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The Sacker-Sell (also called dichotomy or dynamical) spectrum Σ+ ⊆ R is an important
notion in the stability theory of nonautonomous dynamical systems. For instance, when
dealing with variational equations on the (nonnegative) half line, the set Σ+ determines
uniform asymptotic stability or instability of a solution and more general, it is crucial to
construct invariant manifolds from the stable hierarchy. Compared to the spectrum associated
to dichotomies on the entire line, Σ+ has stronger and more flexible perturbation features.

In this paper, we study continuity properties of the Sacker-Sell spectrum by means of
an operator-theoretical approach. We provide an explicit example that the generally upper-
semicontinuous set Σ+ can suddenly collapse under perturbation, establish continuity on the
class of equations with discrete spectrum and identify system classes having a continuous
spectrum. These results for instance allow to vindicate numerical approximation techniques.
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1. Introduction

It is a classical observation, which can be traced back at least to Lyapunov that eigen-
values of a time-dependent linear system yield essentially no information on its stability
behavior. Thus, a variety of alternative spectral notions to describe the long-term behav-
ior of nonautonomous dynamical systems were developed and became relevant. This is
largely due to the fact that stability theory for time-variant equations is more complex
than in the autonomous situation and one has to carefully distinguish between uniform
and nonuniform concepts — both coincide for time-invariant or periodic problems.

Without question, a distinctive property of a feasible stability notion is its robustness
under a sufficiently wide and adequate class of perturbations. This has practical reasons
(persistence under slightly modified data or numerical discretization), as well as solid the-
oretical motivations like the construction of invariant manifolds and an overall geometric
theory of nonautonomous dynamical systems (cf. [1, 16, 32]). Throughout this whole area
the concept of an exponential dichotomy (ED for short) is of crucial importance. An ED
geometrically means that the extended state space of a linear differential or difference
equation allows a splitting into two invariant bundles of subspaces: The stable bundle
consists of solutions decaying exponentially to 0 in forward time and is uniquely deter-
mined on the nonnegative half line, while a complementary unstable bundle comprises of
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solutions allowing an exponential backward estimate.
As associate spectral notion one obtains the Sacker-Sell spectrum, in finite dimension a

union of finitely many closed so-called spectral intervals, which is sometimes also named
dichotomy or dynamical spectrum. It indeed dates back to [38], whose authors examine
the situation of continuous time linear skew-product flows over a compact base. The
discrete-time case of nonautonomous difference equations was tackled later in [2, 3], while
[4, 6, 33] follow a more operator-theoretical approach. When dealing with dichotomies,
it is a decisive observation whether this property is assumed on the whole time axis, or
merely on a half line i.e. a semiaxis unbounded above. On the one hand, the full line
situation is important for persistence, as well as bifurcation problems of bounded entire
solutions (cf. [34] for a survey). On the other hand, EDs on the half line are central
in stability theory — they indicate uniform asymptotic stability — and more general
for the construction of invariant manifolds in the stable hierarchy (cf., for example, [32,
p. 202, Cor. 4.2.12]). Thereby, a half line dichotomy is a significantly weaker assumption
than an ED on the entire line. Accordingly, the related dichotomy spectrum Σ+ ⊆ R is a
smaller subset, has simpler fine structure (cf. [33]) and allows more flexible perturbation
properties than in the full line case. For instance, Σ+ does not change under perturbations
decaying to 0 (see [6, 30]) and the dichotomy spectrum of triangular problems is fully
determined by the diagonal elements (cf. [33]) — both properties fail on the full axis.

While our companion paper [35] is devoted to the full line dichotomy spectrum, we are
currently interested in linear equations defined on the half line. Already in this context it
is well-known that not even the stability radius behaves continuously under perturbations
(cf. [36]). However, rather than studying merely the stability radius max Σ+ (see e.g.
[19, 21, 36]), let us actually focus on the whole Sacker-Sell spectrum Σ+. Although it
generally persists in an upper-semicontinuous way too, concrete continuity results for Σ+

are necessary due to the facts that

(1) one expects smooth changes in the exponential decay/growth of solutions,
(2) a certain robustness in the hierarchy of stable manifolds (precisely their dimensions)

under perturbations is useful, and
(3) numerical approximation schemes (see [12, 22]) for the upper-semicontinuous di-

chotomy spectrum become validated for a certain class of problems.

Finally, there is the observation that Σ+ generalizes the set of eigenvalues or Floquet
multipliers, which depend at least continuously on parameters (see, e.g. [20, pp. 369ff]).
Such a behavior is certainly also desirable in a nonautonomous framework.

1.1. Main results and structure

This paper focusses on nonautonomous linear difference equations

xk+1 = Akxk for all k ≥ κ (∆A)

in Rd, where the coefficients Ak form a bounded sequence of invertible matrices. Notice
that (∆A) for example occur when investigating the behavior of nonlinear difference
equations xk+1 = fk(xk) near given aperiodic forward solutions (φ∗k)k≥κ in terms of their
variational equation xk+1 = Dfk(φ

∗
k)xk.

We are interested in the behavior of the corresponding Sacker-Sell spectrum

Σ+(A) =
{
γ > 0 : xk+1 = γ−1Akxk has no exponential dichotomy on Z+

κ

}
⊂ R
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on a half line Z+
κ := {κ, κ+ 1, . . .}, κ ∈ Z, with respect to the Hausdorff metric. Our

main results can be summarized as follows:

• By adapting an abstract example of Kakutani, we present a scalar difference equa-
tion, whose Sacker-Sell spectrum abruptly shrinks under perturbation (see Ex. 4.2).
To the author’s knowledge, previous examples of equations with discontinuous spec-
trum were defined on the entire axis and were at least 2-dimensional.

• Continuity of the Sacker-Sell spectrum is a generic property. If one equips the set
of equations (∆A) with the uniform topology, then Σ+ is continuous on a dense
Gδ-set and discontinuous on a meagre set (see Thm. 4.1).

• Thm. 4.4 establishes that the Sacker-Sell spectrum is continuous for equations with
a discrete spectrum. This includes the classical autonomous and periodic cases, as
well as problems under the frequently made assumption of a full spectrum, where
all spectral intervals are singletons and their number coincides with the system
dimension.
• Finally, in Thm. 4.5 and 4.6 we identify some classes of difference equations whose

spectrum behaves continuously.

Addressing this paper’s structure, we begin with remarks on Bohl exponents as a tool
indicating uniform exponential stability and yielding sharp bounds for the dichotomy
spectrum. The central idea for our overall approach preludes the following Sect. 3 and
has its origin in [4–6]: The dichotomy spectrum Σ+ can be characterized as Fredholm
(or approximate point) spectrum of a unilateral matrix-weighted shift operator on an
appropriate sequence space (`2 in our case). Based on abstract operator theoretical re-
sults from [9, 10], we then provide sufficient criteria for the continuity of the dichotomy
spectrum in Sect. 4 — among them is the mentioned and geometrically clear condition of
singletons as spectral intervals. The concluding Sect. 5 explains how the obtained results
carry over to the Sacker-Sell spectrum on the nonpositive line, compares them to the full
line situation discussed in [35] and illustrates their applicability in continuous time.

Throughout, our results are formulated in a strict dynamical systems language, al-
though their proofs heavily rely on operator and spectral theory. For the convenience of
the reader, we accordingly collected the required preliminaries in the appendices, which
constitute almost one third of the paper. They contain several basics including a spectral
picture for weighted unilateral shifts.

Finally, our confinement to a discrete time setting of difference equations in finite
dimensions has three reasons: First, tools from operator theory apply instantly and it
is not even necessary to leave the realm of bounded operators. Second, corresponding
results on ordinary differential equations immediately follow via an application to their
time-1-maps (cf. Sect. 5) and third, weighted shifts with matrix- rather than general
operator-weights have simpler spectral pictures.

1.2. Dynamics via operator theory

The use of operator theory to study dynamical systems is not new, but turned out to be
fruitful (cf., for instance the monograph [7] or the papers [4–6]). Indeed, such a connection
has several technical merits, since the whole array of perturbation tools from operator
theory becomes available. This allows quite elegant and short proofs of results like the
robustness of EDs in [4, 5], their invariance under perturbations decaying to 0 from [6], the
smooth dependence of associated invariant projectors on parameters, or the classification
of nonautonomous bifurcations via [33]. From this perspective it suggested itself to tackle
also continuity properties of the Sacker-Sell spectrum within such a framework.
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Nevertheless, applying rather general operator-theoretical tools to quite particular sit-
uations (shift operators, in the present case) naturally leads to some losses. For instance,
our approach might impede insights into the actual dynamical features of a problem. The
use of dynamical systems methods could also lead to more concrete results applicable
to wider classes of problems. In any case, the author is looking forward to further con-
tributions on the continuous behavior of the Sacker-Sell spectrum, or even on a smooth
dependence of its boundary points on parameters — applications are ubiquitous.

1.3. Terminology

A discrete interval I is the intersection of a real interval I with the integers Z; we often
write I′ := {k ∈ I : k + 1 ∈ I} and IZ := I ∩ Z. In our setting, I is typically a discrete
half line of the form Z+

κ := [κ,∞)Z, Z−κ := (−∞, κ]Z, where κ ∈ Z is fixed from now on.
Suppose that X is a Banach space with norm |·| and Bρ(x) is the open ball in X with

center x and radius ρ > 0. The Banach algebra of bounded linear operators on X is
denoted by L(X), idX is the unit element, i.e. the identity mapping, and GL(X) are
the invertible elements. In concrete settings, X is the unitary space Cd with the inner
product 〈x, y〉 :=

∑d
j=1 xj ȳj for all x, y ∈ Cd and the induced norm |x| :=

√
〈x, x〉, or

the bounded sequences `∞(Cd) in Cd or the Hilbert space of square-summable sequences
`2(Cd) in Cd with the inner product

〈〈φ, ψ〉〉 :=

∞∑
k=κ

〈φk, ψk〉 for all φ = (φk)κ≤k, ψ = (ψk)κ≤k

inducing the norm ‖φ‖ :=
√
〈〈φ, φ〉〉. We write `2 = `2(Cd) throughout.

Given a subset Ω ⊆ X, we denote its interior by int Ω and its closure by Ω.

2. Dichotomies and Bohl exponents

When linearizing a nonlinear difference eqn. xk+1 = fk(xk) along a non-constant solution
φ∗ = (φ∗k)k∈I, the resulting variational eqn.

xk+1 = Dfk(φ
∗
k)xk

is a linear nonautonomous difference equation, even if the right-hand side fk does not
depend on k. Spectral properties of this variational equations allow tangible conclusions
on the dynamical behavior near φ∗ (cf. for instance, [1, 32]). We take this as a motivation
to abstractly study linearly homogeneous nonautonomous difference equations

xk+1 = Akxk (∆A)

on an unbounded discrete interval I. Here, we suppose that Ak ∈ GL(Cd), k ∈ I′, are
invertible matrices and uniformly bounded in k — this is legitimate when linearizing
along a bounded solution φ∗. A difference eqn. (∆A) is uniquely determined by this
sequence (Ak)k∈I′ and we consider the corresponding space

L∞(Cd) := `∞(L(Cd)), ‖A‖ := sup
k∈I′
|Ak|
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carrying the topology of uniform convergence.
The solutions to (∆A) are given in terms of the transition matrix

Φ : I× I→ GL(Cd), Φ(k, l) :=


Ak−1 · · ·Al, l < k,

idCd , k = l,

A−1
k · · ·A−1

l−1, k < l

and in order to indicate the dependence on A we sometimes write ΦA(k, l).
For local stability questions concerning φ∗ or the stability of (∆A), the notion of an

exponential dichotomy is central. One says (∆A) has an exponential dichotomy on a
discrete interval I (abbreviated ED, cf. [16, p. 229, Def. 7.6.4] or [2, 6]), if there exists a
sequence of projections Pk ∈ L(Cd), k ∈ I, satisfying

Pk+1Ak = AkPk for all k ∈ I′,

as well as reals α ∈ (0, 1), K ≥ 1 guaranteeing the hyperbolic splitting

|Φ(k, l)Pl| ≤ Kαk−l, |Φ(l, k)[idCd −Pk]| ≤ Kαk−l for all l ≤ k

and k, l ∈ I. The Sacker-Sell of dichotomy spectrum of (∆A) is given as

ΣI(A) =
{
γ > 0 : xk+1 = γ−1Akxk does not have an ED on I

}
.

Due to [4, Thm. 4] or [3, Thm. 3.4], this set ΣI(A) ⊆ R+ is empty or consists of up to d
disjoint spectral intervals, i.e. there is an 1 ≤ m ≤ d with

ΣI(A) =

{
(0, βm]

[αm, βm]
∪
m−1⋃
i=1

[αi, βi] (2.1)

and reals 0 < αm ≤ βm < αm−1 ≤ . . . ≤ β1. One speaks of a discrete spectrum (2.1),
provided all intervals [αi, βi] are singletons, i.e. αi = βi, 1 ≤ i ≤ m; the eqn. (∆A) has
full spectrum, if additionally m = d holds. Autonomous difference eqns. xk+1 = Axk with
coefficients A ∈ GL(Cd) have the discrete Sacker-Sell spectrum

ΣI(A) = {|λ| > 0 : λ ∈ σ(A)} (2.2)

and in case all moduli are pairwise different, one has a full spectrum.
In order to distinguish the three basic dichotomy spectra, let us fix κ ∈ Z and write

Σ+(A) := ΣZ+
κ

(A), Σ−(A) := ΣZ−κ (A), Σ(A) := ΣZ(A)

for the forward, the backward resp. the all time spectrum.
We first and foremost are interested in Σ+(A) here. The spectral interval of Σ+(A) with

right boundary point β1 is called dominant, because it determines stability properties:

• In case β1 = max Σ+(A) < 1 the eqn. (∆A) is uniformly asymptotically stable.
• Each gap in Σ+(A) gives rise to a stable subspace, which persists locally under

ambient nonlinear perturbations (cf. [32, p. 259, Thm. 4.6.4(a)]).
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The assumption Ak ∈ GL(Cd), k ∈ I′, ensures that a spectral interval (0, βm] can be
avoided under the boundedness condition

sup
k∈I′

∣∣A−1
k

∣∣ <∞ (2.3)

and that Σ+(A) is independent of κ ∈ Z. This picture is softened for noninvertible
matrices: Although EDs can be defined under such weaker conditions (cf. [2, 16]), spectral
intervals with lower bound 0 might occur.

There exists a close relation between EDs, the corresponding Sacker-Sell spectrum and
the notion of Bohl exponents (cf. [20]). Their convenient definition requires an abstract
setting. Let us assume that A is a normed unital algebra over K ∈ {R,C} with norm |·|.
Given this, we introduce the upper resp. lower Bohl exponent as

β(a) := lim sup
n→∞

sup
κ≤k

n

√√√√∣∣∣k+n−1∏
j=k

aj

∣∣∣, β(a) := lim inf
n→∞

inf
κ≤k

n

√√√√∣∣∣k+n−1∏
j=k

aj

∣∣∣ (2.4)

for a sequence a = (ak)κ≤k in A. These nonnegative real numbers satisfy

β(a) ≤ β(a) ≤ lim sup
k→∞

|ak|

(for this, cf. [36, Cor. to Thm. 5]), as well as the positive homogeneity β(λa) = |λ|β(a)
and β(λa) = |λ|β(a) for every scalar λ ∈ K. Moreover, the left-hand limit in (2.4) exists
with the characterization (cf. [36, Thm. 2])

β(a) = lim
n→∞

sup
κ≤k

n

√√√√∣∣∣k+n−1∏
j=k

aj

∣∣∣ = inf
n≥1

sup
κ≤k

n

√√√√∣∣∣k+n−1∏
j=k

aj

∣∣∣.
In an algebra A with multiplicative norm (i.e. |ab| = |a| |b| for all a, b ∈ A) the relations
β(|a|) = β(a), β(|a|) = β(a) hold and if every ak ∈ A is invertible, then

β(a) = lim
n→∞

inf
κ≤k

n

√√√√∣∣∣k+n−1∏
j=k

aj

∣∣∣ = sup
n≥1

inf
κ≤k

n

√√√√∣∣∣k+n−1∏
j=k

aj

∣∣∣.
The relation between Bohl exponents and the Sacker-Sell spectrum is illuminated in

k

|ak|
α

β

2 4 8 16 32

Figure 1. The sequence (ak)1≤k from Ex. 2.1(1) with β < α

Example 2.1: Suppose that A is the Banach algebra C and I = Z+
1 . For sequences
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a ∈ `∞(C) with ak 6= 0 for all 1 ≤ k, let us consider scalar difference equations

xk+1 = akxk. (∆a)

Then, β(a) = max(Σ+(a) ∪ {0}) holds and in case sup1≤k
∣∣a−1
k

∣∣ < ∞ one arrives at a

compact interval Σ+(a) = [β(a), β(a)] as spectrum.
(1) More specifically, let us consider coefficient sequences fulfilling

|ak| =
{
α, k ∈ [2n, 2n+1)Z with even n ∈ Z+

0 ,

β, k ∈ [2n, 2n+1)Z with odd n ∈ Z+
1

with reals α, β > 0 (cf. Fig. 1). The values |ak| are alternately constant to α, β on
increasingly larger discrete intervals and consequently

Σ+(a) = [min {|α| , |β|} ,max {|α| , |β|}] .

(2) Following [18], if we recursively define

γ1 := 1, γ2 := 1
4 , γn+1 := (γ1γ2 · · · γn)n+1 for all n ≥ 2,

then the real sequence a = (γ1, . . . , γ9, γ1, . . . , γ90, γ1, . . . , γ900, . . .) satisfies the limit rela-
tion lim supk→∞ ak = 1 and has a vanishing upper Bohl exponent β(a) = 0. This yields
Σ+(a) = ∅, because every forward solution to (∆a) decays super-exponentially.

3. Weighted shifts and system classes

Although dichotomy spectra are initially defined on a dynamical systems basis via (2.2),
a close connection to the theory of shift operators holds (cf. [6]). The crucial observation
is that Σ+(A) and the Fredholm spectrum of the unilateral matrix-weighted shift

TA ∈ L(`2), TAφ := (0, Aκφκ, Aκ+1φκ+1, . . .) for all φ ∈ `2

are related by (cf. [6], [33, Thm. 3.22])

Σ+(A) = σF (TA) ∩ R+. (3.1)

This, for instance, allows to deduce the dichotomy spectra given in the above Ex. 2.1
from [37, Thm. 1] (cf. also (C.3)) resp. [18]. By Prop. C.5 and the spectral mapping
theorem [26, p. 33, Thm. 1.11.1] a further immediate consequence of (3.1) are

Σ+(A) ⊆
[
β(A), β(A)

]
, Σ+(λA) = |λ|Σ+(A) for all λ ∈ C \ {0} .

Proposition 3.1: The Fredholm spectrum σF (TA) ⊆ C is rotationally invariant w.r.t.
the origin. If A,B ∈ L∞(Cd), then the following holds:

Σ+(A) = Σ+(B) ⇔ σF (TA) = σF (TB).
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Proof. Due to (3.1) it suffices to show that the Fredholm spectrum σF (TA) ⊂ C is
rotationally invariant w.r.t. 0, which was done in [33, Lemma 3.21].

We next identify difference eqns. (∆A) for which Σ+(A) behaves nicely under pertur-
bation of A ∈ L∞(Cd). This requires two preparations:

• First, the linear space of matrix sequences commuting asymptotically with A is

EC(A) :=

{
B ∈ L∞(Cd) : lim

k→∞
|Ak+1Bk −Bk+1Ak| = 0

}
and contains those B ∈ L∞(Cd) fulfilling limk→∞

∣∣Bk −Ak∣∣ = 0.

• Second, given a nonempty subset X ⊆ L∞(Cd), compact perturbations to matrix
sequences in X are abbreviated as

EX :=

{
X +K ∈ L∞(Cd) : X ∈ X , K ∈ L∞(Cd) with lim

k→∞
Kk = 0

}
.

Obviously X ⊆ EX holds and an element of EX is said to be essentially in X . E.g.
the matrix sequences X ∈ E {0} satisfy β(X) = 0, while the converse is not true
(see Exs. 2.1(2) and C.4 for a drastic example). With subsets X ⊆ Y of L∞(Cd) it
results EX ⊆ EY.

For arbitrary p ∈ Z+
1 , let us now introduce

Hp(Cd) :=
{
A ∈ L∞(Cd) : Φ(k + 2p, k + p)∗Φ(k + 2p, k + p)

≥ Φ(k + p, k)Φ(k + p, k)∗ for all κ ≤ k
}

with the relation B ≥ A :⇔ B −A is Hermitian positive semidefinite.
The sets Hp(Cd) ⊆ L∞(Cd) are topologically closed and as in [35, Prop. 3.6(a)] one

establishes that a ∈ Hp(C) implies aA ∈ Hp(Cd) for each A ∈ Hp(Cd).

Example 3.2: (1) In the special case d = 1 of scalar eqns. (∆a) one has L(C1) = C
and commutativity yields

Hp(C) =

a ∈ `∞(C) :

k+p−1∏
j=k

|aj | ≤
k+2p−1∏
j=k+p

|aj | for all κ ≤ k

 . (3.2)

This means that sequences a ∈ Hp(C) are determined by the following: Consecutive geo-
metric means over the terms |ak| , . . . , |ak+p−1| and |ak+p| , . . . , |ak+2p−1| do not decrease
in k ≥ κ. The characterization (3.2) yields that a ∈ Hp(C) ⇔ |a| ∈ Hp(C). Moreover,
one has H1(Cd) ⊆ Hp(Cd). Note that (3.2) extends to the diagonal elements in order to
describe sequences of diagonal matrices in Hp(Cd).

(2) If (∆A) is a p-periodic difference equation with A ∈ Hp(Cd), then its transition
matrix satisfies the condition

Φ(k + p, k)∗Φ(k + p, k) ≥ Φ(k + p, k)Φ(k + p, k)∗ for all κ ≤ k.

8
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We remind the reader that linear difference eqns. (∆A) and (∆B) are called kinemati-
cally similar, provided there exists a sequence (Λk)κ≤k (called Lyapunov transformation)
such that beyond Λk+1Bk = AkΛk also

Λk ∈ GL(Cd) for all κ ≤ k, sup
κ≤k

max
{
|Λk| ,

∣∣Λ−1
k

∣∣} <∞
holds. In this case we write A 'Λ B and point out that kinematic similarity defines an
equivalence relation on the space of all difference eqns. (∆A). As in [35, Prop. 3.6(b)] it
can be shown that the equivalence class of A ∈ Hp(Cd) in Hp(Cd) contains all B 'U A
with unitary matrices Uk ∈ L(Cd), k ∈ Z+

κ .
Linear difference eqns. (∆A) with coefficients essentially inHp(Cd) and discrete Sacker-

Sell spectrum allow the following result:

Proposition 3.3: If (∆A) has discrete spectrum and A ∈ EHp(Cd), then

lim
k→∞

(Φ(k + 2p, k + p)∗Φ(k + 2p, k + p)− Φ(k + p, k)Φ(k + p, k)∗) = 0.

Proof. The assumptions imply that A is of the form A = Ā + K, where Ā ∈ Hp(Cd)
and K ∈ L∞(Cd) with limk→∞Kk = 0. For A ∈ EHp(Cd) our Prop. C.9(a) shows that
SĀ := T p

Ā
is hyponormal. Since the sequence A = (Ak)κ≤k is bounded, it is easy to see

from Prop. C.3(a) that the commutators S∗ASA−SAS∗A and S∗
Ā
SĀ−SĀS∗Ā only differ by

a compact operator and so their essential norms satisfy

‖S∗ASA − SAS∗A‖F =
∥∥S∗ĀSĀ − SĀS∗Ā∥∥F ≤ 1

πλ2(σF (SĀ)) (3.3)

with the latter inequality valid due to [8, Theorem]. By the spectral mapping theorem
[26, p. 33, Thm. 1.11.1] for σF , we obtain σF (SĀ) = σF (T p

Ā
) = σF (TĀ)p and because σF

is invariant under compact perturbations, this implies

σF (SĀ) = σF (TA)p
(3.1)
=
{
eitλ ∈ C : t ∈ [0, 2π) and λ ∈ Σ+(A)

}p
.

As a discrete (in fact finite) set, Σ+(A) yields the measure λ2(σF (SĀ)) = 0 and (3.3)
guarantees that the commutator S∗ASA − SAS∗A is a compact operator. Then the claim
follows from Props. C.1(b) and C.3(e).

Elements of H1(Cd) have distinguished representatives under kinematic similarity,
namely sequences increasing w.r.t. the relation ≥ and converging to a Hermitian positive
semidefinite matrix. In particular, they have discrete dichotomy spectra:

Theorem 3.4: If A ∈ H1(Cd), then A 'U B with an eqn. (∆B) satisfying:

(a) The coefficient matrices Bk ∈ GL(Cd) are positive semidefinite Hermitian and

Bk ≤ B+ := lim
n→∞

Bn for all κ ≤ k. (3.4)

(b) The corresponding Lyapunov transformation U consists of unitary matrices.
(c) For B+ ∈ GL(Cd) one has Σ+(A) = {|λ| > 0 : λ ∈ σ(B+)}.

Proof. (a) and (b) Due to Prop. C.8 the shift operator TA ∈ L(`2) is unitarily equivalent
to a weighted shift TB ∈ L(`2) by means of a multiplication operator MU ∈ L(`2) with
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unitary weights Uk ∈ L(Cd) and positive semidefinite Hermitian Bk. In particular, it is
Bk = U∗k+1AkUk for all κ ≤ k and (∆A) is kinematically similar to (∆B). One has

0 ≤ Bk ≤ sup
κ≤n
|Bn| idCd for all κ ≤ k (3.5)

and we show convergence for Bk: Our assumption A ∈ H1(Cd) yields

B∗k+1Bk+1 −BkB∗k = U∗k+1

(
A∗k+1Ak+1 −AkA∗k

)
Uk+1 ≥ 0 for all κ ≤ k

and thus B2
k+1 = B∗k+1Bk+1 ≥ BkB∗k = B2

k ≥ 0 (thanks to (B.2)) holds. Because of (3.5)
the Löwner-Heinz inequality (see [31]) applies and establishes that (Bk)κ≤k is bounded
nondecreasing. Hence, the limit (3.4) exists (see [17]).

(c) We proved that the difference eqns. (∆A) and (∆B) are kinematically similar and
therefore have the same dichotomy spectrum. Thanks to (3.4), the eqn. (∆B) is a com-
pact perturbation of xk+1 = B+xk and the claim follows from [33, Cor. 3.26]. Here the
assumption Ak ∈ GL(Cd) implies that also each Bk is invertible.

Given any p ∈ Z+
1 , we furthermore introduce the sets

Pp(Cd) :=
{
A ∈ L∞(Cd) : Φ(k + 2p, k)∗Φ(k + 2p, k)

− 2rΦ(k + p, k)∗Φ(k + p, k) + r2 idCd ≥ 0 for all κ ≤ k, r > 0
}
,

which satisfy the following properties:

Proposition 3.5: Let p ∈ Z+
1 and assume that A ∈ Pp(Cd).

(a) λA ∈ Pp(Cd) for all λ ∈ C.
(b) If A 'U B and U consists of unitary matrices Uk ∈ L(Cd), then B ∈ Pp(Cd).
(c) Hp(Cd) ⊆ Pp(Cd) ⊆ Pnp(Cd) for all n ∈ Z+

1 .

Remark 3.6: As further class of coefficients A ∈ L∞(Cd), which not only lay between
Hp(Cd) and Pp(Cd), but are also easy to characterize, we mention those satisfying

Φ(k + 2p, k)∗Φ(k + 2p, k) ≥ [Φ(k + p, k)∗Φ(k + p, k)]2 for all κ ≤ k.

Proof. Assertion (a) readily follows from the definition. In order to show (b) we observe
that ΦB(k, l) = U∗kΦA(k, l)Ul for all k, l ∈ Z+

κ implies the relations

ΦB(k + 2p, k)∗ΦB(k + 2p, k) = U∗kΦA(k + 2p, k)∗ΦA(k + 2p, k)Uk,

ΦB(k + p, k)∗ΦB(k + p, k) = U∗kΦA(k + p, k)∗ΦA(k + p, k)Uk

for all κ ≤ k. Thus, Prop. C.9(b) and (B.2) ensure the claim. Concerning (c), the first
inclusion follows since Prop. C.9 guarantees

Hp(Cd) =
{
A ∈ L∞(Cd) : TA ∈ Hp(`

2)
}
,

Pp(Cd) =
{
A ∈ L∞(Cd) : TA ∈ Pp(`2)

}

10
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and that hyponormal operators are paranormal by [26, p. 74, (2.57)]. The second inclusion
Pp(Cd) ⊆ Pnp(Cd), n ≥ 1, is due to [14, Thm. 1].

Example 3.7 (scalar equations): In case d = 1 it is Hp(C) = Pp(C) for every p ∈ Z+
1

and κ ≤ k. In addition, the characterization (3.2) from Ex. 3.2(1) holds. To establish
Pp+1(Cd) \ Pp(Cd) 6= ∅, consider a p+ 1-periodic complex sequence a with

|ak| =
{
α, k mod (p+ 1) 6= 0,

β, else
for all κ ≤ k

and reals 0 < β < α. This yields
∏k+p
j=k |aj | = αpβ =

∏k+2p+1
j=k+p+1 |aj | for all κ ≤ k.

Therefore (3.2) implies a ∈ Pp+1(C). On the other side, for k = 1 one obtains

k+p−1∏
j=k

|aj | = αp > αp−1β =

k+2p−1∏
j=k+p

|aj | ,

from which a 6∈ Pp(C) follows.

Moreover, in dimensions d > 1 the set Pp(Cd) is strictly larger than Hp(Cd):

Example 3.8: On the discrete interval Z+
κ the coefficient sequence

Aκ :=

(
1 0
0 0

)
, Ak := 1√

2

(
1 1
1 1

)
for all κ < k

satisfies Φ(κ + 2, κ + 1)∗Φ(κ + 2, κ + 1) − Φ(κ + 1, κ)Φ(κ + 1, κ)∗ =
(

0 1
1 1

)
. This matrix

has the eigenvalues ±1 and is thus not Hermitian positive semidefinite, i.e. A 6∈ H1(C2).
However, A ∈ P1(C2) holds because for every r > 0 the matrix

Φ(κ+ p, κ)∗Φ(κ+ 2, κ)− 2rΦ(κ+ p, κ)∗Φ(κ+ p, κ) + r2 idC2

=

(
(r − 1)2 0

0 r2

)
for all r > 0

is obviously positive semidefinite.

4. Continuity of the Sacker-Sell spectrum

In this main section, we finally address continuity properties of the Sacker-Sell spectrum.
To be specific, we interpret

Σ̄+(A) := Σ+(A) ∪ {0}

as a mapping from L∞(Cd) (identified with the eqns. (∆A)) into the metric space K(R)
of nonempty compact subsets of R; the union with {0} enforces Σ̄+(A) to be nonempty
compact. It is known that Σ̄+ : L∞(Cd) → K(R) is upper-semicontinuous, i.e. given a
sequence (An)n≥1 with limit A ∈ L∞(Cd) one has (cf. [33, Cor. 3.24])

lim
n→∞

d(Σ̄+(An), Σ̄+(A)) = 0,

11
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where d denotes the Hausdorff semidistance (see Appendix A). Equivalently, if Σ+(A) is
of the form (2.1), then for every ε > 0 there exists a N ∈ Z+

1 such that (see [6, Thm. 2.5])

Σ+(An) ⊆
{

(0, β1 + ε]

[α1 − ε, β1 + ε]
∪

m⋃
i=2

[αi − ε, βi + ε] for all n ≥ N.

From general properties of upper-semicontinuous functions we derive

Theorem 4.1: Σ̄+ : L∞(Cd)→ K(R) is continuous on a dense Gδ-set and discontinu-
ous on a meagre set.

Proof. First, as upper-semicontinuous function mapping the Banach space L∞(Cd) into
K(R), we get from Fort’s theorem (cf. e.g. [28]) that Σ̄+ is continuous on a dense Gδ-set.
Second, [29, p. 57, Thm. 14] yields that the points of discontinuity for σF : L(X)→ K(C)
form a meagre set and due to (3.1) this property extends to Σ̄+.

The known examples of discontinuous spectra addressed EDs on the full axis and
required at least 2-dimensional systems. Yet, on the half line and even for scalar difference
eqns. (∆a) one cannot expect a continuous behavior of the Sacker-Sell spectrum. Inspired
by an abstract example from Kakutani (see Ex. C.7) we have

1 3 6 10 15 21 28 k

ak

1

. . .2

Figure 2. The sequence (ak)0≤k from Ex. C.7

Example 4.2: Let I = Z+
0 and suppose that (γk)k∈Z+

0
is a real sequence with positive

values and limit 0. Given this, we define further real sequences as follows:

• The bounded sequence a (see Fig. 2) is pointwise given as

ak :=


γ0, k ∈ 20 − 1 + 21Z+

0 ,

γ1, k ∈ 21 − 1 + 22Z+
0 ,

γ2, k ∈ 22 − 1 + 23Z+
0 , . . .

and in general ak := γl for nonnegative integers k ∈ 2l − 1 + 2l+1Z+
0 , l ∈ Z+

0 , i.e.

a = (γ0, γ1, γ0, γ2, γ0, γ1, γ0, γ3, γ0, γ1, γ0, γ2, γ0, γ1, γ0, γ4, γ0, γ1, γ0, γ2, γ0, γ1, γ0, γ3, γ0, . . .).

• For every n ∈ Z+
1 and k ∈ Z+

0 set

ank :=

{
0, ak = γn,

ak, else
for all k ∈ Z+

0

and this yields bounded real sequences an, which explicitly read as

a1 = (γ0, 0, γ0, γ2, γ0, 0, γ0, γ3, γ0, 0, γ0, γ2, γ0, 0, γ0, γ4, γ0, 0, γ0, γ2, γ0, 0, γ0, γ3, γ0, . . .),

12
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a2 = (γ0, γ1, γ0, 0, γ0, γ1, γ0, γ3, γ0, γ1, γ0, 0, γ0, γ1, γ0, γ4, γ0, γ1, γ0, 0, γ0, γ1, γ0, γ3, γ0, . . .),

a3 = . . .

We next compare the upper Bohl exponents of a and an, n ∈ Z+
1 . On the one hand, in

order to show that a has a positive upper Bohl exponent, we observe that

0∏
j=0

aj = γ0,

2∏
j=0

aj = γ1γ
2
0 ,

6∏
j=0

aj = γ2γ
2
1γ

4
0

and in general by mathematical induction

2p−2∏
j=0

aj = γp−1γ
4
p−2 · · · γ2p−1

0 for all p ∈ Z+
1 .

For the upper Bohl exponent of a this implies

β(a) = lim
n→∞

sup
k≥0

n

√√√√k+n−1∏
j=k

aj = lim
p→∞

sup
k≥0

2p−1

√√√√k+2p−2∏
j=k

aj ≥ lim inf
p→∞

2p−1

√√√√2p−2∏
j=0

aj

= lim inf
p→∞

2p−1

√
γp−1γ4

p−2 · · · γ2p−1

0

and it remains to show that the limit inferior on the right-hand side is positive for ap-
propriate sequences γ. Indeed, setting γk := e−k and taking the logarithm yields

ln 2p−1

√
γp−1γ4

p−2 · · · γ2p−1

0 =
2p

2p − 1

p−1∑
j=0

ln γj
2j+1

= − 2p

2p − 1

p−1∑
j=0

j

2j+1

=
p− 2p − 1

2p − 1
−−−→
p→∞

−1.

Consequently, e−1 > 0 is a lower bound for β(a). On the other hand, for every n ∈ Z+
1

there exists a finite discrete subinterval of Z+
0 on which (at least) one entry of the sequence

an vanishes, which guarantees β(an) = 0.
Let us now consider the scalar difference eqns. (∆b) and (∆bn), whose coefficients

bk := ak + 1
2k , bnk := ank + 1

2k for all k ∈ Z+
0 ,

are positive and bounded. This leads to:

• Since upper Bohl exponents are invariant under perturbations with limit zero (see
[36, Thm. 5]), one has β(b) = β(a) > e−1 and β(bn) = 0 for all n ∈ Z+

1
• The relation supk≥0 |bk − bnk | = supk≥0 |ak − ank | = γn −−−→

n→∞
0 ensures that every

neighborhood of (∆b) contains an equation (∆bn) with Bohl exponent 0.

In conclusion, the difference eqn. (∆b) having nontrivial Sacker-Sell spectrum Σ(b) is a
uniform limit of eqns. (∆bn) with empty spectrum, i.e. Σ̄(bn) = {0} for all n ∈ Z+

1 .

13
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In order to obtain also the desired lower semicontinuity for Σ+ and therefore conver-
gence in the Hausdorff metric h, let us again rely on the relations (3.1) and employ the
weighted shifts TA ∈ L(`2) from (C.1), as well as

Proposition 4.3: Keep α ∈ {F, π} fixed. If σα : L(`2) → K(C) is continuous at TA,
then Σ̄+ : L∞(Cd)→ R is continuous at A.

Proof. The elementary argument for the Fredholm spectrum, although geometrically
clear, can be found in [35, Prop. 5.3]. Thanks to Prop. C.5 one also has σF = σπ on the
class of weighted unilateral shifts and the claim follows.

Difference equations with discrete spectrum are always points of continuity for Σ+;
they particularly include (asymptotically) autonomous or periodic equations:

Theorem 4.4 (continuity of Σ+): If Σ+(A) is discrete, then the Sacker-Sell spectrum
Σ+ is continuous at A.

While our subsequent proof of Thm. 4.4 is purely operator-theoretical, a referee pro-
vided the following more intuitive (and shorter!) argument: The spectrum of a perturbed
difference eqn. (∆B) is contained in a neighborhood of the discrete set Σ+(A) by upper-
semicontinuity. W.l.o.g. this neighborhood is a union of open intervals containing the
spectral points of (∆A). It remains to show that Σ+(B) has a nonempty intersection
with each of these intervals. Crossing such an interval geometrically means for both
(∆A) and (∆B) that the dimension of the stable subspace changes. Hence, each interval
must contain some spectrum of (∆B).

Proof. We briefly write for the resolvent sets

ρnsF (TA) := {λ : TA − λ id is semi-Fredholm with index n} for all n ∈ Z ∪ {±∞} ,
ρ±(TA) :=

⋃
1≤|n|≤∞

ρnsF (TA)

and verify the following conditions:

(I) σF0
(TA) \ ρ±(TA) = ∅, because thanks to Prop. C.5 one has

σF0
(TA)

(C.3)
= σ(TA) = σF (TA)∪̇

d⋃
n=1

ρ−n(TA)

with the open bounded annuli ρn(TA) introduced in Prop. C.5. Since σF (TA) has
empty interior by assumption, we thus conclude

σF0
(TA) =

d⋃
n=1

ρ−n(TA) ⊆ ρ±(TA).

(II) For every n 6= 0, λ ∈ int ρnsF (TA) \ ρnsF (TA) and ε > 0 the ball Bε(λ) contains a
component of σF (TA): In order to establish this, we observe from Prop. C.3(f) and

14
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the spectral picture given in Prop. C.5 that

ρnsF (TA) =

{
ρn(TA), −d ≤ n < 0,

∅, n < −d or 0 < n.

These open sets clearly satisfy the inclusion int ρn(TA) ⊆ ρn(TA) and therefore

int ρnsF (TA) \ ρnsF (TA) = ∅.
Thanks to (I) we deduce from [9, Thm. 3.6] that σF0

is continuous at TA. In combina-
tion with (II) this enables us to apply [10, Thm. 4.1]. Consequently, also the Fredholm
spectrum σF is continuous at TA. Eventually, Prop. 4.3 guarantees as desired that the
Sacker-Sell spectrum Σ+ is continuous at A.

While Thm. 4.4 is a criterion that the dichotomy spectrum of a particular (∆A) is
continuous, we now obtain whole classes of equations with this behavior:

Theorem 4.5: The Sacker-Sell spectrum Σ+ of (∆A) is continuous on EC(A) w.r.t.
perturbations in EC(A).

Proof. Let (An)n≥1 be a sequence in EC(A) ⊆ L∞(Cd) with limit A and thus

lim
k→∞

∣∣Ank+1Ak −Ak+1A
n
k

∣∣ = 0 for all n ≥ 1.

Combining (C.2) and Prop. C.3(a), implies that TAnTA − TATAn ∈ L(`2), n ≥ 1, are
compact. Because Lemma C.2 yields limn→∞ TAn = TA we can deduce from [26, p. 53,
Lemma 2.3.2] that the limit relation limn→∞ σF (TAn) = σF (TA) holds. Then the claim
again follows from Prop. 4.3.

Theorem 4.6: The Sacker-Sell spectrum Σ+ is continuous on the sets EPp(Cd), p ∈ Z+
1 .

Proof. Let p ∈ Z+
1 . If A ∈ EPp(Cd) is limit of a sequence (An)n≥1 in EPp(Cd), then the

representations A = Ā+K, An = Ān +Kn with

Ā ∈ Pp(Cd), lim
k→∞

Kk = 0,

Ān ∈ Pp(Cd), lim
k→∞

Kn
k = 0 for all n ≥ 1

hold. Now Prop. C.9(b) shows that the powers T p
Ā

and T p
Ān

are paranormal, and both
TA = TĀ + TK , as well as TAn = TĀn + TKn are compact perturbations to pth roots of
paranormal operators by Prop. C.3(a). Thus, [13, Thm. 2.5] guarantees the limit relation
limn→∞ σF (TAn) = σF (TA) in the Hausdorff metric and anew Prop. 4.3 yields continuity
on the set EPp(Cd).

The Thm. 4.6 also guarantees continuity of Σ+ on the subsets EHp(Cd) ⊆ EPp(Cd)
(cf. Prop. 3.5(c)), whose elements are easier to characterize than those of EPp(Cd).
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5. Further remarks

5.1. Backward spectrum

While the forward spectrum Σ+(A) has immediate applications in stability theory, also
the backward spectrum is relevant. Indeed, gaps in Σ−(A) lead to unstable subspaces per-
sisting under small nonlinearities leading to unstable fiber bundles, i.e. nonautonomous
unstable manifolds (cf. [32, p. 259, Thm. 4.6.4(b)]). Furthermore, Σ−(A) is independent
of the initial time κ. The forward and backward spectra have analogous properties. Con-
cerning a proof, it suffices to note that our obtained results carry over to the backward
spectrum by means of the following spectral mapping theorem:

Proposition 5.1: Under (2.3) the relation

Σ−(A) = 1/Σ+(B) :=
{

1
γ > 0 : γ ∈ Σ+(B)

}
holds for the coefficient sequence Ak := B−1

2κ−k−1, k ∈ Z−κ−1.

This ensures that the backward spectrum of (∆A) can be represented via the forward
spectrum of the inverted equation (∆B).

Remark 5.2 (bounded growth): (1) Throughout the paper, we restricted to bounded
coefficient matrices. Technically, this had the enormous benefit to work with bounded
shift operators TA. Dynamically, this assumption prevented arbitrarily large growth.
The additional assumption (2.3) avoids also arbitrarily small growth (as featured in
Ex. 2.1(2)). Such systems, whose spectrum has positive distance from 0, are said to
possess bounded growth (see, e.g., [3]). Prop. 5.1 applies to this class and consequently
also the spectrum Σ+(B) stays away from 0.

(2) Note that the equations from Ex. 4.2 featuring a discontinuous Sacker-Sell spectrum
fail to have bounded growth, since their coefficients violate (2.3).

Proof. W.l.o.g. we can assume an initial time κ = 0. Moreover, our assumption (2.3)
guarantees that (|Ak|)k<κ is bounded away from 0. It is easy to show that (∆A) has an
ED on Z+

0 with projector Pk, k ∈ Z+
0 , if and only if

xk+1 = Akxk, Ak := B−1
−k−1

possesses an ED on Z−−1 with projector id−P−k. Therefore, the following equivalences

γ ∈ Σ+(B)⇔ xk+1 = γ−1Bkxk has an ED on Z+
0

⇔ xk+1 = γAkxk has an ED on Z−−1 ⇔ 1
γ ∈ Σ−(A)

hold and imply the claim.

5.2. All time spectrum

We point out that Thm. 4.4 has immediate consequences for difference eqns. (∆A) defined
on the whole line Z. In fact, their full line Fredholm dichotomy spectrum ΣF (A) allows
the representation (see [33, Prop. 4.29(b)]) ΣF (A) = Σ+(A) ∪ Σ−(A). This implies that
continuity properties of the half line spectra Σ+ and Σ− extend to ΣF .
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Let us compare our current approach to the companion paper [35]: An exponential
dichotomy on the full line is a significantly tighter assumption than merely having an
ED on a semi axis. For this reason, Σ±(A) are not only smaller than Σ(A), but also have
stronger robustness properties. On a technical level, Σ+(A) is related to the essential
spectrum, while Σ(A) could be treated via the usual spectrum and we needed to employ
different operator theoretical tools. Concretely, in [35, Thm. 5.3] we identified equations
with a large Weyl and a small Fredholm spectrum to feature a continuous all time spec-
trum. This criterion applies to equations having spectral intervals of positive length and
excludes examples with discontinuous spectrum (see [35, Ex. 5.6]). Our sufficient crite-
rion Thm. 4.4 is limited to equations with discrete spectrum. Furthermore, the equation
classes Pp(Cd) featuring continuity from [35, Thm. 5.5] were smaller and more rigid than
in the present case of Thm. 4.6

5.3. Continuous time

Our results imminently allow an application to ordinary differential equations. We actu-
ally can study the continuous time situation of linear Carathéodory differential equations

ẋ = A(t)x with A ∈ L∞loc([τ,∞), L(Cd)) (5.1)

on a half line [τ,∞), τ ∈ R (cf. [1]). Their Sacker-Sell spectrum Σ̂+(A) ⊆ R was inves-
tigated in [38, 40]. The corresponding transition matrix U(t, s) ∈ GL(Cd), s, t ∈ R is
exponentially bounded (see [1, Lemma 2.9]) and we define the matrix sequence

Ak := U(k + 1, k) ∈ GL(Cd) for all k ∈ [τ,∞)Z. (5.2)

Then [11, p. 111, Lemma 2.4] implies the estimates

exp

(
−
∫ k+1

k
|A(s)| ds

)
≤
∣∣A±1

k

∣∣ ≤ exp

(∫ k+1

k
|A(s)| ds

)
for all k ≥ τ

and therefore the assumption supτ≤k
∫ k+1
k |A(s)| ds < ∞ guarantees that a difference

eqn. (∆A) has bounded growth.
The characterization [39, Thm. 5.1] implies that the dichotomy spectra of the difference

eqn. (∆A) and of the ODE (5.1) allow the spectral mapping relations

Σ+(A) = exp Σ̂+(A), Σ̂+(A) = ln Σ+(A). (5.3)

By means of these identities several previous results apply to the specific coefficient
sequences (5.2) and yield information on the continuous time spectrum Σ̂+(A). As a
particular example including autonomous or periodic time dependence we obtain

Theorem 5.3 (continuous spectrum for (5.1)): If Σ̂+(A) is discrete, then the Sacker-Sell

spectrum Σ̂+ is continuous at A.

Proof. By means of the relations (5.3) this immediately follows from Thm. 4.4.
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Appendix A. Hausdorff distance

Given a metric space X, let K(X) denote the family of all compact nonempty subsets
of X. Then d(M1,M2) := supx∈M1

dist(x,M2) is the Hausdorff semidistance of sets
M1,M2 ∈ K(X), while its symmetrized version defines the Hausdorff distance

h : K(X)×K(X)→ [0,∞), h(M1,M2) := max {d(M1,M2), d(M2,M1)} .

The pair (K(X), h) is a metric space (cf. [20, p. 374]).

Appendix B. Operators on Hilbert spaces

For an infinite-dimensional separable and complex Hilbert space X with inner product
〈〈·, ·〉〉, let L(X) denote the Banach algebra of bounded linear operators on X with identity
idX . Furthermore, L0(X) is the ideal of compact operators in L(X).

Given an operator T ∈ L(X), we denote its kernel by N(T ). Let us introduce the

spectrum σ(T ) = σa(T ) := {λ ∈ C : T − λ id is not invertible} ,
point spectrum σp(T ) := {λ ∈ C : dimN(T − λ id) > 0} ,

approximate point spectrum σπ(T ) := {λ ∈ C : T − λ id is not bounded below} ,
Fredholm spectrum σF (T ) := {λ ∈ C : T − λ id is not Fredholm} ,

Weyl spectrum σF0
(T ) := {λ ∈ C : T − λ id is not Weyl} ,

where a Fredholm operator with index 0 is called Weyl operator ; one has

σF (T ) ⊆ σF0
(T ) ⊆ σ(T ) ⊇ σπ(T ) ⊇ ∂σ(T ). (B.1)

We write r(T ) := supλ∈σ(T ) |λ| for the spectral radius and define the essential spectral
radius resp. the essential norm of T by

rF (T ) := sup
λ∈σF (T )

|λ| , ‖T‖F := inf
K∈L0(X)

‖T +K‖ .

One speaks of a quasi-nilpotent operator T , if r(T ) = 0 i.e. σ(T ) = {0}.
The adjoint of T ∈ L(X) is denoted by T ∗. A self-adjoint operator T = T ∗ is said

to be positive (in symbols, T ≥ 0), provided 〈〈x, Tx〉〉 ≥ 0 holds for all x ∈ X. In case
the difference T − S of two self-adjoint operators S, T ∈ L(X) is positive, we abbreviate
T ≥ S and obtain the cone-like conditions

βT ≥ αT ≥ αS, T +R ≥ S +R for all 0 ≤ α ≤ β
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and self-adjoint R ∈ L(X). With a unitary operator U ∈ L(X) one finally has

T ≥ S ⇔ U∗TU ≥ U∗SU. (B.2)

An operator T ∈ L(X) is called

hyponormal :⇔ T ∗T ≥ TT ∗,
paranormal :⇔ T ∗2T 2 − 2rT ∗T + r2 idX ≥ 0 for all r > 0

and for every p ∈ Z+
1 we abbreviate the operator classes

Hp(X) := {S ∈ L(X) : Sp is hyponormal} ,
Pp(X) := {S ∈ L(X) : Sp is paranormal} .

The elements of Hp(X) (or Pp(X)) are called pth roots of a hyponormal (resp. paranor-
mal) operator. The sets Hp(X) are closed in the norm topology (cf. [24, Prop. 1.5]), while
H1(X) is nowhere dense in L(X) (cf. [27, Thm. 2.4]). Furthermore, the above operator
classes are invariant under multiplication with a complex scalar.

Appendix C. Multiplication and weighted shift operators

Let us write `2 for the prototypical separable Hilbert space of square-summable sequences
φ = (φk)κ≤k in Cd equipped with the inner product

〈〈φ, ψ〉〉 :=

∞∑
k=κ

〈φk, ψk〉 for all φ, ψ ∈ `2

and the resulting norm ‖φ‖ =
√
〈〈φ, φ〉〉.

Given a bounded weight sequence Λ = (Λk)κ≤k of matrices Λk ∈ L(Cd) we denote

MΛ : `2 → `2, (MΛφ)k := Λkφk for all κ ≤ k

as multiplication operator. It is bounded with ‖MΛ‖ ≤ supκ≤k |Λk| and

〈〈MΛφ, ψ〉〉 =

∞∑
k=κ

〈Λkφk, ψk〉 =

∞∑
k=κ

〈φk,Λ∗kψk〉 for all φ, ψ ∈ `2

yields the adjoint (M∗Λφ)k = Λ∗kφk for all κ ≤ k. Accordingly, a multiplication operator

MΛ is unitary, if and only if Λ−1
k = Λ∗k, κ ≤ k, holds.

Proposition C.1 (properties of multiplication operators): Let Λ ∈ L∞(Cd).

(a) If Λk ∈ GL(Cd), κ ≤ k, then MΛ ∈ GL(`2) ⇔ supκ≤k
∣∣Λ−1

k

∣∣ < ∞ holds. In

particular, it is (M−1
Λ φ)k = Λ−1

k φk for all κ ≤ k.
(b) MΛ ∈ L0(`2), if and only if limk→∞ Λk = 0.

Proof. Analogous to [35, Prop. B.1].
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Given another weight sequence A ∈ L∞(Cd), the weighted unilateral left shift reads as

TA : `2 → `2, TAφ := (0, Aκφκ, Aκ+1φκ+1, . . .). (C.1)

Clearly, TA is bounded with ‖TA‖ = supκ≤k |Ak| and such shift operators form a closed

subspace of L(`2). Given weight sequences A,B ∈ L∞(Cd) one has

TBTAφ = (0, 0, Bκ+1Aκφκ, Bκ+2Aκ+1φκ+1, . . .) for all φ ∈ `2. (C.2)

Lemma C.2: The mapping T· : L∞(Cd)→ L(`2) is linear and continuous.

Proof. The linearity of T· is clear. For arbitrary A ∈ L∞(Cd) it holds

‖TAφ‖2 =

∞∑
k=κ

|(TAφ)k|2
(C.1)
=

∞∑
k=κ

|Akφk|2 ≤
(
sup
κ≤k
|Ak|

)2 ‖φ‖2 for all φ ∈ `2

and consequently ‖TA‖ ≤ supκ≤k |Ak|.

Our analysis requires several basic properties of unilateral weighted shifts. In this
context it is convenient to introduce the discrete Heaviside function

θl : Z→ {0, 1} , θl(k) :=

{
1, k ≥ l,
0, else

for all l ∈ Z.

Proposition C.3 (properties of shifts): Let p ∈ Z+
0 , A ∈ L∞(Cd) and λ ∈ C.

(a) TA ∈ L0(`2), if and only if limk→∞Ak = 0.
(b) TA is quasi-nilpotent, if and only if β(A) = 0.
(c) The adjoint of TA is given by T ∗A ∈ L(`2), (T ∗Aφ)k = A∗kφk+1 for all κ ≤ k.
(d) TA is an isometry, if and only if each weight Ak ∈ L(Cd), κ ≤ k, is unitary.
(e) For every k ∈ Z+

κ one has (T ∗pA φ)k = Φ(k + p, k)∗φk+p and

(T pAφ)k = θκ+p(k)Φ(k, k − p)φk−p =

{
0, κ ≤ k < κ+ p,

Φ(k, k − p)φk−p, k ≥ κ+ p.

(f) TA − λ id`2 is Fredholm, if and only if it is semi-Fredholm. In this case the index
satisfies |ind(TA − λ id)| ≤ d.

The above result shows that every compact shift operator is quasi-nilpotent.

Proof. (a) Thanks to the factorization TA = TIMA the claim follows from Prop. C.1(b);
here I denotes the sequence of identity mappings on Cd.

(b) This is immediate from β(A) = r(TA) (cf. [5, Thm. 1.1(i)]).
(c) and (d) For arbitrary sequences φ, ψ ∈ `2 we obtain

〈〈TAφ, ψ〉〉
(C.1)
=

∞∑
k=κ

〈Akφk, ψk+1〉 =

∞∑
k=κ

〈φk, A∗kψk+1〉 = 〈〈φ, T ∗Aψ〉〉
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with (T ∗Aψ)k := A∗kψk+1 for all κ ≤ k. Furthermore, it is

〈〈TAφ, TAψ〉〉
(C.1)
=

∞∑
k=κ

〈Akφk, Akψk〉 =

∞∑
k=κ

〈φk, A∗kAkψk〉

and thus also the assertion concerning TA being an isometry follows.
(e) Proceeding inductively the claim holds for p = 0. As induction step p→ p+ 1,

(T p+1
A φ)k = (TA(T pAφ))k =


0, κ ≤ k < κ+ p,

Ak−10, k = κ+ p,

Ak−1Φ(k − 1, k − 1− p)φk−1−p, k > κ+ p

=

{
0, κ ≤ k ≤ κ+ p,

Φ(k, k − (p+ 1))φk−(p+1), k > κ+ p

and for all κ ≤ k it is

((T ∗A)p+1)φ)k = (T ∗AT
∗p
A φ)k = A∗k(T

∗p
A φ)k+1 = A∗kΦ(k + 1 + p, k + 1)∗φk+p+1

= (Φ(k + 1 + p, k + 1)Ak)
∗φk+p+1 = Φ(k + p+ 1, k)∗φk+p+1.

(f) Because of dimN(TA−λ id) ≤ d and dimN(TA−λ id)∗ ≤ d the operator TA−λ id
is semi-Fredholm if and only if it is Fredholm with index

|ind(TA − λ id)| ≤ |dimN(TA − λ id)− dimN(TA − λ id)∗| ≤ d

and this implies the claim.

Example C.4: Let us return to the sequence (ak)k≥1 defined in Ex. 2.1(2). It follows
by Prop. C.3(b) that the weighted shift Ta ∈ L(`2) has spectral radius 0 and is therefore
quasi-nilpotent. On the other hand, due to Prop. C.3(a) it is not compact. In fact, [18]
even shows that no power T pa , p ∈ Z+

1 , is compact.

The spectral properties of unilateral shifts are summarized in

Proposition C.5 (spectra of shifts): For A ∈ L∞(Cd) one has σp(TA) = ∅ and

∂σ(TA) ⊆ σπ(TA) = σF (TA) ⊆ σF0
(TA) = σ(TA) = B̄β(A)(0), (C.3)

where the occurring spectra are rotationally invariant w.r.t. 0. The spectral picture

σ(TA) = σF (TA)∪̇
d⋃

n=1

ρ−n(TA), σF (TA) ⊆
{
λ ∈ C : β(A) ≤ |λ| ≤ β(A)

}
holds for the pairwise disjoint bounded and open resolvent sets

ρn(TA) := {λ ∈ C : TA − λ id is Fredholm with index n} ⊆ σ(TA) for all n ∈ Z.

We refer to Fig. C1 giving an illustration of Prop. C.5.
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Re

Im

β(A) β(A)

σF (TA)

ρk(TA)

Figure C1 The spectral picture of unilateral weighted shift operators

TA ∈ L(`2), where the open and bounded annuli ρn(TA) ⊆ σ(TA) with
indices −d ≤ n < 0 (shaded in light grey), are holes in the compact

and rotationally invariant Fredholm spectrum σF (TA) (dark grey)

Proof. Combining [4, Thm. 5] and [5, Thm. 1.1(i)] yields that σ(TA) is precisely the
closed disk B̄β(A)(0) ⊆ C. Furthermore, referring to [23, p. 127] unilateral weighted

shifts have no eigenvalues, i.e. σp(TA) = ∅ and so the inclusion (for this cf. [25, p. 151])
ρ0(TA) ⊆ σp(TA) implies ρ0(TA) = ∅. Hence, we can deduce from [25, p. 160] that
σ(TA) = σF0

(TA) holds. The identity σF (TA) = σπ(TA) also results from [23, p. 127],
where σF (TA) is rotationally invariant due to [33, Lemma 3.21]. The remaining inclusions
in (C.3) follow from (B.1).

Using [25, p. 148, Thm. 5.16(b)] and σp(TA) = ∅ we moreover obtain

ρn(TA) = ∅ for all n ≥ 0 (C.4)

(the case n = 0 was already shown above). Then a combination of [25, p. 152, Cor. 5.18]
and Prop. C.3(f) implies

σ(TA) = σF (TA)∪̇
⋃
n∈Z

ρn(TA) = σF (TA)∪̇
d⋃

n=−d
ρn(TA)

(C.4)
= σF (TA)∪̇

d⋃
n=1

ρ−n(TA)

with mutually disjoint open and bounded annuli ρn(TA) ⊆ C. Finally, the claimed inclu-
sion for the Fredholm spectrum σF (TA) can be found in [23, p. 127].

Corollary C.6: rF (TA) = r(TA) = β(A).

Proof. The relation r(TA) = β(A) is clear from (C.3), and in case σ(TA) = {0} there is
nothing to show. Otherwise, [25, p. 156, Cor. 5.21] yields ∂σ(TA) = σF (TA) and thanks
to (C.3) one concludes supλ∈σF (TA) |λ| = r(TA).

The next example due to Kakutani illustrates that the spectral radius r : L(`2)→ R of
an unilateral shift operator is an upper-semicontinuous function and forms the basis of
Ex. 4.2. Thereby the peripheral spectrum is always contained in the Fredholm spectrum
σF (cf. (C.3)), which shows that also σF can suddenly shrink. We quote from [15, p. 242]:

Example C.7: Given a sequence (γk)k∈Z+
0

we define a, an ∈ `∞(C) as in Ex. 4.2. In [15,

pp. 242–243] it is shown that r(Ta) > 0 and thanks to Cor. C.6 one obtains rF (Ta) > 0.
Moreover, our construction yields ‖Tan − Ta‖ = γn for all n ∈ Z+

1 . Due to Prop. C.3(e)
one has T lan = 0 for l > 2n+1, therefore Tan is nilpotent and

{0} = σ(Tan)
(C.3)
= σF (Tan) for all n ∈ Z+

1
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holds. Hence, every neighborhood of Ta contains a nilpotent weighted shift.

Proposition C.8: Every TA is unitarily equivalent to a weighted left shift TB with

(a) Bk ∈ L(Cd) is positive semidefinite Hermitian.
(b) supκ≤k |Bk| <∞.

Proof. We set Uκ := idCd and claim there exist unitary Uk ∈ L(Cd) such that

Bk = U−1
k+1AkUk for all κ ≤ k. (C.5)

The matrix Aκ has a polar decomposition Aκ = Uκ+1Bκ with unitary Uκ+1 ∈ L(Cd)
and positive semidefinite Bκ ∈ L(Cd). This yields (C.5) for k = κ. In the induction step
k − 1 → k we invest that AkUk admits the polar decomposition AkUk = Uk+1Bk with
unitary Uk+1 and a positive semidefinite Bk, with Uk is known by the hypothesis. Hence,
(C.5) holds for k ≥ κ. For the multiplication operator MU ∈ L(`2) we obtain

(M∗UTAMUφ)k =

{
0, k = κ,

U∗kAk−1Uk−1φk−1, k > κ

(C.5)
= (TBφ)k for all κ ≤ k

and (C.5) immediately shows that the boundedness of Ak carries over to Bk.

Proposition C.9: Let p ∈ Z+
0 and A ∈ L∞(Cd). The pth power T pA is

(a) hyponormal, if and only if for all κ ≤ k one has

Φ(k + 2p, k + p)∗Φ(k + 2p, k + p) ≥ Φ(k + p, k)Φ(k + p, k)∗, (C.6)

(b) paranormal, if and only if for all κ ≤ k and r > 0 one has

Φ(k + 2p, k)∗Φ(k + 2p, k)− 2rΦ(k + p, k)∗Φ(k + p, k) + r2 idCd ≥ 0. (C.7)

Proof. For p = 0 the claims are trivial. Given p ∈ Z+
1 let us abbreviate S := T pA and

choose any sequence φ ∈ `2. We obtain from Prop. C.3(e) the multiplication operators
(S∗Sφ)k = Φ(k + p, k)∗Φ(k + p, k)φk,

(SS∗φ)k =

{
0, κ ≤ k < κ+ p,

Φ(k, k − p)Φ(k, k − p)∗φk, κ+ p ≤ k,
(S∗2S2φ)k = Φ(k + 2p, k)∗Φ(k + 2p, k)φk,

((S∗S)2φ)k = (Φ(k + p, k)∗Φ(k + p, k))2φk for all κ ≤ k

by means of the weighted shift operators (S∗2φ)k = Φ(k + 2p, k)∗φk+2p and

(S2φ)k =

{
0, κ ≤ k < κ+ 2p,

Φ(k, k − 2p)φk−2p, κ+ 2p ≤ k.

(a) Because of
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〈〈S∗Sφ− SS∗φ, φ〉〉 =

κ+p−1∑
k=κ

〈Φ(k + p, k)φk,Φ(k + p, k)φk〉︸ ︷︷ ︸
≥0

+

∞∑
k=κ+p

〈(Φ(k + p, k)∗Φ(k + p, k)− Φ(k, k − p)Φ(k, k − p)∗)φk, φk〉

the relation S∗S − SS∗ ≥ 0 holds, if and only if (C.6) is satisfied.
(b) Finally, S∗2S2 − 2rS∗Sφ+ r2 idCd ≥ 0, r > 0, characterizes (C.7) due to

〈〈(S∗2S2)φ− 2rS∗Sφ+ r2φ, φ〉〉 = r2
∞∑
k=κ

〈φk, φk〉

− 2r

∞∑
k=κ

〈Φ(k + p, k)∗Φ(k + p, k)φk, φk〉+

∞∑
k=κ

〈Φ(k + 2p, k)∗Φ(k + 2p, k)φk, φk〉

and this completes the proof.
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