ∗n+1BnΞ−(n, k)

−
∞∑
n=k

Φ̄λ∗(k, n+ 1)[IX − P ∗n+1]BnΞ+(n, k) for all k ∈ I,

T+(Ξ+,Ξ, B)(k, l) := Φλ∗(k, l)P
∗
l Ξ(l) +

∞∑
n=κ

Gλ∗(k, n+ 1)BnΞ+(n, l) for all l ≤ k,

T−(Ξ−,Ξ, B)(k, l) := Φ̄λ∗(k, l)[IX − P ∗l ][IX − Ξ(l)] +

∞∑
n=κ

Gλ∗(k, n+ 1)BnΞ−(n, l)

for all k ≤ l. Then B : Λ→ L0, B(λ) := (Bk(λ))k∈I is well-defined, of class Cm and
furthermore satisfies B(λ∗) = 0. Using [Pöt10a, p. 165, Thm. 3.6.5] we guarantee a
neighborhood Λ0 ⊆ Λ of λ∗ such that the mapping T : L+

γ × L−δ ×Λ0 → L+
γ × L−δ ,

(3) T (Ξ+,Ξ−, λ) :=

(
T+(Ξ+, T 0(Ξ+,Ξ−, B(λ)), B(λ))
T−(Ξ−, T 0(Ξ+,Ξ−, B(λ)), B(λ))

)
1This representation resembles the setting of Rem. 3(4) or [BV11]. We obtain the uniform

smallness of |Bk(λ)| from continuity, but alternatively a smallness condition can be imposed in
advance without consequences for the on-going proof.
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becomes a uniform contraction in λ ∈ Λ0. Thus, for every parameter λ ∈ Λ0 the
mapping T possesses a unique fixed point (Ξ+

κ (λ),Ξ−κ (λ)) ∈ L+
γ × L−δ . Proceeding

as in the proof of [Pöt10a, p. 165, Thm. 3.6.5], one sets

(4) Pk(λ) := T 0(Ξ+
κ (λ),Ξ−κ (λ), λ)(k) for all k ∈ I

and obtains that Pk(λ) ∈ L(X) is actually an invariant projector for an ED to (Lλ).
(b) Using [Pöt10a, pp. 163ff, Lemma 3.6.2–3.6.4] one can verify that the above

mappings T+, T− and T 0 are affine-linear and moreover continuous. Accordingly,
with B ∈ Cm(Λ, L0) also the composition T : L+

γ × L−δ × Λ0 → L+
γ × L−δ in (3) is

of class Cm. Therefore, the uniform contraction principle [CH96, p. 25, Thm. 2.2]
applies and guarantees that the fixed-point mapping (Ξ+

κ ,Ξ
−
κ ) : Λ0 → L+

γ × L−δ
of T is m-times continuously differentiable. From relation (4) we see that Pk is a
composition of Cm-mappings with a linear bounded evaluation map Λ0 → L(X),
consequently also of class Cm. �

A similar justification involving Lyapunov-Perron sums appears to be possible
in the I = Z situation, as well as for evolutionary equations with continuous time.
Nonetheless, it is both advantageous and illustrative to follow a different path:

Dichotomies on Z. The following proof is suitable for EDs on the whole integer
axis Z and relies on an elegant operator theoretical characterization due to [AM96]:
On the Banach space `∞ of bounded sequences (φk)k∈Z in X we define the weighted
shift operators T (λ) ∈ L(`∞),

(T (λ)φ)k := Ak−1(λ)φk−1 for all k ∈ Z, λ ∈ Λ.

Proof. Suppose that I = Z and keep λ∗ ∈ Λ fixed. We begin with a technical
preparation: Since the derivatives DnAk : Λ → Ln(Y,L(X)) fulfill the continuity
assumption (2), it is straight-forward to show that the mapping T : Λ→ L(`∞) is
m-times continuously differentiable (see [Pöt11, Prop. 2.4] for a related proof).

(a) By assumption, the difference eqn. (Lλ∗) admits an ED on Z and thanks to
[AM96, Thm. 2] this implies that the spectrum of T (λ∗) ∈ L(`∞) is disjoint from
the unit circle S1 in C, i.e. σ(T (λ∗)) ∩ S1 = ∅. The upper-semicontinuity of the
spectrum (see [Kat80, p. 208, Rem. 3.3]) shows that there exists a neighborhood
Λ0 ⊆ Λ of λ∗ such that

(5) σ(T (λ)) ∩ S1 = ∅ for all λ ∈ Λ0

and therefore again the characterization from [AM96, Thm. 2] implies that also
eqn. (Lλ) is exponentially dichotomic for λ ∈ Λ0.

(b) Relation (5) ensures that the complex unit circle S1 can be used to decompose
the spectrum of T (λ), where the associate Riesz projection (cf. [Kat80, p. 178]) is
given by

P (λ) := − 1

2πi

∫
S1

[zIX − T (λ)]−1 dz for all λ ∈ Λ0.

Thanks to our preparation and [AMR88, p. 104, 2.5.5 Lemma], P : Λ0 → L(`∞)
turns out to be a composition of smooth mappings and is hence of class Cm. Owing
to [AM96, p. 255] the invariant projectors associated to the ED of (Lλ) are given
by Pk(λ)x := (P (λ)xk)k for all k ∈ Z and x ∈ X, where the sequence xk ∈ `∞ is
defined by xkm := δk,mx. Accordingly, each Pk : Λ→ L(X), k ∈ Z, is a composition
of P ∈ Cm(Λ0, L(`∞)) with linear bounded evaluation maps and thus m-times
continuously differentiable. �
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Corollary 4. For all k ∈ Z, λ ∈ Λ0 and y ∈ Y has the representation

DPk(λ)y = − 1

2πi

(∫
S1

[zIX − T (λ)]−1DT (λ)y[zIX − T (λ)]−1 dz(δk,m·)m∈Z
)
k

with (DT (λ)yφ)k = DAk−1(λ)yφk−1 and sequences φ ∈ `∞.

Proof. Referring to [AMR88, p. 104, 2.5.5 Lemma] and the chain rule, we obtain

DP (λ)y = − 1

2πi

∫
S1

[zIX − T (λ)]−1DT (λ)y[zIX − T (λ)]−1 dz for all y ∈ Y.

Then the claim follows from the definition of Pk(λ). �
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