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Abstract. Without question, the dichotomy spectrum is a central tool in the
stability, qualitative and geometric theory of nonautonomous dynamical sys-

tems. When dealing with such linear equations having triangular coefficient

matrices, their dichotomy spectrum associated to the whole time axis is not
fully determined by the diagonal entries. On the one hand, this is surprising

because such behavior differs from both the half line situation, as well as the

classical autonomous and periodic cases. On the other hand, triangular prob-
lems surely occur in various applications and particularly numerical techniques.

Based on operator-theoretical tools, this paper provides various sufficient
criteria to obtain a corresponding diagonal significance for finite-dimensional

difference equations in the following sense: Spectral and continuity properties

of the diagonal elements extend to the whole triangular system.

1. Introduction. At least in finite dimensions, the local behavior of dynamical
systems near constant or periodic solutions is generically determined by the spec-
trum of its linearization, i.e. by eigenvalues or Floquet multipliers. Provided the
(Floquet) spectrum is disjoint from the stability boundary (the unit circle in dis-
crete time resp. the imaginary axis in continuous time) one speaks of hyperbolicity.
When extending this setting and dealing with general nonautonomous systems or
aperiodic solutions, hyperbolicity is not a generic property anymore and cannot be
characterized in terms of eigenvalues. Nevertheless for various reasons, an appro-
priate spectral notion is given in terms of the dichotomy (or Sacker-Sell) spectrum
Σ ⊆ R (cf. [36, 6]). This concept is particularly suitable to obtain stability in-
formation, and far beyond that to develop a geometric theory for time-dependent
equations involving invariant manifolds and topological linearizations [24], as well
as normal forms [38, 39]. In addition, it turned out to be beneficial to investigate
several dynamically relevant subsets of the dichotomy spectrum for the following
reasons: (1) They allow to classify nonautonomous bifurcations on a linear level [32].
(2) While Σ is only upper-semicontinuous under general perturbations, appropriate
relations between its dichotomy subspectra yield even continuity for Σ (see [34]).

Typically, the dichotomy spectrum is only accessible on a numerical basis. As
a result, both the approximate computation (cf. [12, 20]), and also further prop-
erties (see [32]) of Σ received attention over the recent years. Indeed, many of
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the computational methods are based on the strategy to transform a linear differ-
ence or differential equation to triangular form without affecting its spectrum (or
stability properties), and then to extract the spectrum from their resulting diago-
nal: Since the diagonal elements are scalar functions, their dichotomy spectra are
single intervals whose boundary consists of lower and upper Bohl exponents. The
spectrum of the whole system then results as the union of the diagonal spectra.
This is a valid technique, as long as the equations are merely dichotomic on a half
line. Nonetheless, when dealing with exponential dichotomies and related spectra
on the whole time axis, also information on elements off the diagonal is needed, or
specific assumptions on the diagonal are necessary. Besides numerical techniques,
another source for (block-) triangular linear problems are variational equations re-
lated to extinction equilibria of nonlinear models in e.g. population dynamics (we
refer to [21]). In summary, the full axis dichotomy spectrum has more subtle (and
weaker) perturbation properties than the related half line concept.

These observations motivate our deeper analysis of spectral properties for w.l.o.g.
(block) upper-triangular linear nonautonomous dynamical systems. For this pur-
pose, the paper restricts to time-dependent finite-dimensional difference equations,
since they provide a setting tailor-made to apply convenient operator-theoretical
tools as previously exemplified in [10, 5] or [31, 32, 34]. Our presentation begins
in the subsequent Sect. 2 with preparations on characteristic, Lyapunov and Bohl
exponents, as well as exponential dichotomies in discrete time. These concepts are
illustrated by several examples to which we will return throughout the text. We
also emphasize the close relationship between the dichotomy spectrum and weighted
shift operators on the Hilbert space of square-summable sequences. The following
Sects. 3–4 illuminate how results from operator theory provide sufficient conditions
on the diagonal sequences, as well as on the off-diagonal elements, such that our
desired diagonal significance holds: This means

• the dichotomy spectrum and its dynamically relevant subspectra are deter-
mined by the union of the corresponding diagonal spectra,

• continuity of the diagonal spectra w.r.t. the Hausdorff distance yields conti-
nuity of the full spectrum.

Among others, these conditions are based on ambient compatibility conditions com-
paring a system’s growth in forward and backward time by means of their Lyapunov
filtrations (cf. [8]). For instance, Sect. 3 tackles the basic situation of diagonal sys-
tems, whereas Sect. 4 studies upper block-triangular equations. Sufficient conditions
for diagonal significance depending on the diagonal systems, or the off-diagonal en-
tries are provided. The obtained prototype results extend to triangular equations
by means of inductive arguments, which can be found in Sect. 5. For the reader’s
convenience the paper closes with two appendices covering the required basics of
operator theory and matrix-weighted shifts.

Although the present paper sticks to a discrete time situation, it was explained
[34, Sect. 6] already, to what extend the results are useful in an ODE context as
well. In addition, we recently became aware of Flaviano Battelli’s and Ken Palmer’s
preprint [9] dealing with dichotomies and the related spectrum of block-triangular
equations in continuous time. They allow unbounded coefficients and obtain also
necessary conditions for diagonal significance in the dichotomy spectrum. Moreover,
a procedure to determine the full-axis spectrum from the half line spectra is given.
The methods in [9] are different from ours though.



DICHOTOMY SPECTRA OF TRIANGULAR EQUATIONS 3

We start with the necessary terminology: Given a real interval I ⊆ R, we denote
an intersection IZ := I∩Z with the integers Z as discrete interval ; for such a discrete
interval I, set I′ := {k ∈ Z : k + 1 ∈ I}. Here, I will typically be unbounded, and
e.g. of the form Z+

κ := [κ,∞)Z, Z−κ := (−∞, κ]Z κ ∈ Z, or Z. Let us write K for one
of the fields R or C. On Kd we denote the Euclidean resp. unitary norm by |·|, write
L(Kd) for the d× d-matrices and GL(Kd) for the invertible matrices. The space of
square-summable sequences in Kd is abbreviated as `2 = `2(Kd) throughout.

Let K(K) denote the family of nonempty compact subsets of K and

h : K(K)×K(K)→ R, h(M1,M2) := max

{
sup
x∈M1

dist(x,M2), sup
x∈M2

dist(x,M1)

}
be the Hausdorff distance. Then the pair (K(K), h) becomes a metric space. Finally,
the closure of a subset M ⊆ Kd is denoted by M , and M◦ is its interior.

2. Preliminaries. Consider a linear nonautonomous difference equation

xk+1 = Akxk (∆A)

with coefficient matrices Ak ∈ GL(Kd), k ∈ I′, fulfilling the assumption

sup
k∈I′
|Ak| <∞.

We often identify (∆A) with the matrix sequence A = (Ak)k∈I′ in the Banach space

L∞(Kd) := `∞(Kd×d), ‖A‖ := sup
k∈I′
|Ak| .

The solutions to (∆A) can be expressed in terms of the transition matrix

Φ : I× I→ GL(Kd), Φ(k, l) :=


Ak−1 · · ·Al, l < k,

idKd , k = l,

A−1k · · ·A−1l−1, k < l.

Along with (∆A) let us introduce the adjoint difference equation

xk = A∗k+1xk+1, (∆∗A)

whose (adjoint) transition matrix is given by Φ∗(k, κ) = Φ(κ+ 1, k + 1)∗.

2.1. Characteristic exponents and Lyapunov filtration. Assume that the dis-
crete interval I is unbounded above. In order to capture the long-term behavior of
(∆A) consider the (upper) characteristic exponent

χA(x) := lim sup
k→∞

k
√
|Φ(k, κ)x|

of its solution starting in x ∈ Kd; this exponent is independent of the initial time
κ ∈ I and clearly fulfills χA(0) = 0. A difference eqn. (∆A) possesses up to d
characteristic exponents which form its (upper) Lyapunov spectrum{

χA(x) > 0 : x ∈ Kd \ {0}
}

= {λ1, . . . , λn}
with n ≤ d. We suppose that the positive reals λj are ordered according to

0 < λ1 < . . . < λn.

The sublevel sets Wj :=
{
x ∈ Kd : χA(x) ≤ λj

}
are linear subspaces of Kd yielding

the Lyapunov filtration of strict inclusions

0 =: W0 ⊂W1 ⊂ . . . ⊂Wn = Kd.
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Concerning this, and more details on Lyapunov spectra we refer to [8, pp. 56ff].
For the adjoint difference eqn. (∆∗A) the characteristic exponent is defined by

χ∗A(x) := lim sup
k→∞

k
√
|Φ∗(k, κ)x| = lim sup

k→∞

k
√
|Φ(κ+ 1, k + 1)∗x| for all x ∈ Kd.

As above one obtains a finite Lyapunov spectrum{
χ∗A(x) > 0 : x ∈ Kd \ {0}

}
= {µ1, . . . , µn∗}

and a Lyapunov filtration 0 =: V0 ⊂ V1 ⊂ . . . ⊂ Vn∗ = Kd with n∗ ≤ d for (∆∗A).

2.2. Exponential Dichotomies. Besides characteristic exponents and Lyapunov
filtrations, a further and arguably more appropriate tool to capture the asymptotics
of nonautonomous equations are exponential dichotomies.

Given an unbounded discrete interval I, a linear difference eqn. (∆A) has an
exponential dichotomy on I (ED for short, cf. [17, 6]), if there exists a sequence of
projections Pk ∈ L(Kd), k ∈ I, with Pk+1Ak = AkPk for all k ∈ I′, growth rates
α ∈ (0, 1) and a constant K ≥ 1 such that the estimates

|Φ(k, l)Pl| ≤ Kαk−l, |Φ(l, k)[idKd −Pk]| ≤ Kαk−l for all l ≤ k
and k, l ∈ I hold. Then dichotomy spectrum of (∆A) is defined as

Σ(A) =
{
γ > 0 : xk+1 = γ−1Akxk does not have an ED on I

}
;

it is empty or consists of up to d disjoint spectral intervals (cf. [6, Thm. 3.4])

Σ(A) =

m−1⋃
i=1

[αi, βi] ∪
{

(0, βm]

[αm, βm]

with real numbers 0 < αm ≤ βm < αm−1 ≤ . . . ≤ β1, m ≤ d. The invertibility
assumption on Ak ensures that an empty spectrum or a spectral interval (0, βm]
can be avoided precisely in case

sup
k∈I′

∣∣A−1k ∣∣ <∞. (2.1)

Due to its role for stability properties, max Σ(A) is called stability radius of (∆A).
We speak of a discrete spectrum, if Σ(A) is finite. Discrete spectra on the half line
I = Z+

κ typically occur for asymptotically periodic equations, whereas on the whole
line I = Z, periodic (or autonomous) equations possess a discrete spectrum.

If we denote the dichotomy spectra associated with the discrete intervals Z+
κ , Z−κ

or Z by Σ+(A), Σ−(A) resp. Σ(A), then the inclusions

{λ1, . . . , λn} ⊆ Σ+(A) ⊆ Σ(A), Σ−(A) ⊆ Σ(A)

hold (see [24, p. 88, Thm. 5.13]). Thus, the Lyapunov spectrum is finer than the
dichotomy spectra, and we refer to our concluding Ex. 2.6 for concrete examples
illustrating these inclusions.

2.3. Lyapunov and Bohl exponents. While the often studied Lyapunov expo-
nents measure exponential growth in a straight-forward manner, the related Bohl
exponents (cf. [18, pp. 253ff, Sect. 3.3]) rather determine uniform growth of linear
equations or individual solutions.

For the family of discrete intervals J ⊆ I with fixed length n ∈ N one writes

In := {J ⊆ I : J is a discrete interval with #J = n} for all n ∈ N.
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It has advantages to introduce Lyapunov and Bohl exponents abstractly: Suppose
thereto that A is a normed unital algebra over K ∈ {R,C} with norm |·|. Let us
define the lower resp. upper Bohl exponent of a sequence a = (ak)k∈I in A as

βI(a) := lim sup
n→∞

sup
J∈In

n

√∣∣∣∏
j∈J

aj

∣∣∣, βI(a) := lim inf
n→∞

inf
J∈In

n

√∣∣∣∏
j∈J

aj

∣∣∣. (2.2)

For fixed I one writes β(a) resp. β(a). In comparison, Lyapunov exponents are

λ+(a) := lim inf
n→∞

n

√√√√∣∣∣n−1∏
j=κ

aj

∣∣∣, λ+(a) := lim sup
n→∞

n

√√√√∣∣∣n−1∏
j=κ

aj

∣∣∣,
λ−(a) := lim inf

n→∞
n

√√√√∣∣∣ κ−1∏
j=−n

aj

∣∣∣, λ−(a) := lim sup
n→∞

n

√√√√∣∣∣ κ−1∏
j=−n

aj

∣∣∣
and independent of κ ∈ I, as long as all aj ∈ A, j ∈ I, are invertible. It goes without

saying that I has to be unbounded above in order to introduce λ+(a), λ+(a), while

the definition of λ−(a), λ−(a) only makes sense for I being unbounded below. When

dealing with Bohl exponents βI(a), βI(a) it suffices that I is solely unbounded.

Remark 2.1. In the Banach algebra A = K the Lyapunov exponents of a sequence
a and the characteristic exponents of the corresponding scalar difference equation

xk+1 = akxk (∆a)

are related by

λ+(a) = χa(x), λ+(a) = χ∗a(x)−1 for all x 6= 0. (2.3)

Properties of Lyapunov and particularly Bohl exponents, as well as the fact that
the limits in (2.2) exist under natural assumptions, are given in

Proposition 2.2. On unbounded discrete subintervals J ⊆ I one has

βI(a) ≤ βJ(a) ≤ βJ(a) ≤ βI(a) ≤ sup
k∈I
|ak| ,

βZ(a) ≤ βZ±κ
(a) ≤ λ±(a) ≤ λ±(a) ≤ βZ±κ (a) ≤ βZ(a) for all κ ∈ Z (2.4)

and the positive homogeneity

β(µa) = |µ|β(a), β(µa) = |µ|β(a), (2.5)

λ±(µa) = |µ|λ±(a), λ±(µa) = |µ|λ±(a) for all µ ∈ K.

Moreover, the left-hand limit in (2.2) exists and the characterizations

βI(a) = lim
n→∞

sup
J∈In

n

√∣∣∣∏
j∈J

aj

∣∣∣ = inf
n∈N

sup
J∈In

n

√∣∣∣∏
j∈J

aj

∣∣∣ (2.6)

= inf

{
ρ > 0

∣∣∣∣ ∃K ≥ 1 : ∀n ∈ N : sup
J∈In

∣∣∣∏
j∈J

aj

∣∣∣ ≤ Kρn} (2.7)

hold, where (2.7) necessitates the sequence a to be bounded.
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Proof. The inequalities relating Bohl exponents on different discrete intervals are
evident from (2.2), as well as their homogeneity relations (2.5). Furthermore, define
α := supj∈I |aj | and for the sake of a convenient notation abbreviate

φn := sup
J∈In

n

√∣∣∣∏
j∈J

aj

∣∣∣ = n

√
sup
J∈In

∣∣∣∏
j∈J

aj

∣∣∣ for all n ∈ N.

Therefore, because the norm |·| is submultiplicative,
∣∣∏

j∈J aj
∣∣ ≤∏j∈J |aj | ≤ αn for

all J ∈ In implies n
√
φn ≤ α for every n ∈ N and consequently β(a) ≤ α.

(a) Let m,n ∈ N and suppose J ∈ Im+n denotes an arbitrary discrete interval,
e.g. of the form J = [κ, κ+m)Z ∪ [κ+m,κ+m+ n)Z with some κ ∈ I. Again the
submultiplicativity of the norm allows us to obtain∣∣∣∏

j∈J
aj

∣∣∣ ≤ ∣∣∣κ+m−1∏
j=κ

aj

∣∣∣∣∣∣κ+m+n−1∏
j=κ+m

aj

∣∣∣ ≤ φmφn for all m,n ∈ N

and since J ∈ Im+n was arbitrary, we can pass to the least upper bound over all
such discrete intervals J yielding 0 ≤ φm+n ≤ φmφn for all m,n ∈ N. Now it is
well-known (see, e.g., [1, p. 246]) that the real sequence ( n

√
φn)n∈N converges to the

value infn∈N
n
√
φn, which establishes (2.6).

In order to deduce the characterization (2.7), we abbreviate the right-hand side
of the inequality required in (2.7) by R. Thus, for every ε > 0 there exists a K ≥ 0
such that φn ≤ K(R+ ε)n for all n ∈ N and β(a) ≤ R follows from

β(a) = lim sup
n→∞

n
√
φn ≤ lim sup

n→∞

n
√
K(R+ ε) = R+ ε for all ε > 0.

Conversely, it remains to show R ≤ β(a). From β(a) = limν→∞ supn≥ν
n
√
φn we see

that for every sufficiently small ε > 0 there exists a N ∈ N such that the inequality
supn≥ν

n
√
φn ≤ β(a) + ε holds for all ν ≥ N . Hence, it is

φn ≤ (β(a) + ε)n for all n ≥ N (2.8)

and if we define K := sup1≤n<N

(
supj∈I|aj |
β(a)+ε

)n
≥ 1, then

φn ≤
(
sup
j∈I
|aj |
)n ≤ K (β(a) + ε

)n
for all 1 ≤ n < N.

Combining this with (2.8), and since ε > 0 was arbitrary, we get R ≤ β(a).

Corollary 2.3. In algebras A with multiplicative norm (i.e. |ab| = |a| |b|, a, b ∈ A)
one has β(|a|) = β(a), β(|a|) = β(a) and if every ak ∈ A is invertible, then

inf
k∈I
|ak| ≤ β(a) = lim

n→∞
inf
J∈In

n

√∣∣∣∏
j∈J

aj

∣∣∣ = sup
n∈N

inf
J∈In

n

√∣∣∣∏
j∈J

aj

∣∣∣. (2.9)

Proof. It is clear that both sequences a and |a| have the same Bohl exponents.
When each ak ∈ A, k ∈ I, is invertible, then (2.9) follows from the proof of Prop. 2.2
applied to ãk := a−1k .

As temporary conclusion, we present the close connection between the dichotomy
spectrum and Bohl exponents of scalar difference eqns. (∆a):
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Proposition 2.4 (see [21, Prop. B.4]). If a = (ak)k∈I′ is a sequence in K with

0 < inf
k∈I′
|ak| ≤ sup

k∈I′
|ak| <∞, (2.10)

then (∆a) has the dichotomy spectrum Σ(a) = [β(a), β(a)].

2.4. Weighted shift operators. For one-sided time I = Z+
κ , κ ∈ Z, the dichotomy

spectrum Σ+(A) of difference eqns. (∆A) and the essential (Fredholm) spectrum σF
of the unilateral matrix-weighted shift

TAφ := (0, Aκφκ, Aκ+1φκ+1, . . .) for all φ ∈ `2

are related by (cf. [10] or [32, Thm. 3.22])

Σ+(A) = σF (TA) ∩ R+. (2.11)

The set σF (TA) is rotationally invariant, i.e. consists of concentric rings and annuli
in the complex plane. This observation has the striking advantage that information
on the dichotomy spectrum can be obtained from results on shifts, like for instance

Example 2.5 (asymptotically periodic scalar equations). Let p ∈ N and suppose
(ak)κ≤k is a sequence in K. If (|ak|)κ≤k is asymptotically p-periodic, i.e. there
is some p-periodic positive real sequence (pk)k∈I satisfying limk→∞(|ak| − pk) = 0,
then Ex. B.3 yields the dichotomy spectrum

Σ+(a) = {c}
with the asymptotic mean c := p

√
pκ+p−1 · · · pκ.

Difference eqns. (∆A) defined on the whole axis I = Z exhibit a richer spectral
theory; it is based on bilateral matrix-weighted shifts

(TAφ)k := Ak−1φk−1 for all k ∈ Z, φ ∈ `2.
As motivated in Sect. 1, it is advisable to distinguish different dichotomy spectra

Σα(A) = σα(TA) ∩ R+ for all α ∈ {a, s, F, F0, π} , (2.12)

where Σa(A) := Σ(A) denotes the dichotomy spectrum of (∆A), while its subspec-
tra Σs(A),ΣF (A),ΣF0

(A) and Σπ(A) are called surjectivity, Fredholm, Weyl resp.
approximate point spectrum (see [32, 34]). They consist of all reals γ > 0 such that
Lγ ∈ L(`2), (Lγφ)k := φk+1 − γ−1Akφk, k ∈ Z, fails to be onto, Fredholm, Weyl
resp. bounded below. The corresponding spectra σα are introduced in Sect. A.

2.5. Examples for I = Z. The upcoming examples allow to obtain Lyapunov and
Bohl exponents explicitly. This equips us with a number of difference equations
sufficiently flexible to illustrate our results later on.

Example 2.6 (scalar equations). Choose κ ∈ Z fixed and let (ak)k∈Z be a sequence
in K satisfying (2.10). The inclusions ∂Σ(a) ⊆ ΣF (a) ⊆ ΣF0(a) ⊆ Σ(a), as well
as ∂Σ(a) ⊆ Σs(a) ⊆ Σ(a) are fulfilled due to [32, Cors. 4.26(d) and 4.31]. We
can apply Prop. 2.4 in order to determine the dichotomy spectra of the eqns. (∆a).
Moreover, based on the relations (2.3) one automatically has information concerning
their characteristic exponents χa, χ∗a. Finally, combining (2.12) with the abstract
results provided in Sect. B.2 implies the following concrete examples:

(1) If |ak| ≡ ᾱ with ᾱ > 0, then all Bohl and Lyapunov exponents coincide, i.e.,

βZ±κ
(a) = βZ±κ (a) = βZ(a) = βZ(a) = λ+(a) = λ+(a) = λ−(a) = λ−(a) = ᾱ.

One has discrete dichotomy spectra Σα(a) = {ᾱ} for all α ∈ {a, F0, F, s, π}.
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(2) If |a| is p-periodic, p ∈ N, then the Bohl and Lyapunov exponents become

βZ±κ
(a) = βZ±κ (a) = βZ(a) = βZ(a)

= λ+(a) = λ+(a) = λ−(a) = λ−(a) = p

√
|ak+p−1 · · · ak|

and we also arrive at the discrete spectra

Σα(a) =

{
p

√
|ap−1+k · · · ak|

}
for all α ∈ {a, F0, F, s, π} and k ∈ Z.

(3) The both-sided asymptotically constant situation limk→±∞ |ak| = α± with
reals α± > 0 now illustrates a distinction between Bohl and Lyapunov exponents

βZ+
κ

(a) = βZ+
κ

(a) = λ+(a) = λ+(a) = α+, λ−(a) = λ−(a) = α−,

βZ(a) = min {α−, α+} , βZ(a) = max {α−, α+} ,
as well as their dependence on the discrete interval. Using [32, Ex. 5.3] one deduces

Σ(a) = [min {α−, α+} ,max {α−, α+}] , Σπ(a) =

{
{α−, α+} , α− ≤ α+,

[α+, α−], α+ ≤ α−,
ΣF0(a) = [min {α−, α+} ,max {α−, α+}] , ΣF (a) = {α−, α+} .
(4) Let p+, p− ∈ N. If |a| is asymptotically p+- resp. p−-periodic to real positive

sequences (p+k )k≥κ, (p−k )k≤κ on Z+
κ or Z−κ by means of Ex. 2.5, then it follows

Σ(a) = [min {c+, c−} ,max {c−, c+}] , Σπ(a) =

{
{c+, c−} , c− ≤ c+,
[c+, c−] , c+ ≤ c−

from Ex. B.4 with the asymptotic means c± := p±
√
p±κ+p±−1 · · · p

±
κ .

(5) To clarify that the inequalities (2.4) can be strict, for given reals α, β > 0
consider a sequence (ak)k≥0 satisfying

|ak| =
{
α, k ∈

[n(n+1)
2 , (n+1)(n+2)

2

)
Z, n even,

β, k ∈
[n(n+1)

2 , (n+1)(n+2)
2

)
Z, n odd

for all k ∈ Z+
0 .

Hence, the modulus of ak is alternately equal to the constant values α resp. β on
arithmetically increasing intervals (see Fig. 1). This yields the Bohl exponents

β(a) = min {α, β} , β(a) = max {α, β} .
In order to obtain the Lyapunov exponents of a, we observe that for every k ≥ 1

there exist unique n ∈ N and l ∈ [0, n)Z with k = n(n+1)
2 + l. For even n this implies∣∣∣∣∣∣

k−1∏
j=0

aj

∣∣∣∣∣∣ =

n(n+1)
2 +l∏
j=0

|aj | = βlαβ2α3β4 · · ·αn−1βn = βlα
n2

4 β
n2

4 −
n
2

and for odd n it is∣∣∣∣∣∣
k−1∏
j=0

aj

∣∣∣∣∣∣ =

n(n+1)
2 +l∏
j=0

|aj | = βlαβ2α3β4 · · ·βn−1αn = βlα
(n+1)2

4 β
n2−1

4 −n2 .

By means of these representations it is not difficult to deduce that the Lyapunov ex-
ponents are given as geometric mean λ+(a) = λ+(a) =

√
αβ and fulfill the inequality

β(a) ≤ λ+(a) = λ+(a) ≤ β(a); this corresponds with (2.4).
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1 3 6 10 15 21 28

. . .

α

β

k

|ak|

Figure 1. The sequence (ak)k∈Z+
0

from Ex. 2.6(5)

We continue with a 2-dimensional problem from [34, Ex. 5.10] being useful for
several reasons: It illustrates both that the dichotomy spectrum is upper-semicon-
tinuous, and that it might be smaller than the union of its diagonal spectra:

Example 2.7. Consider the planar real difference eqn. (∆A) with coefficients

Ak :=

(
a1k ck
0 a2k

)
∈ GL(R2)

satisfying A ∈ L∞(R2) and involving the real sequences

a1k :=

{
α+, k ≥ 0,

α−, k < 0,
a2k :=

{
β+, k ≥ 0,

β−, k < 0,
ck :=

{
λ, k ≥ 0,

0, k < 0
(2.13)

with reals α±, β± > 0 and a parameter λ ∈ R.
(1) Evidently, the background to obtain the Lyapunov spectra and filtrations are

the transition matrices Φ(k, κ) of (∆A) and Φ∗(k, κ) of (∆∗A):

• For α+ 6= β+ they are given by

Φ(k, κ) =



(
αk−κ+ λ

αk−κ+ −βk−κ+

α+−β+

0 βk−κ+

)
for all k, κ ≥ 0,(

αk−κ− 0

0 βk−κ−

)
for all k, κ ≤ 0,

Φ∗(k, κ) =



(
ακ−k+ 0

λ
ακ−k+ −βκ−k+

α+−β+
βκ−k+

)
for all k, κ ≥ 0,(

ακ−k− 0

0 βκ−k−

)
for all k, κ ≤ 0

and consequently yield

n = 2, {λ1, λ2} , {0} = W0 ⊂W1 ⊂W2 = R2,

n∗ = 2, {µ1, µ2} , {0} = V0 ⊂ V1 ⊂ V2 = R2.

The explicit values for these quantities can be found in Tab. 1.

λ1 λ2 µ1 µ2 W1 V1
α+ < β+ α+ β+

1
β+

1
α+

Re1 Re2
α+ > β+ β+ α+

1
α+

1
β+

R
(

λ
β+−α+

)
R
(
β+−α+

λ

)
Table 1. Lyapunov spectra and filtrations for Ex. 2.7 with α+ 6= β+
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• For α+ = β+ the transition matrices become

Φ(k, κ) =



(
αk−κ+ λ(k − κ)αk−κ−1+

0 αk−κ+

)
for all k, κ ≥ 0,(

αk−κ− 0

0 βk−κ−

)
for all k, κ ≤ 0,

Φ∗(k, κ) =



(
ακ−k+ 0

λ(κ− k)αk−κ−1+ ακ−k+

)
for all k, κ ≥ 0,(

ακ−k− 0

0 βκ−k−

)
for all k, κ ≤ 0

and consequently yield

n = 1, {α+} , {0} = W0 ⊂W1 = R2,

n∗ = 1,
{

1
α+

}
, {0} = V0 ⊂ V1 = R2.

The related dichotomy spectra Σ(A) for the various constellations of α± 6= β± were
computed in [34, Ex. 5.10] already.

(2) We particularly focus on the situation

α+ := δ, α− := δ−1, β− := α+, β+ := α− (2.14)

for some real δ > 1, where the diagonal sequences satisfy Σ(a1) = Σ(a2) = [α−, α+]
(cf. Prop. 2.4). One therefore obtains from [32, Ex. 5.5] that

Σ(A) =

{
{α−, α+} , λ 6= 0,

[α−, α+] , λ = 0.

Hence, Σ(A) suddenly shrinks and fulfills Σ(A) ⊂ Σ(a1) ∪ Σ(a2) for λ 6= 0.

3. Spectra of diagonal equations. Before discussing the general situation of tri-
angular equations, let us initially tackle a simpler case: Results on scalar difference
eqns. (∆a) extend to (∆A) with diagonal coefficient matrices Ak, i.e.

xk+1 = Akxk, Ak =

a
1
k

. . .

adk

 (D)

and bounded diagonal sequences (a1k)k∈I′ , . . . , (a
d
k)k∈I′ . Since the half line situation

I = Z+
κ was tackled in [32, Cor. 3.25] already, we restrict to the whole axis I = Z.

Theorem 3.1. Keep α ∈ {a, s, F} fixed. Diagonal difference eqns. (D) fulfill

Σα(A) =
⋃d
i=1 Σα(ai).

Proof. For 1 ≤ i ≤ d we define the linear operators

Lγ ∈ L(`∞(Kd)), (Lγφ)k := φk+1 − γ−1Akφk,
Liγ ∈ L(`∞(K)), (Liγφ)k := φk+1 − γ−1aikφk.

If α = s, then due to [30, Prop. 1] we obtain the equivalences

γ 6∈ Σs(A)⇔ Lγ is onto

⇔ ∀ψ ∈ `∞(Kd) : ∃φ ∈ `∞(Kd) : Lγφ = ψ
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⇔ ∀ψ ∈ `∞(Kd) : xk+1 = γ−1Akxk + ψk has a bounded solution φ

⇔ ∀1 ≤ i ≤ d : ∀ψi ∈ `∞(K) : xk+1 = γ−1aikxk + ψik has a bounded

solution φi

⇔ ∀1 ≤ i ≤ d : ∀ψi ∈ `∞(K) : ∃φi ∈ `∞(K) : Liγφ
i = ψi

⇔ Liγ is onto for all 1 ≤ i ≤ d

⇔ xk+1 = γ−1aikxk has an ED for all 1 ≤ i ≤ d⇔ γ 6∈
d⋃
i=1

Σs(a
i)

and the claim results in the logical contraposition. The situation α = a follows
similarly by means of the characterization [17, p. 230, Thm. 7.6.5] applied to the
operators Lγ and Liγ , while α = F was tackled in [32, Cor. 4.30].

4. Block-triangular equations. Our following analysis focusses on block-trian-
gular systems (∆A), capturing essential phenomena present in triangular equations.
Thereto, let d1, d2 ∈ N be integers with d1 + d2 = d and suppose w.l.o.g. that (∆A)
is in upper block-triangular form

xk+1 = Akxk, Ak :=

(
A1
k Ck

0 A2
k

)
(B)

with blocks A1
k ∈ Kd1×d1 , A2

k ∈ Kd2×d2 , Ck ∈ Kd1×d2 and k ∈ I unbounded above.
Due to detAk = detA1

k detA2
k one has Ak ∈ GL(Kd) if and only if both diagonal

blocks A1
k, A

2
k are invertible.

4.1. Equations on the half line I = Z+
κ . Here, diagonal significance holds:

Theorem 4.1. Block-triangular eqns. (B) satisfy Σ+(A) = Σ+(A1) ∪ Σ+(A2).

Proof. We represent points x ∈ Kd as pairs (x1, x2) with the components xi ∈ Kdi ,
i = 1, 2, and introduce the unilateral shift operator TA ∈ L(`2) as

(TAφ)k =

{
0, k = κ,

Ak−1φk−1, k > κ
=

0, k = κ,(
A1
k−1φ

1
k−1+Ck−1φ

2
k−1

A2
k−1φ

2
k−1

)
, k > κ.

With the bounded projection P ∈ L(`2), (Pφ)k :=
(
φ1
k
0

)
and the closed subspaces

X := R(P ), Y := N(P ) of `2 one obtains the direct sum `2 = X ⊕ Y and

(TAPφ)k =

{
0, k = κ,(
A1
k−1φ

1
k−1

0

)
, k > κ,

(TA(id`2 −P )φ)k =

0, k = κ,(
Ck−1φ

2
k−1

A2
k−1φ

2
k−1

)
, k > κ.

Furthermore, TA ∈ L(`2) can be represented as upper-triangular matrix operator

TA =
(
TA1 TC
0 TA2

)
∈ L(X ⊕ Y ) with the unilateral shifts TA1 ∈ L(X), TA2 ∈ L(Y ),

(TA1φ)k :=

{
0, k = κ,

A1
k−1φk−1, k > κ

(TA2φ)k :=

{
0, k = κ,

A2
k−1φk−1, k > κ

and TC ∈ L(Y,X), (TCφ)k :=

{
0, k = κ,

Ck−1φk−1, k > κ
as blocks. Due to Prop. B.2(c)

the operator TA2 has SVEP and [13, Thm. 2.3] implies σF (TA) = σF (TA1)∪σF (TA2).
With (2.11) in mind this yields the claim.
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4.2. Equations on the whole line I = Z. On the whole integer axis I = Z the
statement of Thm. 4.1 is in general false and additional assumptions are required
to obtain diagonal significance

Σα(A) = Σα(A1) ∪ Σα(A2) for all α ∈ {a, F, F0, s, π} . (DSα)

Indeed, the Ex. 2.7(2) shows that the dichotomy spectrum Σ(A) of a block-triangular
eqn. (B) can be strictly smaller than the union Σ(A1)∪Σ(A2). However, there are
two approaches to determine subsets of Σ(A). The first one is based on well-known
relations between the half line spectra and the spectra on Z:

Proposition 4.2. Keep α ∈ {a, F0, s} fixed. Block-triangular eqns. (B) satisfy

ΣF (A) = Σ+(A1) ∪ Σ+(A2) ∪ Σ−(A) ⊆ Σα(A) ⊆ Σ(A)

and under (2.1) one can replace Σ−(A) by Σ−(A1) ∪ Σ−(A2).

Proof. Thanks to [32, Cor. 4.30] one has ΣF (A) = Σ+(A)∪Σ−(A) ⊆ Σα(A) ⊆ Σ(A),
while the above Thm. 4.1 implies Σ+(A) = Σ+(A1)∪Σ+(A2). Under the assumption
(2.1), with the aid of [33, Prop. 2.1] one can also show Σ−(A) = Σ−(A1) ∪Σ−(A2)
and the claim follows.

Concerning a second method to determine one set inclusion in (DSα) and a subset
of Σα(A), we remind the reader that the symmetric difference of sets M1,M2 is

M1 4M2 := (M1 ∪M2) \ (M1 ∩M2)

and contains all elements which are either in M1 or in M2. The intersection of sets
distributes over the symmetric difference, i.e. for arbitrary sets M one has

(M1 4M2) ∩M = (M1 ∩M)4 (M2 ∩M). (4.1)

Theorem 4.3. Keep α ∈ {a, F, F0} fixed. Block-triangular eqns. (B) satisfy:

(a) Σα(A1)4 Σα(A2) ⊆ Σα(A) ⊆ Σα(A1) ∪ Σα(A2).
(b) If Σα(A1) ∩ Σα(A2) has no interior points, then (DSα) holds.

The following construction has prototype character for our investigations and
closely resembles the proof of Thm. 4.1.

Proof. Let us represent x ∈ Kd as pairs (x1, x2) with the components xi ∈ Kdi for
i = 1, 2. First, this allows us to introduce a bilateral shift TA ∈ L(`2),

(TAφ)k = Ak−1φk−1 =

(
A1
k−1φ

1
k−1 + Ck−1φ

2
k−1

A2
k−1φ

2
k−1

)
for all k ∈ Z,

and second, P ∈ L(`2), (Pφ)k :=
(
φ1
k
0

)
defines a projection. Therefore, X := R(P ),

Y := N(P ) are closed subspaces of `2 = X ⊕ Y and it holds

(TAPφ)k =

(
A1
k−1φ

1
k−1

0

)
, (TA(id`2 −P )φ)k =

(
Ck−1φ

2
k−1

A2
k−1φ

2
k−1

)
for all k ∈ Z.

Moreover, TA can be written as TA =
(
TA1 TC
0 TA2

)
∈ L(X ⊕ Y ) with

TA1 ∈ L(X), TA2 ∈ L(Y ), TC ∈ L(Y,X),

(TA1φ)k := A1
k−1φk−1, (TA2φ)k := A2

k−1φk−1, (TCφ)k := Ck−1φk−1.

(a) It is σα(TA1)4 σα(TA2) ⊆ σα(TA) ⊆ σ(TA1) ∪ σ(TA2) for α ∈ {a, F, F0} due
to [16, Cor. 4 for α = a], [41, proof of Thm. 3.1 for α = F ] and [26, (6.1) for α = F0].
The first claimed inclusion results from (4.1), if we set Mi := σ(TAi), M := R+ and
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use Σα(Ai) = σα(TAi) ∩ R+, i = 1, 2, as well as Σα(A) = σα(TA) ∩ R+ (cf. (2.12)).
The second claimed inclusion anew follows using (2.12).

(b) Thanks to σ(TA1) ∩ σ(TA2) =
{
λ ∈ C : |λ| ∈ Σ(A1) ∩ Σ(A2)

}
and our as-

sumption on interior points the intersection σ(TA1)∩σ(TA2) ⊆ C is a finite union of
circles centered around 0 (or ∅) and has thus no interior points. Then [16, Cor. 8]
shows σ(TA) = σ(TA1) ∪ σ(TA2) and (2.12) yields the claim for a = α. In case
α ∈ {F, F0} one proceeds accordingly with [41, Cor. 3.2] resp. [26, Cor. 7].

Rather than its whole line dichotomy spectrum Σ(A), the stability radius of (B)
turns out to be fully determined by the diagonal blocks:

Corollary 4.4. max Σ(A) = max
{

max Σ(A1),max Σ(A2)
}

Proof. The angular symmetry of σ(TA) and [19, Prop. 4] guarantee

max Σ(A)
(2.12)

= r(TA) =
2

max
i=1

r(TAi) =
2

max
i=1

max Σ(Ai)

and this implies the claim.

Let us continue with general spectral inclusions:

Proposition 4.5. Block-triangular difference eqns. (B) satisfy:

(a) Σα(A) ⊆ Σα(A1) ∪ Σα(A2) for all α ∈ {π, s}
(b) Σ(A2) ⊆ Σs(A

1) ∪ Σ(A)
(c) Σπ(A1) ∪ Σs(A

2) ⊆ Σ(A)

Combined with Thm. 4.3(a) the inclusion (c) implies (DSa), provided the identity
Σπ(A1) ∪ Σs(A

2) = Σ(A1) ∪ Σ(A2) holds.

Proof. (a) follows as in the proof of Thm. 4.3 using [15, Prop. 1.1]. Concerning (b)
let us apply [15, Cor. 2.2] and [19, Proof of Prop. 4] yields assertion (c).

For the following it is advisable to introduce the defect set

Dα(A) :=
(
Σα(A1) ∪ Σα(A2)

)
\ Σα(A) for all α ∈ {a, F, F0, π, s}

of a block-triangular eqn. (B). By Thm. 4.3(a) and Prop. 4.5(a) one observes that
diagonal significance (DSα) precisely holds for Dα(A) = ∅.
Theorem 4.6 (diagonal significance for Σ). One has

Σ(A) ∪
(
Σ(A1) \ Σπ(A1) ∩ Σ(A2) \ Σs(A

2)
)

= Σ(A1) ∪ Σ(A2).

We immediately locate the defect set as Da(A) ⊆ Σ(A1)\Σπ(A1)∩Σ(A2)\Σs(A2).

Proof. With the shifts TA, TA1 and TA2 defined in the proof of Thm. 4.3, we obtain

σ(TA) ∪ (σ(TA1) \ σπ(TA1) ∩ σ(TA2) \ σs(TA2)) = σ(TA1) ∪ σ(TA2)

from [40, (7)]. Because the intersection of both sides in this relation with R+

distributes over the set operations involved, the claim results with (2.12).

Corollary 4.7. If (Σs(A
1) ∩ Σπ(A2)) \ (Σπ(A1) ∩ Σs(A

2)) possesses no interior
point, then (DSa) holds.

Proof. By means of (A.1) this follows as above using [40, Cor. 3.2] and (2.12).
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A problem with the above criteria for diagonal significance is that certain di-
chotomy spectra, as well as their subspectra, have to be known in advance. In the
following, we will thus obtain sufficient conditions on the basis of Lyapunov filtra-
tions alone. As a further advantage, these criteria also provide diagonal significance
of subspectra. To be precise, let us suppose that the diagonal systems (∆Ai) and
their adjoint eqns. (∆∗Ai) have Lyapunov spectra and filtrations{

λi1, . . . , λ
i
ni

}
, W i

0 ⊂ . . . ⊂W i
ni = Kdi with ni ≤ di,{

µi1, . . . , µ
i
n∗i

}
, V i0 ⊂ . . . ⊂ V in∗i = Kdi with n∗i ≤ di

for i ∈ {1, 2}. Given this, one is able to formulate the following conditions on the
Lyapunov spectra of the diagonal systems

1 ≤ µ1
j lim sup

k→∞

k

√∣∣Φ∗A1(−k, κ)x
∣∣ for all x ∈ V 1

j \ V 1
j−1, 1 ≤ j ≤ n∗1, (S∗A1)

1 ≤ λ2j lim sup
k→∞

k
√
|ΦA2(−k, κ)x| for all x ∈W 2

j \W 2
j−1, 1 ≤ j ≤ n2. (SA2)

Note that we will illustrate these conditions in the Exs. 4.10 and 4.14 below.

Theorem 4.8 (diagonal significance for Σπ and Σs). If a block-triangular difference
eqn. (B) fulfills

(a) (S∗A1), then Σπ(A) = Σα(A1) ∪ Σπ(A2) for α ∈ {a, π}.
(b) (SA2), then Σs(A) = Σs(A

1) ∪ Σα(A2) for α ∈ {a, s}.
Proof. We borrow our notation from the proof of Thm. 4.3. Using (B.3) we know
that the adjoint shift T ∗A1 has the SVEP if and only if

1 ≤ χ∗A1(x) lim sup
k→∞

k

√∣∣Φ∗A1(−k, κ)x
∣∣ for all x ∈ Kd \ {0}

holds. Let us first establish that this inequality is equivalent to (S∗A1):
(⇒) The definition of the Lyapunov filtration for (∆∗A1) guarantees χ∗A1(x) = µ1

j

for x ∈ V 1
j \ V 1

j−1, 1 ≤ j ≤ n∗1 and consequently (S∗A1) holds.

(⇐) Conversely, assume (S∗A1) is satisfied and choose x ∈ Kd\{0} arbitrarily. There
exists a maximal 1 ≤ j ≤ n∗1 such that x ∈ V 1

j \V 1
j−1 and thus χ∗A1(x) = µ1

j . Hence,

1 ≤ µ1
j lim sup

k→∞

k

√∣∣Φ∗A1(−k, κ)x
∣∣ = χ∗A1(x) lim sup

k→∞

k

√∣∣Φ∗A1(−k, κ)x
∣∣

and since x 6= 0 was arbitrary, T ∗A1 has the SVEP.
Analogously one uses (B.2) to show that (SA2) is equivalent to the SVEP of TA2 .
(a) Since T ∗A1 has the SVEP, by means of [40, Cor. 3.13] this implies (DSs) and

the claim results from (2.12) and Lemma A.2(b).
(b) Here, TA2 has the SVEP. Then [40, Prop. 3.2] implies (DSπ) and the assertion

follows with (2.12) and Lemma A.2(a).

Theorem 4.9 (diagonal significance for Σ and ΣF ). Keep α ∈ {a, F} fixed. Then
(DSα) holds, if a block-triangular difference eqn. (B) fulfills one of the assumptions

(i) Σα(A1) ⊆ Σα(A),
(ii) Σα(A2) ⊆ Σα(A),

(iii) (S∗A1),
(iv) (SA2).
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Proof. Thanks to (2.12) it again suffices to establish σα(TA) = σα(TA1) ∪ σα(TA2)
with the shifts TA1 , TA2 defined in the proof of Thm. 4.3. Under the assumption
(i) or (ii) this follows from [13, Lemma 2.2]. As in the above proof of Thm. 4.8 one
shows that (iii) and (iv) are equivalent to the SVEP of T ∗A1 resp. of TA2 . Therefore,
[13, Thm. 2.3] applies and yields the claim.

In order to obtain results on the diagonal significance of the Weyl dichotomy
spectrum ΣF0(A), one has to impose assumptions dual to (S∗A1) and (SA2), namely

1 ≤ λ1j lim sup
k→∞

k
√
|ΦA1(−k, κ)x| for all x ∈W 1

j \W 1
j−1, 1 ≤ j ≤ n1, (SA1)

1 ≤ µ2
j lim sup

k→∞

k

√∣∣Φ∗A2(−k, κ)x
∣∣ for all x ∈ V 2

j \ V 2
j−1, 1 ≤ j ≤ n∗2. (S∗A2)

Example 4.10. For the real sequences a1, a2 from Ex. 2.7 the equivalences

(Sa1) ⇔ α− ≤ α+, (S∗a2) ⇔ β+ ≤ β−
hold. Asymptotically periodic sequences a as in Ex. 2.6(4) fulfill (Sa) or (S∗a) if and
only if their asymptotic means c−, c+ > 0 satisfy c− ≤ c+ resp. c+ ≤ c−.

Theorem 4.11 (diagonal significance for ΣF0). It holds (DSF0), if a block-triangular
difference eqn. (B) fulfills both of the assumptions

(i) (S∗A1) or (SA2),
(ii) (SA1) or (S∗A2).

Proof. In the proof of Thm. 4.8 we have shown that (S∗A1) is equivalent to the
SVEP of T ∗A1 and that (SA2) holds if and only if TA2 has the SVEP. Along the
same lines one verifies the equivalence of (SA1) to the SVEP of TA1 resp. that
(S∗A2) is equivalent to a SVEP of T ∗A2 . Given this, in a formal logical language
our assumptions can be formulated as ((S∗A1) ∨ (SA2)) ∧ ((SA1) ∨ (S∗A2)), which is
synonymous to the expression

((SA1) ∧ (SA2)) ∨ ((S∗A1) ∧ (S∗A2)) ∨ ((S∗A1) ∧ (SA1)) ∨ ((SA2) ∧ (S∗A2)).

Hence, [40, Cors. 3.10 and 3.11] apply and yield σF0
(TA) = σF0

(TA1) ∪ σF0
(TA2).

We intersect both sides of this equation with R+ and from (2.12) one gets

ΣF0
(A) = (σF0

(TA1) ∩ R+) ∪ (σF0
(σA2) ∩ R+) = ΣF0

(A1) ∪ ΣF0
(A2)

due to distributivity of the set relations, and thus the claim.

We close with several statements concerning the conditions (SAi) and (S∗Ai),
which compare forward and backward growth of a difference equation resp. its
adjoint, i ∈ {1, 2}. In the classical periodic situation they are fulfilled:

Proposition 4.12. Let i ∈ {1, 2}. If Σ(Ai) is discrete, then (SAi) and (S∗Ai) hold.

Proof. Since Σ(Ai), i ∈ {1, 2}, is discrete, due to (2.12) the spectrum σ(TAi) consists
of finitely many concentric circles. Then the inclusion ∂σ(TAi) ⊆ σα(TAi) ⊆ σ(TAi)
implies σα(TAi) = ∂σ(TAi) for α ∈ {π, s} and Lemma A.3 guarantees that both
weighted shifts TAi and T ∗Ai have the SVEP. Thanks to the characterization [11,
Thm. 2.1 resp. Cor. 2.2] one shows as in the proof of Thm. 4.8 that this is equivalent
to the estimates (SAi) resp. (S∗Ai).
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Remark 4.13 (the classes Pp(Kd) and P∗p (Kd)). In [34] we consider linear difference
eqns. (∆A) with coefficient sequences in the classes

Pp(Kd) :=
{
A ∈ L∞(Kd) : Φ(k + 2p, k)∗Φ(k + 2p, k)− 2rΦ(k + p, k)∗·

· Φ(k + p, k) + r2 idKd is positively-semidefinite for all k ∈ Z, r > 0
}
,

P∗p (Kd) :=
{
A ∈ L∞(Kd) : Φ(k + 2p, k)Φ(k + 2p, k)∗ − 2rΦ(k + 2p, k + p)·

· Φ(k + 2p, k + p)∗ + r2 idKd is positively-semidefinite for all k ∈ Z, r > 0
}
,

which are related to the above assumptions. Indeed, by means of [34, Prop. A.3]
one establishes the implications

Ai ∈ Pp(Kdi)⇒ (SAi), Ai ∈ P∗p (Kdi)⇒ (S∗Ai) for all i ∈ {1, 2} .
Example 4.14. We revisit the planar upper-triangular difference eqn. (∆A) from
Ex. 2.7. The dichotomy spectra for its diagonal sequences are given in Ex. 2.6(3)
and moreover [32, Ex. 5.3] yields the surjectivity dichotomy spectra

Σs(a
1) =

{
{α−, α+} , α+ ≤ α−,
[α−, α+] , α− ≤ α+,

Σs(a
2) =

{
{β−, β+} , β+ ≤ β−,
[β−, β+] , β− ≤ β+.

(1) Since the Fredholm spectra ΣF (ai) are discrete, one obtains from Thm. 4.3(b)
that (DSF ) holds with ΣF (A) = {α−, α+, β−, β+} and that the estimates

max {α−, α+} ≤ min {β−, β+} or max {β−, β+} ≤ min {α−, α+}
are sufficient for (DSα), α ∈ {a, F0}, to hold. The inequalities α+ ≤ α− and
β− ≤ β+ imply Σπ(a1)∪Σs(a

2) = [α+, α−]∪ [β−, β+] = Σ(a1)∪Σ(a2) and therefore
Prop. 4.5 guarantees (DSa). Note that this even holds under the weaker condition

α+ ≤ α− or β− ≤ β+, (4.2)

because Cor. 4.7 applies for discrete subspectra Σs(a
1), Σπ(a2), i.e. (4.2).

(2) By means of Lyapunov exponent-like conditions we obtain the following cri-
teria for diagonal significance. Analogously to the above Ex. 4.10 the condition

• (S∗a1) is equivalent to α+ ≤ α− and so Thm. 4.8(a) leads to (DSπ)
• (Sa2) is equivalent to β− ≤ β+ and Thm. 4.8(b) guarantees (DSs)

Hence, under one of the conditions (4.2) our Thm. 4.9 implies (DSα), α ∈ {a, F}.
Our above Thm. 4.11 yields (DSF0

), provided both (4.2) and the dual condition
α− ≤ α+ or β+ ≤ β− (cf. again Ex. 4.10) hold.

4.3. Conditions on C. In order to provide sufficient conditions for diagonal sig-
nificance on basis of the sequence C = (Ck)k∈Z alone, we define the linear spaces

N (A) :=
{
X ∈ `∞(Kd1×d2) : Xk+1A

2
k ≡ A1

k+1Xk on Z
}
,

R(A) :=
{
Y ∈ `∞(Kd1×d2)| ∃X ∈ `∞(Kd1×d2) : Yk ≡ A1

kXk −Xk+1A
2
k on Z

}
and immediately obtain

Theorem 4.15. If C ∈ N (A) +R(A) is satisfied, then (DSa) holds.

Proof. We abbreviate `2i := `2(Kdi) and for shifts TAi ∈ L(`2i ), i = 1, 2, the gener-
alized derivation ∆ : L(`22, `

2
1) → L(`22, `

2
1), ∆Ξ := TA1Ξ − ΞTA2 is bounded. If C

denotes a bounded sequence (Ck)k∈Z of matrices Ck ∈ Kd1×d2 , then the operators

(TCφ)k := Ck−1φk−1, (MCφ)k := Ckφk for all k ∈ Z
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fulfill TC ,MC ∈ L(`22, `
2
1). First, in case C ∈ N (A) we obtain

(∆TCφ)k =
(
A1
k−1Ck−2 − Ck−1A2

k−2
)
φk−2 = 0 for all k ∈ Z, φ ∈ `22

and thus ∆TC = 0, i.e. TC is in the kernel of ∆. Second, in case C ∈ R(A) with
Ck = A1

kXk −Xk+1A
2
k for all k ∈ Z and some X ∈ `∞(Kd2×d1) it is

(∆MXφ)k =
(
A1
k−1Xk−1 −XkA

2
k−1
)
φk−1 = Ck−1φk−1 for all k ∈ Z.

This yields ∆MX = TC and hence TC is in the range of ∆. By linearity we conclude
that for elements C ∈ N (A) +R(A) the corresponding shifts TC are contained in
the sum N(∆)+R(∆). Consequently, [7, Thm. 1] implies σ(TA) = σ(TA1)∪σ(TA2)
and the claim follows from (2.12).

Corollary 4.16. If Σ(A1) ∩ Σ(A2) = ∅, then N (A) = {0}.
Proof. We use the terminology from the above proof. By [25, p. 256, Thm. 3.4.1] it
is σ(∆) = σ(TA1)−σ(TA2). Thus, thanks to (2.12) we obtain that ∆ ∈ L(L(`22, `

2
1))

is invertible and particularly N(∆) = {0}. The claim follows, because C ∈ N (A)
implies TC ∈ N(∆) = {0} and therefore Ck = 0, k ∈ Z.

We finally illuminate the close relation between the assumption of Thm. 4.15 and
exponential dichotomies resp. trichotomies as discussed in [30]:

Remark 4.17. Let d1 = d2 and suppose that all A2
k ∈ Kd2×d2 are invertible with

sup
k∈Z

∣∣(A2
k)−1

∣∣ <∞.
(1) The linear space R(A) consists of all matrix sequences Y ∈ L∞(Kd1) such

that the matrix difference eqn. Xk+1 = (A1
kXk−Yk)(A2

k)−1 has a bounded solution.
This, in turn, holds provided the linearly-homogenous equation

Xk+1 = A1
kXk(A2

k)−1 (4.3)

has an exponential trichotomy on Z (cf. [30, Prop. 1]).
(2) The stronger assumption that (4.3) is even exponentially dichotomic on Z

corresponds precisely to the case N (A) = {0}.
4.4. Spectral continuity. While the dichotomy spectra interpreted as mappings
Σ̄α : L∞(Kd) → K(R), Σ̄α(A) := Σα(A) ∪ {0} are only upper-semicontinuous in
general (cf. [31, Cor. 4] for I = Z and [32, Cor. 3.24] on the half line I = Z+

κ ), let us
next provide continuity criteria for triangular coefficient sequences. We particularly
present conditions implying that continuity of the block subsystems extends to (B).

Our analysis is fundamentally based on the geometrically evident

Proposition 4.18 (see [34, Prop. 5.3]). Keep α ∈ {a, F0} fixed. If σα : L(`2) →
K(C) is continuous at TA, then Σ̄α : L∞(Kd)→ K(R) is continuous at A.

The remaining section is based on the assumption that A,A1 and A2 fulfill (2.1).
Then, in our preparatory paper [34] we have shown that

Σ(A) = ΣF0
(A) \ ΣF (A) (CaA)

is a sufficient condition for Σ to be continuous at (∆A), while

ΣF0(A) = ΣF0(A) \ ΣF (A) (CF0

A )

guarantees the corresponding continuity of the Weyl spectrum ΣF0
.

Theorem 4.19. Keep α ∈ {a, F0} fixed. If a block-triangular eqn. (B) satisfies
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(i) both the continuity conditions (CαA1) and (CαA2),
(ii) Σα(A1) ∩ Σα(A2) = ∅,

then Σα is continuous at A.

Proof. Let α ∈ {a, F0} be fixed. On the one hand, condition (i) ensures that the
shift TAi is a point of continuity for σ (cf. [34, Proof of Thm. 5.4]) resp. σF0 (see
[34, Proof of Cor. 5.5]) with i = 1, 2. On the other hand, assumption (ii) guarantees
σα(TA1)∩σ(TA2) = ∅. From [37, Thm. 7] we get that σα is continuous at TA. Then
Prop. 4.18 implies that also the dichotomy spectrum Σα is continuous at (∆A).

Theorem 4.20. If a block-triangular difference eqn. (B) satisfies

(i) both the continuity conditions (CaA1) and (CaA2),
(ii) the estimates (S∗A1),

then Σ is continuous at A.

Proof. In the previous proof of Thm. 4.19 we justified that σ is continuous at TA1

and TA2 . Moreover, in the proof of Thm. 4.8 it was shown that the adjoint T ∗A1 has
the SVEP. If we combine Prop. 4.18 with [37, Cor. 9], then the claim follows.

Let us eventually discuss the upper-triangular difference equation from Ex. 2.7(2)
having a discontinuous dichotomy spectrum in the light of Thm. 4.19 and 4.20:

Example 4.21. Given some real δ > 1 we consider (∆A) as defined in Ex. 2.7
with parameters satisfying the conditions (2.14). Then Ex. 2.6(3) yields the spectra

Σ(ai) = ΣF0
(ai) = [α−, α+] , ΣF (ai) = {α−, α+}

and therefore the continuity conditions (Cαai) hold for α ∈ {a, F} and i = 1, 2.
However, the assumption (ii) in both Thms. 4.19 and 4.20 are violated.

5. Triangular equations. This closing section is concerned with linear difference
eqns. (∆A) whose coefficient matrices Ak are triangular, where w.l.o.g. we restrict
to the upper-triangular situation. Hence, they are of the form

xk+1 = Akxk, Ak =


a1k a1,2k a1,3k . . . a1,dk

a2k a2,3k . . . a2,dk
. . .

...
adk

 (T )

with bounded diagonal sequences (aik)k∈I′ and bounded super-diagonal sequences

(ai,jk )k∈I′ for indices 1 ≤ i < j ≤ d in K. On the half line I = Z+
κ it is known that

Σ+(A) is simply the union of spectra for the corresponding diagonal eqns. (∆ai)
(see [32, Cor. 3.25]). As again demonstrated in Ex. 2.7(2), the situation for I = Z
is more complicated. Let us consider the whole line case from now on.

Theorem 5.1. The dichotomy spectrum Σ(A) of (T ) satisfies

Σ(a1)4 Σ1 ⊆ Σ(A) ⊆ Σ(a1) ∪ Σ1,

with a set Σ1 given by

Σ1 :=

{
∅, d = 1,

Σ(a2), d = 2

and for d > 2 allowing the recursive construction

Σ(ad−1)4 Σ(ad) ⊆ Σd−2 ⊆ Σ(ad−1) ∪ Σ(ad),
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Σ(aj)4 Σj ⊆ Σj−1 ⊆ Σ(aj) ∪ Σj for all 2 ≤ j < d− 1.

Remark 5.2. (1) The above procedure shows Σ(A) ⊆ ⋃di=1 Σ(ai).

(2) Under the assumption infk∈I
∣∣ajk∣∣ > 0 for all 1 ≤ j ≤ d one can substitute

the sets Σ(aj) by the closed intervals
[
β(aj), β(aj)

]
(cf. Prop. 2.4). Moreover, the

symmetric differences in Thm. 5.1 can be replaced by their closures.

Proof. For d = 1, 2 the claim follows directly from Thm. 4.3(a). For d > 2 write

Ak :=



a1k b1k
a2k b2k

a3k
...

. . . bd−1k

adk

 for all k ∈ Z

with rows bjk ∈ K1×(d−j) and diagonal sequences aj yielding

Aj−1k =

(
ajk bjk

Ajk

)
for all 1 ≤ j < d. (5.1)

Here, the square matrix Ajk ∈ K(d−j)×(d−j) is defined by simultaneously discarding
the first j ∈ [0, d)Z columns and rows of Ak; it is Ak = A0

k. Setting Σj := Σ(Aj)
and applying Thm. 4.3(a) to (5.1) we deduce

Σ(aj)4 Σj ⊆ Σj−1 ⊆ Σ(aj) ∪ Σj for all 1 ≤ j < d,

particularly Σ(a1)4Σ1 ⊆ Σ(A) ⊆ Σ(a1) ∪Σ1 and Ad−1k = adk yields our claim.

The Thm. 5.1 allows to circumscribe the dichotomy spectrum using exclusively
the diagonal spectral intervals. As a concrete example we consider

Example 5.3. For a difference eqn. (T ) in R4 with diagonal sequences, the spectra

Σ(a1) = [1, 2], Σ(a2) = [1, 3],

Σ(a3) = [3, 5], Σ(a4) = [4, 5]

and bounded super-diagonal entries, the following holds: In the terminology of
Thm. 5.1 with d = 4 we obtain the inclusions

[3, 4] = Σ(a3)4 Σ(a4) ⊆ Σ2 ⊆ Σ(a3) ∪ Σ(a4) = [3, 5],

Σ(a2)4 Σ2 ⊆ Σ1 ⊆ Σ(a2) ∪ Σ2 = [1, 3] ∪ Σ2 ⊆ [1, 5],

which guarantee Σ(a2) ∩ Σ2 = {3}, consequently [1, 4] ⊆ Σ(a2)4 Σ2 and thus the
inclusions [1, 4] ⊆ Σ1 ⊆ [1, 5]. Now Σ(a1) = [1, 2] ⊆ Σ1 implies

[2, 4] ⊆ Σ1 \ Σ(a1) = Σ(a1)4 Σ1 ⊆ Σ(A) ⊆ [1, 5].

Yet, one obtains the stability radius of (T ) from the diagonal sequences:

Corollary 5.4. max Σ(A) = maxdj=1 β(aj).

Proof. With Cor. 4.4 the formula for max Σ(A) follows by induction over j.

In the following, we provide several sufficient criteria for diagonal significance of
triangular systems (T ), i.e. the fact that Σ(A) can be obtained from the diagonal se-
quences. The corresponding results yield from our preparations for block-triangular
equations (B) in Subsect. 4.2 by means of mathematical induction. We exemplify
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this in case of Thm. 4.3 and leave it to the interested reader to deduce counterparts
to e.g. Thms. 4.8, 4.9 or 4.11:

Corollary 5.5 (exponential separation). If all the intersections Σ(ai) ∩ Σ(aj) for

i 6= j have empty interior, then Σ(A) =
⋃d
i=1 Σ(ai).

According to Ex. 2.7(2) one knows that Cor. 5.5 is wrong without the additional
assumption on interior points.

Proof. Retaining the notation from the proof of Thm. 5.1, set σj := Σ(aj). By as-

sumption, the intersection
⋂d
i=d−1 σi has no interior points and Thm. 4.3(b) implies

Σd−2 =
⋃d
i=d−1 σi. Our induction is based on the hypothesis Σj =

⋃d
i=j+1 σi and

for the induction step j → j − 1 we proceed as follows: Thanks to (5.1) it is

σj 4 Σj ⊆ Σj−1 ⊆ σj ∪ Σj ,

the induction hypothesis guarantees σj ∩ Σj = σj ∩
⋃d
i=j+1 σi =

⋃d
i=j+1(σi ∩ σj),

and if we invest our assumption, σj ∩Σj has no interior points. Hence, Thm. 4.3(b)

yields Σj−1 = σj ∪ Σj =
⋃d
i=j σi.

The following criteria for diagonal significance involve only Lyapunov exponents
of the first resp. last d − 1 diagonal sequences. For instance, using Ex. 2.6(5) one
easily constructs diagonally significant equations with overlapping diagonal spectral
intervals.

Theorem 5.6. If a triangular difference eqn. (T ) fulfills one of the assumptions

(i) λ−(ai) ≤ λ+(ai) for 1 < i ≤ d,

(ii) λ+(ai) ≤ λ−(ai) for 1 ≤ i < d,

then

Σα(A) =

d⋃
i=1

Σα(ai) for all α ∈ {a, F} . (5.2)

Proof. First of all, using Lemma B.5 we obtain from assumption (i) that every Tai
has the SVEP for 1 < i ≤ d, while assumption (ii) guarantees the SVEP of T ∗ai for
all 1 ≤ i < d. Because mathematical induction on basis of [13, Thm. 2.3] implies

the relation σα(TA) =
⋃d
i=1 σα(Tai), the claim results from (2.12).

Corollary 5.7. (a) If λ−(ai) ≤ λ+(ai) holds for 1 ≤ i ≤ d, then

Σ(ai) = Σs(a
i) for all 1 ≤ i ≤ d, Σ(A) = Σs(A) =

d⋃
i=1

Σs(a
i). (5.3)

(b) If λ+(ai) ≤ λ−(ai) holds for 1 ≤ i ≤ d, then

Σ(ai) = Σπ(ai) for all 1 ≤ i ≤ d, Σ(A) = Σπ(A) =

d⋃
i=1

Σπ(ai).

In both cases one has Σα(A) =
⋃d
i=1 Σα(ai) for α ∈ {F, F0}.

Proof. (a) As in the proof of Thm. 5.6(a) one argues that every Tai has the SVEP
and thus Lemma A.2(a) implies Σs(a

i) = σs(Tai) ∩ R+ = σ(Tai) ∩ R+ = Σ(ai) for
all 1 ≤ i ≤ d (cf. (2.12)). Moreover, an inductive argument based on [2, p. 62,
Thm. 2.9] establishes the SVEP for TA and once more Lemma A.2(a) with (2.12)
implies Σ(A) = Σs(A). Then (5.3) follows from (5.2).
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(b) The assertions are “dual” to (a) and based on Lemma A.2(b).

Finally, given α ∈ {F, F0} the representation Σα(A) =
⋃d
i=1 Σα(ai) follows from

[14, Prop. 3.5(ii) and (iii)] for (a) and from [14, Prop. 3.6(ii) and (iii)] for (b).

Appendix A. Operators on Hilbert spaces. Let X be an infinite-dimensional
separable and complex Hilbert space with inner product 〈〈·, ·〉〉. The set of linear
bounded operators between X and a normed space Y is abbreviated as L(X,Y ); we
write N(S) ⊆ X for the kernel and R(S) ⊆ Y for the range of some S ∈ L(X,Y ).
Moreover, L(X) := L(X,X) is the Banach algebra of bounded linear operators on
X with identity idX .

Given an operator T ∈ L(X), let σa(T ) := σ(T ), σπ(T ), σs(T ), σF (T ) and
σF0(T ) be its spectrum, approximate point spectrum, surjectivity, essential and Weyl
spectrum, respectively (see [1, 2, 3, 25]). Since X is a Hilbert space, the left spectrum
σl(T ) resp. the right spectrum σr(T ) satisfy

σl(T ) = σπ(T ), σr(T ) = σs(T ). (A.1)

Let us write r(T ) for the spectral radius and rF (T ) := supλ∈σF (T ) |λ| for the essential

spectral radius of T . When T ∗ ∈ L(X) denotes the (Hilbert space) adjoint operator
of T , then the spectra of T and T ∗ are related by (cf. [1, p. 244, Thm. 6.14 and
p. 300, Lemma 7.41], [2, p. 79, Thm. 2.42])

σα(T ∗) = σα(T )∗ for all α ∈{a, F, F0} , (A.2)

σs(T ) = σπ(T ∗), σs(T
∗) = σπ(T ),

where Ω∗ :=
{
λ ∈ C : λ ∈ Ω

}
for every Ω ⊆ C.

Lemma A.1 ([2, p. 79, Thm. 2.42]). ∂σ(T ) ⊆ σπ(T ) ∩ σs(T ).

An operator T ∈ L(X) possesses the single-valued extension property (SVEP for
short) at a point λ0, provided for every neighborhood U ⊆ C of λ0 the only analytic
function f : U → X satisfying (λ idX −T )f(λ) ≡ 0 on U is identically vanishing. If
the SVEP holds for every λ0 ∈ C, then the operator T is said to have the SVEP.
The associate set (cf. [3, p. 65ff])

S(T ) := {λ ∈ C : T does not have the SVEP at λ}
is open and fulfills S(T ) ⊆ σ(T )◦. Clearly, T has the SVEP, if and only if S(T ) = ∅.
Lemma A.2 ([2, p. 80, Cor. 2.45]). (a) If T has the SVEP, then σ(T ) = σs(T ).

(b) If T ∗ has the SVEP, then σ(T ) = σπ(T ).

Lemma A.3 ([2, p. 85, Thm. 2.52]). (a) If ∂σ(T ) = σs(T ), then T has the SVEP.
(b) If ∂σ(T ) = σπ(T ), then T ∗ has the SVEP.

Appendix B. Weighted shift operators. Let I be a discrete interval unbounded
above. We denote by `2 the linear space of square-summable sequences φ = (φk)k∈I
in Kd equipped with the inner product

〈〈φ, ψ〉〉 :=
∑
k∈I
〈φk, ψk〉 for all φ, ψ ∈ `2

and norm ‖φ‖ =
√
〈〈φ, φ〉〉; `2 is the prototype of a separable Hilbert space.

For a bounded weight sequence A = (Ak)k∈I in L(Kd), we define the left shift

TA : `2 → `2, (TAφ)k := Ak−1φk−1 if I = Z,
TAφ := (0, Aκφκ, Aκ+1φκ+1, . . .) if I = Z+

κ ;
(B.1)
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TA is bounded with ‖TA‖ = supk∈I |Ak| and β(A) = r(TA) (cf. [5, Thm. 1(i)]). Since
the SVEP is invariant under similarity, S(TA) is rotationally symmetric w.r.t. 0.

Lemma B.1. The adjoint of TA is given by T ∗A ∈ L(`2), (T ∗Aφ)k = A∗kφk+1, k ∈ I.

Proof. For arbitrary φ, ψ ∈ `2 we obtain

〈〈TAφ, ψ〉〉 =
∑
k∈I
〈Akφk, ψk+1〉 =

∑
k∈I
〈φk, A∗kψk+1〉 = 〈〈φ, T ∗Aψ〉〉

with (T ∗Aψ)k := A∗kψk+1 for all k ∈ I.

B.1. Unilateral shifts. On a discrete interval I = Z+
κ , κ ∈ Z, one denotes (B.1)

as unilateral shift. The essential properties of unilateral shifts are summarized in

Proposition B.2. If each Ak, k ∈ Z+
κ , is invertible, then the following holds:

(a) σF (TA) = σπ(TA) ⊆
{
λ ∈ C : β(A) ≤ |λ| ≤ β(A)

}
(b) β(A) > 0 if and only if supκ≤k

∣∣A−1k ∣∣ <∞
(c) S(TA) = ∅ and S(T ∗A) =

{
λ ∈ C : |λ| < λ+(A)

}
Proof. (a) is from [28], (b) by [23, p. 134, Thm. 4.6.10] and (c) by [27, Thm. 2.1].

Assume now that a = (ak)κ≤k is a bounded sequence in K. Then the results [35,
Thm. 1] combined with Prop. B.2(a) yield the relations

σα(Ta) =


{
λ ∈ C : β(a) ≤ |λ| ≤ β(a)

}
, ak 6= 0 for all k ∈ Z+

κ ,

{0} ∪
{
λ ∈ C : β(ã) ≤ |λ| ≤ β(ã)

}
, ak = 0 for finitely many k ∈ Z+

κ ,{
λ ∈ C : |λ| ≤ β(a)

}
, ak = 0 for infinitely many k ∈ Z+

κ

with α ∈ {F, π}, where the K-valued sequence ã is defined as ãk := ak−κ+K for
every κ ≤ k with K being the minimal integer such that ak 6= 0 for all k ≥ K.

Example B.3 (asymptotically periodic case). Let p ∈ N. A sequence (ak)κ≤k in
K is asymptotically p-periodic, if there exists a p-periodic sequence (pk)κ≤k with

lim
k→∞

|ak − pk| = 0

and c := p
√
|pκ+p−1 · · · pκ| is denoted as its asymptotic mean. Provided (|ak|)κ≤k is

asymptotically p-periodic, then [35, Thm. 2] and Prop. B.2(a) yield

σF (Ta) = σπ(Ta) =

{
{λ ∈ C : |λ| = c} , ak 6= 0 for all k ∈ Z+

κ ,

{0} ∪ {λ ∈ C : |λ| = c} , ak = 0 for some k ∈ Z+
κ .

B.2. Bilateral shifts. For I = Z one speaks of bilateral shifts TA ∈ L(`2). In case
of invertible weights Ak ∈ Kd×d the condition supk∈Z

∣∣A−1k ∣∣ <∞ implies 0 6∈ σ(TA).
As opposed to unilateral shifts, a characterization of the SVEP is more involved:

• TA has the SVEP if and only if (cf. [11, Thm. 2.1])

lim inf
k→∞

k
√
|Φ(−k, κ)x|−1 ≤ lim sup

k→∞

k
√
|Φ(k, κ)x| for all x ∈ Kd \ {0} . (B.2)

• T ∗A has the SVEP if and only if (cf. [11, Cor. 2.2])

lim inf
k→∞

k
√
|Φ(κ, k)∗x|−1 ≤ lim sup

k→∞

k
√
|Φ(κ,−k)∗x| for all x ∈ Kd \ {0} (B.3)
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for some κ ∈ Z. Different from the scalar situation (cf. Lemma B.5 below), both
TA and T ∗A might fail to possess the SVEP (see [11, Ex. 2.3]).

Particularly for scalar shifts with weights a ∈ `∞(K), thanks to [35, Thm. 3] it is

σ(Ta)
(A.2)
= σ(T ∗a ) =

{
λ ∈ C : β(a) ≤ |λ| ≤ β(a)

}
,

σπ(Ta) =


{
λ ∈ C : βZ−κ

(a) ≤ |λ| ≤ βZ−κ (a)
}

∪
{
λ ∈ C : βZ+

κ
(a) ≤ |λ| ≤ βZ+

κ
(a)
}
, βZ−(a) < βZ+(a),

σ(Ta), otherwise.

Example B.4 (asymptotically periodic case). Let κ ∈ Z, p+, p− ∈ N, and (ak)k∈Z
be a sequence in K. If (|ak|)k≥κ is asymptotically p+-periodic and (|ak|)k≤κ is
asymptotically p−-periodic with asymptotic means c+, c−, then [35, Thm. 5] showed

σπ(Ta) =

{
{λ ∈ C : c+ ≤ |λ| ≤ c−} , c+ ≤ c−,
{λ ∈ C : |λ| ∈ {c+, c−}} , c− < c+,

σ(Ta) = {λ ∈ C : min {c+, c−} ≤ |λ| ≤ max {c−, c+}} .
Lemma B.5 ([29, Prop. 2.5] and [4, Thm. 18 and Cor. 19]). Either Ta or T ∗a has
the SVEP and

S(Ta) =
{
λ ∈ C : λ+(a) < |λ| < λ−(a)

}
,

S(T ∗a ) =
{
λ ∈ C : λ−(a) < |λ| < λ+(a)

}
.
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