CORRIGENDUM ON: A NOTE ON THE DICHOTOMY SPECTRUM

CHRISTIAN PÖTZSCHE

My paper "A note on the dichotomy spectrum" (J. Difference Equ. Appl. 15, no. 10, 1021–1025 (2009)) contains a serious error. In fact, [Pöt09, Lemma 7] is wrong with the consequence that also the final [Pöt09, Thm. 8] on the ℓ_0 -roughness of exponential dichotomies (EDs for short) for

(L)
$$x_{k+1} = A_k x_k$$
 for all $k \in \mathbb{Z}$

does not hold.

Throughout this corrigendum, suppose $A_k, B_k \in L(X), k \in \mathbb{Z}$, are bounded sequences of bounded linear operators on a Banach space X and we borrow our further notation and terminology from [Pöt09]. The faulty [Pöt09, Thm. 8] states that the dichotomy spectra $\Sigma(A)$ for the linear difference equation (L) and $\Sigma(A+B)$ for the linear-homogeneously perturbed difference equation

(P)
$$x_{k+1} = [A_k + B_k] x_k$$
 for all $k \in \mathbb{Z}$

are the same, provided the respective transition operators Φ of both (L) and (P) satisfy the injectivity assumption $N(\Phi(k, k - n)) = \{0\}$ for all $k \in \mathbb{Z}, n \in \mathbb{N}$, and

$$\lim_{k \to \pm \infty} \|B_k\| = 0.$$

The dichotomy spectrum yielding the appropriate hyperbolicity concept for nonautonomous problems dates back to the pioneering work of Sacker & Sell [SS78]. Using a flexible perturbation result for linear skew-product flows, [SS78, Sects. 5–6] shows that $\Sigma(A)$ depends upper-semicontinuously on perturbations of the righthand side in (*L*). Furthermore, in a finite-dimensional situation, the claimed invariance of $\Sigma(A)$ under perturbations $B_k \in \mathbb{R}^{d \times d}$ decaying to 0 is known for difference equations defined on semi-lines $\mathbb{Z}_{\kappa}^+ := \{\kappa, \kappa + 1, \ldots\}$ or $\mathbb{Z}_{\kappa}^- := \{\ldots, \kappa - 1, \kappa\}$ (we refer to [BG93, Thm. 2.3] for invertible coefficient matrices $A_k \in \mathbb{R}^{d \times d}$). In this sense, the dichotomy spectrum on semi-lines is essential spectrum.

When dealing with problems (L) on the full line \mathbb{Z} , nevertheless, this statement is not necessarily true. Indeed, the author realized the faultiness of [Pöt09, Thm. 8] while becoming aware of [Hen81, p. 235, Thm. 7.6.9]; the latter result precisely indicates that when passing over from (L) to the perturbed equation (P), point spectrum might occur. To explicitly falsify [Pöt09, Thm. 8] we need the subsequent characterization for EDs on \mathbb{Z} :

Lemma 1. Let $\kappa \in \mathbb{Z}$. Equation (L) has an ED on \mathbb{Z} if and only if it admits EDs on both semi-lines \mathbb{Z}_{κ}^+ and \mathbb{Z}_{κ}^- with corresponding projectors P_k^+ , P_k^- satisfying

(1)
$$R(P_{\kappa}^{+}) \oplus N(P_{\kappa}^{-}) = X.$$

Proof. Referring to [Bas00, Cor. 2 1)] and [Hen81, p. 230, Thm. 7.6.5], EDs on both semi-lines \mathbb{Z}_{κ}^+ and \mathbb{Z}_{κ}^- extend to the whole line \mathbb{Z} under (1). Conversely, for an ED on \mathbb{Z} the projector P_k is uniquely determined and clearly fulfills (1).

CHRISTIAN PÖTZSCHE

From this we obtain the following counterexample to [Pöt09, Thm. 8]:

Example 1. In \mathbb{R}^2 we consider a piecewise constant difference equation (L) with

$$A_k := \begin{pmatrix} a_k & 0\\ 0 & a_k^{-1} \end{pmatrix}, \qquad \qquad a_k := \begin{cases} 2, & k \ge 0, \\ \frac{1}{2}, & k < 0. \end{cases}$$

Given $\gamma > 0$, its scaled counterpart

$$(L_{\gamma}) x_{k+1} = \gamma^{-1} A_k x_k \text{for all } k \in \mathbb{Z}$$

has the following dichotomy properties: If $\gamma \notin \{\frac{1}{2}, 2\}$ then we have EDs on both semi-lines \mathbb{Z}_0^+ and \mathbb{Z}_0^- with constant projectors P_+ resp. P_- . They are given by

- $\gamma < \frac{1}{2}$: $P_{+} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $P_{-} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\frac{1}{2} < \gamma < 2$: $P_{+} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $P_{-} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $2 < \gamma$: $P_{+} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $P_{-} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

which yields the relations

$$R(P_{+}) \cap N(P_{-}) = \begin{cases} \{0\}, & \gamma < \frac{1}{2} \text{ or } 2 < \gamma, \\ \mathbb{R} \begin{pmatrix} 0\\1 \end{pmatrix}, & \frac{1}{2} < \gamma < 2, \end{cases}$$
$$R(P_{+}) + N(P_{-}) = \begin{cases} \mathbb{R}^{2}, & \gamma < \frac{1}{2} \text{ or } 2 < \gamma, \\ \mathbb{R} \begin{pmatrix} 0\\1 \end{pmatrix}, & \frac{1}{2} < \gamma < 2. \end{cases}$$

With Lemma 1 this shows that (L_{γ}) admits an ED on \mathbb{Z} , if and only if $\gamma \notin [\frac{1}{2}, 2]$, i.e. (L) has the dichotomy spectrum $\Sigma(A) = [\frac{1}{2}, 2]$. We perturb (L) with the matrix

$$B_{k} := \begin{pmatrix} 0 & b_{k} \\ 0 & 0 \end{pmatrix}, \qquad b_{k} := \begin{cases} \left(\frac{1}{2}\right)^{k}, & k \ge 0, \\ 0, & k < 0 \end{cases}$$

satisfying $\lim_{k\to\pm\infty} \|B_k\| = 0$ even exponentially. Due to [BG93, Thm. 2.3] the scaled perturbed difference equation

$$(P_{\gamma}) \qquad \qquad x_{k+1} = \gamma^{-1} [A_k + B_k] x_k \quad \text{for all } k \in \mathbb{Z}$$

admits an ED on the semi-line \mathbb{Z}_0^+ if and only if (L_γ) has the same property. Using the general forward solution

$$\varphi_{\gamma}(k;0,\xi,\eta) = \begin{pmatrix} \left(\frac{2}{\gamma}\right)^{k} \left(\xi + \frac{4}{7}\eta\right) - \frac{4}{7}\eta \left(\frac{1}{4\gamma}\right)^{k} \\ \left(\frac{1}{2\gamma}\right)^{k}\eta \end{pmatrix} \text{ for all } k \in \mathbb{Z}_{0}^{+}, \, \xi, \eta \in \mathbb{R}$$

of equation (P_{γ}) , the corresponding projector \bar{P}_k^+ for the ED of (P_{γ}) on \mathbb{Z}_0^+ satisfies the relation (cf. [Pal88, Prop. 2.3(i)])

$$R(\bar{P}_{0}^{+}) = \left\{ (\xi, \eta) \in \mathbb{R}^{2} : \sup_{k \ge 0} \|\varphi_{\gamma}(k; 0, \xi, \eta)\| < \infty \right\} = \begin{cases} \{0\}, & \gamma < \frac{1}{2}, \\ \mathbb{R}\begin{pmatrix} 4\\ -7 \end{pmatrix}, & \frac{1}{2} < \gamma < 2, \\ \mathbb{R}^{2}, & 2 < \gamma. \end{cases}$$

Both difference equations (L_{γ}) and (P_{γ}) coincide on \mathbb{Z}_{-1}^{-} and therefore the perturbed projector \bar{P}_k^- for the ED of (P_γ) on \mathbb{Z}_{-1}^- satisfies $N(\bar{P}_{-1}^-) = N(P_{-1}^-)$. This

 $\mathbf{2}$

ED extends to the semi-line \mathbb{Z}_0^- and the invariance $N(\bar{P}_0^-) = A_{-1}N(P_-)$ implies $R(\bar{P}_0^+) \oplus N(\bar{P}_0^-) = \mathbb{R}^2$ for all $\gamma \notin \{\frac{1}{2}, 2\}$. Using Lemma 1 we arrive at

$$\Sigma(A+B) = \left\{\frac{1}{2}, 2\right\} \neq \Sigma(A).$$

We point out that our ℓ_0 -robustness result [Pöt09, Thm. 8] fails due to the preparatory but erroneous [Pöt09, Lemma 7]. Its proof relies on the abstract [Kat80, p. 243, Thm. 5.33], where the essential spectrum is assumed to be at most countable — this is typically not satisfied for the crucial weighted shift $T_A \in L(\ell^{\infty})$, $(T_A\phi)_k := A_{k-1}\phi_{k-1}$. Yet, a correct version of [Pöt09, Lemma 7] reads as

Lemma 2. If every $A_k \in L(X)$, $k \in \mathbb{Z}$, is invertible with $\sup_{k \in \mathbb{Z}} ||A_k^{-1}|| < \infty$, then the essential spectrum $\sigma_{ess}(T_A)$ of T_A satisfies $\partial \sigma(T_A) \subseteq \sigma_{ess}(T_A) \subseteq \sigma(T_A)$.

Proof. Since $\sigma(T_A)$ is rotationally symmetric w.r.t. $0 \in \mathbb{C}$, its only possible isolated spectral point is 0. Yet, our assumptions guarantee that $T_A \in L(\ell^{\infty})$ is invertible with bounded inverse $(T_A^{-1}\psi)_k = A_k^{-1}\psi_{k+1}$ and in particular $0 \notin \sigma(T_A)$. This yields iso $\sigma(T_A) = \emptyset$ and using [Har88, p. 371, Thm. 9.8.4] it follows $\partial \sigma(T_A) \setminus \sigma_{\text{ess}}(T_A) = \emptyset$, i.e. one has $\partial \sigma(T_A) \subseteq \sigma_{\text{ess}}(T_A)$. The inclusion $\sigma_{\text{ess}}(T_A) \subseteq \sigma(T_A)$ holds trivially. \Box

Lemma 3. If $B_k \in L(X)$, $k \in \mathbb{Z}$, is a sequence of compact operators satisfying $\lim_{k\to\pm\infty} \|B_k\| = 0$, then also $T_B \in L(\ell^{\infty})$ is compact with $\sigma(T_B) = \{0\}$.

Proof. For every $n \in \mathbb{N}$ we define compact operators $T_B^n \in L(\ell^{\infty})$,

$$(T_B^n \phi)_k := \begin{cases} B_{k-1} \phi_{k-1}, & |k-1| \le n, \\ 0, & |k-1| > n. \end{cases}$$

Thus, thanks to $\|T_B - T_B^n\|_{L(\ell^{\infty})} \leq \sup_{|k|>n} \|B_k\| \xrightarrow[n \to \infty]{} 0$ also the uniform limit T_B is compact (cf. [Yos80, p. 278, Thm. (iii)]). Since the spectrum of compact operators consists of isolated points with zero as the only possible accumulation point (see [Yos80, p. 284, Thm. 2]), the rotational invariance of $\sigma(T_B)$ implies $\sigma(T_B) = \{0\}.$ \Box

Using Lemma 2 and 3 we can establish an accurate counterpart to [Pöt09, Thm. 8] under essentially two additional assumptions: First, (L) is supposed to have discrete dichotomy spectrum, which e.g. occurs for autonomous or periodic equations. Second, the coefficient operator of (L) and the perturbation sequence B_k need to commute. Precisely, we have

Theorem 1. (ℓ_0 -roughness) Under the assumptions

- (i) every $A_k \in L(X)$, $k \in \mathbb{Z}$, is invertible with $\sup_{k \in \mathbb{Z}} ||A_k^{-1}|| < \infty$, (ii) every $B_k \in L(X)$, $k \in \mathbb{Z}$, is compact with $\lim_{k \to \pm \infty} ||B_k|| = 0$

and $\partial \Sigma(A) = \Sigma(A)$ the following holds:

- (a) $\Sigma(A) \subseteq \Sigma(A+B)$,
- (b) if $B_{k+1}A_k = A_{k+1}B_k$, $k \in \mathbb{Z}$, then $\Sigma(A) = \Sigma(A+B)$.

Proof. (a) Referring to [Pöt09, Thm. 1] we have $\sigma(T_A) = \partial \sigma(T_A)$. Consequently, the above Lemma 2 guarantees

$$\sigma(T_A) = \sigma_{\text{ess}}(T_A) = \sigma_{\text{ess}}(T_A + T_B) \subseteq \sigma(T_A + T_B) = \sigma(T_{A+B})$$

since T_B is compact due to Lemma 3 and compact perturbations leave the essential spectrum invariant (cf. [Kat80, p. 244, Thm. 5.35]). Then again our [Pöt09, Thm. 1] implies the claimed inclusion.

CHRISTIAN PÖTZSCHE

(b) Our assumption ensures that T_A and T_B commute. Hence, we obtain the inclusion $\sigma(T_{A+B}) = \sigma(T_A + T_B) \subseteq \sigma(T_A) + \sigma(T_B)$ (cf. [ARS94, Thm. 7.2]) and by means of Lemma 3 this in turn yields $\sigma(T_{A+B}) \subseteq \sigma(T_A)$. With [Pöt09, Thm. 1] we conclude $\Sigma(A + B) \subseteq \Sigma(A)$ and a combination with assertion (a) implies our claim.

References

- [ARS94] W. Arendt, F. Räbiger and A. Sourour, Spectral properties of the operator equation AX + XB = Y, Q. J. Math., Oxf. II. Ser. 45 (1994), no. 178, 133–149.
- [Bas00] A.G. Baskakov, Invertibility and the Fredholm property of difference operators, Mathematical Notes 67 (2000), no. 6, 690–698.
- [BG91] A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral Equations Oper. Theory 14 (1991), no. 5, 613–677.
- [BG93] A. Ben-Artzi and I. Gohberg, Dichotomies of perturbed time varying systems and the power method, Indiana Univ. Math. J. 42 (1993), no. 3, 699–720.
- [Har88] R. Harte, Invertibility and singularity for bounded linear operators, Pure and Applied Mathematics 109, Marcel Dekker, New York, etc., 1988.
- [Hen81] D. Henry, Geometric theory of semilinear parabolic equations, Lect. Notes Math. 840, Springer, Berlin, 1981.
- [Kat80] T. Kato, Perturbation theory for linear operators, corrected 2nd ed., Springer, Berlin etc., 1980.
- [Pal88] K.J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported 1 (U. Kirchgraber and H.-O. Walther, eds.), B.G. Teubner/John Wiley & Sons, Stuttgart/Chichester etc., 1988, pp. 265–306.
- [Pöt09] C. Pötzsche, A note on the dichotomy spectrum, J. Difference Equ. Appl. 15 (2009), no. 10, 1021–1025.
- [SS78] R.J. Sacker and G.R. Sell, A spectral theory for linear differential systems, J. Differ. Equations 27 (1978), 320–358.
- [Yos80] K. Yosida, Functional analysis, Grundlehren der mathematischen Wissenschaften 123, Springer, Berlin etc., 1980.

CHRISTIAN PÖTZSCHE, CENTRE FOR MATHEMATICS, MUNICH UNIVERSITY OF TECHNOLOGY, BOLTZMANNSTR. 3, D-85748 GARCHING, GERMANY