CORRIGENDUM ON: A NOTE ON THE DICHOTOMY SPECTRUM

CHRISTIAN PÖTZSCHE

My paper "A note on the dichotomy spectrum" (J. Difference Equ. Appl. 15, no. 10, 1021-1025 (2009)) contains a serious error. In fact, [Pöt09, Lemma 7] is wrong with the consequence that also the final [Pöt09, Thm. 8] on the ℓ_{0}-roughness of exponential dichotomies (EDs for short) for

$$
\begin{equation*}
x_{k+1}=A_{k} x_{k} \quad \text { for all } k \in \mathbb{Z} \tag{L}
\end{equation*}
$$

does not hold.
Throughout this corrigendum, suppose $A_{k}, B_{k} \in L(X), k \in \mathbb{Z}$, are bounded sequences of bounded linear operators on a Banach space X and we borrow our further notation and terminology from [Pöt09]. The faulty [Pöt09, Thm. 8] states that the dichotomy spectra $\Sigma(A)$ for the linear difference equation (L) and $\Sigma(A+B)$ for the linear-homogeneously perturbed difference equation

$$
\begin{equation*}
x_{k+1}=\left[A_{k}+B_{k}\right] x_{k} \quad \text { for all } k \in \mathbb{Z} \tag{P}
\end{equation*}
$$

are the same, provided the respective transition operators Φ of both (L) and (P) satisfy the injectivity assumption $N(\Phi(k, k-n))=\{0\}$ for all $k \in \mathbb{Z}, n \in \mathbb{N}$, and

$$
\lim _{k \rightarrow \pm \infty}\left\|B_{k}\right\|=0
$$

The dichotomy spectrum yielding the appropriate hyperbolicity concept for nonautonomous problems dates back to the pioneering work of Sacker \& Sell [SS78]. Using a flexible perturbation result for linear skew-product flows, [SS78, Sects. 5-6] shows that $\Sigma(A)$ depends upper-semicontinuously on perturbations of the righthand side in (L). Furthermore, in a finite-dimensional situation, the claimed invariance of $\Sigma(A)$ under perturbations $B_{k} \in \mathbb{R}^{d \times d}$ decaying to 0 is known for difference equations defined on semi-lines $\mathbb{Z}_{\kappa}^{+}:=\{\kappa, \kappa+1, \ldots\}$ or $\mathbb{Z}_{\kappa}^{-}:=\{\ldots, \kappa-1, \kappa\}$ (we refer to [BG93, Thm. 2.3] for invertible coefficient matrices $\left.A_{k} \in \mathbb{R}^{d \times d}\right)$. In this sense, the dichotomy spectrum on semi-lines is essential spectrum.

When dealing with problems (L) on the full line \mathbb{Z}, nevertheless, this statement is not necessarily true. Indeed, the author realized the faultiness of [Pöt09, Thm. 8] while becoming aware of [Hen81, p. 235, Thm. 7.6.9]; the latter result precisely indicates that when passing over from (L) to the perturbed equation (P), point spectrum might occur. To explicitly falsify [Pöt09, Thm. 8] we need the subsequent characterization for EDs on \mathbb{Z} :
Lemma 1. Let $\kappa \in \mathbb{Z}$. Equation (L) has an $E D$ on \mathbb{Z} if and only if it admits EDs on both semi-lines \mathbb{Z}_{κ}^{+}and \mathbb{Z}_{κ}^{-}with corresponding projectors P_{k}^{+}, P_{k}^{-}satisfying

$$
\begin{equation*}
R\left(P_{\kappa}^{+}\right) \oplus N\left(P_{\kappa}^{-}\right)=X . \tag{1}
\end{equation*}
$$

Proof. Referring to [Bas00, Cor. 2 1)] and [Hen81, p. 230, Thm. 7.6.5], EDs on both semi-lines \mathbb{Z}_{κ}^{+}and \mathbb{Z}_{κ}^{-}extend to the whole line \mathbb{Z} under (1). Conversely, for an ED on \mathbb{Z} the projector P_{k} is uniquely determined and clearly fulfills (1).

From this we obtain the following counterexample to [Pöt09, Thm. 8]:
Example 1. In \mathbb{R}^{2} we consider a piecewise constant difference equation (L) with

$$
A_{k}:=\left(\begin{array}{cc}
a_{k} & 0 \\
0 & a_{k}^{-1}
\end{array}\right), \quad a_{k}:= \begin{cases}2, & k \geq 0, \\
\frac{1}{2}, & k<0 .\end{cases}
$$

Given $\gamma>0$, its scaled counterpart
(L_{γ})

$$
x_{k+1}=\gamma^{-1} A_{k} x_{k} \quad \text { for all } k \in \mathbb{Z}
$$

has the following dichotomy properties: If $\gamma \notin\left\{\frac{1}{2}, 2\right\}$ then we have EDs on both semi-lines \mathbb{Z}_{0}^{+}and \mathbb{Z}_{0}^{-}with constant projectors P_{+}resp. P_{-}. They are given by

- $\gamma<\frac{1}{2}: P_{+}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $P_{-}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
- $\frac{1}{2}<\gamma<2: P_{+}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $P_{-}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
- $2<\gamma: P_{+}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $P_{-}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
which yields the relations

$$
\begin{aligned}
& R\left(P_{+}\right) \cap N\left(P_{-}\right)= \begin{cases}\{0\}, & \gamma<\frac{1}{2} \text { or } 2<\gamma \\
\mathbb{R}\binom{0}{1}, & \frac{1}{2}<\gamma<2\end{cases} \\
& R\left(P_{+}\right)+N\left(P_{-}\right)= \begin{cases}\mathbb{R}^{2}, & \gamma<\frac{1}{2} \text { or } 2<\gamma \\
\mathbb{R}\binom{0}{1}, & \frac{1}{2}<\gamma<2\end{cases}
\end{aligned}
$$

With Lemma 1 this shows that $\left(L_{\gamma}\right)$ admits an ED on \mathbb{Z}, if and only if $\gamma \notin\left[\frac{1}{2}, 2\right]$, i.e. (L) has the dichotomy spectrum $\Sigma(A)=\left[\frac{1}{2}, 2\right]$. We perturb (L) with the matrix

$$
B_{k}:=\left(\begin{array}{cc}
0 & b_{k} \\
0 & 0
\end{array}\right), \quad b_{k}:= \begin{cases}\left(\frac{1}{2}\right)^{k}, & k \geq 0 \\
0, & k<0\end{cases}
$$

satisfying $\lim _{k \rightarrow \pm \infty}\left\|B_{k}\right\|=0$ even exponentially. Due to [BG93, Thm. 2.3] the scaled perturbed difference equation
$\left(P_{\gamma}\right) \quad x_{k+1}=\gamma^{-1}\left[A_{k}+B_{k}\right] x_{k} \quad$ for all $k \in \mathbb{Z}$
admits an ED on the semi-line \mathbb{Z}_{0}^{+}if and only if $\left(L_{\gamma}\right)$ has the same property. Using the general forward solution

$$
\varphi_{\gamma}(k ; 0, \xi, \eta)=\binom{\left(\frac{2}{\gamma}\right)^{k}\left(\xi+\frac{4}{7} \eta\right)-\frac{4}{7} \eta\left(\frac{1}{4 \gamma}\right)^{k}}{\left(\frac{1}{2 \gamma}\right)^{k} \eta} \quad \text { for all } k \in \mathbb{Z}_{0}^{+}, \xi, \eta \in \mathbb{R}
$$

of equation $\left(P_{\gamma}\right)$, the corresponding projector \bar{P}_{k}^{+}for the ED of $\left(P_{\gamma}\right)$ on \mathbb{Z}_{0}^{+}satisfies the relation (cf. [Pal88, Prop. 2.3(i)])

$$
R\left(\bar{P}_{0}^{+}\right)=\left\{(\xi, \eta) \in \mathbb{R}^{2}: \sup _{k \geq 0}\left\|\varphi_{\gamma}(k ; 0, \xi, \eta)\right\|<\infty\right\}= \begin{cases}\{0\}, & \gamma<\frac{1}{2} \\ \mathbb{R}\binom{4}{-7}, & \frac{1}{2}<\gamma<2 \\ \mathbb{R}^{2}, & 2<\gamma\end{cases}
$$

Both difference equations $\left(L_{\gamma}\right)$ and $\left(P_{\gamma}\right)$ coincide on \mathbb{Z}_{-1}^{-}and therefore the perturbed projector \bar{P}_{k}^{-}for the ED of $\left(P_{\gamma}\right)$ on \mathbb{Z}_{-1}^{-}satisfies $N\left(\bar{P}_{-1}^{-}\right)=N\left(P_{-1}^{-}\right)$. This

ED extends to the semi-line \mathbb{Z}_{0}^{-}and the invariance $N\left(\bar{P}_{0}^{-}\right)=A_{-1} N\left(P_{-}\right)$implies $R\left(\bar{P}_{0}^{+}\right) \oplus N\left(\bar{P}_{0}^{-}\right)=\mathbb{R}^{2}$ for all $\gamma \notin\left\{\frac{1}{2}, 2\right\}$. Using Lemma 1 we arrive at

$$
\Sigma(A+B)=\left\{\frac{1}{2}, 2\right\} \neq \Sigma(A) .
$$

We point out that our ℓ_{0}-robustness result [Pöt09, Thm. 8] fails due to the preparatory but erroneous [Pöt09, Lemma 7]. Its proof relies on the abstract [Kat80, p. 243, Thm. 5.33], where the essential spectrum is assumed to be at most countable - this is typically not satisfied for the crucial weighted shift $T_{A} \in L\left(\ell^{\infty}\right)$, $\left(T_{A} \phi\right)_{k}:=A_{k-1} \phi_{k-1}$. Yet, a correct version of [Pöt09, Lemma 7] reads as
Lemma 2. If every $A_{k} \in L(X), k \in \mathbb{Z}$, is invertible with $\sup _{k \in \mathbb{Z}}\left\|A_{k}^{-1}\right\|<\infty$, then the essential spectrum $\sigma_{\text {ess }}\left(T_{A}\right)$ of T_{A} satisfies $\partial \sigma\left(T_{A}\right) \subseteq \sigma_{\text {ess }}\left(T_{A}\right) \subseteq \sigma\left(T_{A}\right)$.
Proof. Since $\sigma\left(T_{A}\right)$ is rotationally symmetric w.r.t. $0 \in \mathbb{C}$, its only possible isolated spectral point is 0 . Yet, our assumptions guarantee that $T_{A} \in L\left(\ell^{\infty}\right)$ is invertible with bounded inverse $\left(T_{A}^{-1} \psi\right)_{k}=A_{k}^{-1} \psi_{k+1}$ and in particular $0 \notin \sigma\left(T_{A}\right)$. This yields iso $\sigma\left(T_{A}\right)=\emptyset$ and using [Har88, p. 371, Thm. 9.8.4] it follows $\partial \sigma\left(T_{A}\right) \backslash \sigma_{\text {ess }}\left(T_{A}\right)=\emptyset$, i.e. one has $\partial \sigma\left(T_{A}\right) \subseteq \sigma_{\text {ess }}\left(T_{A}\right)$. The inclusion $\sigma_{\text {ess }}\left(T_{A}\right) \subseteq \sigma\left(T_{A}\right)$ holds trivially.

Lemma 3. If $B_{k} \in L(X), k \in \mathbb{Z}$, is a sequence of compact operators satisfying $\lim _{k \rightarrow \pm \infty}\left\|B_{k}\right\|=0$, then also $T_{B} \in L\left(\ell^{\infty}\right)$ is compact with $\sigma\left(T_{B}\right)=\{0\}$.
Proof. For every $n \in \mathbb{N}$ we define compact operators $T_{B}^{n} \in L\left(\ell^{\infty}\right)$,

$$
\left(T_{B}^{n} \phi\right)_{k}:= \begin{cases}B_{k-1} \phi_{k-1}, & |k-1| \leq n \\ 0, & |k-1|>n\end{cases}
$$

Thus, thanks to $\left\|T_{B}-T_{B}^{n}\right\|_{L\left(\ell^{\infty}\right)} \leq \sup _{|k|>n}\left\|B_{k}\right\| \xrightarrow[n \rightarrow \infty]{ } 0$ also the uniform limit T_{B} is compact (cf. [Yos80, p. 278, Thm. (iii)]). Since the spectrum of compact operators consists of isolated points with zero as the only possible accumulation point (see [Yos80, p. 284, Thm. 2]), the rotational invariance of $\sigma\left(T_{B}\right)$ implies $\sigma\left(T_{B}\right)=\{0\}$.

Using Lemma 2 and 3 we can establish an accurate counterpart to [Pöt09, Thm. 8] under essentially two additional assumptions: First, (L) is supposed to have discrete dichotomy spectrum, which e.g. occurs for autonomous or periodic equations. Second, the coefficient operator of (L) and the perturbation sequence B_{k} need to commute. Precisely, we have

Theorem 1. (ℓ_{0}-roughness) Under the assumptions
(i) every $A_{k} \in L(X), k \in \mathbb{Z}$, is invertible with $\sup _{k \in \mathbb{Z}}\left\|A_{k}^{-1}\right\|<\infty$,
(ii) every $B_{k} \in L(X), k \in \mathbb{Z}$, is compact with $\lim _{k \rightarrow \pm \infty}\left\|B_{k}\right\|=0$
and $\partial \Sigma(A)=\Sigma(A)$ the following holds:
(a) $\Sigma(A) \subseteq \Sigma(A+B)$,
(b) if $B_{k+1} A_{k}=A_{k+1} B_{k}, k \in \mathbb{Z}$, then $\Sigma(A)=\Sigma(A+B)$.

Proof. (a) Referring to [Pöt09, Thm. 1] we have $\sigma\left(T_{A}\right)=\partial \sigma\left(T_{A}\right)$. Consequently, the above Lemma 2 guarantees

$$
\sigma\left(T_{A}\right)=\sigma_{\mathrm{ess}}\left(T_{A}\right)=\sigma_{\mathrm{ess}}\left(T_{A}+T_{B}\right) \subseteq \sigma\left(T_{A}+T_{B}\right)=\sigma\left(T_{A+B}\right),
$$

since T_{B} is compact due to Lemma 3 and compact perturbations leave the essential spectrum invariant (cf. [Kat80, p. 244, Thm. 5.35]). Then again our [Pöt09, Thm. 1] implies the claimed inclusion.
(b) Our assumption ensures that T_{A} and T_{B} commute. Hence, we obtain the inclusion $\sigma\left(T_{A+B}\right)=\sigma\left(T_{A}+T_{B}\right) \subseteq \sigma\left(T_{A}\right)+\sigma\left(T_{B}\right)$ (cf. [ARS94, Thm. 7.2]) and by means of Lemma 3 this in turn yields $\sigma\left(T_{A+B}\right) \subseteq \sigma\left(T_{A}\right)$. With [Pöt09, Thm. 1] we conclude $\Sigma(A+B) \subseteq \Sigma(A)$ and a combination with assertion (a) implies our claim.

References

[ARS94] W. Arendt, F. Räbiger and A. Sourour, Spectral properties of the operator equation $A X+X B=Y$, Q. J. Math., Oxf. II. Ser. 45 (1994), no. 178, 133-149.
[Bas00] A.G. Baskakov, Invertibility and the Fredholm property of difference operators, Mathematical Notes 67 (2000), no. 6, 690-698.
[BG91] A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral Equations Oper. Theory 14 (1991), no. 5, 613-677.
[BG93] A. Ben-Artzi and I. Gohberg, Dichotomies of perturbed time varying systems and the power method, Indiana Univ. Math. J. 42 (1993), no. 3, 699-720.
[Har88] R. Harte, Invertibility and singularity for bounded linear operators, Pure and Applied Mathematics 109, Marcel Dekker, New York, etc., 1988.
[Hen81] D. Henry, Geometric theory of semilinear parabolic equations, Lect. Notes Math. 840, Springer, Berlin, 1981.
[Kat80] T. Kato, Perturbation theory for linear operators, corrected 2nd ed., Springer, Berlin etc., 1980.
[Pal88] K.J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported 1 (U. Kirchgraber and H.-O. Walther, eds.), B.G. Teubner/John Wiley \& Sons, Stuttgart/Chichester etc., 1988, pp. 265-306.
[Pöt09] C. Pötzsche, A note on the dichotomy spectrum, J. Difference Equ. Appl. 15 (2009), no. 10, 1021-1025.
[SS78] R.J. Sacker and G.R. Sell, A spectral theory for linear differential systems, J. Differ. Equations 27 (1978), 320-358.
[Yos80] K. Yosida, Functional analysis, Grundlehren der mathematischen Wissenschaften 123, Springer, Berlin etc., 1980.

Christian Pötzsche, Centre for Mathematics, Munich University of Technology, Boltzmannstr. 3, D-85748 Garching, Germany

