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Abstract We give examples of dichotomy spectra for nonautonomous linear differ-
ence equations in infinite-dimensional spaces. Particular focus is on the spectrum
of integrodifference equations having compact coefficients. Concrete systems with
explicitly known spectra are discussed for several purposes: (1) They yield refer-
ence examples for numerical approximation schemes. (2) The asymptotic behavior
of spectral intervals is tackled illustrating their merging.
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1 Motivation and introduction

Over the last decades, integrodifference equations (IDEs, for short) became popu-
lar models in theoretical ecology, since they provide a flexible tool to describe the
growth and dispersal of populations with discrete nonoverlapping generations. In
the simplest case, where growth precedes dispersal, they are of Hammerstein type

ut+1(x) =
∫

Ω

kt(x,y) ft(y,ut(y))dy for all t ∈ Z, x ∈Ω (1)

(see [17]). Here, the real-valued function ut represents the density of a population
at discrete time t over some spatial habitat Ω ⊆ Rκ , the kernels kt are probabil-
ity density functions describing the dispersal and ft is a growth function of e.g.
Beverton-Holt or Ricker type. Both functions kt and ft are allowed to depend on
time in order to include temporally changing environments into our analysis; we re-
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fer to [16] for a concrete application. Typical state spaces for (1) are the continuous
or the p-integrable functions over Ω .

Apparently, linear IDEs are of fundamental nature. First, they describe Malthu-
sian growth ft(y,u) = ct(y)u with ambient growth functions ct . Second, and more
importantly, when linearizing (1) along a reference solution (φ ∗t )t∈Z, one arrives at
a linear variational equation

vt+1(x) =
∫

Ω

kt(x,y)D2 ft(y,φ ∗t (y))vt(y)dy for all t ∈ Z, x ∈Ω . (2)

This is a nonautonomous linear difference equation in the infinite-dimensional state
space of (1) and alone a local analysis near φ ∗ requires a thorough insight into
the dynamical behavior of (2). Theoretically the dichotomy spectrum Σ ⊆ (0,∞)
(also denoted as dynamical or Sacker-Sell spectrum) of (2) provides such an insight
and hence an adequate “linear algebra” well-suited to establish a geometric theory
of nonautonomous difference equations (cf. [21]) and particularly (1). In terms of
spectral intervals it indeed gives nonautonomous counterparts to eigenvalue mod-
uli, while the spectral bundles extend (generalized) eigenspaces to a time-variant
setting. Specific applications of the dichotomy spectrum are as follows:

• The solution φ ∗ is uniformly asymptotically stable, if and only if Σ ⊆ (0,1) holds,
while a spectral interval in (1,∞) implies instability.

• If 1 6∈ Σ , then the solution φ ∗ is robust and persists locally as unique bounded
entire solution to (1) under variation of the system.

• For each gap in Σ one can construct a pair of invariant fiber bundles, which gen-
eralize the classical hierarchy of invariant manifolds to a nonautonomous setting.
In case 1∈Σ stability is determined by the behavior on such a center fiber bundle.
Hence, the gaps determine the number of invariant fiber bundles corresponding
to an entire solution φ ∗ to (1).

While the dichotomy spectrum dates back to [25, 4], a detailed analysis of its
structure for difference equations in infinite-dimensional spaces is of more recent
origin [24]. Nevertheless the motivation for this text is two-fold: First, already in
finite dimensions only numerical methods allow an approximation of the spectrum
(see [15]). It is thus handy to have a class of reference examples with explicitly
known spectra available in order to verify computational methods. Second, we illus-
trate the structure of several spectra arising for nonautonomous IDEs and investigate
the asymptotics of their spectral intervals.

The organization of this paper is as follows: We begin reviewing the dichotomy
spectrum and some of its central properties for difference equations in infinite-di-
mensional state spaces. Particular focus is on the situation of compact operators,
which was established in [24]. We then concentrate on operators having a discrete
spectrum and provide the spectra for associate systems with multiplicative time-
varying perturbations. As concrete application we consider IDEs. Sufficient criteria
for their well-definedness in Lp- and C-spaces are quoted, we address the asymptotic
behavior of the spectral intervals accumulating at 0, and finally present operators
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with explicitly known spectra or at least explicitly known asymptotics. The latter
case applies to various equations relevant in applications.

As reference for difference equations in Banach spaces we mention [11, 21].
Corresponding results for nonautonomous parabolic evolutionary equations were
obtained in [22].

Notation

Let K be one of the fields R or C. The Kronecker symbol is denoted by δkl . A
discrete interval I is the intersection of a real interval with Z, i.e. a set of consec-
utive integers. We write I′ := {t ∈ I : t +1 ∈ I} and suppose throughout that I is
unbounded. For nonempty subsets A,B⊆ R and λ ∈ R let us abbreviate

AB := {ab ∈ R : a ∈ A, b ∈ B} , λA := {λa ∈ R : a ∈ A} .

Unless further noted, X ,Y are Banach spaces, resp. their complexification, if spectral
theoretical matters are addressed. Let X ′ be the dual space of X with duality pairing
〈·, ·〉. The bounded linear maps from X to Y are denoted by L(X ,Y ), L(X) := L(X ,X)
and IX is the identity mapping on X . We write N(T ) := T−1({0}) for the kernel and
R(T ) := T X for the range of T ∈ L(X ,Y ). The spectrum of S ∈ L(X) is σ(S)⊂ C.

A subset A ⊆ I×X is called a nonautonomous set, if all t-fibers

A (t) := {x ∈ X : (t,x) ∈A } , t ∈ I

are nonempty. One speaks of a vector bundle V ⊆ I×X , if every fiber V (t)⊆ X is
a linear subspace and in case all V (t) have the same dimension, it determines the
dimension dimV of V . Constant vector bundles are of the form V = I×X0 with a
subspace X0 ⊆ X and particular examples are

O := I×{0} , X := I×X .

2 Dichotomy spectrum

Given a sequence (Kt)t∈I′ of bounded linear operators in L(X) as coefficients, we
consider linear nonautonomous equations

ut+1 =Ktut (L)

in an infinite-dimensional Banach space X . A vector bundle V is called forward
invariant resp. invariant, provided KtV (t)⊆ V (t +1) or KtV (t) = V (t +1) hold
for all t ∈ I′. Their evolution operator is the mapping



4 Christian Pötzsche

ΦK : {(t,s) ∈ I× I : s≤ t}→ L(X), ΦK(t,s) :=

{
Kt−1 · · ·Ks, s < t,
IX , s = t.

For simplicity we suppose from now on that (L) has bounded (forward) growth, i.e.

α0 := sup
t∈I′
‖Kt‖< ∞. (3)

One says a linear difference eqn. (L) has an exponential dichotomy (ED for short,
cf. [14, p. 229, Def. 7.6.4]) on I, if there exists a projector P : I→ L(X) and reals
K ≥ 1, α ∈ (0,1) such that

• KtP(t) = P(t +1)Kt for all t ∈ I′ (P is an invariant projector)
• Φ̄K(t,s) := ΦK(t,s)|N(P(s)) : N(P(s))→ N(P(t)) is a topological isomorphism

for s < t1

• ‖ΦK(t,s)P(s)‖ ≤ Kα t−s and
∥∥Φ̄K(s, t) [IX −P(t)]

∥∥≤ Kα t−s for s≤ t.

The dichotomy spectrum of (L) is defined as

ΣI(K) :=
{

γ > 0 : ut+1 = γ
−1Ktut admits no ED on I

}
and ρI(K) := (0,∞)\ΣI(K) denotes the dichotomy resolvent. If the discrete interval
I is fixed, then we simply write Σ(K) resp. ρ(K).

Due to the bounded growth (3) one has Σ(K)⊆ (0,α0]. The components of Σ(K)
are called spectral intervals and the dominant spectral interval contains the largest
elements. If Σ(K) consists of isolated points, one speaks of a discrete spectrum.

Essential properties of the dichotomy spectrum can be summarized as follows:

• Σ(K)∪{0} is compact, ΣI(K)⊆ ΣZ(K) for unbounded subintervals I⊆ Z and

Σ(λK) = |λ |Σ(K) for all λ ∈ C\{0}

• It is upper-semicontinuous, i.e. for every ε > 0 there exists a δ > 0 such that
every sequence (K̄t)t∈I′ in L(X) fulfills

sup
t∈I′

∥∥K̄t −Kt
∥∥< δ ⇒ Σ(K̄)⊆ Bε(Σ(K))

• Σ(K) is invariant under kinematic similarity, i.e. if there exists a sequence (St)t∈I
of invertible operators St ∈ L(X ,Y ) with supt∈I max

{
‖St‖ ,

∥∥S−1
t
∥∥}<∞, then (L)

and vt+1 = S−1
t+1KtStvt have the same dichotomy spectrum. The sequence (St)t∈I

is called Lyapunov transformation.

Finally, for every γ > 0 we define the vector bundles

V +
γ :=

{
(τ,ξ ) ∈X : sup

τ≤t
‖ΦK(t,τ)ξ‖γ

τ−t < ∞

}
,

1 for this it suffices to assume that Kt |N(P(t)) : N(P(t))→ N(P(t +1)), t ∈ I′, are isomorphisms
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V −γ :=
{
(τ,ξ ) ∈X :

there exists a solution (φt)t∈I of (L)
with φτ = ξ and supτ≤t ‖φt‖γτ−t < ∞

}
;

in case γ is chosen from the dichotomy resolvent ρ(K), one denotes V +
γ as a

pseudo-stable and V −γ as a pseudo-unstable bundle of (L).
The subsequent classes of linear difference equations allow more detailed state-

ments and insights into the structure of their dichotomy spectrum:

2.1 Periodic difference equations

Let (L) be p-periodic, i.e. there exists a p ∈ N such that Kt =Kt+p for all t ∈ Z.
Then the dichotomy spectrum reads as

ΣZ(K) = |{λ ∈ C : λ ∈ σ(ΦK(p,0))}\{0}|1/p (4)

and in particular for autonomous equations (p = 1) it consists of the positive moduli
of the spectral points for K. The pseudo-stable and -unstable bundles of (L) can be
be characterized in terms of Riesz projections (see [8, p. 30, Thm. 1.5.4]) associated
to the components of σ(ΦK(p,0)), but need not to be finite-dimensional.

Rather explicit information can be obtained in

Example 1 (multiplication operator). Suppose (Ω ,Σ ,µ) is a σ -finite measure space
and 1≤ p < ∞. For K-valued functions at ∈ L∞(Ω ,µ) we define the essential range

ρess(at) :=
{

λ ∈ C : µ

({
x ∈Ω :

∣∣∣at(x)−λ

∣∣∣< ε

})
6= 0 for all ε > 0

}
for all t ∈ I′. On X = Lp(Ω ,µ) the multiplication operators

Kt ∈ L(Lp(Ω ,µ)), [Ktv](x) := at(x)v(x) for all t ∈ I′, x ∈Ω

are well-defined and yield an evolution operator of (L) given by

[ΦK(t,τ)v](x) =

(
t−1

∏
s=τ

as(x)

)
v(x) for all τ ≤ t, v ∈ Lp(Ω ,µ),

which is a multiplication operator again. In the periodic situation at = at+p, t ∈ Z,
the spectrum of ΦK(p,0) is the essential range of the product ∏

p−1
s=0 as : Ω →K (see

[10, pp. 30ff]) and due to (4) we arrive at

Σ(K) =

∣∣∣∣∣ρess

(p−1

∏
s=0

as

)
\{0}

∣∣∣∣∣
1/p

.

Example 2 (shift operator). Suppose that (Bt)t∈Z is a bounded sequence in L(Y )
such that the difference eqn. yt+1 = Btyt in Y has a nonempty dichotomy spectrum
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ΣZ(B). Furthermore, let X := `p(Y ) be the space of p-summable sequences (yt)t∈Z
in Y for p ∈ [1,∞] and define the shift

K ∈ L(`p(Y )), [Kv]s := Bs−1vs−1 for all s ∈ Z, v ∈ `p(Y ).

In [20, Thm. 1] it is shown that σ(K) = {λ ∈ C : |λ | ∈ ΣZ(B)} and we hence obtain
from (4) for p = 1 that ΣI(K) = ΣZ(B).

2.2 Compact difference equations

Let (L) be compact, i.e. the coefficients Kt ∈ L(X), t ∈ I′, are compact operators.
Due to our global bounded growth assumption (3) the spectrum Σ(K) is bounded

above by α0 and there exists a γ0 > 0 such that (γ0,∞)⊆ ρ(K); we set

V +
γ0

:= X , V −γ0
:= O.

Furthermore, in [24, Cor. 4.13] it is shown that Σ(K) is a union of at most countably
many intervals which can only accumulate at a number µ̄ ≥ 0 and that the pseudo-
unstable bundles V −γ are finite-dimensional. In detail, one of the cases holds:

(S0) Σ(K) = /0
(S1) Σ(K) consists of finitely many closed spectral intervals:

Rα0α1 β1α2 β2αk−1 = βk−1αk βk0

γ0γ1γ2γk−1γk

Fig. 1 Case (S1
1) with k compact spectral intervals

(S1
1) There exists a k ∈ N and reals 0 < αk ≤ βk < .. . < α1 ≤ β1 ≤ α0 with

Σ(K) =
k⋃

j=1

[α j,β j]

and we choose reals γ j ∈ (β j+1,α j), 1≤ j < k, and γk ∈ (0,αk) (see Fig. 1)

Rα0α1 β1α2 β2αk−1 = βk−1αk βk0

γ0γ1γ2γk−1

βk+1

γk

Fig. 2 Case (S2
1) with k+1 spectral intervals

(S2
1) There exists a k ∈N0 and reals 0 < βk+1 < αk ≤ βk < .. . < α1 ≤ β1 ≤ α0 with
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Σ(K) = (0,βk+1]∪
k⋃

j=1

[α j,β j]

and we choose reals γ j ∈ (β j+1,α j), 1≤ j ≤ k (see Fig. 2).

In both cases the spectral bundles

X0 := V −γ0
, X j := V +

γ j−1
∩V −γ j

6= O for all 1≤ j ≤ k

are finite-dimensional invariant vector bundles of (L) with the finite Whitney sum

X =
k⊕

j=0

X j⊕V +
γk

and the bundle V −γk
=
⊕k

j=0 X j satisfying k ≤ dimV −γk
= ∑

k
j=0 dimX j

Rα0α1 β1α2 β20

γ0γ1γ2γj
αj βj

Fig. 3 Case (S2) with infinitely many spectral intervals [α j,β j] accumulating at µ̄ = 0 i.e. σ∞ = /0

(S2) Σ(K) consists of infinitely many spectral intervals: There exist strictly decreasing
sequences (α j) j∈N, (β j) j∈N such that

Σ(K) = σ∞∪
∞⋃

j=1

[α j,β j],

where µ̄ < α j ≤ β j, lim j→∞ α j = µ̄ , σ∞ = /0 for µ̄ = 0 and σ∞ = (0, µ̄] otherwise
(see Fig. 3). If we choose reals γ j ∈ (β j+1,α j), j ∈ N, then the spectral bundles

X0 := V −γ0
, X j := V +

γ j−1
∩V −γ j

6= O for all j ∈ N

are finite-dimensional invariant vector bundles of (L) and for every k ∈N one has
the finite Whitney sum

X =
k⊕

j=0

X j⊕V +
γk

and the bundle V −γk
=
⊕k

j=0 X j satisfying k ≤ dimV −γk
= ∑

k
j=0 dimX j.

By construction, the dominant interval is [α1,β1]. The order of a spectral interval
with maximum β j is the dimension of the associate spectral bundle X j; a simple
spectral interval has order 1.
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2.3 Finite-rank difference equations

Let (L) be of finite rank, i.e. there exists a finite-dimensional subspace X0 ⊂ X such
that R(Kt) = X0 for all t ∈ I′. In particular, every Kt is compact and (L) essentially
behave like finite-dimensional equations.

If d := dimX0, then Σ(K) is a union of at most d intervals (cf. [24, Thm. 4.14]),
i.e. either (S0) holds or Σ(K) consists of k ∈ {1, . . . ,d} spectral intervals: There
exist reals 0 < αk ≤ βk < .. . < α1 ≤ β1 ≤ α0 with closed spectral intervals:

Σ(K) =

{
[αk,βk]

(0,βk]
∪

k−1⋃
j=1

[α j,β j]. (5)

If possible, we choose γk ∈ ρ(K) such that (0,γk)⊆ ρ(K) and otherwise, we define
V +

γk
= O and V −γk

= X . Then Xk+1 = V +
γk

and X0 = V −γ0
are invariant vector

bundles of (L). For k > 1 we choose reals γ j ∈ (β j+1,a j), 1≤ j < k. Then the sets

X j := V +
γ j−1
∩V −γ j

6= O for all 1≤ j ≤ k

are finite-dimensional invariant vector bundles of (L) with the Whitney sum

X =
k+1⊕
j=0

X j.

Remark 1. Note that the above situation differs from the dichotomy spectrum intro-
duced in [4] for finite-dimensional equations. Indeed, [4] work with the dichotomy
concept from [3], which is not `∞-robust and yields a finer spectrum than ours.

2.4 Finite-dimensional and difference equations

Suppose that (Bt)t∈I′ is a bounded sequence in Kn×n and consider a linear equation

yt+1 = Btyt (6)

with evolution operator ΦB(t,s) ∈Kn×n, s≤ t. Its dichotomy spectrum Σ(B) fits in
the above framework of Sect. 2.3. Each spectral interval in (5) corresponds to an
invariant vector bundle

Y j :=
{
(t,x) ∈ I×Kn : x ∈ R(p j(t))

}
for all 1≤ j ≤ k,

where p j : I→ L(Kn) is an invariant projector for (6), and I×Kn =
⊕k

j=1 Y j.
For scalar difference equations the following notion of Bohl exponents is central.

Assume (at)t∈I′ is a tempered sequence in K, i.e. it satisfies at 6= 0 for all t ∈ I′ and
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sup
t∈I′

max
{
|at | ,

∣∣a−1
t
∣∣}< ∞.

Let IT (I) := {J⊆ I : J is a discrete interval with #J= T} denote the family of all
discrete subintervals of I with T ∈N elements. The upper resp. lower Bohl exponent
of a are given by

β (a) := lim
T→∞

sup
J∈IT (I)

T

√∣∣∣∏
s∈J

as

∣∣∣, β (a) := lim
T→∞

inf
J∈IT (I)

T

√∣∣∣∏
s∈J

as

∣∣∣
and one clearly has the homogeneity relations

β (λa) = |λ |β (a), β (λa) = |λ |β (a) for all λ ∈ C\{0} .

Especially for Kt := at IX , t ∈ I, one has the spectrum

Σ(K) = [β (a),β (a)]

and we refer to [23] for further properties of Bohl exponents.

3 Operators with discrete spectrum

Assume now that K ∈ L(X) is a single linear operator. Given an eigenvalue λ ∈ C
of K, we denote its order as

oλ = min
{

o ∈ N : N(K−λ IX )
o = N(K−λ IX )

o+1}
and our future analysis is based on the following properties:

(H1) There exist nonempty discrete intervals J(K)⊆ I(K)⊆ N such that

• σ(K)\{0}= {λi : i ∈ I(K)} consists of eigenvalues λi such that (|λi|)i∈I(K)

is a decreasing sequence
• |σ(K)\{0}|=

{
ρ j : j ∈ J(K)

}
with a strictly deceasing sequence (ρ j) j∈J(K)

of positive reals and s j := #
{

λ ∈ σ(K) : |λ |= ρ j
}
< ∞ for j ∈ J(K)

(H2) Given bases of generalized (and norm 1) eigenvectors such that

N(K−λ IX )
oλ = span

{
e1

λ
, . . . ,eoλ

λ

}
for all λ ∈ σ(K)\{0} ,

the sequence (en)n∈N := (e1
λ1
, . . . ,e

oλ1
λ1

,e1
λ2
, . . . ,e

oλ2
λ2

, . . .) is a basis of X .

According to [8, p. 80, Lemma 3.3.1] one can complement the basis (en)n∈N of
X to a biorthonormal system (en, fn)n∈N , where N ⊆ N is a discrete interval. This
means there exists a sequence ( fn)n∈N := ( f 1

λ1
, . . . , f

oλ1
λ1

, f 1
λ2
, . . . , f

oλ2
λ2

, . . .) of func-
tionals fn ∈ X ′ satisfying 〈en, fm〉= δnm for all m,n ∈ N. Then
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Π(λ ) :=
oλ

∑
n=1

〈
·, f n

λ

〉
en

λ
for all λ ∈ σ(K)\{0}

is a bounded projector onto N(K−λ IX )
oλ with

Π(λi)Π(λ j) = δi jΠ(λi), Π(λi)K=KΠ(λi) for all i, j ∈ I(K), (7)

since (en, fn)n∈N is a biorthonormal system. We next define the spectral spaces

X j :=
⊕
|λ |=ρ j

N(K−λ IX )
oλ for all j ∈ J(K),

which are invariant and of dimension ∑|λ |=ρ j oλ , as well as finite rank mappings

Π j : X → X j, Π j := ∑
|λ |=ρ j

Π(λ ) for all j ∈ J(K).

From (7) we readily obtain the commutativity relations

Π jΠi = δi jΠ j, KΠ j = Π jK for all i, j ∈ J(K).

Thus, Π j, j ∈ J(K), are a family of complementary projections onto the spectral
spaces X j.

Example 3 (normal compact operators). If K ∈ L(X) is a compact operator with
I(K) = J(K) = N, then limi→∞ λi = lim j→∞ ρ j = 0 holds. In case X is an infinite-
dimensional Hilbert space and K is normal, we identify X ′ with X by means of the
Riesz representation theorem. One chooses fn := en, n ∈ N, and the projections Π j,
as well as the eigenspaces X j are pairwise orthonormal (see [18, p. 484ff, Sect. 6.7]).

Example 4 (finite rank operators). Suppose that X0 := R(K) is finite-dimensional
with a basis (x1, . . . ,xd) and let S : X0→Cd be an isomorphism. Following [1, p. 274,
Thm. 7.4] and using the representation

Kv =
d

∑
j=1

〈
v,x′j

〉
x j for all v ∈ X

we define the matrix K := (x′i(x j))
d
i, j=1 ∈ Cd×d and obtain σ(K) = σ(K)∪{0}. By

means of e.g. the Jordan form there exists an invertible matrix T ∈ Cd×d such that

T−1KT =

Sk
. . .

S1

 and k ≤ d.

The eigenvalues of each block matrix S j ∈Cd j×d j have the same moduli and satisfy∣∣σ(S j+1)
∣∣< ∣∣σ(S j)

∣∣ for 1≤ j < k. One obtains the spectral spaces
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X j := ST ({0}×Cd j ×{0})⊂ X for all 1≤ j ≤ k

and Π j := ST diag(0, ICd j ,0)(ST )−1 as corresponding projections.

In conclusion, we arrive at a weighted sum

Kv = ∑
j∈J(K)

∑
|λ |=ρ j

λΠ(λ )v for all v ∈ X

and the discrete semigroup (Kt)t≥0 generated by K has the Fourier representation

Ktv = ∑
j∈J(K)

∑
|λ |=ρ j

λ
t
Π(λ )v for all t ≥ 0, v ∈ X . (8)

For autonomous difference equations

ut+1 =Kut

in X with coefficients K ∈ L(X) satisfying (H1)-(H2) the above notions translate
into the language of Sect. 2.2 as follows: We obtain a discrete dichotomy spectrum

Σ(K) =
⋃

j∈J(K)

{
ρ j
}

and constant spectral bundles X j = I×X j, j∈ J(K), from (4). An immediate nonau-
tonomous generalization is treated in

Theorem 1 (multiplicative perturbation 1). If a sequence (at)t∈I is tempered, then
the difference equation

ut+1 = atKut (9)

has the dichotomy spectrum Σ(aK) =
[
β (a),β (a)

]⋃
j∈J(K)

{
ρ j
}

and constant
spectral bundles.

Proof. Using the Fourier representation (8) we obtain that the evolution operator of
(9) reads as

ΦaK(t,s) = ∑
j∈J(K)

(
t−1

∏
r=s

ar

)
∑
|λ |=ρ j

λ
t−s

Π(λ ) for all s≤ t.

If
{

λ 1
j , . . . ,λ

s j
j

}
⊆ σ(K) is the set of eigenvalues with absolute value ρ j, we obtain

Π jΦaK(t,s) = ∑
j∈J(K)

(
t−1

∏
r=s

ar

)
s j

∑
i=1

(λ i
j)

t−sPjΠ(λ i
j) = ΦaK(t,s)Π j for all s≤ t.

Hence, the finite-dimensional vector bundles P j :=
{
(t,v) ∈X : v ∈ R(Π j)

}
are

invariant w.r.t. (9) for all j ∈ J(K). Inside of each P j the dynamics is given by
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ut+1 = at

s j

∑
i=1

λ
i
jΠ(λ i

j)ut ,

having an evolution operator Φ j(t,s) :=ΦaK(t,s)Π j and the spectrum ρ j
[
β (a),β (a)

]
.

Thanks to ΦaK(t,s) = ∑ j∈J(K) Φ j(t,s) for all s≤ t we thus obtain the assertion. ut

Corollary 1. If a sequence (at)t∈Z in K is p-periodic with nonzero values, then

Σ(aK) = p

√√√√p−1

∏
s=0
|as|

⋃
j∈J(K)

{
ρ j
}
.

Proof. The upper and lower Bohl exponents of a are given by p
√

∏
p−1
s=0 |as|.

In the following, we are interested in systems of difference equation

Ut+1 = K̃tUt (10)

on the state space Xn for coefficient sequences (K̃t)t∈I′ in L(Xn). We conveniently
abbreviate U = (u1, . . . ,un) ∈ Xn throughout. Suppose that (Bt)t∈I′ is a sequence of
invertible matrices in Kn×n satisfying

sup
t∈I′
‖Bt‖< ∞, sup

t∈I′

∥∥B−1
t
∥∥< ∞ (11)

and having the entries bi j(t), 1≤ i, j ≤ n. In [4, Thm. 2.1] and Sect. 2.4 it is shown
that Σ(B) consists of compact intervals in (0,∞).

Theorem 2 (multiplicative perturbation 2). Suppose that (11) holds. If (6) pos-
sesses full spectrum, i.e.

Σ(B) =
n⋃

i=1

σi (12)

with compact, decreasing and disjoint spectral intervals σi ⊂ (0,∞), then the differ-
ence eqn. (10) with

K̃tU :=

b11(t)Ku1 + . . .+b1n(t)Kun
...

bn1(t)Ku1 + . . .+bnn(t)Kun

 for all t ∈ I′,U ∈ Xn

has the dichotomy spectrum Σ(K̃) =
⋃

j∈J(K) ρ j
⋃n

i=1 σi =
⋃

j∈J(K) ρ jΣ(B).

Remark 2 (computation of (12)). For general coefficient sequences in (6) the com-
putation of the dichotomy spectrum Σ(B) is only possible using numerical schemes,
as developed in [15, 9].

For the remaining section it is convenient to define the operator
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K̂ :=

K
. . .

K

 ∈ L(Xn).

Proof. First of all, we obtain from [26, Reduction Theorem] that (6) is kinemati-
cally similar to a diagonal system in Kn. More precisely, there exists a Lyapunov
transformation (St)t∈I in Kn×n such that S−1

t+1BtSt = diag(b1
t , . . . ,b

n
t ) with tempered

sequences (bi
t)t∈I′ such that σi = [β (bi),β (bi)], 1≤ i≤ n. One has

K̂StU = StK̂U for all t ∈ I,U ∈ Xn

and consequently we arrive at

S−1
t+1K̃tSt = S−1

t+1BtK̂St = S−1
t+1BtStK̂=

b1
t K

. . .
bn

t K

 for all t ∈ I′.

Hence, (10) is kinematically similar to a diagonal difference system in Xn and there-
fore Σ(K̃) =

⋃n
i=1 Σ(biK). Then the assertion follows from Thm. 1 yielding the

spectra Σ(biK). ut
We next investigate scalar multiplicative and time-dependent perturbations. The

situation is related to Thm. 2, but allows a different proof.

Theorem 3 (multiplicative perturbation 3). Suppose D ∈ Kn×n is diagonalizable
and σ(D) = {d1, . . . ,dn}. If (at)t∈I′ is tempered, then the difference eqn. (10) with

K̃tU := at

d11Ku1 + . . .+d1nKun

...
dn1Ku1 + . . .+dnnKun

 for all t ∈ I′,U ∈ Xn

has the dichotomy spectrum Σ(aK̃) =
[
β (a),β (a)

]⋃
j∈J(K) ρ j

⋃n
i=1 |di| and con-

stant spectral bundles.

Proof. First of all, one has the representation K̃t = atDK̂ and therefore

ΦK̃(t,s) =

(
t−1

∏
r=s

ar

)
(DK̂)t−s for all s≤ t.

Since D and K̂ commute, we arrive at

ΦK̃(t,s) =

(
t−1

∏
r=s

ar

)
Dt−sK̂t−s for all s≤ t.

By assumption D is diagonalizable and hence there is an invertible T ∈ Kn×n with
D = T diag(d1, . . . ,dn)T−1. From K̂T−1 = T−1K̂ we get
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T ΦK̃(t,s)T−1 =

(
t−1

∏
r=s

ar

)
T Dt−sK̂t−sT−1 =

(
t−1

∏
r=s

ar

)
T Dt−sT−1K̂t−s

=

(
t−1

∏
r=s

ar

)
(T DT−1)t−sK̂t−s

=

(
t−1

∏
r=s

ar

)
diag((d1K)t−s, . . . ,(dnK)t−s) for all s≤ t.

Thus, (10) is kinematically similar to the n systems ut+1 = diatKut for all 1≤ i≤ n
and therefore has the dichotomy spectrum Σ(K̃) =

⋃n
i=1 Σ(diaK). Using Thm. 1

again, this implies the assertion. ut

On the basis of Cor. 1 it is easy to conclude the special case of a periodic eqn. (10)
in Thm. 3.

4 Linear integrodifference equations

Throughout this section, we suppose that (Ω ,Σ ,µ) is a measure space. From now
on the coefficients in our difference eqn. (L) are assumed to be integral operators

Ktv :=
∫

Ω

kt(·,y)v(y)dµ(y) : Ω →K for all t ∈ I′

of Fredholm type with appropriate kernels kt : Ω 2→K. Such equations for instance
occur as right-hand sides of variational eqns. (2). Consequently, (L) is an IDE and
well-definedness of the coefficients Kt on various function spaces will be tacked in
Sect. 4.1. On a purely formal level, the evolution operator of (L) is again an integral
operator

ΦK(t,τ) =
∫

Ω

kt−1
τ (·,y)v(y)dµ(y) : Ω →K for all τ < t

with the iterated kernels for all x,y ∈Ω and τ,τ +n ∈ I′ given by

kτ+n
τ (x,y) :=


kτ(x,y), n = 1,∫

Ω

· · ·
∫

Ω︸ ︷︷ ︸
n−1 times

kτ+n−1(x,yn−1) . . .kτ+1(y2,y1)kτ(y1,y)·

·dµ(yn−1) . . . dµ(y2)dµ(y1), n > 1.
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4.1 Integral operators

We now summarize basic properties of the integral operators Kt . For this purpose it
suffices to focus on the time-invariant situation

Kv :=
∫

Ω

k(·,y)v(y)dµ(y). (13)

Theorem 4 ([1, p. 275, Thm. 7.7]). Let Ω be a compact metric space, µ be the
Borel measure and p ∈ [1,∞]. If k ∈C(Ω 2), then K ∈ L(Lp(Ω ,µ)) is well-defined
and compact.

The Hilbert space L2(Ω) = L2(Ω ,µ) with the Lebesgue measure µ is tackled in

Theorem 5 ([12, p. 47, Thm. 3.2.7]). Let Ω ⊆ Rκ be measurable. If k ∈ L2(Ω 2),
then K ∈ L(L2(Ω)) is well-defined and compact with

‖K‖ ≤
√∫

Ω

∫
Ω

|k(x,y)|2 dydx.

In the setting of Thm. 4 and 5 the adjoint operator K∗ ∈ L(L2(Ω)) of K becomes

K∗v =
∫

Ω

k(y, ·)v(y)dy

and consequently K is

• self-adjoint, if and only if k(x,y) = k(y,x) for µ-almost all (x,y) ∈ Ω 2. In this
case one denotes the kernel k as symmetric and it follows that σ(K)⊂ R

• normal, if and only if k(x,y)k(z,y) = k(y,x)k(y,z) for µ-almost all x,y,z ∈Ω .

On the continuous functions we eventually obtain

Theorem 6 ([12, p. 45, Thm. 3.2.6]). Let Ω ⊂ Rκ be compact. If k : Ω 2→ K sat-
isfies

(i)
∫

Ω
|k(x,y)| dy < ∞

(ii) limξ→x
∫

Ω
|k(ξ ,y)− k(x,y)| dy = 0 for all x ∈Ω ,

then K ∈ L(C(Ω)) is well-defined and compact.

The following consequence of Thms. 4 and 6 ensures that the spectrum of an integral
operator K is independent of the state space:

Corollary 2. For k ∈ C(Ω 2) one has ‖K‖L(C(Ω)) = maxx∈Ω

∫
Ω
|k(x,y)| dy and the

spectrum of K is independent whether K is considered in L(L2(Ω)) or L(C(Ω)).

Proof. See [12, p. 45, Lemma 3.2.2] for the assertion on the norm and [8, p. 113,
Thm. 4.2.20]) concerning the spectrum. ut
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4.2 Asymptotics of spectral intervals

It is not difficult to construct difference eqns. (L) having an empty dichotomy spec-
trum (e.g. Kt ≡ 0). However, whether Σ(K) consists of a finite (case (S1), see
Fig. 1 and 2) or an infinite number of spectral intervals (case (S2), see Fig. 3) de-
pends on various factors. The relevance of this question is due to the fact that the
gaps in the dichotomy spectrum Σ(K) of a variational equation determines the num-
ber of invariant fiber bundles associated to the entire solution along which e.g. (1)
is linearized.

In the prototypical situation of a multiplicative perturbation

ut+1 = atKut

with a tempered sequence (at)t∈I′ in K it results from Thm. 3 that

Σ(aK) =
⋃

j∈J(K)

σ j, σ j :=
[∣∣λ j

∣∣β (a), ∣∣λ j
∣∣β (a)].

Even for J(K) =N it is possible that consecutive intervals σ j eventually overlap and
yield a finite number of components and hence spectral intervals in Σ(aK). Since
the eigenvalues λ j are ordered as in (H1) we obtain: The intervals σ j,σ j+1

• merge in case maxσ j+1 ≥minσ j, which is equivalent to∣∣λ j
∣∣≤ β (a)

β (a)

∣∣λ j+1
∣∣ (14)

• stay apart for maxσ j+1 < minσ j, which holds if and only if∣∣λ j+1
∣∣< β (a)

β (a)

∣∣λ j
∣∣ . (15)

Hence, in order to have an infinite number of spectral intervals, one needs exponen-
tially decaying eigenvalues of K with a suitable decay rate. This property depends
on the smoothness of the kernel, as the following results illustrate:

• Let the compact set Ω ⊂Rκ be equipped with the Borel measure. If a continuous
kernel k : Ω 2→K satisfies a Hölder condition in the second variable with∫

Ω

‖k(x, ·)‖Cγ dx < ∞

for some exponent γ ∈ (0,1], then the eigenvalues of K ∈ L(L2(Ω ,µ)) behave
asymptotically like λi = O(i−1/2−γ/κ) as i→∞ (see [13, Thm. 3]). For such pos-
itively definite kernels this can be improved to λi = O(i−1−γ/κ) (see [7, Thm. 4]),
which still cannot guarantee (15)

• Let Ω = [−1,1] and k : Ω 2→ R be of class C1. If k is symmetric, k(·,y) has an
analytic extension from [−1,1] to the ellipse (foci ±1, axis sum R > 1)
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ER :=
{

z ∈ C : (ℜz)2

a2 + (ℑz)2

b2 < 1
}
, a := 1

2 (R+ 1
R ), b := 1

2 (R− 1
R )

and k is bounded on ER× [−1,1], then λi = O(R−i) (see [5, p. 68, Thm. 4.22]).
An analytic extension to every such set thus yields super-exponential decay.

Further information on the asymptotic behavior of eigenvalues to integral operators
can be found in the monograph [6].

4.3 Examples

In this section, we first collect miscellaneous examples of time-invariant integral
operators (13) resp. corresponding kernel functions, for which both eigenvalues and
-functions are explicitly known. Then several convolution kernels relevant for ap-
plications are discussed, which also allow to obtain information on the asymptotics
of their spectrum. These operators fulfill the properties (H1)-(H2) from Sect. 3 and
consequently the dichotomy spectra of the nonautonomous eqns. (9) and (10) tack-
led in Thm. 1, 2 resp. 3 — which are now linear IDEs — can be determined.

By means of the following remark these results extend to wider classes of IDEs:

Remark 3 (kinematic similarity). Let 1 ≤ p < ∞ and Kt ∈ L(Lp(Ω ,µ)). Suppose
that mt ∈ L∞(Ω ,µ) are K-valued functions with 0 6∈ ρess(mt) for all t ∈ I′ and

sup
t∈I′

ρess(mt)< ∞, sup
t∈I′

ρess(m−1
t )< ∞.

According to [10, pp. 30ff] the multiplication operators

Mt ∈ L(Lp(Ω ,µ)), [Mtv](x) := mt(x)v(x) for all t ∈ I′, x ∈Ω

are well-defined and invertible. Consequently, due to

[M−1
t+1KtMtv](x) =

∫
Ω

kt(x,y)
mt(y)

mt+1(x)
v(y)dµ(y) for all t ∈ I′, x ∈Ω

the linear IDE (L) and

ut+1 =
∫

Ω

kt(·,y)
mt+1(·)

mt(y)ut(y)dµ(y)

are kinematically similar and thus have the same dichotomy spectrum.

4.3.1 Explicitly known spectra

Assume that (at)t∈I′ is a tempered sequence in K with β (a)< β (a).
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Example 5. The Sturm-Liouville problem −u′′ = λu, u(α) = u(β ) = 0 leads to a
continuous, symmetric Green’s function (see Fig. 4 (left))

k(x,y) :=

{
(y−α)(β − x), α ≤ y≤ x≤ β ,

(x−α)(β − y), α ≤ x < y≤ β .

Thanks to Thm. 5, on the interval Ω := (α,β ) the operator K∈ L(L2(α,β )) is com-

pact with real eigenvalues λ j := (β−α)3

π2 j2 of order o j = 1 and normed eigenfunctions

e j(x) :=
√

2
β−α

sin( π j
β−α

(x−α)), j ∈ N. From (4) we obtain a discrete spectrum

Σ(K) =
{

(β−α)3

π2 j2 : j ∈ N
}
, X j := I× span

{
e j
}

with simple spectral intervals. Moreover, (14) shows that Σ(aK) is of the form (S2
1).

Fig. 4 The symmetric kernels k : (0,1)2→ R from Exam. 5 (left) and Exam. 6 (right, for γ = 1
2 )

Example 6. On Ω := (α,β ) the analytical function (see Fig. 4 (right))

k(x,y) :=
1− γ2

1+ γ2−2γ cos( 2π

β−α
(x+ y−2α))

for all γ ∈ (0,1)

defines a symmetric kernel. By Thm. 5 the operator K ∈ L(L2(α,β )) is compact,
has real eigenvalues (of order o j = 1) and eigenfunctions (cf. [2, pp. 254–255])

λ j := (β −α)

{
γ j, j ≥ 0,
−γ− j, j < 0.

, e j(x) :=


√

2
β−α

cos( 2π j
β−α

(x−α)), j > 0,√
1

β−α
, j = 0,√

2
β−α

sin( 2π j
β−α

(α− x)), j < 0.

Note that the reals λ j are exponentially decaying and symmetrically distributed
around 0. It follows from

∣∣λ j
∣∣= ∣∣λ− j

∣∣ and (4) that
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Σ(K) =
{
(β −α)γ j : j ∈ N0

}
, X j = I×

{
span{e0} , j = 0,
span

{
e j,e− j

}
, j > 0;

the dominant interval {β −α} is simple, while the other intervals have order 2.
Furthermore, the concrete structure of Σ(aK) depends on the ratio of the Bohl ex-

ponents. In case
β (a)

β (a)
≤ γ it follows from (14) that Σ(aK) is of the form (S2

1). For

γ <
β (a)

β (a)
however, (15) implies a countably infinite number of spectral intervals,

where the dominant one (β −α)
[
β (a),β (a)

]
is simple, while the remaining ones

are of order 2.

Fig. 5 The asymmetric kernel k : (−π,π)2→ R from Exam. 7 with α = 1, β = 2 (left) and sym-
metric finite radius dispersal kernel from Exam. 8 (right) for α = 2

Example 7. On Ω := (−π,π) consider the discontinuous kernel (see Fig. 5 (left))

k(x,y) :=

{
2, −π ≤ y≤ x≤ π,

1, −π ≤ x < y≤ π,

which fails to be symmetric. It has the complex eigenvalues and -functions

λ j =
2π

ln2+2πı j
, e j(x) = exp

(
( ln2

2π
+ ı j)x

)
for all j ∈ Z.

Due to [8, p. 89, Thm. 3.3.15] the set
{

e j
}

j∈Z is a minimal complete set in L2(Ω).
Moreover,

∣∣λ j
∣∣= ∣∣λ− j

∣∣ and (4) imply

Σ(K) =

{
2π√

(ln2)2+(2π j)2
: j ∈ N0

}
, X j = I×

{
span{e0} , j = 0,
span

{
e j,e− j

}
, j > 0;
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consequently, the dominant spectral interval
{ 2π

ln2

}
is simple, while the other spec-

tral intervals have order 2. Moreover, since the eigenvalues decay merely linearly, it
results that Σ(aK) is of the form (S2

1).

We next discuss a class of kernels, where also a spectrum of the form (S1
1) (see

Fig. 1) can be realized. Thereto, a kernel k : Ω 2→K is denoted as degenerate, if it
can be written as

k(x,y) :=
d

∑
j=1

a j(y)x j(x) for all x,y ∈Ω

with linearly independent functions x1, . . . ,xd : Ω → K. This brings us into the
framework of finite rank operators discussed in Sect. 2.3 and Exam. 4 with

Kv =
∫

Ω

d

∑
j=1

a j(y)v(y)dµ(y)x j =
d

∑
j=1

〈
v,x′j

〉
x j : Ω →K

and functionals
〈

v,x′j
〉

:=
∫

Ω
a j(y)v(v)dµ(y). The entries of the matrix K ∈ Kd×d

from Exam. 4 are ki j :=
∫

Ω
ai(y)x j(y)dµ(y), 1≤ i, j≤ d, yield the discrete spectrum

Σ(K) = |{λ ∈ C : det(λ ICd −K) = 0}\{0}| .

Example 8 (finite radius dispersal kernel). Let Ω = (−1,1). The kernel

k(x,y) :=

{
π

4α
cos
(

π(x−y)
2α

)
, |x− y| ≤ α,

0, |x− y|> α

(cf. [17], see Fig. 5 (right)) is continuous and symmetric. Moreover, due to

k(x,y) =

{
π

4α

(
cos πx

2α
cos πy

2α
+ sin πx

2α
sin πy

2α

)
, |x− y| ≤ α,

0, |x− y|> α

it is degenerate. Hence, for α ≥ 2 the integral operator K allows the representation

Kv =
2

∑
j=1

(∫ 1

−1
a j(y)v(y)dy

)
x j : Ω →K

with a1(x) := cos πx
2α

, a2(x) = sin πx
2α

and the linearly independent functions

x1(x) := π

4α
cos πx

2α
, x2(x) := π

4α
sin πx

2α
.

Therefore, K is a rank 2 operator and its eigenvalues λ are the roots of the equation

det
(

λ − ∫ 1
−1 a1(y)x1(y)dy −∫ 1

−1 a1(y)x2(y)dy
−∫ 1
−1 a2(y)x1(y)dy λ − ∫ 1

−1 a2(y)x2(y)dy

)
= 0.
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In the following example the eigenvalues are not explicitly known, but can be ob-
tained as solutions of a transcendental equation in R yielding also their asymptotics.

� � �� �� �� �� ��
-��

�

��

��

��

�

Fig. 6 The points of intersection ν j > 0 of the graphs to x 7→ x and x 7→− tanx yield the eigenvalues
in Exam. 9

Example 9. On Ω := (0,1) the continuous kernel

k(x,y) := 1
2 min{x,y}(2−max{x,y})

is symmetric. Suppose that (ν j) j∈N denotes the strictly increasing sequence of pos-
itive real solutions to the transcendental equation ν + tanν = 0 (see Fig. 6). The
associate integral operator K has the eigenvalues λ j := 1

ν2
j

of order o j = 1 with

normed eigenfunctions e j(x) = 2
√

ν j
(2ν j−sin(2ν j))

sin(ν jx), j ∈ N (see [19, p. 438]).
This yields a discrete dichotomy spectrum with simple spectral intervals

Σ(K) =
{

ν
−2
j : j ∈ N

}
, X j := I× span

{
e j
}
.

In addition, (14) implies that Σ(aK) is of the form (S2
1).

4.3.2 Spectra of convolutive operators

In the remaining, we suppose Ω = (−1,1) and consider kernels of convolution type

[Kv](x) :=
∫ 1

−1
k0(x− y)v(y)dy for all x ∈ (−1,1)

with a real, even and integrable function k0 : R→ R. These kernels frequently arise
in applications [17] from theoretical ecology and have a real spectrum. In addition,
we approximate their (largest) eigenvalues numerically using a Nyström method
with the rectangular rule as quadrature and 1000 nodes.

Following [27], the (scaled) Fourier transformation of k0 becomes
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k̃0(ξ ) :=
∫
R

eıξ xk0(x)dx

and provided it is positive, we define Γ (ξ ) :=− ln k̃0(ξ ).
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Fig. 7 The Gaussian convolution kernel k0 : R→ R from Exam. 10 (left) and the super-exponen-
tially decaying largest eigenvalues λ j depending on α ∈ [ 1

2 ,2]

Example 10 (Gauß kernel). As archetypical mesokurtic distribution consider

k0(x) := 1√
2πα2 exp

(
− x2

2α2

)
for all α > 0 (16)

(see Fig. 7) with standard deviation α > 0. It is real analytical with lipk0 ≤ 1√
2eπα2 ,

the Fourier transformation k̃0(ξ ) = e−
α2
2 ξ 2

is bounded, even and positive, whence it
is Γ (ξ ) = α2

2 ξ 2. Since Γ is convex and satisfies limξ→∞

Γ (ξ )
ξ

= ∞, it follows from
[27, Cor. 1] that lnλ j ∼− j ln j as j→ ∞. Consequently, Σ(K) and Σ(aK) consists
of an infinite number of spectral intervals accumulating at 0, i.e. both dichotomy
spectra are of the form (S2) with µ̄ = 0.

Example 11 (Cauchy kernel). Another smooth kernel is the Cauchy kernel

k0(x) :=
α

π(α2 + x2)
for all α > 0

(see Fig. 8) resembling the Gauß kernel (16). The Fourier transform k̃0(ξ ) = e−α|ξ |

is bounded, even and positive with Γ (ξ )=α |ξ |. From [27, Thm. 2] we hence obtain
lnλ j ∼ − jψ(α) as j→ ∞ with the function ψ(α) := π

E(sech(π/α))
E(tanh(π/α)) > 0, where E

stands for the complete elliptic integral of first kind. It results from (14) that Σ(aK)

is of the form (S2
1) for eψ(α) ≤ β (a)

β (a) , while (15) and β (a)
β (a) < eψ(α) guarantee (S2),

i.e. an infinite number of spectral intervals.
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Fig. 8 The Cauchy convolution kernel k0 : R→ R from Exam. 11 (left) and the exponentially
decaying largest eigenvalues λ j depending on α ∈ [ 1

2 ,2]
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Fig. 9 The Laplacian convolution kernel k0 : R→ R from Exam. 12 (left) and the quadratically
decaying largest eigenvalues λ j depending on α ∈ [ 1

2 ,2]

Example 12 (Laplace kernel). The Laplace kernel is given by the function

k0(x) := 1
2α

exp
(
− |x|

α

)
for all α > 0

(see Fig. 9), which is continuous with lipk0 ≤ 1
2α2 . If (ν j) j∈N denotes the strictly

increasing sequence of positive solutions to the transcendental equation tan ν

α
=±ν ,

then K possesses the eigenvalues λ j := 1
1+ν2

j
, j ∈N (see [17]). On the one hand, this

shows that λ j decays quadratically to 0. On the other hand, the Fourier transform of
k0 is k̃0(ξ ) =

1
1+α2ξ 2 and hence Γ (ξ ) = ln(1+α2ξ 2). Referring to [27, Thm. I] it

results that λ j ∼ k̃0(
π

2 j+o( j)) as j→ ∞, which confirms the quadratic decay. Due
to (14) this results in a dichotomy spectrum Σ(aK) of the form (S2

1).

Example 13 (exponential square root kernel). For the kernel

k0(x) := 1
4α

exp
(
−
√
|x|
α

)
for all α > 0
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Fig. 10 The exponential square root convolution kernel k0 : R→ R from Exam. 13 (left) and the
six largest eigenvalues λ j depending on α ∈ [ 1

2 ,2]

(see Fig. 10) the tails are not exponentially bounded. It is continuous with a Hölder
condition hol1/2 k0 ≤ 1

4α3/2 , but not differentiable in 0. The Fourier transformation

k̃0(ξ ) =
√

2π

sin
(

1
4α|ξ |

)(
1−2S

(
1√

2πα|ξ |

))
+ cos

(
1

4α|ξ |

)(
1−2C

(
1√

2πα|ξ |

))
|αξ |3/2

is bounded, even and positive, where S,C denote the Fresnel integrals. In this setting,
[27, Thm. I] leads to λ j ∼ k̃0(

π

2 j+o( j)) as j→ ∞.
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Fig. 11 The top hat convolution kernel k0 : R→ R from Exam. 14 (left) and the six largest eigen-
values λ j depending on α ∈ [ 1

2 ,1]. The spikes appear to be due to numerical inaccuracies

Example 14 (top hat kernel). Let α ∈ (0,1]. The top hat kernel is defined as

k0(x) := 1
2α

(θ(x+α)−θ(x−α)) = 1
2α

χ[−α,α](x) for all α > 0

(see Fig. 11) and has the Fourier transform k̃0(ξ ) =
sin(αξ )

αξ
, which is bounded, even,

but fails to be positive. Hence, the results from [27] do not apply.
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