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Continuity and invariance of the Sacker-Sell spectrum?
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Abstract The Sacker-Sell (also called dichotomy or dynamical) spectrum Σ is a
fundamental concept in the geometric, as well as for a developing bifurcation theory
of nonautonomous dynamical systems. In general, it behaves merely upper-semi-
continuously and a perturbation theory is therefore delicate. This paper explores
an operator-theoretical approach to obtain invariance and continuity conditions
for both Σ and its dynamically relevant subsets. Our criteria allow to avoid non-
autonomous bifurcations due to collapsing spectral intervals and justify numerical
approximation schemes for Σ.
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1 Introduction and motivation

One of the central questions in the qualitative analysis of a dynamical system is its
local behavior near fixed reference solutions. This, first of all requires an ambient
spectral theory for the associate variational equation in order to determine e.g.
stable or (non-) hyperbolic behavior. In case of constant (or periodic) reference
solutions to autonomous (resp. periodic) equations the suitable spectral notion is
undoubtedly given in terms of conventional eigenvalues (resp. Floquet multipliers).
Yet, when dealing with more general time dependencies (quasi-periodic, almost
periodic, almost automorphic, asymptotically constant in both time directions,
random, etc.) the question for an adequate spectral concept becomes more subtle.
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For this reason several spectra have been suggested (see [28] or [13, pp. 183ff]
for a survey), which capture different features of a nonautonomous linear equation.
Here, a first choice appears to be the widely known Lyapunov spectrum due to its
property that corresponding upper Lyapunov exponents in the negative half line
(resp. the unit interval (0, 1) for discrete time) yield asymptotic stability of a linear
equation. Nevertheless, as classical examples illustrate (cf. [41,35]) this kind of
stability does not persist under perturbations, even if they are merely of order o(|x|)
as x→ 0 or decay (exponentially) to 0 as t→∞. Hence, Lyapunov exponents are
problematic when it comes to the development of an applicable nonlinear theory
and related tools such as invariant manifolds, topological linearization, or normal
forms (existing in uniform neighborhoods of the reference solution). One actually
needs the additional assumption of regularity (i.e. the equation and its adjoint
satisfy a symmetry property w.r.t. their Lyapunov spectra, cf. [4, pp. 113ff]). It
yields a more satisfactory perturbation theory or an appropriate “linear algebra”
in form of Oseledets Multiplicative Ergodic Theorem (see for example, [28]). In
general, regularity is hard to verify for concrete examples, but on the other hand
holds for large problem classes like e.g. linear random dynamical systems (cf. [4]).

Rather than asymptotic stability, the stronger concept of uniform asymptotic
stability has more convenient robustness properties. The related spectral notion
is the Sacker-Sell (or dichotomy or dynamical) spectrum Σ ⊂ R, which can be
coarser than the Lyapunov spectrum. Following [46,6] the dichotomy spectrum
of a linear system in Cd is the disjoint union of up to d closed intervals. These
spectral intervals generalize the real parts (or moduli in the discrete time case) of
eigenvalues from the autonomous theory. Accordingly, in a comprehensive local
theory of nonautonomous dynamical systems the prominent role of the dichotomy
spectrum is underlined by the following facts:

– The inclusion Σ ⊂ (−∞, 0) (or Σ ⊂ (0, 1) in discrete time) for the dichotomy
spectrum of a variational equation along a reference solution guarantees its
uniform asymptotic stability, while the existence of a spectral interval in R+

(resp. (1,∞)) yields instability.
– Each gap in Σ gives rise to a pseudo-stable and a pseudo-unstable invariant

manifold (see [49,43]). Its particular location yields the classical hierarchy of
stable, center-stable, center, center-unstable and unstable manifolds.

– Hyperbolicity in form of 0 6∈ Σ (resp. 1 6∈ Σ) implies that solutions can be
locally continued in parameters and that topological linearization results by
means of a Hartman-Grobman theorem hold.

– Finally, information on the fine structure of Σ allows to classify various types
of nonautonomous bifurcations on a linear basis already (see [44]).

These striking features of the theory initiated by [46] stimulated further work on
evolutionary equations in discrete time [10,5], in infinite dimensions [12], as well
as on the numerical approximation of Σ (cf. [17,18,26]) — among other references.

This trend went along with an increasing interest in the asymptotic behavior of
nonautonomous equations and particularly a corresponding bifurcation theory. As
opposed to the conventional autonomous case, where the behavior of eigenvalues
under parameter variation is well-understood (cf., for instance, [24]), any related
knowledge on the dichotomy spectrum Σ is rather underdeveloped. Little has been
established besides the upper-semicontinuous dependence of Σ on the system and
its invariance under kinematic similarity; to say nothing on a smooth dependence
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for boundary points of spectral intervals on parameters. And yet such behavior
hints to qualitative changes or bifurcations when dichotomy intervals touch or
cross the stability boundary.

Driven by this motivation, our goal is to obtain further information on Σ and to
narrow the above mentioned wide gap when extending the established autonomous
to a nonautonomous theory. We begin with necessary preparations on Bohl expo-
nents as a concept to describe uniform exponential growth yielding upper and lower
bounds for the dichotomy spectrum. The subsequent Sect. 3 introduces the central
interconnection of our overall approach, namely a link between dichotomies and
weighted shifts. Moreover, certain classes of coefficient functions are introduced,
which become important in later investigations on perturbation properties of Σ. It
is shown that additive perturbations leave Σ invariant, provided they fulfill appro-
priate commutativity assumptions and have vanishing Bohl exponents (for this,
see Prop. 4.6) (invariance). We admit that our results are somewhat academic here,
since the perturbations have to be from a finite-dimensional space — on the other
hand, this is what a direct application of general operator-theoretical tools to our
specific situation is able to provide. Finally, sufficient conditions are given that the
dichotomy spectrum behaves continuously. This means for instance that a spectral
interval cannot collapse to its boundary points or two subintervals under (small)
perturbations. Furthermore, certain types of coefficient matrices yielding continu-
ous dependence of the dichotomy spectrum are identified, which for example rule
out bifurcations due to a sudden collapse of a spectral interval. Note that these
conditions validate numerical approximation techniques (continuity). The attained
results are illustrated using the instructive Ex. 5.10.

Our overall analysis partly extends to the dynamically relevant subsets of Σ,
namely the Fredholm dichotomy spectra ΣF , ΣF0

, the surjectivity spectrum Σs
(see [44] for details), as well as the approximate point spectrum Σπ. These subsets
of Σ are meaningful for various reasons: (1) They yield a classification of nonauto-
nomous bifurcations on a linear basis, (2) the boundary points of Σ are contained
in the Fredholm spectrum ΣF , which therefore indicates qualitative and stability
changes, (3) Σs allows to describe an intrinsically nonautonomous form of nonhy-
perbolic behavior, namely an exponential trichotomy, and (4) sufficient continuity
conditions for Σ are based on relations between its subspectra (cf. Thm. 5.4).

Rather than using typical dynamical systems techniques, our approach is ex-
clusively based on a close connection between nonautonomous linear dynamics
and operator theory due to [10] or [7,42]; we also refer to [11] for the merits of
functional analytical methods to tackle dichotomies of nonautonomous evolution-
ary differential equations. In our setting, the dichotomy spectrum is actually the
intersection of the positive real axis with the spectrum of an appropriate matrix-
weighted shift operator defined on an ambient sequence space — this intersection
property also extends to the subspectra. Hence, when tackling properties of Σ, we
benefit from a rich and well-developed related theory for general bounded oper-
ators. The required results are summarized in two extensive appendices dealing
with bounded operators on Hilbert spaces and weighted shifts.

Since the corresponding techniques apply immediately, our emphasis in this
paper are discrete time dynamical systems, i.e. nonautonomous linear difference
equations. For the sake of a clear presentation, we furthermore restrict to the finite-
dimensional invertible situation. However, in Sect. 6 we indicate how accordant
results can be applied to nonautonomous ordinary differential equations. The tool
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of choice is a characterization of exponential dichotomies from [48] and an ambient
linear time-1-mapping.

2 Preliminaries, Bohl exponents and dichotomies

A discrete interval is the intersection of a real interval with the integers Z and we
frequently use the abbreviations Z+

κ := {k ∈ Z : κ ≤ k}, Z−κ := {k ∈ Z : k ≤ κ}.
For a Banach space X with norm |·|, the Banach algebra of bounded linear op-

erators on X is denoted by L(X), idX is the unit element, i.e. the identity mapping,
and GL(X) is the group of invertible elements. In our subsequent considerations,

X will typically be the unitary space Cd with the inner product 〈x, y〉 :=
∑d
j=1 xj ȳj

for all x, y ∈ Cd and induced norm |x| :=
√
〈x, x〉, or the bounded sequences `∞(Cd)

in Cd or the Hilbert space of square-summable sequences `2(Cd) in Cd equipped
with the inner product resp. norm

〈〈φ, ψ〉〉 :=
∑
j∈Z
〈φj , ψj〉, ‖φ‖ :=

√
〈〈φ, φ〉〉 for all φ = (φj)j∈Z, ψ = (ψj)j∈Z.

We abbreviate `2 = `2(Cd) throughout and L∞(Cd) is the linear space `∞(L(Cd))
of all bounded matrix sequences A = (Ak)k∈Z in L(Cd) endowed with the canon-
ical norm ‖A‖ := supk∈Z |Ak|. For the sequence in L∞(Cd) consisting of identity
mappings idCd it is convenient to write I := (idCd)k∈Z.

The (topological) closure of a set Ω ⊆ X is denoted by Ω.

2.1 Bohl exponents

Our presentation initially rests upon the following abstract framework: Suppose
that A is a normed unital algebra over K ∈ {R,C} with norm |·|. For the family of
discrete intervals J ⊆ Z with fixed length n one writes Zn, n ∈ N. We define the
lower resp. upper Bohl exponent of a sequence a = (ak)k∈Z in A as

β(a) := lim inf
n→∞

inf
J∈Zn

n

√∣∣∣∏
j∈J

aj

∣∣∣, β(a) := lim sup
n→∞

sup
J∈Zn

n

√∣∣∣∏
j∈J

aj

∣∣∣ (2.1)

and easily obtain the bounds β(a) ≤ β(a) ≤ supk∈Z |ak| . Their positive homogene-

ity β(λa) = |λ|β(a) and β(λa) = |λ|β(a) for all λ ∈ K is obvious. Moreover, the
right-hand limit in (2.1) exists and (cf. [45, Prop. 2.2])

β(a) = lim
n→∞

sup
J∈Zn

n

√∣∣∣∏
j∈J

aj

∣∣∣ = inf
n∈N

sup
J∈Zn

n

√∣∣∣∏
j∈J

aj

∣∣∣
= inf

{
ρ > 0

∣∣∣∣ ∃K ≥ 1 : ∀n ∈ N : sup
J∈Zn

∣∣∣∏
j∈J

aj

∣∣∣ ≤ Kρn} (2.2)

holds, where the latter characterization (2.2) requires a to be bounded.
Sequences (ak)k∈Z with limk→±∞ ak = 0 fulfill β(a) = 0, but as demonstrated

in the subsequent Ex. 3.2 the converse fails.
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2.2 Exponential dichotomies

We are focussed on linear nonautonomous difference equations

xk+1 = Akxk (∆A)

with invertible coefficients Ak ∈ GL(Cd), k ∈ Z. It is understood that our results
also hold for real eqns. (∆A) by applying them to its complexification. Throughout
the entire paper, let us impose the global boundedness assumption

sup
k∈Z
|Ak| <∞,

which is justifiable since nonautonomous problems (∆A) typically occur as varia-
tional equations along bounded solutions. The solutions to (∆A) can be expressed
in terms of the transition matrix Φ : Z× Z→ GL(Cd),

Φ(k, l) :=


Ak−1 · · ·Al, l < k,

idCd , k = l,

A−1
k · · ·A

−1
l−1, k < l;

(2.3)

in order to indicate the dependence on A we sometimes write ΦA(k, l).
A difference eqn. (∆A) is said to possess an exponential dichotomy (ED for short,

cf. [22, p. 229, Def. 7.6.4] or [10,5]) on a discrete interval J being unbounded above,
provided there exists a sequence of projections

Pk ∈ L(Cd), Pk+1Ak = AkPk for all k ∈ J,

as well as reals α ∈ (0, 1), K ≥ 1 guaranteeing the hyperbolic splitting

|Φ(k, l)Pl| ≤ Kαk−l, |Φ(l, k)[idCd −Pk]| ≤ Kαk−l for all l ≤ k

and k, l ∈ J. Unless otherwise noted, we always act on the assumption J = Z
throughout the paper. On this basis, the dichotomy spectrum of (∆A) is given as

Σ(A) :=
{
γ > 0 : xk+1 = γ−1Akxk does not have an ED

}
.

It captures the exponential growth behavior of solutions to (∆A). Referring to [7,
Thm. 4] and [6, Thm. 3.4], the dichotomy spectrum consists of m ≤ d disjoint
spectral intervals and is of the form

Σ(A) =


(0, βm]

or

[αm, βm]

∪
m−1⋃
i=1

[αi, βi] (2.4)

with real numbers 0 < αm ≤ βm < αm−1 ≤ . . . ≤ β1. The invertibility assumption
on Ak ensures that a spectral interval (0, βm] can be avoided precisely for

sup
k∈Z

∣∣A−1
k

∣∣ <∞. (2.5)

One says a difference eqn. (∆A) has discrete spectrum, if all spectral intervals [αi, βi]
are singletons, i.e. αi = βi for 1 ≤ i ≤ m. For reasons becoming apparent shortly,
we avoid the commonly used term point spectrum in this context.

Scalar difference equations indicate the close relation between Bohl exponents
and their dichotomy spectrum:
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Fig. 3.1 Fine structure of the dicho-
tomy spectrum as a consequence of [44,
Cor. 4.37] and the well-known inclu-
sions ∂σ(TA) ⊆ σπ(TA) ⊆ σ(TA)

∂Σ(A) ⊆ Σπ(A) ⊆ Σπ(A) ∪ Σs(A)

ΣF (A) ΣF0(A) Σ(A) ΣF0(A) ∪ Σs(A)
∩ |||

⊆ ⊆

Σs(A) Σπ(A) ∪ ΣF0(A)⊆
∩| ||

=

Example 2.1 (scalar equations) Provided a ∈ L∞(C) holds, then the dichotomy
spectrum of xk+1 = akxk reads as (see [7, Thm. 4(ii)] and [45, Prop. 2.4])

Σ(a) =

{
(0, β(a)], if infk∈Z |ak| = 0,

[β(a), β(a)], else.
(2.6)

3 Weighted shifts and system classes

In order to obtain information on the dichotomy spectrum beyond its basic struc-
ture (2.4), we employ a relation between Σ(A) and the spectra of matrix-weighted
shifts henceforth, which can be traced back to [10,8,7]. De facto, our spectral
theory for difference eqns. (∆A) is based on the bounded operators

Sλ ∈ L(`2), (Sλφ)k := φk+1 − λ−1Akφk, (3.1)

TA ∈ L(`2), (TAφ)k := Ak−1φk−1

for all k ∈ Z, φ ∈ `2 and λ ∈ C \ {0}. Thanks to [44, Sect. 4.3] it holds

Σa(A) := Σ(A) =
{
γ > 0 : Sγ 6∈ GL(`2)

}
and one furthermore distinguishes the subspectra

Σs(A) := {γ > 0 : Sγ is not onto} ,
ΣF (A) := {γ > 0 : Sγ is not Fredholm} ,
ΣF0

(A) := {γ > 0 : Sγ is not Weyl} ,
Σπ(A) := {γ > 0 : Sγ is not bounded below}

of Σ(A). While Σa(A) ⊆ (0,∞) is the dichotomy spectrum (see [10,42]), its subsets
Σs(A), ΣF (A), ΣF0

(A) and Σπ(A) are called surjectivity, Fredholm (or essential),
Weyl resp. approximate point dichotomy spectrum of (∆A); the components of these
sets are also denoted as spectral intervals. Here Sγ is a Weyl operator, if it is Fredholm
with index 0. Further information and a thorough motivation of the latter spectra
can be found in [44]; relations between them are illustrated in Fig. 3.1.

Besides the spectrum σa(TA) := σ(TA) ⊆ C of TA we need the

surjectivity spectrum σs(TA) := {λ ∈ C : TA − λ id is not onto} ,
Fredholm spectrum σF (TA) := {λ ∈ C : TA − λ id is not Fredholm} ,

Weyl spectrum σF0
(TA) := {λ ∈ C : TA − λ id is not Weyl} ,

approximate point spectrum σπ(TA) := {λ ∈ C : TA − λ id is not bounded below}

and obtain the following central relations between σα and Σα:
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Proposition 3.1 Keep α ∈ {a, s, F0, F, π} fixed and let A,B ∈ L∞(Cd). The spectra

σα(TA) are rotationally invariant w.r.t. 0 and fulfill:

(a) One has the characterization

Σα(A) = σα(TA) ∩R+. (3.2)

(b) Σα(A) = Σα(B)⇔ σα(TA) = σα(TB).

Proof Besides (3.2) it suffices to verify that the sets σα(TA) ⊂ C are rotationally
invariant w.r.t. 0. For α 6= π this was shown in [44, Sect. 4.3] already and the
remaining case results as follows: As in the proof of [7, Thm. 1] we obtain that
TA and eiνTA are similar for each ν ∈ R. Thus, [1, p. 253, Exercise 8] yields the
rotational invariance of the approximate point spectrum σπ(TA). Since

‖(TA − λ id`2)φ‖2 =
∑
k∈Z
〈(TAφ− λφ)k, (TAφ− λφ)k〉

=
∑
k∈Z
〈Ak−1φk−1 − λφk, Ak−1φk−1 − λφk〉

= |λ|2
∑
k∈Z
〈φk+1 − λ−1Akφk, φk+1 − λ−1Akφk〉 = |λ|2 ‖Sλφ‖2

holds for all φ ∈ `2, λ ∈ C \ {0}, we deduce the equivalences

λ ∈ σπ(TA) ⇔ |λ| ∈ σπ(TA)

⇔ ∀ε > 0 ∃φ ∈ `2 with ‖φ‖ = 1 : ‖(TA − |λ| id`2)φ‖ < ε

⇔ ∀ε > 0 ∃φ ∈ `2 with ‖φ‖ = 1 :
∥∥S|λ|φ∥∥ < ε

⇔ |λ| ∈ Σπ(A) for all λ ∈ C \ {0} .

Consequently the claim follows. ut

Thanks to Prop. B.4(a), for all α ∈ {a, s, F, F0, π} one can generalize (2.6) to

Σα(A) ⊆

{
(0, β(A)], if supk∈Z

∣∣A−1
k

∣∣ =∞,
[β(A), β(A)], else.

(3.3)

Our next goal is to identify coefficient sequences A = (Ak)k∈Z yielding invari-
ance or continuity properties for the dichotomy spectrum Σ(A) and its subsets. To
this end, addressing invariance first, let us introduce ambient perturbation classes:

– The set of all matrix sequences commuting with A is defined as

C(A) :=
{
B ∈ L∞(Cd) : Ak+1Bk = Bk+1Ak for all k ∈ Z

}
.

One has C(0) = L∞(Cd) and moreover C(λI), λ ∈ C \ {0}, consists of constant
sequences in L(Cd). It is not hard to see that C(A) is a linear space over C
containing A and thus 1 ≤ dim C(A). On the other hand, every element of C(A)
is a solution to the linear difference eqn. Xk+1 = Ak+1XkA

−1
k in L(Cd), or

equivalently of
Xk+1 = ÃkXk (3.4)

with the linear operator Ãk ∈ L(L(Cd)), ÃkX := Ak+1XA
−1
k . This in turn

yields the estimate dim C(A) ≤ dimL(Cd) = d2 and accordingly C(A) is finite-
dimensional. Since a nontrivial bounded solution exists in form of (Ak)k∈Z, the
linear difference eqn. (3.4) cannot have an ED and thus 1 ∈ Σ(Ã).



8 Christian Pötzsche, Evamaria Russ

– Given a subset X ⊆ L∞(Cd) we furthermore introduce the set

EX :=

{
X +K ∈ L∞(Cd) : X ∈ X , K ∈ L∞(Cd) with lim

k→±∞
Kk = 0

}
of compact perturbations to sequences in X . One has X ⊆ EX and elements
of EX are said to be essentially in X . For instance, E {0} consists of all matrix
sequences with two-sided limit 0, or it is EL∞(Cd) = L∞(Cd).

– The matrix sequences from

Q(A) :=
{
Q ∈ C(A) : β(Q) = 0

}
commute with A and have vanishing Bohl exponents. As an example, the set
Q(0) contains all sequences in L∞(Cd) with Bohl exponent 0.

Indeed it is E {0} ⊂ Q(0), but the inclusion can be strict:

Example 3.2 In the Banach algebra A = R define the sequence (ak)k∈Z as

ak :=

{
1, k = 0 or log10 |k| ∈ N0,
1
|k| , else.

Although it satisfies the limit relation lim supk→±∞ ak = 1, nonetheless β(a) = 0
holds, because the values of |ak| become arbitrarily small on increasingly larger
discrete intervals. Consequently, we have a ∈ Q(0), but a 6∈ E {0}.

In the following, we often make use of the convenient abbreviation X(∗), where
consistently either the symbol X or X∗ is meant. On this basis, for every p ∈ N
certain increasingly larger subsets of L∞(Cd) matter, which rely on the definition

T ≥ S :⇔ T − S is positive semi-definite Hermitian. (3.5)

3.1 The classes H(∗)
p (Cd)

With the transition matrix Φ(k, l) of (∆A) defined in (2.3), we introduce

Hp(Cd) :=
{
A ∈ L∞(Cd) :Φ(k + 2p, k + p)∗Φ(k + 2p, k + p)

≥ Φ(k + p, k)Φ(k + p, k)∗ for all k ∈ Z
}
,

H∗p(Cd) :=
{
A ∈ L∞(Cd) :Φ(k + p, k)Φ(k + p, k)∗

≥ Φ(k + 2p, k + p)∗Φ(k + 2p, k + p) for all k ∈ Z
}
.

The sets H(∗)
p (Cd) are topologically closed and cover several examples:

Example 3.3 (scalar equations) For d = 1 it is L(C1) = C and commutativity yields

Hp(C) =

a ∈ `∞(C) :

k+2p−1∏
j=k+p

∣∣aj∣∣ ≥ k+p−1∏
j=k

∣∣aj∣∣ for all k ∈ Z

 ,

H∗p(C) =

a ∈ `∞(C) :

k+p−1∏
j=k

∣∣aj∣∣ ≥ k+2p−1∏
j=k+p

∣∣aj∣∣ for all k ∈ Z

 .

(3.6)
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Thus, each a ∈ H(∗)
p (C) is determined by the following fact: Consecutive geometric

means over the reals |ak| , . . . ,
∣∣ak+p−1

∣∣ and
∣∣ak+p

∣∣ , . . . , ∣∣ak+2p−1

∣∣ preserve their

order for all k ∈ Z. The characterization (3.6) yields that a ∈ H(∗)
p (C) holds if

and only if |a| ∈ H(∗)
p (C). Moreover, one has H(∗)

1 (C) ⊆ H(∗)
p (C). Note that (3.6)

extends to the diagonal elements of diagonal matrix sequences in H(∗)
p (Cd).

Example 3.4 (periodic equations) If (∆A) is a p-periodic difference equation, whose
transition matrix satisfies the normality assumption

Φ(k + p, k)∗Φ(k + p, k) = Φ(k + p, k)Φ(k + p, k)∗ for all k ∈ Z,

then A ∈ Hp(Cd)∩H∗p(Cd). In particular, the intersectionH1(Cd)∩H∗1(Cd) contains
all coefficient sequences consisting of normal matrices and especially incorporates
such autonomous difference equations.

Example 3.5 (unitary equations) Difference eqns. (∆A) with unitary coefficient ma-
trices A∗k = A−1

k , k ∈ Z, are contained in the intersection
⋂
p∈N(Hp(Cd)∩H∗p(Cd)).

To tackle invariance properties for H(∗)
p (Cd) and further sets, we remind the

reader that two difference eqns. (∆A) and (∆B) are denoted as kinematically similar,
provided there exists a sequence (Λk)k∈Z (called Lyapunov transformation) in Cd×d
such that beyond Λk+1Bk = AkΛk also

Λk ∈ GL(Cd) for all k ∈ Z, sup
k∈Z

max
{
|Λk| ,

∣∣Λ−1
k

∣∣} <∞ (3.7)

holds. In this case we write A 'Λ B and point out that kinematic similarity defines
an equivalence relation on the space L∞(Cd) of all difference eqns. (∆A).

Proposition 3.6 Assume that A ∈ H(∗)
p (Cd).

(a) If a ∈ H(∗)
p (C), then aA ∈ H(∗)

p (Cd).

(b) If A 'U B and U consists of unitary matrices Uk ∈ L(Cd), then B ∈ H(∗)
p (Cd).

Proof Due to Props. B.8(a) and B.9(a) our assumption means that the associated

shifts satisfy TA ∈ H
(∗)
p (`2).

(a) Above all, if A ∈ Hp(Cd), then for every fixed k ∈ Z one has

Ψ1 := ΦaA(k + 2p, k + p)∗ΦaA(k + 2p, k + p)

= Φ|a|2(k + 2p, k + p)︸ ︷︷ ︸
=:θ1∈R

ΦA(k + 2p, k + p)∗ΦA(k + 2p, k + p)︸ ︷︷ ︸
=:Θ1

,

Ψ2 := ΦaA(k + p, k)ΦaA(k + p, k)∗ = Φ|a|2(k + p, k)︸ ︷︷ ︸
=:θ2∈R

ΦA(k + p, k)ΦA(k + p, k)∗︸ ︷︷ ︸
=:Θ2

,

where our assumptions ensure θ1 ≥ θ2 and Θ1 ≥ Θ2. Due to the evident relations
θ2 ≥ 0 and Θ1 ≥ 0 this yields (cf. (A.5))

Ψ1 − Ψ2 = (θ1 − θ2)Θ1 + θ2(Θ1 −Θ2) ≥ θ2(Θ1 −Θ2) ≥ 0

and therefore aA ∈ Hp(Cd). The proof in case A ∈ H∗p(Cd) follows accordingly.
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(b) The assumption A 'U B means that the shifts TA, TB ∈ L(`2) are similar
by virtue of the unitary multiplication operator MU ∈ L(`2) (see Appendix B.1),
i.e. TB = M∗UTAMU and thus T pB = M∗UT

p
AMU . In case A ∈ Hp(Cd) this implies

T ∗pB T pB = M∗UT
∗p
A T pAMU

(A.6)

≥ M∗UT
p
AT
∗p
A MU = T pBT

∗p
B

and Prop. B.8(a) ensures B ∈ Hp(Cd). In the dual situation A ∈ H∗p(Cd) one makes

use of Prop. B.9(a) and proceeds analogously to establish B ∈ H∗p(Cd). ut

The elements of H(∗)
1 (Cd) have distinguished representatives w.r.t. kinematic

similarity. Indeed they are equivalent to both-sided asymptotically autonomous
equations, where the convergence is even monotone w.r.t. the relation (3.5).

Theorem 3.7 If A ∈ H(∗)
1 (Cd), then A 'U B with an eqn. (∆B) satisfying:

(a) The coefficient matrices Bk ∈ GL(Cd) are positive-semidefinite Hermitian and

fulfill B− ≤ Bk ≤ B+ (if A ∈ H1(Cd)) resp. B+ ≤ Bk ≤ B− (if A ∈ H∗1(Cd)) for

all k ∈ Z with the existing limits

B− := lim
k→−∞

Bk, B+ := lim
k→∞

Bk. (3.8)

(b) The corresponding Lyapunov transformation U consists of unitary matrices.

Proof Due to Prop. B.7 the shift operator TA ∈ L(`2) is unitarily equivalent to a
weighted shift TB ∈ L(`2) by means of a multiplication operator MU ∈ L(`2) with
unitary Uk ∈ L(Cd) and positive-semidefinite Hermitian Bk. In particular, it is
Bk = U∗k+1AkUk for all k ∈ Z and (∆A) is kinematically similar to (∆B). One has

0 ≤ Bk ≤ sup
n∈Z
|Bn| idCd for all k ∈ Z (3.9)

and we show the convergence assertions for Bk: Our assumption A ∈ H1(Cd) yields

B∗k+1Bk+1 −BkB∗k = U∗k+1

(
A∗k+1Ak+1 −AkA∗k

)
Uk+1 ≥ 0 for all k ∈ Z

and thus B2
k+1 = B∗k+1Bk+1 ≥ BkB∗k = B2

k ≥ 0 follows from (A.6). Thanks to (3.9)
the Löwner-Heinz inequality (see [40]) applies and shows that (Bk)k∈Z is bounded
nondecreasing. Hence, the limits (3.8) exist with 0 ≤ B− ≤ B+. In case A ∈ H∗1(Cd)
one proceeds accordingly, since (Bk)k∈Z is bounded and nonincreasing. ut

3.2 The classes A(∗)
p (Cd)

Let us furthermore introduce the sets of matrix sequences

Ap(Cd) :=
{
A ∈ L∞(Cd) : Φ(k + 2p, k)∗Φ(k + 2p, k)

≥
[
Φ(k + p, k)∗Φ(k + p, k)

]2
for all k ∈ Z

}
,

A∗p(Cd) :=
{
A ∈ L∞(Cd) : Φ(k + 2p, k)Φ(k + 2p, k)∗

≥
[
Φ(k + 2p, k + p)Φ(k + 2p, k + p)∗

]2
for all k ∈ Z

}
,

which inherit certain properties from the previous classes H(∗)
p (Cd):



Continuity and invariance of the Sacker-Sell spectrum? 11

Proposition 3.8 Assume that A ∈ A(∗)
p (Cd).

(a) If a ∈ H(∗)
p (C), then aA ∈ A(∗)

p (Cd).

(b) If A 'U B and U consists of unitary matrices Uk ∈ L(Cd), then B ∈ A(∗)
p (Cd).

Proof The assertions can be shown as in the proof of Prop. 3.6, but presently by
means of Props. B.8(b) and B.9(b). ut

The following result illustrates that a discrete dichotomy spectrum Σ(A) is
exceptional for coefficients in Ap(Cd) or A∗p(Cd):

Proposition 3.9 If (∆A) has discrete dichotomy spectrum and A ∈ A(∗)
p (Cd), then

Φ(k + 2p, k + p)∗Φ(k + 2p, k + p) = Φ(k + p, k)Φ(k + p, k)∗ for all k ∈ Z. (3.10)

Proof Given A ∈ Ap(Cd) our Prop. B.8(b) establishes that SA := T pA is of class A.
Thanks to Putnam’s inequality ‖S∗ASA − SAS

∗
A‖ ≤

1
πλ2(σ(SA)) for class A opera-

tors (see [39, Cor. 3.2]) one obtains

S∗ASA = SAS
∗
A, (3.11)

since the Lebesgue measure λ2(σ(SA)) = λ2(σ(TA)p) (cf. the spectral mapping
theorem [37, p. 13, Thm. 34]) vanishes due to

σ(TA)
(3.2)
= {eitλ ∈ C : t ∈ [0, 2π), λ ∈ Σ(A)}

with the finite dichotomy spectrum Σ(A). From (3.11) and Prop. B.4(f) we readily
deduce (3.10). Tackling the remaining case A ∈ A∗p(Cd), one sees that the adjoint
S∗A is of class A and by means of (A.3) the claim follows as above. ut

3.3 The classes P(∗)
p (Cd)

We eventually investigate the classes

Pp(Cd) :=
{
A ∈ L∞(Cd) : Φ(k + 2p, k)∗Φ(k + 2p, k)

− 2rΦ(k + p, k)∗Φ(k + p, k) + r2 idCd ≥ 0 for all k ∈ Z, r > 0
}
,

P∗p (Cd) :=
{
A ∈ L∞(Cd) : Φ(k + 2p, k)Φ(k + 2p, k)∗

− 2rΦ(k + 2p, k + p)Φ(k + 2p, k + p)∗ + r2 idCd ≥ 0 for all k ∈ Z, r > 0
}

and obtain their subsequent invariance properties (cf. Props. 3.6 and 3.8):

Proposition 3.10 Assume that A ∈ P(∗)
p (Cd).

(a) λA ∈ P(∗)
p (Cd) for all λ ∈ C.

(b) If A 'U B and U consists of unitary matrices Uk ∈ L(Cd), then B ∈ P(∗)
p (Cd).
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Proof Assertion (a) immediately follows from the definition. In order to show (b)
we observe that ΦB(k, l) = U∗kΦA(k, l)Ul for all k, l ∈ Z implies the relations

ΦB(k + 2p, k)∗ΦB(k + 2p, k) = U∗kΦA(k + 2p, k)∗ΦA(k + 2p, k)Uk,

ΦB(k + p, k)∗ΦB(k + p, k) = U∗kΦA(k + p, k)∗ΦA(k + p, k)Uk

for all k ∈ Z and therefore (A.6) ensures the claim. ut

The sets P(∗)
p (Cd) do not only contain the classes H(∗)

p (Cd) and A(∗)
p (Cd), they

are additionally nested in the following sense:

Theorem 3.11 One has the inclusions

H(∗)
p (Cd) ⊆ A(∗)

p (Cd) ⊆ P(∗)
p (Cd) ⊆ P(∗)

np (Cd) for all n, p ∈ N. (3.12)

Proof Given p ∈ N our Props. B.8 and B.9 yield the characterizations

H(∗)
p (Cd) =

{
A ∈ L∞(Cd) : T

(∗)
A ∈ Hp(`2)

}
,

A(∗)
p (Cd) =

{
A ∈ L∞(Cd) : T

(∗)
A ∈ Ap(`2)

}
,

P(∗)
p (Cd) =

{
A ∈ L∞(Cd) : T

(∗)
A ∈ Pp(`2)

}
and so the first two inclusions result from [34, p. 74, (2.57)], since every hyponor-
mal operator is class A, and in turn every class A operator is paranormal. The

remaining inclusion P(∗)
p (Cd) ⊆ P(∗)

np (Cd) for all n ∈ N is from [21, Thm. 1]. ut

Example 3.12 (scalar equations) In the scalar case d = 1 it is

H(∗)
p (C) = A(∗)

p (C) = P(∗)
p (C) for all p ∈ N (3.13)

and the characterization (3.6) from Ex. 3.3 holds. We show Pp+1(C) \ Pp(C) 6= ∅
for each p ∈ N: Indeed, consider a complex sequence (ak)k∈Z with

|ak| =


α+, k mod (p+ 1) 6= 0, k > 0,

α, k mod (p+ 1) = 0,

α−, k mod (p+ 1) 6= 0, k < 0

and reals α+, α, α− > 0. The corresponding scalar difference eqn. xk+1 = akxk is
asymptotically periodic (with period p + 1) and consequently has the dichotomy
spectrum (cf. [45, Ex. 2.6(4)])

Σ(a) =
[
p+1
√
αmin {α−, α+}p, p+1

√
αmax {α−, α+}p

]
.

Due to the p+ 1-periodicity of a on the discrete intervals Z−0 ,Z
+
0 one obtains

k+2p+1∏
j=k+p+1

∣∣aj∣∣ =

k+p∏
j=k

∣∣aj∣∣ = α

{
αp−, k ≤ −1− 2p,

αp+, 0 ≤ k

and it remains to check the criterion (3.6) for −1 − 2p < k < 0. This requires the
inequalities

α+αα
p−1
− ≥ ααp−, αp+α ≥ α

p
−α, αp+α ≥ α−αα

p−1
+
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to be fulfilled, which are all equivalent to α+ ≥ α−. Hence, we arrive at

a ∈ Hp+1(C) ⇔ α+ ≥ α−

and dually, a ∈ H∗p+1(C)⇔ α+ ≤ α−. On the other hand, in case k = 1− p it is

p∏
j=1

∣∣aj∣∣ = αp+,

0∏
j=1−p

∣∣aj∣∣ = αp−1
− α

and for α > α−
(
α+

α−

)p
the condition (3.6) yields a 6∈ Hp(C). Thus, for sufficiently

large values of α we derive from (3.13) that a ∈ Pp+1(C) \ Pp(C) for α+ ≥ α−.
Analogously, one finds small α > 0 such that a ∈ P∗p+1(C) \P∗p (C) when α+ ≤ α−.

In order to finally illustrate that the first two inclusions in (3.12) are strict in
general, let us employ an example adopted from [30, Problem 9.14]:

Example 3.13 We consider coefficient sequences A ∈ L∞(C2) of the form

Ak :=

{
A+, k ≥ 0,

A−, k < 0
for all k ∈ Z.

(1) For the particular choice A− :=
(

1 0
0 0

)
and A+ :=

(
1 1
1 1

) 1
2 the matrix ex-

pression A−A
2
+A− − A4

− =
(

0 0
0 0

)
is positive semi-definite, whereas the difference

A2
+ − A2

− =
(

0 1
1 1

)
is not since it has the eigenvalues ±1. Consequently, we arrive

at A ∈ A1(C2), but A /∈ H1(C2).

(2) For A− := 1
2

(
2 1
1 1

)
and A+ :=

(
10 −3
−3 1

) 1
2 it is A−A

2
+A− − A4

− = 1
16

(
82 27
27 7

)
,

which is not positive semi-definite due to the eigenvalue 89−3
√

949
32 < 0; therefore

A /∈ A1(C2). In order to establish A ∈ P1(C2), we investigate

X(r) := A−A
2
+A− − 2rA2

− + r2 idC2 =
1

4

(
4r2 − 10r + 29 12− 6r

12− 6r 4r2 − 4r + 5

)
.

Thanks to 4r2 − 10r + 29 > 0 and 4r2 − 4r + 5 > 0, it follows from Sylvester’s
criterion [25, p. 439, Thm. 7.2.5(a)] that X(r) is positive semi-definite for all r > 0,
because detX(r) = 1

16 (16r4 − 56r3 + 140r2 − 22r + 1) > 0 and thus, A ∈ P1(C2).

4 Invariance of the dichotomy spectrum

This section investigates two weakenings of the classical kinematic similarity as a
property leaving the dichotomy spectra invariant (cf. [44, Cor. 4.33]). For sequences
A,B,Λ ∈ L∞(Cd) they are based on the further L(Cd)-valued sequences

∆nA,BΛ :=
n∑
j=0

(
n

j

)
(−1)jΦA(·, · − n+ j)Λ·−n+jΦB(· − n+ j, · − n) : Z→ L(Cd)

for all n ∈ N0. Under commutativity assumptions this expression simplifies:
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– If B ∈ C(A) and Λk+1Ak ≡ AkΛk on Z it is

(∆nA,BΛ)k = ΛkΦA−B(k, k − n) for all k ∈ Z, n ∈ N0.

– If A ∈ C(B) and Λk+1Bk ≡ BkΛk on Z it is

(∆nA,BΛ)k = ΦA−B(k, k − n)Λk−n for all k ∈ Z, n ∈ N0.

The linear difference eqns. (∆A) and (∆B) are called weakly similar, in symbols

A ∼ B (more specific A ∼Λ B),

provided there exists a nonzero sequence (Λk)k∈Z in L(Cd) fulfilling

sup
k∈Z
|Λk| <∞, lim sup

n→∞
n

√
sup
k∈Z

∣∣∣(∆nA,BΛ)k

∣∣∣ = 0.

For our purpose the above limit relation is to be satisfied only in two special cases:

Remark 4.1 (1) The linear conjugacy relation

AkΛk ≡ Λk+1Bk on Z (4.1)

shows ΦA(k, l)Λl = ΛkΦB(k, l), k, l ∈ Z, and therefore ∆nA,BΛ = 0 for all n ∈ N
holds due to the trivial identity

∑n
j=0 (nj)(−1)j = (1−1)n = 0. Hence, (4.1) implies

weak similarity and if in addition also (3.7) holds, then the difference eqns. (∆A)
and (∆B) are even kinematically similar.

(2) For B ∈ C(A) and under one of the conditions

AkΛk ≡ Λk+1Ak or BkΛk ≡ Λk+1Bk on Z (4.2)

(which particularly hold for the identity transformation Λ = I) it results from
Cor. B.6 that (∆A) and (∆B) are weakly similar, if β(A−B) = 0 is fulfilled.

Dichotomy spectra of weakly similar equations are not disjoint; one even has

Proposition 4.2 Difference eqns. (∆A) and (∆B) with A ∼Λ B satisfy:

(a) Σπ(A) ∩ Σs(B) 6= ∅ and in case Λk ∈ GL(Cd), k ∈ Z, every spectral interval of

Σs(A) touches Σπ(B).

(b) If (3.7) holds, then Σs(A) ⊆ Σs(B).

Proof Since (∆A) and (∆B) are weakly similar with A ∼Λ B, our Lemma B.5
ensures that the weighted shifts TA and TB intertwine asymptotically by means of
the multiplication operator MΛ defined in (B.1).

(a) Here [32, Prop. 2.3] yields σπ(TA) ∩ σs(TB) 6= ∅ and hence

Σπ(A) ∩Σs(B)
(3.2)
= σπ(TA) ∩ σs(TB) ∩R+ 6= ∅,

because both spectra σπ(TA), σs(TB) are rotationally invariant (cf. Prop. 3.1). For
invertible matrices Λk, k ∈ Z, the multiplication operator MΛ is one-to-one and
the remaining assertion results analogously from [33, p. 265, Cor. 3.5.8].

(b) Due to (3.7) the operator MΛ ∈ L(`2) is onto and [32, Prop. 3.1] yields the
inclusion σs(TA) ⊆ σs(TB). This gives

Σs(A)
(3.2)
= σs(TA) ∩R+ ⊆ σs(TB) ∩R+ (3.2)

= Σs(B)

and therefore the claim. ut
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In order to formulate our next result, let us assume that (∆A) has the Lyapunov
spectrum and filtration (cf. [45, Sect. 2.1] for details){

λ+
1 , . . . , λ

+
n

}
, 0 =:W0 ⊂W1 ⊂ . . . ⊂Wn = Cd with n ≤ d

with forward Lyapunov exponents ordered according to 0 < λ+
1 < . . . < λ+

n .

Proposition 4.3 Difference eqns. (∆A) and (∆B) with A ∼Λ B and (3.7) satisfy the

inclusion Σ(A) ⊆ Σ(B), provided one of the following assumption holds:

(i) One has the estimate

1 ≤ λ+
j lim sup

k→∞

k
√
|ΦA(−k, κ)x| for all x ∈Wj \Wj−1, 1 ≤ j ≤ n. (4.3)

(ii) B ∼Λ̄ A with a sequence of matrices Λ̄k ∈ GL(Cd) for all k ∈ Z.

The assumption (i) for instance holds in autonomous or periodic equations.

Proof Referring to our assumption and Lemma B.5, the onto multiplication oper-
ator MΛ ∈ L(`2) asymptotically intertwines TA and TB . On the one hand, under
assumption (i) it was shown in [45, Proof of Thm. 4.8] that TA has the SVEP and
thus [32, Prop. 3.1] implies σ(TA) ⊆ σ(TB). On the other hand, assumption (ii)
ensures a one-to-one MΛ̄, which asymptotically intertwines TB and TA; from [32,
Cor. 3.2] one also gets σ(TA) ⊆ σ(TB). In both cases we conclude

Σ(A)
(3.2)
= σ(TA) ∩R+ ⊆ σ(TB) ∩R+ (3.2)

= Σ(B)

and this was our claim. ut

As second approach to weaken the notion of kinematic similarity, we say that
(∆A) and (∆B) are asymptotically similar, in symbols

A ≈ B (more detailled A ≈Λ B),

if there exists a sequence (Λk)k∈Z satisfying both (3.7) and the limit relations

lim sup
n→∞

n

√
sup
k∈Z

∣∣∣(∆nA,BΛ)k

∣∣∣ = 0, lim sup
n→∞

n

√
sup
k∈Z

∣∣∣(∆nB,AΛ−1)k

∣∣∣ = 0. (4.4)

Remark 4.4 (1) Asymptotic similarity is an equivalence relation on the space of
linear difference eqns. (∆A) in Cd, i.e. on L∞(Cd).

(2) Kinematic similarity implies asymptotic similarity, which is in turn suffi-
cient for weak similarity. Indeed, if (4.1) and (3.7) hold, then Λ−1

k+1Ak = BkΛ
−1
k

yields ΦB(k, l)Λ−1
l = Λ−1

k ΦA(k, l), k, l ∈ Z, and consequently ∆nB,AΛ
−1 = 0 for all

n ∈ N. Hence it follows that both limit relations in (4.4) are satisfied.
(3) For difference eqns. (∆B) with B ∈ C(A) and sequences Λ ∈ L∞(Cd) such

that beyond (3.7) also (4.2) holds, it results as in Rem. 4.1(2) that β(A− B) = 0
implies asymptotic similarity. The specific situation Λ = I is going to be tackled
in the proof of our subsequent Prop. 4.6.

Theorem 4.5 If A ≈ B, then Σα(A) = Σα(B) for all α ∈ {a, s, π}.
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Proof Keep α ∈ {a, s, π} fixed and suppose that (∆A) and (∆B) are asymptotically
similar by means of A ≈Λ B. With the spectral radius rTA,TB defined in (A.2) these
conditions particularly mean

– the boundedness assumption (3.7) holds and therefore MΛ ∈ GL(`2)
– rTA,TB (MΛ) = 0, and with Lemma B.5 the multiplication operator MΛ asymp-

totically intertwines TA and TB
– rTB ,TA(M−1

Λ ) = 0 and anew Lemma B.5 combined with Prop. B.1(a) estab-
lishes M−1

Λ as an intertwiner between TB and TA.

This yields asymptotic similarity of the shifts TA and TB . Thus, [32, Thm. 3.5]
implies σα(TA) = σα(TB) and (3.2) yields the assertion as above. ut

For difference equations on the half line it is common knowledge that their
dichotomy spectrum is not affected by linear-homogeneous perturbations decaying
to 0 as k →∞ (cf. [44, Cor. 3.26]). Yet, this situation changes on the entire line and
we refer to [42] for a corresponding example. With perturbations having vanishing
Bohl exponents and fulfilling commutativity assumptions, one still obtains

Proposition 4.6 If α ∈ {a, s, π}, then Σα(A+Q) = Σα(A) for all Q ∈ Q(A).

Proof Keep α ∈ {a, s, π} fixed and define B := A + Q. Due to Q ∈ Q(A) one
has both Ak+1Bk = Bk+1Ak, as well as β(B − A) = 0. First, Cor. B.6 implies
rTA,TB (I) = 0 and rTB ,TA(I) = 0. Second, Lemma B.5 ensures that MI = id`2
asymptotically intertwines TA and TB , and at the same time TB and TA. It follows
that (∆A) and (∆B) are asymptotically similar and Thm. 4.5 yields the claim. ut

The applicability of Prop. 4.6 is strongly limited by the commutativity assumption
in the definition of Q(A) — a subset of a finite-dimensional space. Nevertheless,
it applies to ΣF , ΣF0

under the limit relation limk→±∞Qk = 0. Concerning the
other spectra we address structured perturbations of upper-triangular equations.
Different from the half line situation their dichotomy spectrum is not necessarily
the union of the diagonal spectra (see [45, Ex. 2.7(2)]) and we have

Example 4.7 Suppose that (ak)k∈Z, (bk)k∈Z and (ck)k∈Z are complex sequences
with bk 6= 0 for all k ∈ Z. We consider matrix sequences

Ak :=

(
ak ck
0 bk

)
, Qk :=

(
0 qk
0 0

)
in C2×2 and arrive at the commutativity relation

Ak+1Qk −QkAk =

(
0 ak+1qk − bkqk+1

0 0

)
for all k ∈ Z.

Therefore, in order to obtain Q ∈ Q(A) the complex sequence (qk)k∈Z has to
be an entire bounded solution of the linear scalar difference eqn. xk+1 = ak+1

bk
xk

satisfying β(q) = 0. Such a sequence can be constructed under the assumption

γ± := lim
k→±∞

∣∣∣ak+1

bk

∣∣∣ with positive reals γ+ < 1 < γ−.

This implies limk→±∞ qk = 0 (even exponentially) and so β(q) = 0. By Prop. 4.6
these conditions lead to Σα(A) = Σα(A+ ρQ) for all α ∈ {a, s, π} and ρ ∈ C.



Continuity and invariance of the Sacker-Sell spectrum? 17

5 Continuity of the dichotomy spectrum

Given a difference eqn. (∆A) it is obvious from (2.4) that the ”closure”

Σ̄(A) := Σ(A) ∪ {0}

of its dichotomy spectrum is a compact nonempty subset of R; this property is
shared by the accordingly defined subspectra Σα(A) for α ∈ {s, F, F0, π} (see [44]).
Both for the sake of nonautonomous bifurcation theory, as well as to verify numer-
ical approximations, it is an interesting problem to study continuity properties of
the mappings A 7→ Σ̄α(A). Thereto, let K(X) denote the family of compact subsets
of a metric space X. Equipped with the Hausdorff distance h : K(X)×K(X)→ R,

h(M1,M2) := max {d(M1,M2), d(M2,M1)} , d(M1,M2) := sup
x∈M1

dist(x,M2),

the pair (K(X), h) is a metric space (cf. [9, p. 37, Thm. 1]).

Example 5.1 (periodic equations) For a p-periodic difference eqn. (∆A) one has

Σ(A) =
{
p
√
|λ| : λ ∈ σ(Φ(p, 0))

}
and since the eigenvalues of the period matrix Φ(p, 0) depend continuously on the
coefficients A0, . . . , Ap−1 ∈ GL(Cd), also the dichotomy spectrum is continuous in
the class of p-periodic equations in Cd (see [25, p. 122, Thm. 2.4.9.2]).

For more general time dependencies such a regular behavior cannot be expected
and Σ̄ : L∞(Cd)→ K(R) is only upper-semicontinuous (cf. [42, Cor. 4]), i.e.

lim
B→A

d(Σ̄(B), Σ̄(A)) = 0 for all A ∈ L∞(Cd)

holds; explicit examples with suddenly shrinking spectrum can be found in Ex. 5.10
below or [42, Ex. 5]. The following accentuation ensures that even single spectral
intervals behave upper-semicontinuously.

Theorem 5.2 Keep α ∈ {a, F} fixed. Suppose a sequence (An)n∈N in L∞(Cd) con-

verges to A. If Σα(A) is of the form (2.4), then for every ε > 0 there exists a N ∈ N
such that

Σα(An) ⊆

{
(0, βm + ε]

[αm − ε, βm + ε]
∪
m−1⋃
i=1

[αi − ε, βi + ε] for all n ≥ N.

Proof For every spectral interval J ⊆ Σ(A) the annulus C := {λ ∈ C : |λ| ∈ J}
is a component of σ(TA) due to (3.2) and Prop. 3.1. Then [14, Lemma 1.5(a)]
implies that each neighborhood U ⊆ C of C contains a component of σ(TAn), if n
is sufficiently large. Again (3.2) yields the claim, since J ⊆ Σ(A) was arbitrary.

In case α = F the assertion follows analogously using [14, Lemma 1.5(b)]. ut

In order to proceed to continuity properties for Σ, we rest upon (3.2) and follow
an approach based on the weighted shifts TA ∈ L(`2) defined in (3.1):

Proposition 5.3 Keep α ∈ {a, s, F0, F, π} fixed. If σα : L(`2)→ K(C) is continuous

at TA, then Σ̄α : L∞(Cd)→ K(R) is continuous at A.
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Proof Given α ∈ {a, s, F0, F, π}, let (An)n∈N converge to A in L∞(Cd) and define
σ̄α(TA) := σα(TA)∪ {0}. Thus, Lemma B.3 shows limn→∞ TAn = TA in L(`2) and

lim
n→∞

h(σα(TAn), σα(TA)) = 0 ⇒ lim
n→∞

h(σ̄α(TAn), σ̄α(TA)) = 0.

Because the sets σ̄α(TAn), σ̄α(TA) ⊂ C are rotationally symmetric w.r.t. 0 (for this,
see Prop. 3.1), elementary geometrical considerations yield

dist(xn, Σ̄α(A)) = inf
y∈Σ̄α(A)

|xn − y| = inf
y∈σ̄α(TA)

|xn − y| = dist(xn, σ̄α(TA))

≤ sup
yn∈σ̄(TAn )

dist(yn, σ̄α(TA)) ≤ h(σ̄α(TAn), σ̄α(TA))

for all xn ∈ Σ̄α(An) and by passing over to the least upper bound

d(Σ̄α(An), Σ̄α(A)) = sup
xn∈Σ̄α(An)

dist(xn, Σ̄α(A)) ≤ h(σ̄α(TAn), σ̄α(TA)) −−−−→
n→∞

0.

A completely dual argument leads to

d(Σ̄α(A), Σ̄α(An)) = sup
x∈Σ̄α(A)

dist(x, Σ̄α(An)) ≤ h(σ̄α(TA), σ̄α(TAn)) −−−−→
n→∞

0

and consequently the assertion holds. ut

To assess system classes guaranteeing continuity, let us briefly highlight the
embracing abstract theory of bounded operators L(X) defined on a (separable)
Hilbert space X. On the one hand, the set-valued functions σ, σF : L(X)→ K(C)
are continuous on a dense Gδ-set, just as they are discontinuous on a dense Fσ-set
(cf. [14]); thanks to [23, Thms. 2, 3] this erratic behavior even extends to further
subspectra. On the other hand, [37, p. 57, Thm. 14] identifies the discontinuity
points for σ, σF , σs to be of first category, i.e. as meagre. The latter property
ensures that eqns. (∆A) with discontinuous dichotomy spectra form a meagre set.

One manifestation of the upper-semicontinuity of the dichotomy spectrum from
Thm. 5.2 is that a spectral interval shrinks to its boundary points. A condition to
avoid this behavior is the following relation between the different spectra:

Theorem 5.4 The dichotomy spectrum Σ is continuous at A, if beyond (2.5) one has

Σ(A) = ΣF0
(A) \ΣF (A). (5.1)

Condition (5.1) rules out cases when the Weyl spectrum is smaller than Σ(A) and
a large Fredholm spectrum ΣF (A) compared to ΣF0

(A) occurs. We furthermore
point out that (5.1) is not purely academic. Indeed, using Palmer’s characterization
of the operator Sγ from (3.1) to be Fredholm (see [44, Props. 4.9 and 4.12] in
discrete time), the spectra ΣF0

(A) and ΣF (A) can actually be computed on a
numerical basis using methods from [26] or [18].

Proof Let us abbreviate id = id`2 . We apply the characterization [15, Thm. 3.3] of
continuity points for the spectrum σ : L(`2)→ K(C) in form of

σ(TA) =
⋃

1≤|n|≤∞

{λ ∈ σ(TA) : TA − λ id is semi-Fredholm with index = n}
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∪ {λ ∈ C : {λ} is a component of σ(TA)}. (5.2)

Thereto, we can derive from (3.3) that the spectrum σ(TA) is contained in the
closed annulus

{
λ ∈ C : β(A) ≤ |λ| ≤ β(A)

}
and its circular symmetry guarantees

that σ(TA) has no trivial components, i.e. singletons. This ensures that the second
set in the above union (5.2) is empty. The disjoint decomposition

σF0
(TA) = {λ ∈ C : TA − λ id is not Fredholm or Fredholm with index 6= 0}

= σF (TA)∪̇ {λ ∈ C : TA − λ id is Fredholm with index 6= 0}

for the Weyl spectrum now implies the representation

{λ ∈ C : TA − λ id is Fredholm with index 6= 0} = σF0
(TA) \ σF (TA).

Thanks to [44, Rem. 4.13(2)] (the operator TA−λ id is semi-Fredholm, if and only
if it is Fredholm) we therefore obtain the equivalences

µ ∈
⋃

1≤|n|≤∞

{λ ∈ σ(TA) : TA − λ id is semi-Fredholm with index = n}

⇔ µ ∈ {λ ∈ σ(TA) : TA − λ id is semi-Fredholm with index = n}
for some n ∈ (Z \ {0}) ∪ {±∞}

⇔ µ ∈ σ(TA) and TA − µ id is Fredholm with ind(TA − µ id) 6= 0

⇔ µ ∈ σ(TA) and µ ∈ σF0
(TA) \ σF (TA)

⇔ µ ∈ σ(TA) ∩ (σF0
(TA) \ σF (TA))

and because of σF0
(TA) ⊆ σ(TA) this means µ ∈ σF0

(TA) \ σF (TA). Consequently,
in our situation of weighted shift operators TA the relation (5.2) simplifies to
σ(TA) = σF0

(TA) \ σF (TA). Due to Prop. 3.1 this is equivalent to (5.1) and thus
TA is a point of continuity for σ. Now the claim follows from Prop. 5.3. ut

Corollary 5.5 The Weyl dichotomy spectrum ΣF0
is continuous at A, if

ΣF0
(A) = ΣF0

(A) \ΣF (A). (5.3)

Both conditions (5.1) and (5.3) are tailor-made for the situation where the Weyl
dichotomy spectrum ΣF0

(A) is a union of intervals (with nonempty interior), while
ΣF (A) consists of singletons. Given this, (5.1) holds for Σ(A) = ΣF0

(A).

Proof Presently the operator-theoretical tool guaranteeing that TA is a point of
continuity for σF0

: L(`2)→ K(C) is [15, Thm. 4.4], which involves the condition

σF0
(TA) =

⋃
1≤|n|≤∞

{λ ∈ σ(TA) : TA − λ id is semi-Fredholm with index = n}

∪ {λ ∈ C : {λ} is a component of σF (TA)}.

Since all components of the Fredholm spectrum σF (TA) ⊆ C are annuli disjoint
from {0}, one obtains as above that σF0

(TA) = σF0
(TA) \ σF (TA). Again, Props. 3.1

and 5.3 yield the assertion. ut

Corollary 5.6 Suppose that Σ(A) = ΣF0
(A) or A ∈ Pp(Cd) holds.
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(a) If (5.1) is fulfilled, then ΣF0
is continuous at A.

(b) If (5.3) is fulfilled, then Σ is continuous at A.

Proof (I) If we assume Σ(A) = ΣF0
(A), then Prop. 3.1 implies σ(TA) = σF0

(TA).
(a) Under (5.1) the proof of Thm. 5.4 shows that σ is continuous and [14, Cor. 3.9]
ensures that also σF0

is continuous at TA.
(b) Given (5.3) we established in the proof of Cor. 5.5 that σF0

is continuous and
[14, Cor. 3.9] implies the continuity of σ at TA.

(II) Suppose that A ∈ Pp(Cd). Due to Prop. B.8(c) the operator T pA is paranor-

mal and thus TA ∈ Pp(Cd). With Prop. A.3 now Weyl’s and therefore Browder’s
theorem holds for the shift TA.
(a) The above proof of Thm. 5.4 establishes that σ is continuous at TA and then
Prop. A.2 implies that TA is also a point of continuity for σF0

.
(b) One uses the proof of Cor. 5.5 in order to see that TA is a point of continuity
for σF0

. The characterization Prop. A.2 yields that also σ is continuous at TA.
In both respective cases (a) and (b), Prop. 5.3 implies the claim. ut

While the above results provided sufficient criteria for Σ, ΣF0
to be continuous

at a particular A ∈ L∞(Cd), in the following we identify whole subsets of L∞(Cd)
on which Σ behaves continuously:

Theorem 5.7 (a) The dichotomy spectra Σα, α ∈ {a, F0}, are continuous on C(A).

(b) The Fredholm dichotomy spectrum ΣF is continuous on EC(A).

Proof (a) Let (An)n∈N be a sequence in C(A) converging to A. The corresponding
shift operators satisfy TAnTA = TATAn for all n ∈ N. Moreover, Lemma B.3 yields
the limit relation limn→∞ TAn = TA in L(`2). Thus, [34, p. 36, Thm. 1.12.5] applies
in the Banach algebra L(`2) and yields limn→∞ σ(TAn) = σ(TA). By means of [34,
p. 37, Thm. 1.12.7] the same limit relation holds for the Weyl spectrum σF0

.
(b) Suppose that (An)n∈N is a sequence in EC(A) with limit A and thus

lim
k→±∞

∣∣Ank+1Ak −Ak+1A
n
k

∣∣ = 0 for all n ∈ N.

Hence, combining (B.3) with Prop. B.4(c), implies that all TAnTA−TATAn ∈ L(`2),
n ∈ N, are compact. Because Lemma B.3 yields limn→∞ TAn = TA we deduce from
[34, p. 53, Lemma 2.3.2] that the limit relation limn→∞ σF (TAn) = σF (TA) holds.

Thanks to (3.2) in both cases (a) and (b) the claim follows from Prop. 5.3. ut

Proposition 5.8 Suppose a sequence (Bn)n∈N in L∞(Cd) converges to B ∈ C(A). If

lim
k→±∞

Bnk = 0 for all n ∈ N, (5.4)

then the following holds true:

(a) Under (5.1) one has limn→∞Σ(A+Bn) = Σ(A).
(b) Under (4.3) one has limn→∞Σs(A+Bn) = Σs(A) = Σ(A).

Proof Because of B ∈ C(A) we have TBTA = TATB and (5.4) ensures that every
shift operator TBn , n ∈ N, is compact by Prop. B.4(c). Since the compact operators
form a closed subspace of L(`2) (cf. [1, p. 89]), also the limit TB is compact.
With again Prop. B.4(c) this implies limk→±∞Bk = 0 and therefore β(B) = 0.
Consequently, TB is quasi-nilpotent due to Prop. B.4(d).
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(a) In the proof of Thm. 5.4 we showed that (5.1) guarantees TA to be a point
of continuity for σ. Since [47, Cor. 3.4] yields limn→∞ σ(TA + TBn) = σ(TA + TB)
w.r.t. the Hausdorff metric and Prop. 4.6 (its proof) shows σ(TA + TB) = σ(TA).

(b) Similarly, use [47, Thm. 3.5(b)], where TA has the SVEP due to (4.3) (cf.
[45, Proof of Thm. 4.8]). In particular, σs(TA) = σ(TA) follows from Lemma A.1.

In both cases the claim follows from Prop. 5.3. ut

Theorem 5.9 The dichotomy spectra Σα, α ∈ {a, π, s, F0}, are continuous on the sets

P(∗)
p (Cd), while ΣF is continuous on EP(∗)

p (Cd).

Thanks to Thm. 3.11 the dichotomy spectra Σα are also continuous on the subsets

H(∗)
p (Cd) and A(∗)

p (Cd). Their importance is due to the fact that it might be

comparatively easier to verify the inclusion A ∈ H(∗)
p (Cd) (or A ∈ A(∗)

p (Cd)).

Proof Let p ∈ N be arbitrary.
(I) If A ∈ Pp(Cd) is limit of a sequence (An)n∈N in Pp(Cd), then Prop. B.8(c)

shows that T pA and T pAn are paranormal. Hence, both TA and TAn are pth roots of
a paranormal operator and [20, Thm. 2.5] guarantees the continuity property

lim
n→∞

σα(TAn) = σα(TA) for all α ∈ {a, π, F0} (5.5)

in the Hausdorff metric. On the other hand, by Prop. A.3 every TA, TAn ∈ L(`2)
has the SVEP and thus Lemma A.1 implies

lim
n→∞

σs(TAn) = lim
n→∞

σ(TAn)
(5.5)
= σ(TA) = σs(TA).

(II) For A,An ∈ P∗p (Cd) we derive as above (now see Prop. B.9(c)) that the
adjoints T ∗A, T ∗An are pth roots of paranormal operators and therefore have the
SVEP. Moreover, it is not hard to see that limn→∞An = A yields the limit relation
limn→∞ T ∗An = T ∗A. Again, [20, Thm. 2.5] implies

lim
n→∞

σα(TAn)
(A.3)

= lim
n→∞

σα(T ∗An) = σα(T ∗A)
(A.3)

= σα(TA) for all α ∈ {a, F0} ,

as well as (see Prop. A.3 and Lemma A.1)

lim
n→∞

σπ(TAn)
(A.4)

= lim
n→∞

σs(T
∗
An) = lim

n→∞
σ(T ∗An) = σ(T ∗A) = σs(T

∗
A)

(A.4)
= σπ(TA).

Finally, the central [20, Thm. 2.5] also gives us

lim
n→∞

σs(TAn)
(A.4)

= lim
n→∞

σπ(T ∗An) = σπ(T ∗A)
(A.4)

= σs(TA).

(III) Concerning the Fredholm dichotomy spectrum ΣF one analogously de-

duces limn→∞ σF (T
(∗)
An ) = σF (T

(∗)
A ) using (A.3) and [20, Thm. 2.5].

In all three cases the final assertion is a consequence of Prop. 5.3. ut

The subsequent example sums up our results. It illuminates that a spectral
interval can collapse into two subintervals and that the dichotomy spectrum of an
upper-triangular equation is not necessarily given as union of the diagonal spectra
(see [45] for more information on the latter issue).
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Example 5.10 Let us consider a difference eqn. (∆A) in R2 with coefficients

Ak :=

(
ak ck
0 bk

)
∈ GL(R2)

satisfying A ∈ L∞(R2) and involving the real sequences

ak :=

{
α+, k ≥ 0,

α−, k < 0,
bk :=

{
β+, k ≥ 0,

β−, k < 0,
ck :=

{
λ, k ≥ 0,

0, k < 0

with positive α± 6= β± and a parameter λ ∈ R. In particular, for λ = 0 one has
A ∈ H1(R2) if and only if α− ≤ α+, β− ≤ β+, while A ∈ H∗1(R2) holds in the
dual situation α+ ≤ α−, β+ ≤ β−. To tackle the related dichotomy spectra we
determine the transition matrix as

γ−kΦ(k, 0) =



(α+

γ

)k λ
γk

αk+−β
k
+

α+−β+

0
(β+

γ

)k
 for all k ≥ 0,((α−

γ

)k
0

0
(β−
γ

)k
)

for all k ≤ 0

and every γ > 0. Therefore, the corresponding stable and unstable bundles

V ±γ :=
{
x ∈ R2 : sup

k∈Z±
0

γ−k |Φ(k, 0)x| <∞
}

of the scaled difference equation

xk+1 = γ−1Akxk (5.6)

become

V +
γ =


R2, max {α+, β+} ≤ γ,
Re1, α+ ≤ γ < β+,

R
(

λ
β+−α+

)
, β+ ≤ γ < α+,

{0} , γ < min {α+, β+} ,

V −γ =


{0} , max {α−, β−} < γ,

R2, γ ≤ min {α−, β−} ,
Re2, α− < γ ≤ β−,
Re1, β− < γ ≤ α−.

According to Palmer’s result (cf. [38, Prop. 2.6] in discrete time) the scaled differ-
ence eqn. (5.6) admits an ED on the entire line Z, if and only if there are EDs on
both semiaxes Z−0 , Z+

0 and the decomposition

V +
γ ⊕ V −γ = R2

holds. Otherwise, for each spectral interval the Fredholm index of Sγ is given by
the formula (see [44, Prop. 4.9])

indSγ = dimV +
γ + dimV −γ − 2.

Due to [44, Prop. 4.29(b)] this yields the discrete Fredholm dichotomy spectrum

ΣF (A) = {α−, α+, β−, β+} .

Concerning further spectral properties we distinguish several cases:
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(a) α+ < β+:
(a1) For α− < β− the dichotomy spectra are given in Fig. 5.1(left) as bold lines.

One has Σ(A) = ΣF0
(A) and therefore the continuity condition for Σ from

Thm. 5.4, as well as for ΣF0
from Cor. 5.5 apply, provided no singleton

spectral intervals occur.
(a2) The case β− < α− is illustrated in Fig. 5.1(right). Here, Σ(A) = ΣF0

(A) is
violated precisely in the situation where (α+, β+)∩ (β−, α−) has nonempty
interior. Otherwise, Thm. 5.4 yields continuity at A, while due to Cor. 5.5
also the Weyl spectrum is continuous as long as it contains no singletons.
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Fig. 5.1 Dichotomy spectra for α+ < β+ and α− < β− (left) resp. β− < α− (right). The
Weyl spectrum is obtained by excluding the sets indicated in red and the numbers above the
spectral intervals are the respective Fredholm index of Sγ .

(b) β+ < α+:
(b1) α− < β− (see Fig. 5.2(left)) represents the most interesting constellation.

Indeed, one has the dichotomy spectrum

Σ(A) = [min {α−, β+} ,max {α+, β−}] \

{
∅, λ = 0,

((β+, α+) ∩ (α−, β−)) , λ 6= 0,

being a compact interval for λ = 0, which splits into two subintervals for
perturbed parameters λ 6= 0 — this indicates upper-semicontinuity. In any
case, the Weyl dichotomy spectrum becomes

ΣF0
(A) = [min {α−, β+} ,max {α+, β−}] \ ((β+, α+) ∩ (α−, β−))

and thus Thm. 5.4 applies when α+ ≤ α− or β− ≤ β+. For the Weyl spec-
trum ΣF0

(A) continuity is given by Cor. 5.5 when it contains no singletons.
(b2) Eventually, β− < α− (see Fig. 5.2(right)) captures a situation as in (a1).

For the convenience of the reader we eventually use the symbol ◦ to indicate in
Figs. 5.1 and 5.2 that the continuity condition (5.1) from Thm. 5.4 applies for
λ = 0, while × points out that Cor. 5.5 can be deployed.
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Fig. 5.2 Dichotomy spectra for β+ < α+ and α− < β− (left) resp. α− < β− (right). The
Weyl spectrum is obtained by excluding the dotted red intervals, being present only for λ = 0;
the dotted intervals also indicate the spectral parts collapsing in case λ 6= 0. The numbers
above the spectral intervals denote the Fredholm indices of Sγ .

6 Perspectives and applications

Despite its operator-theoretical flavor this paper has applications in the field of
nonautonomous dynamical systems (not only in discrete time):

– ???justify numerical approximation techniques
– ???Fredholm spectrum is boundary of spectrum and easy to obtain
– ???Avoid solution bifurcations

Besides Pp(Cd) and P∗p (Cd) (and its subsets) there are further classes of matrix
sequences on which the dichotomy spectrum behaves continuously. Several of them
are summarized in [20] and we leave it to the interested reader to characterize
appropriate coefficient sequences (Ak)k∈Z analogously to Props. B.8 and B.9.

Our results can easily be applied to the continuous time situation of ODEs

ẋ = A(t)x, A ∈ L1
loc(R, L(Cd)) (6.1)

with transition matrix U(t, s) ∈ GL(Cd), s, t ∈ R, satisfying supt∈R |U(t, t− 1)| <∞
as well. The corresponding dichotomy spectrum Σ̂(A) ⊆ R for (6.1) has been
studied in [12,13,17,46,50]. If we define

Ak := U(k + 1, k) ∈ GL(Cd) for all k ∈ Z, (6.2)

then the characterization [48, Cor. 5.1] enables us to show that the dichotomy
spectra of the difference eqn. (∆A) and the ODE (6.1) are related by

Σ(A) = exp Σ̂(A), Σ̂(A) = lnΣ(A).

In particular, using these spectral mapping theorems our results transfer to the
specific coefficient sequences (6.2) and yield corresponding invariance and conti-
nuity information on the continuous time spectrum Σ̂(A).
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A Operators on Hilbert spaces

For an infinite-dimensional separable and complex Hilbert space X with inner product 〈〈·, ·〉〉,
let L(X) denote the Banach algebra of bounded linear operators on X with identity idX .

Given T ∈ L(X), let σa(T ) := σ(T ), σπ(T ), σs(T ), σF (T ) and σF0
(T ) be its spectrum,

approximate point spectrum, surjectivity, essential (Fredholm) and Weyl spectrum, respectively
(cf. [1,2,34,37]). We write r(T ) for the spectral radius and define r1(T ) := minλ∈σ(T ) |λ| . One
speaks of a quasi-nilpotent operator T , if r(T ) = 0 i.e. σ(T ) = {0}. In addition, let us define
the derivation δS,T : L(X)→ L(X), δS,TM := SM −MT of two operators S, T ∈ L(X) and
obtain that the iterates of this linear operator are of the form

δnS,TM =

n∑
j=0

(n
j

)
(−1)jSn−jMT j for all n ∈ N0.

When S and T commute one obtains the implications

SM = MS ⇒ δnS,TM = M(S − T )n, TM = MT ⇒ δnS,TM = (S − T )nM (A.1)

for all n ∈ N0. With the associated spectral radius

rS,T (M) := lim sup
n→∞

n

√∥∥∥δnS,TM∥∥∥ (A.2)

let us denote S, T as asymptotically intertwined (cf. [32]), if there exists a so-called intertwiner
M ∈ L(X) \ {0} such that rS,T (M) = 0.

An operator T ∈ L(X) has the single-valued extension property (SVEP for short) at a
point λ0, provided for every neighborhood U ⊂ C of λ0 the only analytic function f : U → X
satisfying (λ idX −T )f(λ) ≡ 0 on U is the zero function. If the SVEP holds at every λ0 ∈ C,
the operator T is said to possess the SVEP. The associate set (cf. [3, p. 64ff])

S(T ) := {λ ∈ C : T does not have SVEP at λ}

is open and fulfills S(T ) ⊆ σ(T )◦ (◦ denotes the interior of a set). Clearly, T has the SVEP,
if and only if S(T ) = ∅.
Lemma A.1 (see [2, p. 80, Cor. 2.45]) If T has the SVEP, then σ(T ) = σs(T ).

We say that a bounded operator T ∈ L(X) fulfills Weyl’s theorem, if σ(T )\σF0
(T ) consists

of isolated points λ ∈ σ(T ) being eigenvalues of finite multiplicity, and satisfies Browder’s
theorem, provided σ(T ) \ σF0 (T ) is the set of all poles of T with finite rank. It is well-known
that Weyl’s theorem implies Browder’s theorem (cf. [2, p. 166]).

Proposition A.2 (see [19, Thm. 2.2]) Suppose that T ∈ L(X) satisfies Browder’s theorem.
Then σ is continuous at T , if and only if σF0 has this property.

If T ∗ ∈ L(X) denotes the adjoint operator of T , then the spectra of T and T ∗ are related
by (cf. [31, p. 34, Thm. 2.6, p. 145 resp. p. 160], [2, p. 79, Thm. 2.42])

σα(T ∗) = σα(T )∗ for all α ∈{a, F, F0} , (A.3)

σs(T ) = σπ(T ∗), σs(T
∗) = σπ(T ), (A.4)

with set of complex-conjugated values Ω∗ :=
{
λ ∈ C : λ ∈ Ω

}
for every Ω ⊆ C.

A self-adjoint operator T ∈ L(X) is positive (in symbols, T ≥ 0), if 〈〈x, Tx〉〉 ≥ 0 holds for
all x ∈ X. Furthermore, in case the difference T − S of self-adjoint operators S, T ∈ L(X) is
positive, we write T ≥ S and obtain the cone-like conditions

βT ≥ αT ≥ αS, T +R ≥ S +R for all 0 ≤ α ≤ β (A.5)

and self-adjoint R ∈ L(X). With a unitary operator U ∈ L(X) one moreover has

T ≥ S ⇔ U∗TU ≥ U∗SU. (A.6)
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A.1 Hyponormal operators

An operator T ∈ L(X) is called hyponormal, if T ∗T ≥ TT ∗ and for every p ∈ N we write

Hp(X) := {S ∈ L(X) : Sp is hyponormal} , H∗p (X) := {S ∈ L(X) : S∗p is hyponormal} .

The elements of Hp(X) are denoted as pth roots of a hyponormal operator and we use a similar
terminology for the further operator classes defined below. Both above sets are closed in the
norm topology (cf. [29, Prop. 1.5]), while H1(X) is nowhere dense in L(X) (cf. [36, Thm. 2.4]).

A.2 Class A operators

An operator T ∈ L(X) is said to be of class A (cf. [34, p. 74]), if T ∗2T 2 ≥ (T ∗T )2 and with
p ∈ N we set

Ap(X) := {S ∈ L(X) : Sp is of class A} , A∗p(X) := {S ∈ L(X) : S∗p is of class A} .

A.3 Paranormal operators

An operator T ∈ L(X) satisfying T ∗2T 2 − 2rT ∗T + r2 idX ≥ 0 for every r > 0 is called
paranormal (cf. [34, p. 50]), and given p ∈ N let us write

Pp(X) := {S ∈ L(X) : Sp is paranormal} , P ∗p (X) := {S ∈ L(X) : S∗p is paranormal} .

The above operator classes are invariant under multiplication with a complex scalar.

Proposition A.3 Let p ∈ N. Every T ∈ Pp(X) satisfies Weyl’s theorem and has the SVEP.

Proof By assumption the operator T is algebraically paranormal. Hence, T fulfills Weyl’s
theorem due to [16, Thm. 2.4] and has the SVEP by [2, p. 78, Thm. 2.40]. ut

B Multiplication and weighted shift operators

We denote by `2 the linear space of square-summable sequences φ = (φk)k∈Z in Cd equipped
with the inner product

〈〈φ, ψ〉〉 :=
∑
k∈Z
〈φk, ψk〉 for all φ, ψ ∈ `2

and the norm ‖φ‖ =
√
〈〈φ, φ〉〉; note that `2 is the prototype of a separable Hilbert space. The

bounded sequences in L(Cd) are denoted by L∞(Cd).

B.1 Multiplication operators

Given a bounded weight sequence Λ = (Λk)k∈Z of matrices Λk ∈ L(Cd) we denote

MΛ : `2 → `2, (MΛφ)k := Λkφk for all k ∈ Z (B.1)

as multiplication operator. It is bounded with ‖MΛ‖ = supk∈Z |Λk| and the adjoint operator

M∗Λ = MΛ∗ . In particular, MΛ is unitary, if and only if Λ−1
k = Λ∗k holds for all k ∈ Z.

Proposition B.1 (properties of multiplication operators) Let Λ ∈ L∞(Cd).
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(a) If every Λk, k ∈ Z, is invertible, then MΛ ∈ GL(`2) ⇔ supk∈Z
∣∣Λ−1
k

∣∣ < ∞ holds. In

particular, it is (M−1
Λ φ)k = Λ−1

k φk for all k ∈ Z.

(b) An operator MΛ ∈ L(`2) is compact, if and only if limk→±∞ Λk = 0.

Remark B.2 A multiplication operator MΛ is one-to-one, if and only if each weight Λk, k ∈ Z,
is invertible. For an onto MΛ also every weight fulfills Λk ∈ GL(Cd), while the converse holds

under the additional assumption supk∈Z
∣∣Λ−1
k

∣∣ <∞.

The following proof requires the Kronecker symbol denoted as δk,m.

Proof (a) (⇐) From our premise the operator NΛ ∈ L(`2) given as (NΛφ)k := Λ−1
k φk for

k ∈ Z is well-defined and bounded. Moreover, we readily compute NΛMΛ = MΛNΛ = id`2 .

Thus, MΛ is invertible with inverse M−1
Λ = NΛ.

(⇒) With invertible MΛ there exists a N ∈ L(`2) fulfilling φk = (MΛNφ)k = Λk(Nφ)k
for all k ∈ Z, φ ∈ `2 and this yields (Nφ)k = Λ−1

k φk. Since B̄1(0) ⊆ Cd is compact, for each

k ∈ Z there exists a xk ∈ Cd with |xk| = 1 such that
∣∣∣Λ−1
k xk

∣∣∣ = sup|x|≤1

∣∣Λ−1
k

∣∣ =
∣∣Λ−1
k

∣∣. Then

the `2-sequence φ̃k := (δj,kxk)j∈N fulfills
∥∥φ̃k∥∥ ≤ 1 and∣∣Λ−1

k

∣∣ =
∣∣∣Λ−1
k xk

∣∣∣ =
∣∣∣(Nφ̃k)k

∣∣∣ ≤ ∥∥Nφ̃k∥∥ ≤ ‖N‖∥∥φ̃k∥∥ ≤ ‖N‖ for all k ∈ Z

concludes the proof of (a).
(b) (⇒) We proceed indirectly and assume (Λk)k∈Z does not converge to 0. Then there

exists a ρ > 0 and a subsequence (nk)k∈Z such that |Λnk | ≥ ρ for all k ∈ Z. As in the above

proof one finds xk ∈ Cd satisfying |xk| = 1 and |Λk| = |Λkxk| for all k ∈ Z. Defining the

sequences φ̃k := (δk,njxnj )j∈N it is∥∥∥MΛφ̃
k −MΛφ̃

j
∥∥∥2

= |Λnkxnk |
2 +

∣∣Λnjxnj ∣∣2 = |Λnk |
2 +

∣∣Λnj ∣∣2 , ∥∥∥MΛφ̃
k −MΛφ̃

j
∥∥∥ ≥ √2ρ

for all k 6= j. Hence, (MΛφ̃
k)k∈Z has no convergent subsequence and MΛ cannot be compact.

(⇐) One verifies that MΛ is the (uniform) limit of a sequence of finite-rank operators. The
detailed proof from [44, Lemma 3.7] for operators on `∞ is literally the same in the present
case of square summable sequences `2. ut

B.2 Weighted shifts

For a bounded weight sequence A = (Ak)k∈Z in L(Cd), we define the weighted left shift

TA : `2 → `2, (TAφ)k := Ak−1φk−1 for all k ∈ Z. (B.2)

Clearly, TA is bounded with ‖TA‖ = supk∈Z |Ak| and such shift operators form a closed sub-

space of L(`2). Since the SVEP is invariant under similarity, S(TA) is rotationally symmetric
w.r.t. 0. Moreover, for weight sequences A,B ∈ L∞(C) it is

(TBTAφ)k = Bk−1Ak−2φk−2 for all k ∈ Z. (B.3)

Lemma B.3 The mapping T· : L∞(Cd)→ L(`2) is linear and continuous.

Proof The linearity of T· is clear. For arbitrary A ∈ L∞(Cd) one has

‖(TAφ)‖2 =
∑
k∈Z
|(TAφ)k|2

(B.2)
=

∑
k∈Z
|Akφk|2 ≤ (sup

k∈Z
|Ak|)2 ‖φ‖2 for all φ ∈ `2

and consequently ‖TA‖ ≤ supk∈Z |Ak|. ut

The following result summarizes the essential properties of weighted bilateral shifts, and
notably guarantees that every compact shift operator is quasi-nilpotent.
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Proposition B.4 (properties of shift operators) Let p ∈ N0 and A ∈ L∞(Cd).

(a) r1(TA) = β(A) and r(TA) = β(A).

(b) If every Ak, k ∈ Z, is invertible, then TA ∈ GL(`2)⇔ supk∈Z
∣∣A−1
k

∣∣ <∞ and under one
of these conditions it holds

(T−1
A φ)k = A−1

k φk+1 for all k ∈ Z.

(c) TA ∈ L(`2) is compact, if and only if limk→±∞ Ak = 0.

(d) TA is quasi-nilpotent, if and only if β(A) = 0.
(e) The adjoint of TA is given by T ∗A ∈ L(`2), (T ∗Aφ)k = A∗kφk+1 for all k ∈ Z.

(f) For every k ∈ Z one has (T ∗pA φ)k = Φ(k + p, k)∗φk+p and (T pAφ)k = Φ(k, k − p)φk−p.

Proof Let I denote the constant sequence (idCd )k∈Z in L∞(Cd).
(a) See [27, p. 127] resp. [8, Thm. 1(i)] combined with the characterization (2.2).
(b) The shift TI ∈ L(`2), (TIφ)k = φk−1 satisfies T ∈ GL(`2). Due to TA = TIMA the

assertion is a result of Prop. B.1(a).
(c) Thanks to the representation TA = TIMA the claim follows from Prop. B.1(b).
(d) is immediate from (a).
(e) For arbitrary φ, ψ ∈ `2 we obtain

〈〈TAφ, ψ〉〉 =
∑
k∈Z
〈Akφk, ψk+1〉 =

∑
k∈Z
〈φk, A∗kψk+1〉 = 〈〈φ, T ∗Aψ〉〉

with (T ∗Aψ)k := A∗kψk+1 for all k ∈ Z.
(f) We proceed by induction; the claim holds for p = 0. As induction step p→ p+ 1 it is

(T p+1
A φ)k = (TA(T pAφ))k = Ak−1Φ(k − 1, k − 1− p)φk−1−p = Φ(k, k − (p+ 1))φk−(p+1)

and

((T ∗A)p+1)φ)k = (T ∗AT
∗p
A φ)k = A∗k(T ∗pA φ)k+1 = A∗kΦ(k + 1 + p, k + 1)∗φk+p+1

= (Φ(k + 1 + p, k + 1)Ak)∗φk+p+1 = Φ(k + p+ 1, k)∗φk+p+1

for all k ∈ Z. ut

Lemma B.5 Let A,B,Λ ∈ L∞(Cd). The multiplication operator MΛ ∈ L(`2) asymptotically
intertwines TA and TB, if and only if

lim sup
n→∞

sup
k∈Z

n

√√√√√
∣∣∣∣∣∣
n∑
j=0

(n
j

)
(−1)jΦA(k, k − n+ j)Λk−n+jΦB(k − n+ j, k − n)

∣∣∣∣∣∣ = 0.

Proof For each n ∈ N0 and j ∈ {0, . . . , n} it easily follows from Prop. B.4(f) that

(Tn−jA MΛT
j
Bφ)k = ΦA(k, k − n+ j)Λk−n+jΦB(k − n+ j, k − n)φk−n for all k ∈ Z.

Consequently, given φ ∈ `2 due to

(
δnTA,TBMΛφ

)
k

=

 n∑
j=0

(n
j

)
(−1)jΦA(k, k − n+ j)Λk−n+jΦB(k − n+ j, k − n)

φk−n

the iterated derivations δnTA,TB
MΛ are left shifts and have the norm

∥∥∥δnTA,TBMΛ

∥∥∥ = sup
k∈Z

∣∣∣∣∣∣
n∑
j=0

(n
j

)
(−1)jΦA(k, k − n+ j)Λk−n+jΦB(k − n+ j, k − n)

∣∣∣∣∣∣ .
Then the assertion follows by definition. ut
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Corollary B.6 Let B ∈ C(A). If (4.2) holds, then rTA,TB (MΛ) ≤ β(B −A).

Proof Thanks to B ∈ C(A) it is TATB = TBTA. The further commutativity relations (4.2)
ensure TAMΛ = MΛTA resp. TBMΛ = MΛTB and in both cases (A.1) implies

n

√∥∥∥δnTA,TBMΛ

∥∥∥ ≤ n

√∥∥∥TnA−B∥∥∥ n√‖MΛ‖ for all n ∈ N0.

Passing over to the lim sup as n → ∞ in this inequality yields rTA,TB (MΛ) ≤ r(TA−B) and
the claim results with Prop. B.4(a). ut

Proposition B.7 Every TA ∈ L(`2) is unitarily equivalent to a weighted left shift TB with

(a) Bk ∈ L(Cd) is positive-semidefinite Hermitian,
(b) supk∈Z |Bk| <∞.

Proof Above all, choose some κ ∈ Z, set Uκ := idCd and we claim that there exists a sequence

Uk ∈ L(Cd) of unitary matrices such that for all κ ≤ k it is

Bk = U−1
k+1AkUk. (B.4)

(I) The matrix Aκ has a polar decomposition, i.e. there exists a unitary Uκ+1 ∈ L(Cd)
and a positive-semidefinite Hermitian Bκ ∈ L(Cd) such that Aκ = Uκ+1Bκ (cf. [25, p. 449,
Thm. 7.3.1(b)]). This yields (B.4) for k = κ. In the induction step k − 1 → k we invest that
AkUk possesses a polar decomposition AkUk = Uk+1Bk with unitary Uk+1 and an positive-
semidefinite Bk, and Uk is known by the induction hypothesis. Thus, (B.4) holds for k ≥ κ.

(II) For k < κ we get Uk as follows: If the polar decomposition of (U∗kAk−1)∗ reads as
(U∗kAk−1)∗ = Uk−1B

∗
k−1 with unitary Uk−1 and positive-semidefinite B∗k−1, then (B.4) holds.

(III) Given the associate multiplication operator MU ,

〈〈MUφ, ψ〉〉 =
∑
k∈Z
〈Ukφk, ψk〉 =

∑
k∈Z
〈φk, U∗kψk〉 for all φ, ψ ∈ `2

yields the adjoint (M∗Uφ)k = U∗kφk for all k ∈ Z. For k ≥ κ we obtain

(M∗UTAMUφ)k = U∗kAk−1Uk−1φk−1
(B.4)

= (TBφ)k and M∗UTAMU = TB for all k < κ.

Moreover, (B.4) shows that the boundedness of Ak carries over to Bk. ut

Proposition B.8 Let p ∈ N0 and A ∈ L∞(Cd). The shift operator T pA is

(a) hyponormal, if and only if for all k ∈ Z one has

Φ(k + 2p, k + p)∗Φ(k + 2p, k + p) ≥ Φ(k + p, k)Φ(k + p, k)∗, (B.5)

(b) of class A, if and only if for all k ∈ Z one has

Φ(k + 2p, k)∗Φ(k + 2p, k) ≥ [Φ(k + p, k)∗Φ(k + p, k)]2 , (B.6)

(c) paranormal, if and only if for all k ∈ Z and r > 0 it holds

Φ(k + 2p, k)∗Φ(k + 2p, k)− 2rΦ(k + p, k)∗Φ(k + p, k) + r2 idCd ≥ 0. (B.7)

Proof For p = 0 the claims are trivial. Given p ∈ N we define S := T pA and choose φ ∈ `2. We
obtain from Prop. B.4(f) the multiplication operators

(S∗Sφ)k = Φ(k + p, k)∗Φ(k + p, k)φk,

(SS∗φ)k = Φ(k, k − p)Φ(k, k − p)∗φk,

(S∗2S2φ)k = Φ(k + 2p, k)∗Φ(k + 2p, k)φk,

((S∗S)2φ)k = (Φ(k + p, k)∗Φ(k + p, k))2φk for all k ∈ Z
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by means of the weighted shift operators

(S∗2φ)k = Φ(k + 2p, k)∗φk+2p, (S2φ)k = Φ(k, k − 2p)φk−2p for all k ∈ Z.

(a) Because of

〈〈S∗Sφ − SS∗φ, φ〉〉 =
∑
k∈Z
〈(Φ(k + p, k)∗Φ(k + p, k) − Φ(k, k − p)Φ(k, k − p)∗)φk, φk〉

the relation S∗S − SS∗ ≥ 0 holds, if and only if (B.5) is satisfied.
(b) Thanks to the relation

〈〈S∗2S2φ− (S∗S)2φ, φ〉〉

=
∑
k∈Z
〈
[
Φ(k + 2p, k)∗Φ(k + 2p, k)− (Φ(k + p, k)∗Φ(k + p, k))2

]
φk, φk〉

the inequality S∗2S2 ≥ (S∗S)2 is necessary and sufficient for (B.6)
(c) The relation S∗2S2 − 2rS∗Sφ+ r2 idCd ≥ 0 for all r > 0 characterizes (B.7), due to

〈〈(S∗2S2)φ− 2rS∗Sφ+ r2φ, φ〉〉 =
∑
k∈Z
〈Φ(k + 2p, k)∗Φ(k + 2p, k)φk, φk〉

− 2r
∑
k∈Z
〈Φ(k + p, k)∗Φ(k + p, k)φk, φk〉+ r2

∑
k∈Z
〈φk, φk〉

and this completes the proof. ut

Proposition B.9 Let p ∈ N0 and A ∈ L∞(Cd). The adjoint shift operator T ∗pA is

(a) hyponormal, if and only if for all k ∈ Z one has

Φ(k + p, k)Φ(k + p, k)∗ ≥ Φ(k + 2p, k + p)∗Φ(k + 2p, k + p),

(b) of class A, if and only if for all k ∈ Z one has

Φ(k + 2p, k)Φ(k + 2p, k)∗ ≥ [Φ(k + 2p, k + p)Φ(k + 2p, k + p)∗]2 ,

(c) paranormal, if and only if for all k ∈ Z and r > 0 it holds

Φ(k + 2p, k)Φ(k + 2p, k)∗ − 2rΦ(k + 2p, k + p)Φ(k + 2p, k + p) + r2 idCd ≥ 0.

Proof W.l.o.g. we suppose p ∈ N. The abbreviation R := T ∗pA and Prop. B.4(f) yields

(R∗Rφ)k = Φ(k, k − p)Φ(k, k − p)∗, (RR∗φ)k = Φ(k + p, k)∗Φ(k + p, k),

(R∗2R2φ)k = Φ(k, k − 2p)Φ(k, k − 2p)∗, (R∗R)2 = (Φ(k, k − p)Φ(k, k − p)∗)2

for all k ∈ Z and arbitrary sequences φ ∈ `2.
(a) results from the identity

〈〈(R∗R−RR∗)φ, φ〉〉 =
∑
k∈Z
〈(Φ(k, k − p)Φ(k, k − p)∗ − Φ(k + p, k)∗Φ(k + p, k))φk, φk〉.

(b) is a consequence of

〈〈(R∗2R2−(R∗R)2)φ, φ〉〉 =
∑
k∈Z
〈(Φ(k, k − 2p)Φ(k, k − 2p)∗−[Φ(k, k − p)Φ(k, k − p)∗]2)φk, φk〉.

(c) can be seen from

〈〈(R∗2R2 − 2rR∗R+ r2)φ, φ〉〉

=
∑
k∈Z
〈(Φ(k, k − 2p)Φ(k, k − 2p)∗ − 2rΦ(k, k − 2p)Φ(k, k − p)∗ + r2)φk, φk〉

and this concludes the proof. ut
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35. Li, T.: Die Stabilitätsfrage bei Differenzengleichungen. Acta Math. 63, 99–141 (1934)
36. Luecke, G.: Topological properties of paranormal operators on Hilbert space. Trans. Am.

Math. Soc. 172, 35–43 (1972)
37. Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras,

Operator Theory: Advances and Applications 139. Birkhäuser, Basel etc., 2007
38. Palmer, K.: Exponential dichotomies, the shadowing lemma and transversal homoclinic

points. In U. Kirchgraber and H.-O. Walther (eds.), Dynamics Reported 1, 265–306. B.G.
Teubner/John Wiley & Sons, Stuttgart/Chichester etc., 1988
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