
Electronic Journal of Qualitative Theory of Differential Equations
Proc. 10th Coll. Qualitative Theory of Diff. Equ. (July 1–4, 2015, Szeged, Hungary)
2016, No. XX, 1–14; doi: 10.14232/ejqtde.2016.8.XX http://www.math.u-szeged.hu/ejqtde/

Notes on spectrum and exponential decay in
nonautonomous evolutionary equations

Christian PötzscheB and Evamaria Russ

Institut für Mathematik, Alpen-Adria Universität Klagenfurt, Universitätsstraße 65–67,
9020 Klagenfurt, Austria

Appeared XX XXXXXX 20XX

Communicated by Tibor Krisztin

Abstract. We first determine the dichotomy (Sacker-Sell) spectrum for certain nonau-
tonomous linear evolutionary equations induced by a class of parabolic PDE systems.
Having this information at hand, we underline the applicability of our second result:
If the widths of the gaps in the dichotomy spectrum are bounded away from 0, then
one can rule out the existence of super-exponentially decaying (i.e. slow) solutions of
semi-linear evolutionary equations.
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1 Motivation

When investigating evolutionary equations near non-constant reference solutions, in the vicin-
ity of compact invariant sets (e.g. nontrivial attractors, homo- or heteroclinic solutions) or
under time-variant parameters, one is confronted with a nonautonomous problem: The vari-
ational equation becomes explicitly time-dependent and an appropriate spectral theory turns
out indispensable in order to determine e.g. linear stability. Due to its ambient robustness
properties, uniform asymptotic stability is a favorable concept and can be determined by
means of the dichotomy (dynamical or Sacker-Sell) spectrum (cf. [14, 3, 16]). Actually, appli-
cations of the aforesaid dichotomy spectrum Σ ⊆ R reach further than basic stability issues.
For instance gaps in Σ allow to construct the entire hierarchy of stable and unstable man-
ifolds, as well as their invariant foliations. Under particular assumptions on the spectrum
it is even possible to extend Lu’s topological linearization result [11] to a class of nonau-
tonomous evolutionary equations in Banach spaces. Yet, specifically this endeavor requests
certain preparations concerning the dichotomy spectrum.

First, for the sake of relevant examples, Σ has to be known (at least qualitatively) in various
types of evolutionary differential equations. For instance, delay differential equations were
considered in [12]. Building on previous results from [4, 9, 10], in our Sect. 3 we determine
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the dichotomy spectrum for linear evolutionary equations whose infinitesimal generator is
sectorial with compact resolvent. Canonical examples include uniformly elliptic differential
operators or the poly-Laplacian under the standard boundary conditions.

Second, extending the topological linearization argument of [11] requires evolutionary
equations without nontrivial small solutions. This class of functions decays to 0 faster than
any exponential function and typically occurs for delay differential equations (cf. [6, pp. 74ff]).
Parabolic PDEs, on the other hand, cannot have slow solutions and [1, Lemma 5] serves
as standard reference. In Sect. 4 we generalize this technical, but helpful and interesting
result to semi-linear equations and allow a time-dependent linear part; furthermore, our proof
is slightly simpler. This necessitates to impose two central assumptions: (a) The invariant
projectors associated to the dichotomy spectrum are complete. In the autonomous special case
this means that the infinitesimal generator has a complete set of eigenvectors. (b) Moreover,
the width of the gaps in Σ needs to be uniformly bounded away from 0.

Indeed, the note at hand is essentially a supplement to [13] and provides preparations
being crucial there. Nonetheless, we feel the present examples and results are both handy and
of independent interest when dealing with nonautonomous parabolic PDEs, their geometric
theory and beyond. Our approach to nonautonomous dynamics is via evolution families and
2-parameter semigroups, rather than skew-product semiflows as used in [4, 9, 10]. We feel
this is more appropriate in the present situation since one can omit e.g. uniform continuity
properties of the coefficient functions (in order to guarantee a compact base space). Finally,
compared to [4, 9, 10] more general time-dependencies and a wider flexibility on the differen-
tial operator is allowed.

Notation: The kernel of a linear operator A on a Banach space X is denoted by N(A), R(A)

is its range and idX the identity. We write σ(A) for the spectrum and σp(A) for the point
spectrum of A. The Kronecker symbol is denoted as δkl ∈ {0, 1}, k, l ∈N.

Given nonempty subsets B, C ⊆ R and λ ∈ R it is convenient to abbreviate

λ + B := {λ + b ∈ R : b ∈ B} , B + C := {b + c ∈ R : b ∈ B, c ∈ C} .

2 Evolution families, dichotomies and Bohl exponents

For an unbounded interval J ⊆ R and a Banach space (X, ‖·‖), let us introduce our central
notions: We begin with a useful generalization of the semigroup concept when dealing with
time-dependent problems: An evolution family T : {(t, s) ∈ J × J : s ≤ t} → L(X) on X is
defined as a mapping such that (t, s) 7→ T(t, s)u is continuous for all u ∈ X, which furthermore
fulfills

• T(t, t) = idX and T(t, s)T(s, τ) = T(t, τ) for all τ ≤ s ≤ t

• there exist reals K0 ≥ 1, α0 ∈ R such that ‖T(t, s)‖ ≤ K0eα0(t−s) for all s ≤ t.

One says the evolution family T has an exponential dichotomy (ED for short) on J, if there exists
a projector P : J → L(X) and reals K ≥ 1, α > 0 such that

• T(t, s)P(s) = P(t)T(t, s) for all s ≤ t (P is an invariant projector)

• T̄(t, s) := T(t, s)|N(P(s)) : N(P(s))→ N(P(t)) is an isomorphism for s < t

• ‖T(t, s)P(s)‖ ≤ Ke−α(t−s) and ‖T̄(s, t) [idX−P(t)]‖ ≤ Keα(s−t) for s ≤ t.
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Let N ⊆N be an index set. A family of projectors Pk : J → L(X), k ∈ N, is called complete,
if one has

u = ∑
k∈N

Pk(τ)u for all (τ, u) ∈ J ×X.

With γ ∈ R we write Tγ(t, s) := eγ(s−t)T(t, s) for the associated scaled evolution family. The
dichotomy spectrum ΣJ of T is

ΣJ := {γ ∈ R : Tγ admits no ED on J} .

For evolution families as defined above, ΣJ is a closed subset of (−∞, α0]. In general, the
spectrum depends on the interval J and at any rate it holds ΣJ ⊆ ΣR. If the evolution family
T is the evolution operator of an abstract nonautonomous differential equation

u̇ = A(t)u, (L)

then we write ΣJ(A) for the dichotomy spectrum. By definition, one has the relation

ΣJ(A+ λ) = λ + ΣJ(A) for all λ ∈ R. (2.1)

As a prototype example let us constitute

Example 2.1 (dichotomy spectrum in finite dimensions). In case X = Rn, a linear ODE

u̇ = B(t)u (2.2)

with continuous coefficient operator B : J → L(Rn) and bounded growth generates an evolu-
tion family T(t, s) ∈ L(Rd), t, s ∈ J. Its dichotomy spectrum has the form

ΣJ(B) =
m⋃

j=1

[
λ−j , λ+

j

]
,

where the reals λ−j , λ+
j are ordered according to λ−m ≤ λ+

m < . . . < λ−1 ≤ λ+
1 . Each of the

m ≤ n spectral intervals [λ−j , λ+
j ] corresponds to an invariant vector bundle

Xj =
{
(t, x) ∈ J ×Rn : x ∈ R(pj(t))

}
for 1 ≤ j ≤ m,

where pj : J → L(Rn) is an invariant projector and one has the Whitney sum (cf. [14, 16])

J ×Rd = X1 ⊕ . . .⊕Xm.

For the further special case of scalar ODEs u̇ = a(t)u the dichotomy spectrum allows an
explicit representation. Thereto, given a continuous a : J → R, its upper Bohl resp. lower Bohl
exponent is defined as

βJ(a) := lim sup
T→∞

sup
τ∈J

[τ,τ+T]⊆J

1
T

∫ τ+T

τ
a, β

J
(a) := lim inf

T→∞
inf
τ∈J

[τ,τ+T]⊆J

1
T

∫ τ+T

τ
a.

One obviously has β
J
(a) ≤ βJ(a) and the integrability conditions

sup
0≤t−s≤1

∫ t

s
a < ∞, sup

0≤s−t≤1

∫ t

s
a < ∞ (2.3)
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are necessary and sufficient for finite Bohl exponents, i.e. βJ(a) < ∞ resp. −∞ < β
J
(a) (for

this, see [7, p. 259, Prop. 3.3.14]). The boundedness γ := supt∈J |a(t)| < ∞ even guarantees
that −γ ≤ β

J
(a) ≤ βJ(a) ≤ γ. Moreover, Bohl exponents satisfy

β
J
(λ + a) = λ + β

J
(a), βJ(λ + a) = λ + βJ(a) for all λ ∈ R.

Example 2.2. (1) If a(t) ≡ α, then β
J
(a) = βJ(a) = α for all α ∈ R.

(2) If a : J → R is θ-periodic with some θ > 0, i.e. a(t + θ) = a(t) holds for all t ∈ J
satisfying t + θ ∈ J, then Bohl exponents are the means

β
J
(a) = βJ(a) =

1
θ

∫ t+θ

t
a(r)dr for all t ∈ J.

(3) If a(t) = α+β
2 + β−α

2 sin ln t with reals α ≤ β, then β
J
(a) = α and βJ(a) = β holds for

every unbounded subinterval J ⊆ (0, ∞).
(4) If a : R→ R is continuous and fulfills limt→±∞ a(t) = α± for reals α−, α+, then

β
(−∞,τ]

(a) = β(−∞,τ](a) = α−, β
[τ,∞)

(a) = β[τ,∞)(a) = α+ for all τ ∈ R,

β
R
(a) = min

{
α−, α+

}
, βR(a) = max

{
α−, α+

}
.

Equations with such asymptotically constant or periodic coefficients were studied in [10].

The importance of Bohl exponents is due to their role in stability theory and as boundary
points of the dichotomy spectrum. Our above Ex. 2.2 can be used in:

Lemma 2.3. If a continuous function a : J → R fulfills the integrability conditions (2.3), then the
ordinary differential equation

u̇ = a(t)u (2.4)

in X possesses the dichotomy spectrum ΣJ(a) = [β
J
(a), βJ(a)].

Proof. Since (2.4) has the evolution operator T(t, s) =
(

exp
∫ t

s a
)

idX for all t, s ∈ J, the claim
follows from [8, Prop. A.2].

3 Dichotomy Spectrum of Parabolic Equations

Let X be a separable Hilbert space equipped with the inner product 〈·, ·〉.

3.1 Generators with discrete spectrum

Let us suppose A : D(A) ⊆ X → X is a linear unbounded operator generating a C0-semigroup
S : [0, ∞)→ L(X) and

• σ(A) = σp(A) = {λk : k ∈N} ⊆ R with

λ1 ≥ λ2 ≥ . . . ,

where every eigenvalue λk is repeated as many times as its finite multiplicity given by

µk = dim N(A− λk idX)
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• each corresponding eigenspace

N(A− λk idX) = span
{

ek
1, . . . , ek

µk

}
is spanned by orthogonal eigenvectors ek

1, . . . , ek
µk
∈ X of A. Thus,

Πk :=
µk

∑
j=1
〈·, ek

j 〉ek
j ∈ L(X) (3.1)

defines an orthogonal projection on X for every k ∈N

•
{

ek
j ∈ X : 1 ≤ j ≤ µk and k ∈N

}
is a complete orthonormal set in X.

The typical examples for such operators are as follows, where Ω ⊆ Rd denotes a bounded
domain with piecewise smooth boundary:

Example 3.1 (uniformly elliptic differential operators). Consider a uniformly elliptic differen-
tial operator in divergence form (see e.g. [5, p. 354ff])

Lu(x) =
d

∑
i,j=1

Dj
(
aij(x)Diu(x)

)
for all x ∈ Ω

with coefficients aij ∈ C∞(Ω̄) satisfying aij = aji for all 1 ≤ i, j ≤ d. If we define the operator

(Au)(x) = Lu(x)

on X = L2(Ω), then the above properties hold:
(1) In order to capture Dirichlet boundary conditions u(x) ≡ 0 on ∂Ω, choose

D(A) = H2(Ω) ∩ H1
0(Ω).

The principle eigenvalue λ1 < 0 is negative; the eigenfunctions are contained in H1
0(Ω).

(2) Concerning Neumann boundary conditions Dνu(x) ≡ 0 on ∂Ω, choose the domain

D(A) =
{

u ∈ H2(Ω) : Dνu(x) ≡ 0 on ∂Ω
}

.

For the Laplacian one has λ1 = 0.
In particular, if L is the Laplacian ∆ equipped with Dirichlet, Neumann or Robin boundary

conditions (i.e. au(x) + bDνu(x) ≡ 0 on ∂Ω), then according to Weyl’s Law the eigenvalues
behave asymptotically as λk ∼ Cd(Ω)k2/d for k→ ∞.

Example 3.2 (poly-Laplacian). Given m ∈N let us consider the poly-Laplacian

Lu(x) = −(−∆)mu(x) for all x ∈ Ω

with homogeneous boundary conditions u(x) ≡ Dνu(x) ≡ . . . ≡ Dm−1
ν u(x) ≡ 0 on ∂Ω. It

yields an operator
(Au)(x) := Lu(x)

on X = L2(Ω) with D(A) = H2m(Ω) ∩ Hm
0 (Ω) fulfilling our above properties. The principle

eigenvalue is λ1 < 0 and thanks to [2, p. 12, Thm. 1.11], the eigenvalues behave asymptotically
as λk ∼ Cd(Ω)k2m/d for k→ ∞.
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Example 3.3 (Laplacian in 1d). The special cases with Ω = (0, `), ` > 0, and

Lu(x) = uxx(x) for all 0 < x < `

allow more explicit results:
(1) For Dirichlet boundary conditions,

D(A) = H2(0, `) ∩ H1
0(0, `)

yields simple eigenvalues λk = −
(

πk
` )

2 with eigenfunctions ek(x) =
√

2
` sin

(
πk
` x
)

for k ∈N.
(2) For Neumann boundary conditions,

D(A) =
{

u ∈ H2(0, `) : ux(0) = ux(`) = 0
}

,

all eigenvalues λk = −
(π(k−1)

`

)2 are simple with the eigenfunctions

e1(x) ≡ 1√
`

, ek(x) =

√
2
`

cos
(π(k− 1)

`
x
)

for all k ≥ 2.

Finally, in the above examples −A : D(A) ⊆ X → X is a sectorial operator and A generates
an analytic semigroup S : [0, ∞)→ L(X) on X (cf. [15, p. 106, Thm. 38.1]) allowing the Fourier
representation

S(t)u = ∑
k∈N

eλktΠku for all t ≥ 0, u ∈ X. (3.2)

3.2 Systems of parabolic equations

Let L denote a differential operator from the previous Exs. 3.1–3.3. Consider the n-dimensional
system of PDEs 

u1
t = d11Lu1 + . . . + d1nLun,
...

un
t = dn1Lu1 + . . . + dnnLun,

(3.3)

which briefly can be written as
Ut = DLU

with U = (u1, . . . , un)T, LU := (Lu1, . . . , Lun)T. The “diffusion matrix” D ∈ L(Rn) has the
entries dij and is supposed to be symmetric positive-definite.

In order to formulate (3.3) as an abstract evolutionary equation in a separable Hilbert
space, we equip the cartesian product X := Xn with the inner product

〈〈U, V〉〉 :=
n

∑
j=1
〈uj, vj〉 for all U, V ∈ X.

Endowing the PDE system (3.3) with ambient boundary conditions allows us to define

(AU)(x) := DLU(x) for all x ∈ Ω (3.4)

as an operator on X = L2(Ω)n and the domain D(A) = D(A)n. The diagonalizability as-
sumption on D shows that also −A is sectorial and thus A generates an analytical semigroup
S : [0, ∞)→ L(X) on X. Thanks to (3.2) it allows the Fourier representation

S(t)U = ∑
k∈N

eλktDPkU (3.5)
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with U ∈ X and the complete family (Pk)k∈N of orthogonal projections on X given by

Pk = diag(Πk, . . . , Πk).

Here, Πk ∈ L(X) are the orthogonal projections from (3.1) and one has

PkPl = δkl Pl for all k, l ∈N. (3.6)

Lemma 3.4. Under the above assumptions it is S(t)Pk = PkS(t) for all t ≥ 0, k ∈N.

Proof. Because D is a positive-definite matrix, there exists an invertible S ∈ L(Rn) such that

SDS−1 = diag(d1, . . . , dn)

with eigenvalues dj > 0 for all 1 ≤ j ≤ n. Suppose that the entries of S−1 are denoted by s̃ij.
Given U ∈ X we first obtain

PjS−1U = Pj

n

∑
l=1

s̃1lul

...
s̃nlul

 =
n

∑
l=1

s̃1lΠjul

...
s̃nlΠjul

 = S−1

Πju1

...
Πjun

U = S−1PjU (3.7)

for all j ∈N and this implies

S(PjS(t)U)
(3.5)
= S

(
Pj ∑

k∈N

eλktS−1 diag(d1,...,dn)SPkU
)

= S
(

PjS−1 ∑
k∈N

eλkt diag(d1,...,dn)SPkU
)

(3.7)
= ∑

k∈N

PjPk

eλktd1

. . .
eλktdn

 n

∑
l=1

s1lΠkul

...
snlΠkul


(3.6)
= Pj

n

∑
l=1

eλjtd1 s1lΠjul

...
eλjtdn snlΠjul

 =
n

∑
l=1

etλjd1 s1lΠjul

...
etλjdn snlΠjul


= etλj diag(d1,...,dn)SPjU = SetλjDPjU

(3.6)
= S

(
∑

k∈N

eλktDPkPjU
)

(3.5)
= S(S(t)PjU) for all t ≥ 0.

Thus, the claim is established by multiplying with S−1 from the left.

We first capture the effect of a scalar multiplicative and time-dependent perturbation on
the dichotomy spectrum of (3.3). Thereto, assume that a : J → (0, ∞) is a continuous function
fulfilling the integrability conditions (2.3). Endowed with ambient boundary conditions the
system of parabolic equations

Ut = a(t)DLU

can be formulated as nonautonomous abstract evolutionary equation

u̇ = a(t)Au, (3.8)
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whose evolution operator T(t, s) ∈ L(X) is given by

T(t, s) = S

(∫ t

s
a
)

(3.5)
= ∑

k∈N

eλk
∫ t

s aDPk for all s ≤ t. (3.9)

This representation allows us to obtain

Theorem 3.5 (multiplicative perturbation). The dichotomy spectrum of the evolutionary equation
(3.8) is

ΣJ(aA) =
⋃

k∈N

n⋃
j=1

[
β

J
(λkdja), βJ(λkdja)

]
with σ(D) = {d1, . . . , dn} and complete invariant projectors Pk : J → L(X), k ∈N.

Proof. Thanks to Lemma 3.4 and (3.9) we obtain for every k ∈N that

PkT(t, s) = PkS

(∫ t

s
a
)
= S

(∫ t

s
a
)

Pk = T(t, s)Pk for all s ≤ t.

Hence, the finite-dimensional vector bundles Xk := {(t, U) ∈ J ×X : U ∈ R(Pk)} are invariant
w.r.t. (3.8). Thanks to (3.9), inside of each Xk the dynamics is determined by

u̇ = λka(t)Du, (3.10)

having an evolution operator satisfying Tk(t, s) := T(t, s)Pk. It consequently follows

T(t, s) = ∑
k∈N

Tk(t, s) for all s ≤ t

and thus
ΣJ(aA) =

⋃
k∈N

ΣJ(aλkD).

Because D is assumed to be symmetric, the ODEs (3.10) are kinematically similar to the diag-
onal systems u̇ = λka(t)diag(d1, . . . , dn)u for all k ∈ N. Since kinematic similarity leaves the
dichotomy spectrum invariant, one obtains

ΣJ(aλkD) = ΣJ(aλk diag(d1, . . . , dn)) =
n⋃

l=1

ΣJ(aλkdl) for all k ∈N

due to the fact that the spectrum of diagonal systems is the union of their diagonal spectra.
Then the assertion follows with Lemma 2.3.

Example 3.6 (periodic case). If a : J → (0, ∞) is θ-periodic, then Ex. 2.2(2) guarantees

ΣJ(aA) =
1
θ

(∫ t+θ

t
a
) n⋃

j=1

dj
⋃

k∈N

{λk} ,

i.e. one obtains a discrete spectrum preserving the asymptotics of λk for k→ ∞, provided that
the mean

∫ t+θ
t a 6= 0 does not vanish.
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Example 3.7 (asymptotically autonomous case). Let σ(D) = {1} and suppose the eigenvalues
of L form a strictly decreasing sequence in (−∞, 0] with

lim
k→∞

λk = −∞, lim
k→∞

λk+1

λk
= 1.

For a : R → (0, ∞) satisfying the limit relations limt→±∞ a(t) = α± with 0 < α−, α+ we set
µ := min {α+, α−}, µ := max {α−, α+} and obtain from Thm. 3.5 that

ΣR(aA) =
⋃

k∈N

[
λkµ, λkµ

]
.

If α+ = α−, then ΣR(aA) = α+ ⋃
k∈N {λk}. Otherwise, since the sequence

(λk+1
λk

)
k∈N

ap-

proaches its limit from above, there is a minimal k∗ ∈ N with λk+1
λk

< µ
µ for all k ≥ k∗.

We derive µλk+1 > µλk and hence successive spectral intervals
[
λkµ, λkµ

]
overlap for every

k ≥ k∗. Thus, the dichotomy spectrum consists only of finitely many intervals

ΣR(aA) = (−∞, λk∗µ] ∪
k∗−1⋃
k=1

[
λkµ, λkµ

]
.

Our second aim is to describe the impact of linear-homogeneous perturbations in (3.3).
Given a continuous matrix-valued function B : J → L(Rn) we consider the PDEs

Ut = a(t)LU + B(t)U.

After fixing ambient boundary conditions, it gives rise to the abstract nonautonomous evolu-
tionary equation

u̇ =
[
a(t)A+B(t)

]
u (3.11)

with (AU)(x) := LU(x) and (B(t)U)(x) := B(t)U(x) for all t ∈ J, U ∈ X and x ∈ Ω.

Theorem 3.8 (homogeneous perturbation). The dichotomy spectrum of the evolutionary equation
(3.11) is

ΣJ(aA+B) =
⋃

k∈N

ΣJ(λka + B)

and possesses complete projectors pl(·)Pk : J → L(X), 1 ≤ l ≤ m, k ∈ N, where pj : J → L(Rd) are
the invariant projectors from Ex. 2.1.

Proof. We subdivide the proof into two steps:
(I) For t ∈ J we set Pl

k(t) := pl(t)Pk ∈ L(X) and write pl
ij for the components of pl . Because

the orthogonal projections Πk ∈ L(X) are linear mappings, we obtain

Pl
k(t)U = pl(t)

Πku1

...
Πkun

 =
n

∑
j=1


pl

1j(t)Πku1

...
pl

nj(t)Πkun

 = Pk

n

∑
j=1


pl

1j(t)u
1

...
pl

nj(t)u
n

 = Pk pl(t)U

for all U = (u1, . . . , un) ∈ X and thus

Pl
k(t) = Pk pl(t). (3.12)
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Since Pk is a projection and pl a projector, this allows us to show

Pl
k(t)

2 = pl(t)Pk pl(t)Pk
(3.12)
= pl(t)Pk pl(t)

(3.12)
= Pl

k(t)

and therefore pl(·)Pk : J → L(X) is a projector for all k ∈N, 1 ≤ l ≤ m.
(II) Let TB(t, s) ∈ L(X), s, t ∈ J, denote the evolution family generated by the ODE

u̇ = B(t)u

in X. If the evolution family TB(t, s) ∈ L(Rn) of (2.2) has the components tij(t, s) ∈ R,
1 ≤ i, j ≤ n, then it follows

Pl
k(t)TB(t, s)U = pl(t)

n

∑
j=1

Πkt1j(t, s)uj

...
Πktnj(t, s)uj

 = pl(t)TB(t, s)PkU

= TB(t, s)Pl
k(s)U for all s, t ∈ J, (3.13)

because pl : J → L(Rn) is an invariant projector for (2.2). Since the matrix function B does not
depend on x ∈ Ω, the operators A and B commute and consequently the product representa-
tion T(t, s) = TA(t, s)TB(t, s) holds for all s ≤ t. We arrive at

T(t, s)Pl
i(s)U

(3.9)
= S

(∫ t

s
a
)
TB(t, s)Pl

i(s)U
(3.13)
= S

(∫ t

s
a
)
Pl

i(t)TB(t, s)U

(3.12)
= S

(∫ t

s
a
)

Pi pl(t)TB(t, s)U = PiS

(∫ t

s
a
)

pl(t)TB(t, s)U

due to Lemma 3.4. This allows us to continue

T(t, s)Pl
i(s)U

(3.9)
= Pi ∑

k∈N

eλk
∫ t

s aPk pl(t)TB(t, s)U

(3.12)
= Pi ∑

k∈N

eλk
∫ t

s a pl(t)PkTB(t, s)U

= Pi pl(t) ∑
k∈N

eλk
∫ t

s aPkTB(t, s)U

(3.12)
= Pl

i(t) ∑
k∈N

eλk
∫ t

s aPkTB(t, s)U

(3.9)
= Pl

i(t)TA(t, s)TB(t, s)U = Pl
i(t)T(t, s)U for all s ≤ t.

Consequently, X l
i :=

{
(t, U) ∈ J ×X : U ∈ R(Pl

i(t))
}

are finite-dimensional vector bundles
being invariant w.r.t. (3.11). On every Whitney sum X 1

k ⊕ . . .⊕ X m
k ⊆ J × X the dynamics is

determined by the linear ODE

u̇ = [λka(t) + B(t)] u for all k ∈N

in Rn with evolution operator Tk(t, s) := T(t, s)Pk. It consequently follows that

T(t, s) = ∑
k∈N

Tk(t, s) for all s ≤ t

and thus ΣJ(aA+B) =
⋃

k∈N ΣJ(aλk + B).
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Corollary 3.9. If a(t) ≡ α > 0 on J, then

ΣJ(aA+B) = α
⋃

k∈N

{λk}+ ΣJ(B).

Proof. For such constant functions a the dichotomy spectrum of (3.11) becomes

ΣJ(αA+B) =
⋃

k∈N

ΣJ(αλk + B)
(2.1)
=

⋃
k∈N

ΣJ(αλk) + ΣJ(B)

and this implies the claim.

4 Exponential decay

Our spectral theory obtained above provides examples well-suited to illustrate a nonau-
tonomous version of [1, Lemma 5]. This vital result ensures that forward solutions to time-
variant parabolic evolutionary equations cannot decay to 0 faster than exponentially.

We actually consider abstract semi-linear evolutionary equations

u̇ = A(t)u + F(t, u) (E)

in a Banach space X. Here, t ∈ J is from an interval J ⊆ R unbounded above. Let us suppose
that the linear part (L) induces an evolution family T(t, s) ∈ L(X), s ≤ t, with the properties:

(L1) ΣJ(A) =
⋃

k∈N[λ−k , λ+
k ] ⊆ (−∞, α0] for some α0 ∈ R

(L2) There exist real sequences (αk)k∈N, (βk)k∈N with

. . . < α2 < β2 < α1 < β1 < α0

such that ΣJ(A) ⊆ ⋃k∈N(βk, αk−1) (cf. Fig. 4.1)

(L3) The invariant projectors Pk : J → L(X) associated to the spectral intervals [λ−k , λ+
k ],

k ∈N, are complete.

Rλ−
1 λ+

1λ−
2 λ+

2λ−
n−1 λ+

n−1λ−
n λ+

nλ−
n+1 λ+

n+1

β1α1β2α2βn−1αn−1βnαn α0

Figure 4.1: Dichotomy spectrum ΣJ(A) of the linear part (L) (in red) and the gap intervals
[αn, βn], n ∈N

Concerning the continuous nonlinearity F : J ×X→ X in (E) let us assume that

(N) F(t, 0) ≡ 0 on J and there exists an L ≥ 0 such that

‖F(t, u)− F(t, ū)‖ ≤ L ‖u− ū‖ for all t ∈ J, u, ū ∈ X.

The mild solution to (E) satisfying u(τ) = u0 is denoted by u(·; τ, u0) : [τ, ∞) → X for an
initial time τ ∈ J and an initial state u0 ∈ X.



12 C. Pötzsche and E. Russ

Let the center of the gap intervals [αk, βk] (cf. Fig. 4.1) be denoted by γk := αk+βk
2 and we

introduce the pseudo-stable fiber bundles

Wk :=
{
(τ, u0) ∈ J ×X : lim

t→∞
eγk(τ−t) ‖u(t; τ, u0)‖ = 0

}
for all k ∈N.

These sets clearly satisfy the inclusionsWk+1 ⊆ Wk for all k ∈N.
Notice that a mild solution ν to (E) is said to be small, if for every γ ∈ R one has

lim
t→∞

eγt ‖ν(t)‖ = 0.

While small solutions can occur e.g. in the context of delay differential equations (we refer to
[6, pp. 74ff, Sect. 3.3]), the next result rules out nontrivial small solutions in our setting:

Theorem 4.1. Under the above assumptions (L) and (N) with

0 ≤ L < inf
k∈N

βk − αk

6Kk
(4.1)

one has
⋂

k∈NWk = J × {0}, i.e. for every nontrivial (mild) solution ν : [τ, ∞) → X to (E) there
exists a k ∈N such that (τ, ν(τ)) ∈ Wk+1 \Wk.

In few words, Thm. 4.1 implies that for every nontrivial mild solution ν there exists a
γ ∈ R with lim supt→∞ eγ(τ−t) ‖ν(t)‖ > 0. This means that (E) cannot have nontrivial so-
lutions decaying to 0 faster than exponentially. As the subsequent proof demonstrates, our
Thm. 4.1 is essentially a corollary of the classical Hadamard-Perron theorem on stable mani-
folds. Concerning a version appropriate for our purposes we refer to [13, Thm. 2.4(a)].

Proof. Let τ ∈ J be arbitrary. Given γ ∈ R it is easy to see that the sets

Bτ,γ :=
{

φ ∈ C[τ, ∞;X) : lim
t→∞

eγ(τ−t) ‖φ(t)‖ = 0
}

with the norm ‖φ‖τ,γ := supτ≤t eγ(τ−t) ‖φ(t)‖ are Banach spaces.
(I) Our assumptions (L1)-(L2) on the dichotomy spectrum ensure that for every k ∈ N

there exist reals Kk ≥ 1 and an invariant projector P+
k : J → L(X) so that the estimates∥∥T(t, s)P+

k (s)
∥∥ ≤ Kkeαk(t−s),

∥∥T̄(s, t)P−k (t)
∥∥ ≤ Kkeβk(s−t) for s ≤ t (4.2)

are fulfilled with the complementary projector P−k (t) := idX−P+
k (t). For every particular

growth rate γ := αk+βk
2 ∈ (αk, βk), k ∈N fixed, let us define the operators

Sτ ∈ L(X, Bτ,γ), Sτu0 := T(·, τ)P+
k (τ)u0,

Tτ : Bτ,γ → Bτ,γ, Tτ(φ) :=
∫ ·

τ
T(·, s)P+

k (s)F(s, φ(s))ds

−
∫ ∞

·
T̄(·, s)P−k (s)F(s, φ(s))ds.

They are well-studied in the literature (e.g. [1, 11, 13, 15]) when Bτ,γ is replaced by the space of
all continuous functions φ satisfying ‖φ‖τ,γ < ∞. Thus, it remains to show that the mappings
Sτ, Tτ are well-defined:
First, for every u0 ∈ X one has the limit relation

‖(Sτu0)(t)‖ eγ(τ−t) =
∥∥T(t, τ)P+

k (τ)u0
∥∥ eγ(τ−t)

(4.2)
≤ Kke(αk−γ)(t−τ) ‖u0‖ −−→

t→∞
0
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and therefore Sτu0 ∈ Bτ,γ.
Second, concerning the operator Tτ choose an arbitrary φ ∈ Bτ,γ. This ensures that for every
ε > 0 there exists a T ≥ τ such that

max
{

KkL
γ− αk

,
KkL

βk − γ

}
eγ(τ−t) ‖φ(t)‖ < ε

3
for all t ≥ T. (4.3)

Because of (N) we arrive at the estimate

‖Tτ(φ)(t)‖
(4.2)
≤ KkL

∫ t

τ
eαk(t−s) ‖φ(s)‖ ds + KkL

∫ ∞

t
eβk(t−s) ‖φ(s)‖ ds

≤ KkL
∫ T

τ
eαk(t−s)eγ(s−τ) ds ‖φ‖τ,γ + KkL

∫ t

T
eαk(t−s) ‖φ(s)‖ ds

+ KkL
∫ ∞

t
eβk(t−s) ‖φ(s)‖ ds for all τ ≤ t.

This, in turn, implies

‖Tτ(φ)(t)‖ eγ(τ−t) ≤ KkL
γ− αk

[
e(αk−γ)(t−T) − e(αk−γ)(t−τ)

]
‖φ‖τ,γ

+ KkL
∫ t

T
eαk(t−s) ‖φ(s)‖ eγ(τ−s)eγ(s−t) ds

+ KkL
∫ ∞

t
eβk(t−s) ‖φ(s)‖ eγ(τ−s)eγ(s−t) ds

(4.3)
<

KkL
γ− αk

e(αk−γ)(t−T) ‖φ‖τ,γ +
γ− αk

3
ε
∫ t

T
eαk(t−s)eγ(s−t) ds

+
βk − γ

3
ε
∫ ∞

t
eβk(t−s)eγ(s−t) ds

<
KkL

γ− αk
e(αk−γ)(t−T) ‖φ‖τ,γ +

ε

3
+

ε

3
for all T ≤ t

and due to αk < γ there is a T′ ≥ T such that Kk L
γ−αk

e(αk−γ)(t−T) ‖φ‖τ,γ < ε
3 holds for all t ≥ T′.

Consequently, ‖Tτ(φ)(t)‖ eγ(τ−t) < ε for every t ≥ T′, i.e. Tτ(φ) ∈ Bτ,γ.
(II) Thanks to (I) the Lyapunov-Perron operator

Lτ : Bτ,γ ×X→ Bτ,γ, Lτ(φ, u0) := Sτu0 + Tτ(φ)

is well-defined. As in the proof of [13, Thm. 2.4] one establishes that (4.1) guarantees Lτ to
be a uniform contraction in the first argument. From the contraction mapping theorem we
deduce a unique fixed-point φ∗τ(u0) ∈ Bτ,γ. Setting wk(τ, u0) := P−k (τ)

(
φ∗τ(u0)

)
(τ) one obtains

a function wk : J × X → X fulfilling wk(τ, 0) ≡ 0 on J and a global Lipschitz condition with
constant < 1. Moreover, it holds the representation

Wk =
{
(τ, ξ + wk(τ, ξ)) ∈ J ×X : ξ ∈ R(P+

k (τ))
}

.

(III) After these preparations the actual proof is quite immediate. Indeed, let us suppose
that ν : [τ, ∞)→ X is a mild solution of (E) which is contained in allWk, k ∈ N. This implies
ν(τ) = P+

k (τ)ν(τ) + wk(τ,P+
k (τ)ν(τ)) and consequently

‖ν(τ)‖ ≤
∥∥P+

k (τ)ν(τ)
∥∥+ ∥∥wk(τ,P+

k (τ)ν(τ))− wk(τ, 0)
∥∥ ≤ 2

∥∥P+
k (τ)ν(τ)

∥∥ −−→
k→∞

0,

because P+
k (τ)ν(τ) = ∑∞

j=k+1 Pk(τ)ν(τ) are the remainders in the convergent infinite series
∑k∈N Pk(τ)ν(τ) (cf. (L3)). Thus, ν(τ) = 0 yielding the claim.
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