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Abstract

This paper investigates local and global bifurcation, as well as continuation properties
for discrete-time periodic dynamical models in arbitrary (finite) dimension. Our focus
is to provide explicitly verifiable conditions which guarantee or prevent bifurcations
of, say ω1-periodic solutions for ω0-periodic difference equations. In doing so, we give
concrete branching relations ensuring bifurcations of e.g. fold, transcritical, pitchfork
or flip type, including information on the global branches. Beyond that we obtain for-
mulas indicating the local behavior of mean population sizes under parameter variation
or bifurcation, and furthermore tackle stability issues. Our results are applied to various
real-world population models.

Thus, the paper will be useful for a thorough analysis and understanding of general
periodic time-discrete models in population dynamics, life sciences and beyond.
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1. Motivation

For a multitude of problems in population dynamics and other fields of mathemat-
ical biology, a realistic and therefore successful description is achieved using discrete-
time models, i.e. difference equations. This notably concerns scenarios with no overlap
between successive generations and classical examples include fisheries (for instance,
the Beverton-Holt model [6], or the Ricker model [43]), but we also refer to more
recent approaches like the celebrated flour beetle equation from [11], as well as the
studies [12, 13, 15, 19, 20, 21]. In many of these models, a realistic influence of the
environment on the population is hardly constant over time. Indeed, a periodic time de-
pendence is well-motivated due to extrinsic seasonal influences like the day-night-cycle
or effects on longer time scales (seasons, hibernation, harvesting). For this reason the
seemingly classical topic of periodic difference equations and their solutions became a
contemporary field of research over the recent years.

Particular interest has been devoted to questions of resonance and attenuation (cf.
[21, 22, 18] or [41] in continuous time). These two concepts mean an increase (resp.
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decrease) for the average size of a population in response to an increase in the ampli-
tude of an environment oscillation in comparison to a constant environment. Indeed, a
corresponding qualitative theory is unquestionable of high ecological interest, since it
guarantees that a fluctuating habitat is deleterious or stimulating to a population in the
sense that the average population size is less resp. greater in a periodically oscillating
environment than in a constant habitat. As special case, such periodic environments
occur when (periodic) harvesting strategies are applied to a discrete-time model (see,
e.g., [5] for the Beverton-Hold equation). Beyond that periodic forcing might also be
helpful in the fields of global stabilization (cf. [9, 28] and the references therein) or
chaos control (see [10, 17] for autonomous examples).

For a rigorous mathematical description of the above issues, a slight generalization
of the classical theory of discrete dynamical systems is necessary. Above all, the ad-
equate and natural invariant objects to investigate in this setting are periodic solutions
rather than equilibria as previously in the usual time-invariant case. An appropriate
spectral theory yielding stability, instability or hyperbolicity is given in terms of Flo-
quet multipliers. The required Floquet theory for linear difference equations can be
found in various textbooks like [16, pp. 153ff], [27, pp. 90ff], [35, pp. 108ff] or [14]
— in particular, see the thesis [23] for the noninvertible situation. Finally, surveys of
results on periodic difference equations are [14, 31].

Biologically motivated questions of continuation and bifurcation were previously
tackled in [4, 5, 12, 15, 20, 21, 22] or [19, 30]. More detailed, [22] shows that hyper-
bolic fixed points persist as periodic solutions under a periodic stimulation and gives
criteria that the reference solutions resonate or attenuate locally. A local transcriti-
cal bifurcation result is due to [20], where periodic solutions bifurcate from the trivial
branch, and a related global version can be found in [12]. Attenuation and resonance
under 2-periodic forcing are systematically studied in [18, 21].

Besides these interesting case studies, often restricted to scalar equations, we found
it hard to locate explicit and flexible results specifically designed for periodic discrete
dynamical systems in Rd and covering various bifurcation types. Thus, the novelty
in this research paper is to provide a comprehensive approach to persistence, as well
as fold, transcritical, pitchfork and flip bifurcations of periodic solutions to higher di-
mensional periodic difference equations, including information on the global solution
branches. We present easily applicable corresponding criteria. Their verification, nev-
ertheless, requires to solve two typically highly nonlinear problems first: (i) The com-
putation of a reference invariant object (i.e. the periodic orbit) to persist or bifurcate,
and (ii) the eigenvalue problem to determine its Floquet spectrum — both ask for nu-
merical tools (cf. [2, 44]) in real-world problems. In addition, a possibly large period
involves many parameters and therefore a high codimension in the sense of bifurcation
theory. Nevertheless, provided the periodic orbit and its Floquet multipliers are known,
it remains to evaluate (sums of) partial derivatives, which is an easy endeavor in the
modern age of computer algebra.

Throughout, we are interested in ω0-periodic difference equations

xk+1 = fk(xk, λ), (∆λ)

where the Cm-mappings fk : Ω × Λ → Rd, k ∈ Z, m ∈ N, are defined on nonempty
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open convex subsets Ω ⊆ Rd, Λ ⊆ Rp, depend on a parameter λ ∈ Λ and fulfill

fk = fk+ω0 for all k ∈ Z

with some basic period ω0 ∈ N. Clearly, an autonomous difference eqn. (∆λ) has
period ω0 = 1. Moreover, the fact that (∆λ) is defined for all times k ∈ Z is no
restriction, since by virtue of an ω0-periodic extension our results remain applicable
for equations defined only on semiaxes. Rather than being open, it suffices that the set
Ω×Λ has an open neighborhood on which the fk are sufficiently smooth. This setting
includes the typical situation in population biology, where xk is a vector of population
densities or sizes, and hence Ω is the cube [0, 1]d resp. the nonnegative orthant [0,∞)d.

In common with [20, 12, 22], our presentation has a more functional analytical
flavor than the dynamical systems approaches of e.g. [14, 19]. It is largely based on ab-
stract branching theory (cf., for example, [25, 46, 47]), rather than geometric reduction
concepts as attractive invariant manifolds. Although we merely apply branching and
continuation results for general parameter-dependent equations in Banach spaces from
[25, 45, 46, 47], our obtained special cases or concretizations appear to be of interest
and feature certain advantages:

• First, they yield an alternative approach to the method used in e.g. [31, 32]
and particularly we do not have to compute derivatives of composite mappings,
which can be tedious in higher-dimensions. Here our techniques work, as long
as we aim to select ω1-periodic solutions bifurcating into ω-periodic solutions,
where the period ω is a multiple of both ω0 and ω1.

• To consider difference equations of arbitrary finite dimension right from the be-
ginning hardly causes extra effort. For instance, Thm. 4.3 follows from a quite
recent result on global bifurcations in [45].

• It is worth to point out that the bifurcations studied here are not restricted to
stability changes from asymptotically stable to unstable, or vice versa. Indeed,
also unstable solutions can bifurcate into unstable solutions, where the branching
process goes hand in hand with a change in the respective Morse indices, i.e., the
dimension of the unstable manifolds associated to the periodic solutions.

An exception to our framework is the Sacker-Neimark bifurcation (cf. [26]), where a
whole closed invariant curve rather than a single solution bifurcates; hence, it does not
fit into our technical set-up.

We organize this paper in a tutorial way split into three parts. This means the reader
primarily interested in applications and applicability, does not have to dive too deeply
into the mathematical formulation and machinery. In this spirit, the subsequent Sect. 2
tackles minimal periods of solution branches, provides criteria for stability of periodic
solutions to general periodic difference eqns. (∆λ) and summarizes some basic termi-
nology. Conditions that solutions, their period and stability persist under parameter
variation can be found in Sect. 3, were we also present a result on global continuation
resp. the structure of global solution branches. Beyond that a condition for local at-
tenuation or resonance is given. We refer to Sect. 4 for explicit sufficient conditions
that periodic solutions bifurcate; they include local bifurcations of fold (saddle-node),
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transcritical and pitchfork type, as well as remarks on the flip bifurcation. We ad-
ditionally provide criteria to determine the stability of bifurcating solutions and give
information on the global structure of the branches. For a transcritical bifurcation we
can check attenuation or resonance locally. As our second part, these results are illus-
trated in Sect. 5 by means of analytical studies and simulations on scalar and higher-
dimensional models — some of them are periodic extensions of problems studied pre-
viously in [8, 13, 19, 30]. Finally, as third part the mathematical proofs are summarized
in Sect. 7.

As a conclusion we put our approach into the context of a recent nonautonomous
bifurcation theory (cf. [36, 37, 40]) dealing with arbitrary rather than merely periodic
time-dependencies. In the first instance, a different spectral theory is required, which
is based on exponential dichotomies rather than the Floquet spectrum. Second, the ab-
stract branching tools [25, 46, 47] used here are also applicable to guarantee branches
of bounded solutions, but require a different Fredholm theory; for instance in the bifur-
cation criteria from [36] only unstable solutions can bifurcate. On the other hand, the
present periodic special case allows a finer insight and a much more detailed descrip-
tion of the bifurcation scenarios, and in particular stability and global assertions.

2. Periodic difference equations

We work with mappings fk(·, λ), λ ∈ Λ, rather than homeomorphisms as the right-
hand side of (∆λ). Hence, in general only forward solutions of (∆λ) exist. Such a
unique forward solution to (∆λ) satisfying the initial condition xκ = ξ with initial
time κ ∈ Z, initial state ξ ∈ Ω and parameter λ ∈ Λ, is called general solution, will be
denoted by ϕλ(·;κ, ξ) and reads as

ϕλ(k;κ, ξ) =

{
fk−1(·, λ) ◦ . . . ◦ fκ(·, λ)(ξ), k > κ,

ξ, k = κ

for integers k ∈ Z+
κ := {n ∈ Z : κ ≤ n}, as long as the above compositions remain

in the state space Ω ⊆ Rd. Furthermore, the map (ξ, λ) 7→ ϕλ(k;κ, ξ) inherits its
smoothness from the right-hand side fk. Thanks to the intrinsic ω0-periodicity of (∆λ)
we have the translation invariance property

ϕλ(k + nω0;κ+ nω0, ξ) = ϕλ(k;κ, ξ) for all n ∈ Z, κ ≤ k, ξ ∈ Ω (2.1)

and λ ∈ Λ (cf. [35, p. 68, Prop. 2.5.3 and p. 22, Prop. 1.4.4]).

2.1. Branches of periodic solutions

Typically parameter-dependent eqns. (∆λ) have whole branches φ(λ) of, for in-
stance, ω1-periodic solutions. For ω1 being a multiple of the basic period ω0 in (∆λ),
such a branch can be determined as solutions x∗λ ∈ Ω to the fixed point equations

x∗λ = ϕλ(κ+ ω1, κ, x
∗
λ) for all λ ∈ Λ
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in Ω via φ(λ)k := ϕλ(k;κ, x∗λ) for all k ≥ κ and with an ω1-periodic continuation
to the whole axis Z. Nonetheless, in general an explicit computation of x∗λ is possible
only on a numerical basis, e.g. using appropriate continuation methods (cf. [2]).

In order to describe periodic solutions, given ω ∈ N we introduce the set

`ω(Ω) := {φ = (φk)k∈Z : φk ∈ Ω and φk = φk+ω for all k ∈ Z}

and abbreviate `ω := `ω(Rd) for the linear space of ω-periodic sequences. One has the
embedding `ω(Ω) ⊆ `mω(Ω) for all m ∈ N, i.e. a constant or ω-periodic sequence is
also mω-periodic. Indeed, `ω is isomorphic to Rdω by means of the isomorphisms

Jκ : `ω → Rdω, Jκφ := (φκ, . . . , φκ+ω−1) for all κ ∈ Z (2.2)

with the inverses J−1
κ (x0, . . . , xω−1) := xκ+· mod ω .

We close this subsection with some consideration on difference equations

xk+1 = g(xk, ηk), (gη)

where g : Ω × Λ → Rd is of class C1 and η ∈ `ω0
(Λ) denotes a parameter sequence.

The following result is inspired by [21, Thm. 3] (see also [31, Cor. 7]):

Proposition 2.1. Let U ⊆ `ω0
(Λ), η∗ ∈ U and φ∗ ∈ `ω1

(Ω) be a solution to (gη∗),
where ω0, ω1 are minimal periods. If φ : U → `ω(Ω) is a continuous solution branch
to (gη) with minimal period ω and φ(η∗) = φ∗, then:

(a) ω is a multiple of ω1,

(b) provided g fulfills the injectivity assumption

g(φ∗k, λ) = g(φ∗k, λ̄) ⇒ λ = λ̄ for all κ ≤ k < κ+ ω1 (2.3)

and λ, λ̄ ∈ Λ, then there exists a ρ > 0 such that every solution φ(η) to (gη) with
η ∈ U satisfying maxk∈Z ‖ηk − η∗k‖ ≤ ρ has minimal period lcm {ω0, ω1}, i.e.
ω = lcm {ω0, ω1}.

2.2. Periodic variational equations

We continue to introduce prerequisites on periodic difference eqns. (∆λ). Given a
solution branch φ(λ) ∈ `ω1(Ω), λ ∈ Λ, one defines the associate variational equation

xk+1 = D1fk(φ(λ)k, λ)xk (Vλ)

and the transition operator Φλ :
{

(k, l) ∈ Z2 : l ≤ k
}
→ Rd×d as product

Φλ(k, l) :=

{
D1fk−1(φ(λ)k−1, λ) · · ·D1fl(φ(λ)l, λ), l < k,

Id, k = l;

the general forward solution of (Vλ) is Φλ(·, κ)ξ : Z+
κ → Rd for κ ∈ Z, ξ ∈ Rd.
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For fixed parameters λ ∈ Λ, we point out that the variational eqn. (Vλ) is ω-periodic
with ω = lcm(ω0, ω1) and thus stability properties of (Vλ) as well as of φ(λ) are
determined by the period matrix

Ξω(λ) := Φλ(κ+ ω, κ)

= D1fκ+ω−1(φ(λ)κ+ω−1, λ) · · ·D1fκ(φ(λ)κ, λ) ∈ Rd×d.
(2.4)

Its eigenvalues are called Floquet multipliers of a solution φ(λ) ∈ `ω(Ω). The Floquet
spectrum of φ(λ) is the set of all eigenvalues for Ξω(λ), i.e.

σω(λ) := σ(Ξω(λ)) = σ(Φλ(κ+ ω, κ)) for all λ ∈ Λ.

The multiplicity of a Floquet multiplier ν is the dimension of the corresponding eigen-
spaceN(νId−Ξω(λ)) ⊆ Rd and a simple Floquet multiplier has multiplicity 1. Hence,
the problem to obtain the critical parameter values λ∗ with 1 ∈ σω(λ∗) requires to find
the roots to a polynomial of order ωd.

Proposition 2.2. The Floquet spectrum σω(λ) is independent of the initial time κ ∈ Z.
Moreover, one has σnω(λ) = σω(λ)n for all n ∈ N.

Under the assumption σω(λ) ∩ S1 = ∅ a solution φ(λ) ∈ `ω1
to (∆λ) is called

hyperbolic and for each multiplier ν ∈ σω(λ) we writeXν(λ) ⊆ Rd for the generalized
eigenspace associated to ν. The Morse index of φ(λ) is the dimension of the direct
sum of all linear spaces Xν(λ) corresponding to Floquet multipliers ν with modulus
|ν| > 1. On this basis the following facts are well-known:

Theorem 2.3. Let λ ∈ Λ be fixed. A solution φ(λ) ∈ `ω1 of (∆λ) is

(a) (uniformly) asymptotically stable, if σω(λ) ⊆ B1(0),

(b) unstable, if there exists a Floquet multiplier ν ∈ σω(λ) with |ν| > 1.

Remark 2.1. (1) We work with periodic solutions to difference eqns. (∆λ) (i.e. se-
quences in Ω) rather than orbits (meaning subsets of Ω). Yet, for fixed parameters
λ ∈ Λ, an ω-periodic solution φ = (φk)k∈Z to (∆λ) is asymptotically stable, if and
only if the orbit O(φκ) = {φk ∈ Ω : k ∈ Z} = {φk ∈ Ω : κ ≤ k < κ+ ω} is an
asymptotically stable set, i.e. it is both

• stable in the sense that for any neighborhood U of the orbitO(φκ) ⊆ Ω there are
neighborhoods Ul of each φl, κ ≤ l < κ+ ω, such that for all x ∈ Ul one has

ϕλ(k; l, x) ∈ U for all κ ≤ l < κ+ ω, l ≤ k

• attractive in the sense that there exist neighborhoods Vl of φl such that

lim
k→∞

dist(ϕλ(k; l, x), O(φκ)) = 0 for all κ ≤ l < κ+ ω, x ∈ Vl.

This is shown in [7, Lemma 3], as well as a statement on merely stability.

(2) A stability analysis of periodic solutions to (∆λ) in the critical case of Floquet
multipliers ν∗ on the complex unit circle S1 requires a center manifold reduction. It al-
lows to simplify the d-dimensional periodic problem (∆λ) to n difference eqns., where
n ≤ d is the dimension of the generalized eigenspaces Xν∗(λ); we refer to e.g. [39]
for details.
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3. Continuation in periodic equations

It is a folklore and generically valid result that the asymptotic behavior of an au-
tonomous system does not change essentially, if parameters are perturbed by small
periodic (in fact even bounded) sequences; the precise assumption for this is a weak-
ened form of hyperbolicity. We present corresponding conditions yielding that an ω1-
periodic solution φ∗ to an ω0-periodic eqn. (∆λ∗) persists under variation of the param-
eter λ near a fixed value λ∗. We begin with an amalgamation of both [34, Thm. 3.11]
and [38, Thm. 2.11]:

Theorem 3.1. Let λ∗ ∈ Λ, ω1 ∈ N and ω := lcm(ω0, ω1). If φ∗ is an ω1-periodic
solution of (∆λ∗) satisfying the weak hyperbolicity condition

1 6∈ σω(λ∗), (3.1)

then there exist ρ, ε > 0 and a Cm-function φ : Bρ(λ
∗)→ Bε(φ

∗) ⊆ `ω(Ω) such that
the following holds for all λ ∈ Bρ(λ∗):

(a) φ(λ∗) = φ∗ and

φ′(λ∗) = Φλ∗(·, κ)ξκ +

·−1∑
l=κ

Φλ∗(·, l + 1)D2fl(φ
∗
l , λ
∗) (3.2)

with ξκ := [Id − Ξω(λ∗)]
−1∑κ+ω−1

j=κ Φλ∗(κ+ ω, j + 1)D2fj(φ
∗
j , λ
∗),

(b) φ(λ) is the unique ω-periodic solution of (∆λ) in Bε(φ∗),

(c) in case the solution φ∗ is even hyperbolic, then also φ(λ) is hyperbolic with the
same Morse index as φ∗.

Remark 3.1. (1) In our assertion (c) the local constancy of the Morse index partic-
ularly means that asymptotically stable or unstable solutions φ∗ retain their stability
properties under small perturbations of λ∗.

(2) To estimate perturbation bounds, in applications it might be relevant to obtain
information on the size of ρ, ε > 0. This can be done on basis of a quantitative implicit
function theorem as in [38, Cor. 2.19].

If an eqn. (∆λ) is a model from population dynamics, then a central question is to
understand the effect of parameter fluctuations on the total or individual mean popula-
tion sizes. More precisely, for a sequence φ ∈ `ω with values in Rd and component
sequences φi, 1 ≤ i ≤ n, in R, we introduce its individual resp. its total mean value

M(φ) :=
1

ω

ω−1∑
k=0

φk, M̂(φ) :=
1

ω

ω−1∑
k=0

d∑
i=1

φik =

d∑
i=1

M(φ)i. (3.3)

When such a periodic sequence φ describes the evolution of interacting species, i.e. its
components stand for population sizes of the individual species, then the components
of the vector M(φ) ∈ Rd contain the means size of each individual population, while
the quantity M̂(φ) ∈ R indicates the mean total size of all interacting populations over
a period interval. Local information near the reference parameter λ∗ can be obtained
from the formulas given in
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Remark 3.2 (attenuation and resonance). Assume λ is a real parameter, i.e. Λ ⊆ R, and
consider the solution branch φ(λ) guaranteed by Thm. 3.1. Our goal is to understand
how the individual resp. total mean values

m(λ) := M(φ(λ)), m̂(λ) := M̂(φ(λ)),

behave locally under variation of λ. Thereto, we determine the derivatives m′(λ∗) ∈
Rd and m̂′(λ∗) ∈ R, since their signs indicate monotonicity properties for the individ-
ual resp. total population means. Both the mappings M : `ω → Rd and M̂ : `ω → R
defined in (3.3) are linear, thus m′(λ) = M(φ′(λ)), m̂′(λ) = M̂(φ′(λ)) holds and

m′(λ∗) =
1

ω

κ+ω−1∑
k=κ

(
Φλ∗(k, κ)ξκ +

k−1∑
l=κ

Φλ∗(k, l + 1)D2fl(φ
∗
l , λ
∗)

)
,

m̂′(λ∗) =

d∑
i=1

m′(λ∗)i,

using the explicit formula (3.2).

While condition (3.1) is weaker than hyperbolicity guaranteed by

σω(λ∗) ∩ S1 = ∅, (3.4)

the latter allows to exclude nω-periodic solutions near φ(λ) locally.

Corollary 3.2. If additionally 1 6∈ σω(λ∗)n holds for some n ∈ N, then there exists no
nω-periodic solution to (∆λ) in Bε(φ∗) besides φ(λ).

Example 3.1 (autonomous Ricker equation). We consider the intrinsic growth rate λ >
0 as parameter in the Ricker equation

xk+1 = f(xk, λ) := xke
λ
(

1−xk

K

)
(3.5)

with fixed carrying capacity K > 0. It has two branches of 1-periodic, i.e. constant
solutions φ1(λ)k ≡ 0, φ2(λ)k ≡ K with respective linearizations D1f(φ1(λ)k, λ) ≡
eλ > 1 and D1f(φ2(λ)k, λ) ≡ 1 − λ on Z. Note that (3.5) can be seen as an ω0-
periodic difference equation for any ω0 ∈ N. We restrict to the branch φ2(λ), which
can be interpreted as family of ω1-periodic solutions with any ω1 ∈ N, and the period
matrix becomes Ξω(λ) = (1 − λ)ω with ω = lcm(ω0, ω1). Thus, Thm. 2.3 shows
that φ2(λ) is asymptotically stable for λ ∈ (0, 2) (with Morse index 0) and unstable
for λ > 2 (with Morse index 1). When ω is odd, condition (3.1) holds for all λ > 0
and there are no solutions of odd period near φ2(λ). On the other hand, for λ = 2 and
an even ω, the weak hyperbolicity condition (3.1) is violated; indeed there is a well-
known flip bifurcation at λ = 2. We illustrate this in Fig. 1(left), where there are no
further 1-periodic solutions near φ2(λ) for λ = 2. Yet, there exist 2-periodic solutions
and as the further diagrams of Fig. 1 underline, for values λ > 2 there are solutions
of higher periods. This reflects the chaotic behavior of the Ricker map discussed in
various papers (cf., e.g., [33]).
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Figure 1: λ-x-plane to illustrate the solution set to the fixed-point eqn. ϕλ(ω, 0, x) = x for (3.5) in Ex. 3.1
with K = 1, which yield initial values for ω-periodic solutions:
Left: Fixed points for ω = 1 (solid) and ω = 2 (dashed)
Middle: Fixed points for ω = 3 (solid) and ω = 4 (dashed)
Right: Fixed points for ω = 5 (solid) and ω = 6 (dashed)

The subsequent result gives information on the global structure of periodic solu-
tions to (∆λ).

Theorem 3.3. Let Ω = Rd, λ∗ ∈ Λ = R, ω1 ∈ N, ω := lcm(ω0, ω1) and define the
set of all ω-periodic solutions

Sω := {(φ, λ) ∈ `ω × R : φ solves (∆λ)} (3.6)

to a difference eqn. (∆λ). If φ∗ is an ω1-periodic solution of (∆λ∗) satisfying (3.1),
then the connected component C ⊆ Sω ⊆ `ω × R containing the local branch

{(φ(λ), λ) : λ ∈ (λ∗ − ρ, λ∗ + ρ)}

from Thm. 3.1 fulfills at least one of the following assertions (cf. Fig. 2):

(a) There exist unbounded disjoint subsets C+, C− ⊆ `ω × R satisfying

C = {(φ∗, λ∗)} ∪ C− ∪ C+,

(b) C \ {(φ∗, λ∗)} is connected.

4. Bifurcations in periodic difference equations

As above let us assume that ω is a multiple of both the periods ω0 and ω1 to a
difference eqn. (∆λ) resp. our reference solution φ∗.

In the previous Sect. 3 we learned that qualitative changes in the structure of ω-
periodic solutions to (∆λ) can only occur when the weak hyperbolicity condition (3.1)
is violated. From an applied perspective it is now crucial to locate parameter values λ∗

giving rise to such changes and to understand them at least locally. Indeed, dynamically
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λ∗ λ∗

`ω `ω

φ∗
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C−
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Figure 2: Structure of the global branch C (solid lines) of ω-periodic solutions to (∆λ) containing (φ∗, λ∗)
according to Thm. 3.3: Case (a) with two unbounded componentsC−, C+ (left) and case (b) of a connected
component C (right). Other components of Sω are represented by dashed lines

more complex scenarios can occur in the neighborhood of periodic solutions if the
weak hyperbolicity condition (3.1) is violated, i.e. for the critical case

1 ∈ σω(λ∗). (4.1)

Actually, the existence of a Floquet multiplier 1 in (Vλ) is a necessary condition for a
bifurcation of periodic solutions (cf. Thm. 3.1). More detailed, we say an ω-periodic
solution φ∗ to (∆λ∗) bifurcates at the parameter value λ∗ ∈ Λ, if there exists a pa-
rameter sequence (λn)n∈N with limit λ∗ and distinct sequences (φ1

n)n∈N, (φ1
n)n∈N of

ω-periodic solutions to (∆λn
) satisfying limn→∞ φ1

n = limn→∞ φ2
n.

We again stress that this concept of a bifurcation is purely ”algebraic” and indepen-
dent of stability changes, which will be addressed separately. Making such a general
concept more specific, we will describe bifurcations where the pair (φ∗, λ∗) is con-
tained in a smooth branch Γ ⊆ `ω(Ω) × Λ of ω-periodic solutions. This precisely
means that there exists a ρ > 0, open convex neighborhoods U ⊆ `ω(Ω) of φ∗, Λ0 ⊆ Λ
of λ∗ and functions ψ : (−ρ, ρ)→ U , λ : (−ρ, ρ)→ Λ0 such that

• ψ(0) = φ∗, λ(0) = λ∗,

• each ψ(s) is an ω-periodic solution of (∆λ(s)) for all s ∈ (−ρ, ρ).

For later use we can now abbreviate the solution branches

Γ := (ψ, λ)(−ρ, ρ), Γ+ := (ψ, λ)(0, ρ), Γ− := (ψ, λ)(−ρ, 0) (4.2)

and assign them a stability property (asymptotically stable or unstable), if all solutions
on them possess the respective stability characteristic.

In order to deduce corresponding sufficient conditions for bifurcation, given a pa-
rameter value λ∗ ∈ Λ, let us proceed as follows:

(O) Suppose that φ∗ is an ω1-periodic solution to (∆λ∗).
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(I) Choose orthonormal vectors ξ1, . . . , ξn ∈ Rd such that

N(Id − Ξω(λ∗)) = span {ξ1, . . . , ξn} , (4.3)

i.e. the Floquet multiplier 1 has multiplicity n.

(II) Choose orthonormal vectors ξ′1, . . . , ξ
′
r ∈ Rd with (cf. [47, p. 294, Prop. 6(ii)])

N(Id − Ξω(λ∗)T ) = R(Id − Ξω(λ∗))⊥ = span {ξ′1, . . . , ξ′r} . (4.4)

In the context of this paper, orthonormality always refers to the Euclidean inner product
〈·, ·〉 on Rd, i.e. the dot product given by 〈x, y〉 :=

∑d
j=1 xjyj . Under the above

assumptions (4.3) and (4.4) we denote λ∗ as critical value.

Remark 4.1 (period doubling). Suppose that a solution φ∗ ∈ `ω(Ω) to (∆λ∗) has a
Floquet multiplier ν with νl = 1 for some l ∈ N. Then Prop. 2.2 ensures 1 ∈ σlω(λ∗),
which in turn means that the nonhyperbolicity condition (4.1) holds with the period ω
replaced by the multiple lω. Hence, provided their further assumptions are satisfied,
the following results yield that lω-periodic solutions to (∆λ) bifurcate from φ∗ ∈ `ω .
In particular, for l = 2 (i.e. a Floquet multiplier −1) one speaks of a flip or period-
doubling bifurcation.

Before proceeding to actual bifurcation results, we point out that our theory ap-
plies without any invertibility assumptions on the derivatives D1fk or the variational
eqn. (Vλ). This requires to introduce the ambient notation

Φ̂λ∗(κ, j)
T ξ :=

(
J−1
κ (Φλ∗(κ, k)T ξ)κ−1

k=κ−ω
)
j

for all j ∈ Z (4.5)

and ξ ∈ N(Id − Ξω(λ∗)T ); in words, this means that (Φ̂λ∗(κ, j)
T ξ)j∈Z is the finite

sequence (Φλ∗(κ, k)T ξ)κ−1
k=κ−ω continued ω-periodically to the whole integer axis Z.

The interested reader might consult the appendix (see Rem. 7.2) to see that in case
D1fk(φ∗k, λ

∗) ∈ GL(Rd), κ ≤ k < κ+ ω, this becomes

Φ̂λ∗(κ, j)
T ξ = Φλ∗(κ, j)

T ξ for all j ∈ Z.

4.1. Fold bifurcation

The first bifurcation scenario does not require that a whole solution branch to the
difference eqn. (∆λ) is known in advance. Even though it is also known as saddle-
node bifurcation, we prefer the terminology fold bifurcation since it does not suggest a
stability change. Here, we restrict to a real parameter space Λ.

Theorem 4.1 (local fold bifurcation). Let Λ ⊆ R, m ≥ 2 and suppose 1 is a simple
eigenvalue of Ξω(λ∗) with r = 1. If

g01 :=〈ξ′1, D2fκ+ω−1(φ∗κ+ω−1, λ
∗)〉

+

κ+ω−1∑
j=κ+1

〈Φ̂λ∗(κ, j)T ξ′1, D2fj−1(φ∗j−1, λ
∗)〉 6= 0,

11



then there exists a bifurcating branch Γ as in (4.2) with Cm−1-functions ψ, λ satisfying
ψ′(0) = Φλ∗(·, κ)ξ1 and λ′(0) = 0. Under the additional assumption

g20 :=〈ξ′1, D2
1fκ+ω−1(φ∗κ+ω−1, λ

∗)[Φλ∗(κ+ ω − 1, κ)ξ1]2〉

+

κ+ω−1∑
j=κ+1

〈Φ̂λ∗(κ, j)T ξ′1, D2
1fj−1(φ∗j−1, λ

∗)[Φλ∗(j − 1, κ)ξ1]2〉 6= 0,

the solution φ∗ of (∆λ∗) bifurcates at λ∗, it is λ′′(0) = − g20g01
and one has locally in

U × Λ0 (cf. Fig. 3): φ∗ is the unique solution of (∆λ∗) in `ω(Ω) and

(c) Subcritical case: If g20/g01 > 0, then (∆λ) has no ω-periodic solution for λ >
λ∗ and exactly two distinct ω-periodic solutions for λ < λ∗.

(d) Supercritical case: If g20/g01 < 0, then (∆λ) has no ω-periodic solution for
λ < λ∗ and exactly two distinct ω-periodic solutions for λ > λ∗.

If the Floquet multiplier 1 is the unique element of σω(λ∗) on the complex unit
circle, while the remaining Floquet spectrum is contained B1(0), i.e.

σω(λ∗) \ {1} ⊆ B1(0), (4.6)

then a bifurcation goes hand in hand with a stability change for φ∗. Indeed, according to
the stability exchange principle, one of the bifurcating branches of ω-periodic solutions
in (4.2) is asymptotically stable, while the other one is unstable. Stability properties of
the solution φ∗ to (∆λ∗) itself, can be obtained on the basis of Rem. 2.1(2) in Sect. 2.2.

Corollary 4.2. Under (4.6) one additionally has (cf. Fig. 3):

(a) If g20 > 0, then Γ− is asymptotically stable and Γ+ is unstable.

(b) If g20 < 0, then Γ+ is asymptotically stable and Γ− is unstable.

4.2. Bifurcation along solution branches

The above assumptions allow us to formulate further bifurcation results. All of
them require a strengthening of condition (O) to the existence of a constant solution
branch to (∆λ), i.e. in Sect. 4.2 we require

(O’) Assume that φ∗ is an ω1-periodic solution to (∆λ) for all λ ∈ Λ, i.e. we have a
constant solution branch Γ∗ := {(φ∗, λ) ∈ `ω(Ω)× Λ}.

In applications one is often confronted with the situation that a non-constant branch
φ(λ) of ω1-periodic solutions to (∆λ) is given. This situation, however, can be reduced
to the assumption (O’) as follows: Rather than (∆λ) one considers the associated equa-
tion of perturbed motion given by

xk+1 = fk(xk + φ(λ)k, λ)− fk(φ(λ)k, λ) =: f̂k(xk, λ), (∆̂λ)
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λ∗ λ∗

`ω `ω

φ∗Λ Λ

Γ+ Γ+

Γ− Γ−

g20 > 0

g20 < 0g20 > 0

g01 > 0 g01 < 0

φ∗

λ∗ λ∗

`ω `ω

φ∗Λ Λ

Γ+

Γ− Γ−

Γ+
g20 < 0g20 > 0

g01 < 0 g01 > 0

Figure 3: Local subcritical (top) and supercritical (bottom) fold bifurcation of ω-periodic solutions to (∆λ)
described in Thm. 4.1 and exchange of stability between the branches Γ+ and Γ− from unstable (dashed
line) to asymptotically stable (solid) covered in Cor. 4.2

which is ω̂0-periodic with ω̂0 = lcm(ω0, ω1). Then the following results are applicable
to (∆̂λ) with ω0 and fk replaced by ω̂0 and f̂k, resp., and the trivial solution as constant
solution branch φ∗. Here, φ : Λ→ `ω1 has to be smooth.

We retreat to a simple Floquet-multiplier 1 and real parameter spaces. The first
result tackles the global structure of the solution set Sω ⊆ `ω(Ω)×Λ (defined by (3.6)
in Thm. 3.1) to (∆λ) near a bifurcation point:

Theorem 4.3 (bifurcation with simple Floquet multiplier). Let Λ ⊆ R, m ≥ 2 and
suppose 1 is a simple eigenvalue of Ξω(λ∗) with r = 1. If the transversality condition

g11 :=〈ξ′1, D1D2fκ+ω−1(φ∗κ+ω−1, λ
∗)Φλ∗(κ+ ω − 1, κ)ξ1〉

+

κ+ω−1∑
j=κ+1

〈Φ̂λ∗(κ, j)T ξ′1, D1D2fj−1(φ∗j−1, λ
∗)Φλ∗(j − 1, κ)ξ1〉 6= 0 (4.7)

is satisfied, then the solution φ∗ of (∆λ∗) bifurcates at λ∗ and there exists a bifurcating
branch Γ as in (4.2) with Cm−1-functions ψ, λ satisfying:

(a) ψ′(0) = Φλ∗(·, κ)ξ1,

(b) each ψ(s), s 6= 0, is an ω-periodic solution of (∆λ(s)), distinct from φ∗.
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Moreover, Γ is contained in a connected component C of {(φ, λ) ∈ Sω : φ 6= φ∗} with
precisely one of the properties (cf. Fig. 4):

(c) C intersects the boundary ∂(`ω(Ω)× Λ) or C is unbounded,

(d) C contains an ω-periodic solution φ∗ to (∆λ∗) with λ∗ 6= λ∗, i.e. C returns to
the constant branch Γ∗ = {(φ∗, λ) : λ ∈ Λ}.

Provided C+ (resp. C−) is the connected component of C \ Γ− containing Γ+ (resp.
the connected component of C \ Γ+ containing Γ−), then each of the global solution
branches C+ and C− has one of the properties:

(e1) It intersects the boundary ∂(`ω(Ω)× Λ)

(e2) it is unbounded

(e3) it contains an ω-periodic solution φ∗ to (∆λ∗) with λ∗ 6= λ∗, i.e. the branch
returns to the constant branch {(φ∗, λ) : λ ∈ Λ}

(e4) it contains an ω-periodic solution φ• to (∆λ) different from φ∗ with

κ+ω−1∑
j=κ

〈φ•j − φ∗j ,Φλ∗(j, κ)ξ1〉 = 0. (4.8)

To give an interpretation in the state space Ω ⊆ Rd instead of `ω(Ω), the two
alternatives (c) and (e1) mean that the global branch C resp. C± contains ω-periodic
solutions ψ = (ψk)k∈Z with values ψk ∈ ∂Ω for some (hence, infinitely many) k ∈ Z.

φ∗ R R

λ∗ λ∗

`ω `ω

φ∗

Γ Γ

λ∗

C C
(c) (d)

Γ∗

Figure 4: Structure of the global branch C (dashed line) of ω-periodic solutions to (∆λ) containing Γ (solid
line) according to Thm. 4.3 with Ω = Rd and Λ = R: The set C is either unbounded (case (c), left) or an
eqn. (∆λ∗ ) for at least one parameter λ∗ 6= λ∗ possesses the ω-periodic solution φ∗ on C (case (d), right)

Further information on the derivatives of fk yields a more detailed description of
the local branch Γ and yields two well-known bifurcation patterns:

Corollary 4.4 (transcritical bifurcation). Under the additional assumption

g20 :=〈ξ′1, D2
1fκ+ω−1(φ∗κ+ω−1, λ

∗)[Φλ∗(κ+ ω − 1, κ)ξ1]2〉
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+

κ+ω−1∑
j=κ+1

〈Φ̂λ∗(κ, j)T ξ′1, D2
1fj−1(φ∗j−1, λ

∗)[Φλ∗(j − 1, κ)ξ1]2〉 6= 0

it is λ′(0) = − g20
2g11

and locally in U × Λ0, the difference eqn. (∆λ) has a unique
ω-periodic solution χ(λ) distinct from φ∗ for λ 6= λ∗ and φ∗ is the unique ω-periodic
solution of (∆λ∗). Under (4.6) one additionally has (cf. Fig. 5):

(a) If g11 > 0, then for λ < λ∗ the solution φ∗ is unstable, while χ(λ) is asymp-
totically stable, for λ > λ∗ the solution φ∗ is asymptotically stable and χ(λ) is
unstable.

(b) If g11 < 0, then for λ < λ∗ the solution φ∗ is asymptotically stable, while χ(λ)
is unstable, for λ > λ∗ the solution φ∗ is unstable and χ(λ) is asymptotically
stable.

φ∗

λ∗ λ∗

`ω `ω

φ∗Λ Λ
Γ∗ Γ∗

Γ Γ

g11 > 0 g11 < 0

Figure 5: Local transcritical bifurcation of ω-periodic solutions to (∆λ) from the trivial branch Γ∗ into Γ
described in Cor. 4.4 and exchange of stability from unstable (dashed line) to asymptotically stable (solid)

We can investigate the effect of a bifurcation on the individual and total mean, when
stability gets transferred from Γ∗ to the nontrivial branch χ(λ):

Remark 4.2 (attenuation and resonance). As in Rem. 3.2 we describe the local behavior
of the individual resp. total means m(λ) := M(χ(λ)), m̂(λ) := M̂(χ(λ)) w.r.t. a
changing parameter λ near λ∗. According to the representations given in Thm. 4.3 and
Cor. 4.4, one has ψ(s) = φ∗ + ψ′(0)s+ o(s) and λ(s) = λ∗ − g20

2g11
s+ o(s), which in

turn yields s(λ) = g20
g11

(λ∗−λ)+o(λ) and finally (cf. Thm. 4.3(a)) χ(λ) = ψ(s(λ)) =

φ∗+ g20
g11

(λ∗−λ)Φλ∗(·, κ)ξ1+o(λ). From χ′(λ∗) = − g20g11
Φλ∗(·, κ)ξ1 we consequently

arrive at the derivatives

m′(λ∗) = − g20

ωg11

κ+ω−1∑
k=κ

Φλ∗(k, κ)ξ1, m̂′(λ∗) :=

d∑
k=1

m′(λ∗)i, (4.9)

which indicate the local behavior of the individual and total means under variation of
the parameter λ near λ∗.

The degenerate situation g20 = 0 leads to
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Corollary 4.5 (pitchfork bifurcation). For m ≥ 3 and under the additional assump-
tions

g20 := 0,

g30 := 〈ξ′1, D3
1fκ+ω−1(φ∗κ+ω−1, λ

∗)[Φλ∗(κ+ ω − 1, κ)ξ1]3〉

+

κ+ω−1∑
j=κ+1

〈Φ̂λ∗(κ, j)T ξ′1, D3
1fj−1(φ∗j−1, λ

∗)[Φλ∗(j − 1, κ)ξ1]3〉 6= 0

it is λ′(0) = 0, λ′′(0) = − g30
3g11

and the following holds locally in U × Λ0 (cf. Fig. 6):

(a) Subcritical case: If g30/g11 > 0, then φ∗ is the unique ω-periodic solution for
λ ≥ λ∗ and (∆λ) has exactly two ω-periodic solutions distinct from φ∗ for
λ < λ∗.

(b) Supercritical case: If g30/g11 < 0, then φ∗ is the unique ω-periodic solution
for λ ≤ λ∗ and (∆λ) has exactly two ω-periodic solutions distinct from φ∗for
λ > λ∗.

Stability properties of the bifurcating solution branches Γ in Cors. 4.4 and 4.5 can
also be tackled using the following criterion.

Proposition 4.6 (stability formula). Let λ ∈ Λ ⊆ R and suppose 1 is a simple eigen-
value of Ξω(λ∗) satisfying (4.6). If the characteristic polynomial of Ξω(λ) is written
as

det(tId − Ξω(λ)) = td +

d−1∑
j=0

pj(λ)tj (4.10)

with coefficients p0, . . . , pd−1 : Λ→ R and θ :=
∑d−1

j=0 p
′
j(λ∗)

d+
∑d−1

j=1 jpj(λ∗)
6= 0, then:

(a) In case θ < 0 the solution φ∗ to (∆λ) is asymptotically stable for λ < λ∗ and
unstable for λ > λ∗.

(b) In case θ > 0 the solution φ∗ to (∆λ) is unstable for λ < λ∗ and asymptotically
stable for λ > λ∗.

The ω-periodic solutions to (∆λ) on the branch Γ different from the constant one Γ∗

have opposite stability properties (cf. Fig. 6).

Remark 4.3. From e.g. [42, p. 188] we have p0(λ) = (−1)d det Ξω(λ) and pd−1(λ) =
− tr Ξω(λ). Thus, the expression for θ simplifies for

• scalar difference eqns. (∆λ) (i.e., d = 1) to θ = −Ξ′ω(λ∗),

• planar difference eqns. (∆λ) (i.e., d = 2) to θ =
p′0(λ∗)−tr Ξ′ω(λ∗)

tr Ξω(λ∗)−2 .
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φ∗

λ∗ λ∗

`ω `ω

φ∗Λ Λ

Γ Γ

Γ∗ Γ∗

φ∗

λ∗ λ∗

`ω `ω

φ∗Λ Λ
Γ∗ Γ∗

θ < 0

θ < 0

θ > 0

θ > 0

g30
g11

> 0 g30
g11

> 0

g30
g11

< 0 g30
g11

< 0

Figure 6: Local subcritical (top) and supercritical (bottom) pitchfork bifurcation of ω-periodic solutions to
(∆λ) described in Cor. 4.5 and exchange of stability between the trivial branch Γ∗ and Γ from unstable
(dashed line) to asymptotically stable (solid) covered in Prop. 4.6

4.3. Global bifurcations
This subsection tackles one-parameter bifurcations and we assume beyond Λ = R

that the state space Ω for (∆λ) is the whole Rd. We suppose that there exists a global
solution branch C∗ ⊆ `ω × R for the ω0-periodic difference eqn. (∆λ) given as graph
of a C1-function φ : R→ `ω .

We consider the continuous function δω : R→ R,

δω(λ) := det (Id − Ξω(λ)) (4.11)

and note that sign changes of δω indicate bifurcations of ω-periodic solutions:

Theorem 4.7 (global bifurcation). If there are parameters λ1 < λ2 satisfying a sign
change δω(λ1)δω(λ2) < 0, then there exists a parameter value λ∗ ∈ (λ1, λ2) such
that φ(λ∗) ∈ `ω bifurcates at λ∗. More precisely, a connected set C ⊆ `ω × R of
ω-periodic solutions to (∆λ) branches off from C∗ at (φ(λ∗), λ∗) with precisely one of
the properties (cf. Fig. 7):

(a) C is unbounded in `ω × R

(b) C is bounded and intersects the solution branch C∗ at another point.

We point out that merely a zero of the function δω is not sufficient for a bifurcation;
see [3, p. 82, Example 1.6] for an example.
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φ∗ R R

C C

λ∗ λ∗

`ω `ω

φ∗

(a) (b)

C∗ C∗

λ∗

Figure 7: Structure of the global branch C (dashed) of ω-periodic solutions to (∆λ) bifurcating from C∗

(solid) according to Thm. 4.7: The set C is either unbounded (case (a), left) or an eqn. (∆λ∗ ) for at least
one λ∗ 6= λ∗ possesses an ω-periodic solution φ(λ∗) on C (case (b), right)

5. Applications

5.1. Scalar models
Bifurcations in scalar, i.e. 1-dimensional, periodic difference equations were pre-

viously studied in e.g. [20, 4] (logistic equation) or [7, 5] (Beverton-Holt). We conse-
quently focus on other models:

5.1.1. An equation of Castillo-Chavez and Brauer
We consider an ω0-periodic version

xk+1 = fk(xk, λ) :=
rk(λ)x2

k

ak(λ) + x2
k

(5.1)

of a difference equation suggested in [8, p. 53] to describe populations which die out
completely in each generation and have birth rates saturating for large population sizes.
Suppose parameters rk(λ) := ρ+ λρk and ak(λ) := α+ λαk with reals α, ρ > 0 and
ω0-periodic real sequences (αk)k∈Z, (ρk)k∈Z. We choose λ∗ := 0 as critical parameter
value, (5.1) becomes autonomous, and we obtain two nontrivial fixed points x∗− ≤ x∗+,

x∗± :=
ρ± w

2
, w :=

√
ρ2 − 4α,

provided ρ2 ≥ 4α. In particular, for ρ2 = 4α both fixed points coincide with x∗ = ρ
2 .

The corresponding linearizations read as

D1fk(x∗±, 0) =
4α

ρ2 ± ρw =: ζ±, ζ+ ∈ (0, 1), ζ− ∈ (1,∞),

we therefore have D1fk(x∗±, 0) = 1 if and only if α = ρ2

4 , and otherwise x∗+ is
asymptotically stable, while x∗− is unstable. Referring to Thm. 3.1, the hyperbolicity
condition ρ2 > 4α ensures that these fixed points (including their stability properties)
persist as ω0-periodic solutions for small values of the parameter λ 6= 0 (cf. Fig. 8).
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Figure 8: Solution sequences (dotted) of the 4-periodic difference eqn. (5.1) with parametersα = 1, ρ = 2.1
and sequences αk = (−1)k , ρk = cos(π

2
k):

λ = −0.5 (left): Fixed-points persist as 4-periodic solutions
λ = 0 (middle): Stable fixed point x∗+ (blue) and unstable fixed-point x∗− (red) in the autonomous case
λ = 0.5 (right): Fixed-points persist as 4-periodic solutions

Since the nonzero asymptotically stable solutions to (5.1) are a perturbation of x∗+,
we are interested in attenuation or resonance near this hyperbolic fixed point. Using
the formulas from Rem. 3.2, which become

ξκ =
ζκ+ω0−1
+

1− ζω0
+

κ+ω0−1∑
j=κ

(ρ+ w)ρj − 2αj

2ρζj+
,

m′(0) =
1

ω0

κ+ω0−1∑
k=κ

κ+ω0−1∑
l=κ

(
ζk+ω0−1
+

1− ζω0
+

+ ζk−1
+

)
(ρ+ w)ρl − 2αl

2ρζl+

=
1

2ρω0

(
1− 2ζω0

+

ζ+ − ζ2
+

) κ+ω0−1∑
l=κ

(ρ+ w)ρl − 2αl

ζl−κ+

,

one obtains that resonance occurs locally for m′(0) > 0, while the dual inequality
m′(0) < 0 implies attenuation (cf. Fig. 9).
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Figure 9: ρ-α-plane to illustrate resonance (shaded region) at the asymptotically stable fixed point x∗+ of
(5.1) for different periods: ω0 = 2 (left), ω0 = 3 (middle), ω0 = 4 (right) and αk = cos

(
2π
ω0
k
)
,

ρk = sin
(
2π
ω0
k
)

We now tackle the nonhyperbolic case ρ2 = 4α and the behavior of the unique
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nontrivial fixed point x∗ = ρ
2 for parameters λ 6= 0. First, as a side note, if we

interpret ρ as bifurcation parameter, this indicates a supercritical fold bifurcation of the
nontrivial fixed point x∗ = ρ

2 in the autonomous problem xk+1 =
ρx2

k

α+x2
k

.
Yet, in order to illustrate the flexibility of Thm. 4.1, choose α, ρ > 0 according to

the critical case ρ2 = 4α and consider the general situation of an ω0-periodic difference
equation with arbitrary period ω0 ∈ N and λ as bifurcation parameter. We obtain

Ξω(λ∗) =

κ+ω0−1∏
j=κ

D1fk(x∗, λ∗) = 1 for all κ ∈ Z,

and D2fk(x∗, λ∗) = ρk
2 − αk

ρ , D2
1fk(x∗, λ∗) = − 2

ρ for k ∈ Z. By choosing ξ1 =

ξ′1 = 1 we arrive at the bifurcation indicators

g01 =

ω0−1∑
j=0

(
ρj
2
− αj

ρ

)
, g20 = −2ω0

ρ
< 0.

This allows us to conclude from Thm. 4.1 that the nonhyperbolic fixed point x∗ = ρ
2

is the unique ω0-periodic solution of (5.1) for λ = 0. Furthermore, locally near λ = 0
one has an ω0-periodic fold bifurcation (cf. Fig. 10):

• Subcritical bifurcation: If
∑ω0−1
j=0

αj

ρ >
∑ω0−1
j=0

ρj
2 , then (5.1) possesses no ω0-

periodic solution for λ > 0 and exactly two distinct ω0-periodic solutions for
λ < 0.

• Supercritical bifurcation: If
∑ω0−1
j=0

αj

ρ <
∑ω0−1
j=0

ρj
2 , then (5.1) possesses no

ω0-periodic solution for λ < 0 and exactly two distinct ω0-periodic solutions for
λ > 0.

Due to Cor. 4.2, one of these ω0-periodic solutions to (5.1) is asymptotically stable,
while the other one is unstable.
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Figure 10: Solution sequences (dotted) of the 40-periodic difference eqn. (5.1) with parameters α = 1,
ρ = 2 and sequences αk = 1 + sin( π

20
k) and ρk = sin(π

2
k) yielding g10 = 20 and thus a subcritical

fold bifurcation of 40-periodic solutions:
λ = −0.2 (left): Stable 40-periodic solution (blue) and unstable 40-periodic solution (red)
λ = −0.1 (middle): Stable 40-periodic solution (blue) and unstable 40-periodic solution (red)
λ = 0 (right): Semistable fixed point x∗+ = 1 in the autonomous situation
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5.1.2. Autonomous Ricker equation with immigration
In this subsection, we aim to illustrate the global results given in Thms. 3.3, 4.3 and

4.7. Thereto, consider the autonomous Ricker equation

xk+1 = f(xk, λ) := xke
r(1−λxk) (5.2)

with the intrinsic growth rate r > 0 and the carrying capacity λ−1 ∈ R. Omitting
this biological interpretation, we allow arbitrary parameters λ ∈ R in (5.2). It has two
branches of 1-periodic, i.e. constant solutions

φ1(λ)k ≡ 0, φ2(λ)k ≡
{

1
λ , λ 6= 0,

0, λ = 0
on Z,

which coincide for the parameter value λ = 0. Moreover, for the derivative it is
D1f(φ1(λ)k, λ) ≡ er and D1f(φ2(λ)k, λ) ≡ 1 − r. Consequently, both fixed point
branches turn out to fulfill the weak hyperbolicity condition (3.1) and Thm. 3.3(a) ap-
plies for every parameter λ∗ ∈ R:

• For the trivial branch φ1(λ) = 0 one has

C− = {(0, λ) ∈ R× R : λ < λ∗} , C+ = {(0, λ) ∈ R× R : λ > λ∗} .

• For the nontrivial branch φ2(λ), λ∗ 6= 0, it is

C− =

{{
(λ−1, λ) ∈ R× R : λ ∈ (0, λ∗)

}
, λ∗ > 0,{

(λ−1, λ) ∈ R× R : λ < λ∗
}
, λ∗ < 0,

C+ =

{{
(λ−1, λ) ∈ R× R : λ > λ∗

}
, λ∗ > 0,{

(λ−1, λ) ∈ R× R : λ ∈ (λ∗, 0)
}
, λ∗ < 0.

Note that for a Ricker difference eqn. (5.2) both components C−, C+ are unbounded
(cf. Fig. 11(left)). This situation changes, if we add an immigration term to (5.2) and are
interested in the global structure of the solutions with periods ω > 1. More precisely,
consider the Ricker equation with immigration

xk+1 = f(xk, λ) := xke
λ(1− xk

K ) + ι, (5.3)

where the intrinsic growth rate λ > 0 can vary, while the carrying capacity K > 0 and
the immigration term ι > 0 are kept fixed. The equilibria to (5.3) cannot be expressed
as elementary functions of λ,K, ι. Thus, we numerically computed the ω-periodic
solutions to (5.3) from the fixed point eqn. ϕλ(ω, 0, x) = x and displayed the results
in Fig. 11(middle, right).

This illustrates that solutions with minimal period ω = 4 (respectively ω ∈ {4, 8})
form a bounded connected set (cf. Thm. 3.3(b)) in `ω × R. Also the global statements
of Thm. 4.7 (or Thm. 4.3(c) and (d)) are illuminated:

• Two unbounded branches of 2-periodic solutions to (5.3) bifurcate from the fixed
point branch given by x = f(x, λ) in a pitchfork way.
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Figure 11: λ-x-plane to illustrate the solution set to the fixed-point eqn. ϕλ(ω, 0, x) = x for the Ricker
difference eqns. (5.2) (left) and (5.3) (middle, right) with K = 1 and immigration ι = 0.06:
Left: Unbounded components of fixed points for (5.2) under variation of λ
Middle: Fixed points for ω = 2 (solid) and ω = 4 (dashed)
Right: Fixed points for ω = 6 (solid) and ω = 8 (dashed)

• As a secondary bifurcation, bounded branches of 4-periodic solutions to (5.3)
bifurcate off from the 2-periodic solutions. Fig. 11(right) even indicates a tertiary
bifurcation of a bounded branch of 8-periodic solutions. All of them appear of
pitchfork-type.

5.1.3. Periodic Ricker equation
Let λ,K > 0 and (rk)k∈Z be an ω0-periodic sequence with positive values. We

consider the ω0-periodic Ricker equation

xk+1 = f(xk, λ) := xke
λrk(1− xk

K ), (5.4)

where the growth rate λrk > 0 is allowed to vary periodically. It has the constant
solution branches φ0(λ) ≡ 0 and φ(λ) ≡ K for all λ > 0. Both can be interpreted as
ω1-periodic with an ambient ω1 ∈ N. Due to

D1fk(0, λ) = eλrk > 1, D1fk(K,λ) = 1− λrk for all k ∈ Z, λ ∈ Λ,

we see that the trivial solution is always unstable. Moreover, for later use we record
that linearization along the nontrivial branch φ(λ) yields

Φλ(0, j) =

j−1∏
i=0

1

1− λri
, Φλ(j − 1, 0) =

{
1

1−λr−1
, j = 0,∏j−2

i=0 (1− λri), j > 0.
(5.5)

By Thm. 2.3 the stability of φ(λ) depends whether the absolute value of

Ξω0
(λ)

(5.5)
=

ω0−1∏
j=0

(1− λrj)
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is < 1 (asymptotic stability) or > 1 (instability). Examples of critical values λ∗ > 0
for the parameter λ such that Ξω0(λ∗) = ±1 are summarized in the following table1

λ∗ Ξω0
(λ∗) = 1 Ξω0

(λ∗) = −1

ω0 = 1 − 2
r0

ω0 = 2 r0+r1
r0r1

−
and let us distinguish two cases: If there exists a λ∗ > 0 such that

(I) Ξω0
(λ∗) = 1, we choose ω1 = 1 (i.e. interpret φ(λ) as 1-periodic solutions) and

obtain ω := lcm(ω0, ω1) = ω0.

(II) Ξω0
(λ∗) = −1, choose ω1 = 2 (i.e. interpret φ(λ) as 2-periodic solutions) and

set ω := 2ω0. Hence, it is Ξω(λ∗) = 1.

In both cases, thanks to D1D2fk(K,λ) = −rk for all k ∈ Z, λ > 0, the transversality
condition (4.7) becomes

g11
(5.5)
= −

ω∑
j=1

rj
1− λ∗rj

(we have chosen ξ1 = ξ′1 = 1). Thus, in the generic situation g11 6= 0 our Thm. 4.3
shows that in every neighborhood of a critical constant solution (K,λ∗) to eqn. (5.4)
there exists another ω-periodic solution. In case Ξω0(λ∗) = −1, bifurcating solutions
have twice the period of (5.4) — we have a flip bifurcation. Thanks to Prop. 4.6 and
the principle of exchange of stability, the stability of the bifurcating solution branch is
determined by

Ξ′ω(λ∗) = −
ω∑
j=1

rj
1− λ∗rj

.

In order to classify the kind of bifurcation, we get

D2
1fk(K,λ) = λ

K rk(λrk − 2)

for all λ > 0 and k ∈ Z. For a critical parameter value λ∗ > 0 this yields

g20 = −λ
∗

K

ω∑
j=1

2− λ∗rj−1

1− λ∗rj−1
rj−1

j−2∏
i=0

(1− λ∗ri)

and by Cor. 4.4 the generic condition g20 6= 0 ensures a transcritical bifurcation of a
solution branch consisting of ω-periodic solutions. To determine whether resonance or
attenuation is on hand, we employ (4.9) and obtain

m′(λ∗) = − g20

ωg11

ω−1∑
k=0

k−1∏
j=0

(1− λ∗rj)

1Using computer algebra it is also possible on a symbolic level to obtain Ξ−1
ω0 ({−1}) for periods ω0 ∈

{3, 4, 5} and the preimage Ξ−1
ω0 ({−1}) for ω0 ∈ {3, 4}. For ω0 = 2 there are no positive values of r0, r1

such that Ξω0 (λ∗) = −1.
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indicating resonance for m′(λ∗) > 0 and attenuation for m′(λ∗) < 0.
Finally, we consider the degenerate case g20 = 0. For the partial derivative we

obtain
D3

1fk(K,λ) =
(
λ
K

)2
r2
k(3− λrk)

for λ > 0, k ∈ Z and with a critical value λ∗ > 0 it is

g30 =

(
λ∗

K

)2 ω∑
j=1

3− λ∗rj−1

1− λ∗rj−1
r2
j−1

j−2∏
i=0

(1− λ∗ri)2.

Then Cor. 4.5 and g30 6= 0 guarantees a pitchfork bifurcation of a solution branch
consisting of ω-periodic solutions.

Note that our bifurcation formulas for g11, g20, g30 and Ξ′ω(λ∗),m′(λ∗) are explicit
and can be evaluated directly, if the critical parameter value λ∗ > 0 is known. This,
however, requires to solve the ωth order polynomial eqn. Ξω(λ) = ±1 and is only
possible numerically (for ω > 4). For the example of an ω0-periodic sequence

rk :=

{
2, k mod ω0 = 0,

1, k mod ω0 6= 0
(5.6)

we have illustrated such a numerical approach in Figs. 12 and 13.
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Figure 12: Solution sequences illustrating a transcritical bifurcation in the 4-periodic Ricker eqn. (5.4) with
(rk)k∈Z given in (5.6) and K = 1. The critical parameter value λ∗ = 1.74 yields Ξ4(λ∗) = 1 and
moreover, the bifurcation indicators Ξ′4(λ∗) = 4.87, g11 = −4.87, g20 = 3.30
λ = 1.7 (left): Asymptotically stable constant solution K = 1
λ = 1.8 (right): Asymptotically stable 4-periodic solution

Nevertheless, the 2-periodic case allows explicit computations:

Example 5.1. In the special case of a 2-periodic Ricker difference eqn. (5.4) one has
Ξ2(λ∗) = 1 for λ∗ = r0+r1

r0r1
. The bifurcation indicators become

Ξ′ω(λ∗) = r0 + r1 > 0, g11 = r0 + r1 > 0,

g20 =
(r1 − r0)(r0 + r1)2

Kr0r2
1

, g30 = −2(r2
0 − r0r1 + r2

1)(r0 + r1)2

K2r0r3
1

< 0,

of whom only g20 can change sign: For λ < r0+r1
r0r1

the constant solution K to (5.4) is
asymptotically stable, while it becomes unstable for λ > r0+r1

r0r1
.
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Figure 13: Solution sequences illustrating a period-doubling pitchfork bifurcation in the 5-periodic Ricker
eqn. (5.4) with (rk)k∈Z given in (5.6) and K = 1. The parameter value λ∗ = 1.79 yields Ξ5(λ∗) = −1
and with ω = 10 the bifurcation indicators Ξ′10(λ∗) = 11.69, g11 = −11.69, g20 = 0 and g30 = 141.33
λ = 1.75 (left): Asymptotically stable constant solution K = 1
λ = 1.95 (right): Asymptotically stable 10-periodic solution

r0 6= r1 : Transcritical bifurcation: For λ 6= r0+r1
r0r1

there is exactly one non-constant 2-
periodic solution. It is unstable for λ < r0+r1

r0r1
and asymptotically stable for

λ > r0+r1
r0r1

. By (4.9) it is m′(λ∗) =
r20−r

2
1

2Kr0r1

(
1 − r0

r1

)
< 0 and therefore one

locally always has attenuation due to the bifurcation.

r0 = r1 : Supercritical pitchfork bifurcation: The critical parameter becomes λ∗ = 2
r0

and
(5.4) is autonomous. For λ < 2

r0
the constant solution K is locally the unique

2-periodic solution. For λ > 2
r0

there are precisely two 2-periodic solutions dis-
tinct fromK, which are asymptotically stable. This is the known period doubling
bifurcation in the autonomous Ricker model.

5.1.4. Ricker equation with proportional harvesting
We consider a scalar Ricker model under proportional harvesting

xk+1 = fk(xk, λ) := xke
r(1−xk

K ) − hk(λ)xk (5.7)

with constant intrinsic growth rate r > 0 and carrying capacity K > 0. The harvesting
function hk(λ) > 0 is ω0-periodic with ω0 > 1 and of the form

hk(λ) :=

{
λ, k mod ω0 = ω0 − 1,

γ, k mod ω0 6= ω0 − 1

with a fixed γ ∈
[
0, er − e

r
1−ω0

)
and a bifurcation parameter λ > 0. For γ = 0 this

means that harvesting takes place at the end of the periodicity interval. For the trivial
solution φ∗ = 0 to (5.7) we have the transition mapping

Φλ(k, 0) =

{
(er − γ)k, 0 ≤ k < ω0,

(er − γ)ω0−1(er − λ), k = ω0

and in particular the period map Ξω0
(λ) = (er − γ)ω0−1(er −λ) having the derivative

Ξ′ω0
(λ) ≡ −(er − γ)ω0−1 < 0. The situation Ξω0

(λ∗) = 1 is given for the critical
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parameter value λ∗ = er− (er−γ)1−ω0 > 0 and we deduce the bifurcation indicators

g11 = D1D2fω0−1(0, λ∗)Φλ∗(ω0 − 1, 0) +

ω0−1∑
j=1

D1D2fj−1(0, λ∗)D1fj−1(0, λ∗)

= −(er − γ)ω0−1 < 0,

g20 = D2
1fω0−1(0, λ∗)Φλ∗(ω0 − 1, 0)2 +

ω0−1∑
j=1

D2
1fj−1(0, λ∗)Φλ∗(j, 0)

= −2rer

K

(
(er − γ)2ω0−2 + (er − γ)

1− (er − γ)ω0−1

1− er + γ

)
< 0.

By Thm. 4.3 and its Cor. 4.4 this ensures that the trivial solution φ∗ to (5.7) bifurcates
into an ω0-periodic solution in a transcritical fashion. Referring to Prop. 4.6, φ∗ is
unstable for λ < λ∗ and becomes asymptotically stable as the harvesting rate λ sur-
passes λ∗; during this process, the ω0-periodic solution looses asymptotic stability and
becomes unstable.

This result agrees with biological intuition: Since λ∗ is strictly increasing in ω0

(with limit er as ω0 → ∞), the harvesting rate λ < λ∗ can be larger, the less often
harvesting takes place, without forcing the population to vanish.

5.2. Higher-dimensional models

Our techniques are applicable to difference eqns. (∆λ) in Rd with d > 1.

5.2.1. Planar Ricker model
Let us consider a planar Ricker competition model suggested in [13]. A detailed in-

vestigation for the autonomous case was given in [30], so that we proceed to a periodic
situation. However, by no means it is the goal of this section to give a rigorous stabil-
ity analysis in the most general setting. We rather aim to demonstrate our bifurcation
results and retreat to a simple special case. Hence, let us consider the planar difference
equation (

x1
k+1

x2
k+1

)
= fk(xk, λ) :=

(
x1
ke

3λrk(1− 2
3x

1
k−

1
3x

2
k)

x2
ke

3rk(1− 1
3x

2
k−

2
3x

2
k)

)
(5.8)

with coordinates xk = (x1
k, x

2
k) and an ω0-periodic sequence (rk)k∈Z in (0,∞). Its

constant solutions are independent of the bifurcation parameter λ > 0:

• First, the trivial equilibrium (0, 0) is always unstable, since it has the Floquet

spectrum
{
e3λ

∑ω0−1
j=0 rj , e3

∑ω0−1
j=0 rj

}
⊂ (1,∞).

• Due to the Floquet spectrum
{√

e3λ
∑ω0−1

j=0 rj ,
∏ω0−1
j=0 (1− 3rj)

}
also the ex-

clusion equilibrium (0, 3
2 ) is unstable.
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Yet, the other equilibria φ∗1 = ( 3
2 , 0) and φ∗2 = (1, 1) remain interesting for a bifurca-

tion analysis. We know that φ∗1 is always unstable, due to its Floquet spectrum

σω0
(λ) =

{
ω0−1∏
j=0

(1− 3λrj),

√
e3

∑ω0−1
j=0 rj

}
.

An expression for the Floquet spectrum of the coexistence equilibrium φ∗2 for general
ω0 is more involved, and for the sake of an explicit and parallel presentation for both
φ∗1 and φ∗2, we restrict to the simplest nonautonomous situation ω0 = 2 and abbreviate
ρ := r0+r1

r0r1
:

• φ∗1 = ( 3
2 , 0): The critical bifurcation value λ∗1 = ρ

3 yields the Floquet spectrum

σ2(λ∗1) =
{

1,
√
e3(r0+r1)

}
and moreover

N(I2 − Ξ2(λ∗1)) = Re1, N(I2 − Ξ2(λ∗1)T ) = R

2
(√

e3(r0+r1) − 1
)
r0(√

e3r0 − 1
)

(r0 + r1)

 .

With this information, the bifurcation indicators become

g11 = 6r0

√
e3(r0+r1) − 1√
e3r0 − 1

6= 0, g20 =

√
e3(r0+r1) − 1√
e3r0 − 1

4r0

3r1
(r1 − r0)ρ

and Thm. 4.3 guarantees that 2-periodic solutions bifurcate from the extinction
equilibrium φ∗1 at λ = ρ

3 . Provided one is in a nonautonomous situation (i.e. it is
r0 6= r1), our Cor. 4.4 implies a transcritical bifurcation.

• φ∗2 = (1, 1): Above all, the Floquet spectrum reads as

σ2(λ) = {r0

(
2λ2r1 + λ(r1 − 1) + 2r1 − 1

)
± w |r0(1− 2(λ+ 1)r1) + r1| − λr1 − r1 + 1}

with a positive real w :=
√
λ2 − λ+ 1. The corresponding characteristic poly-

nomial from (4.10) has the coefficients

p1(λ) = 2
[
r0

(
−2λ2r1 − λr1 + λ− 2r1 + 1

)
+ (λ+ 1)r1 − 1

]
,

p0(λ) =
[
3λr2

0 − 2(λ+ 1)r0 + 1
] [

3λr2
1 − 2(λ+ 1)r1 + 1

]
.

For λ = ρ
2 − 1 both elements of σ2(λ) have the same value 1 + 3

2r0r1(2 − ρ).
This Floquet multiplier of multiplicity 2 can never be 1, since this requires ρ = 2
and thus a biologically irrelevant parameter λ = 0. On the other hand, the value
λ∗2 = ρ 2−ρ

3−2ρ guarantees the inclusion 1 ∈ σ2(λ∗2), while the remaining Floquet
multiplier is

1∏
j=0

6rj − 3
rj
rj+1
− 6 + 2ρ

3− 2ρ
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(note there that tr Ξ2(λ∗2) is the sum of the Floquet multipliers). The ambient
parameter pairs (r0, r1) yielding this uncritical Floquet multiplier to be inside
the interval (−1, 1) are illustrated in Fig. 14(left). In addition, we have to require
ρ 6∈

[
3
2 , 2
]

in order to enforce λ∗2 > 0. Under these conditions it is

N(I2 − Ξ2(λ∗2)) = R
(
ρ− 2

1

)
, N(I2 − Ξ2(λ∗2)T ) = R

(
2ρ− 3
ρ

)
and our bifurcation indicators become

g11 = r0r1 (3− 2ρ)
2 6= 0 since ρ 6= 3

2
,

g20 = ρ(1− ρ)(r0 − r1)
12r2

1r
2
0 − 9r1r

2
0 + 2r2

0 − 9r2
1r0 + 4r1r0 + 2r2

1

r0r2
1

.

Thus, in any case Thm. 4.3 ensures that the coexistence equilibrium φ∗2 bifurcates
into a branch of 2-periodic solutions at λ = ρ 2−ρ

3−2ρ . Provided ρ 6= 1 and r1 6= r0,
by Cor. 4.4 this happens in a transcritical way. A complement of the parameters
(r0, r1) for which our results hold, is illustrated in Fig. 14(left).
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Figure 14: Admissible pairs (r0, r1) ∈ (0,∞)2 for the planar Ricker map (5.8): The shaded region consists
of parameter pairs (r0, r1) such that σ2(λ∗2) \ {1} ⊆ (−1, 1) (left), and λ∗2 ≤ 0 or g20 = 0 (right)

Finally, thanks to Prop. 4.6, the stability of the bifurcating branch can be obtained
from the expression p′0(λ∗2)+p′1(λ∗2)

2+p1(λ∗2) = − (r0+r1)(3−2ρ)2

2(3−3ρ+ρ2) < 0 and we see that
the coexistence equilibrium φ∗2 looses its asymptotic stability as the parameter
λ grows through the value ρ 2−ρ

3−2ρ , while the bifurcating branch is unstable for
λ < ρ 2−ρ

3−2ρ and becomes asymptotically stable for λ > ρ 2−ρ
3−2ρ .

The symmetry in Fig. 14 illustrates the expected invariance of our results under permu-
tation of the sequence values r0 and r1.
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5.2.2. A juvenile/adult Ricker model
Our final example is a particular periodic generalization of the Ricker-like com-

petition model from [13], where individuals from one of two species x and y under
consideration can be characterized by their reproductive maturity. It reads asx1

k+1

x2
k+1

x3
k+1

 = fk(xk, λ) :=

λx2
ke
−c11x2

k−c12x
3
k

µkx
1
k

bx3
ke
−c21x1

k−c22x
3
k

 (5.9)

and x1
k, x

2
k denote the numbers of juveniles resp. adults of a species x at time k, while

species y with population size x3
k remains unstructured. All occurring parameters

c11, c12, c21, c22 are assumed to be positive, b > 1, (µk)k∈Z is an ω0-periodic sequence
in (0, 1) and λ > 0 will be our bifurcation parameter.

In [13] it is shown that (5.9) has the exclusion equilibrium φ∗ = (0, 0, ln b
c22

) with
corresponding linearization

D1fk(φ∗, λ) =

 0 λb
− c12c22 0

µk 0 0
− c21c22 ln b 0 1− ln b

 .

Rather than giving an extensive stability analysis as in [13], where also other equilibria
in the autonomous case are considered, we restrict to φ∗. From the form of the period
matrix Ξω0

(λ) ∈ R3×3 (e.g. for even ω0 it is lower triangular), we deduce the Floquet
spectrum

σω0
(λ) = {(1− ln b)ω0 , ν−(λ), ν+(λ)}

with the Floquet multipliers

ν−(λ) := b−
ω0c12
2c22 λ

ω0
2

−
√∏ω0−1

j=0 µj , ω0 is odd,∏ω0
2
j=0 µ2j , ω0 is even,

ν+(λ) := b−
ω0c12
2c22 λ

ω0
2


√∏ω0−1

j=0 µj , ω0 is odd,∏ω0
2
j=0 µ2j+1, ω0 is even.

This explicit form of σω0(λ) easily yields sufficient conditions for the stability of φ∗

depending on λ. To give an impression of a bifurcation analysis, we restrict the case
ω0 = 3 and make the simplifying assumptions c := c11 = c12 = c21 = c22 and
b =
√
e. Then the period matrix becomes

Ξ3(λ) =

 0 λ2µ1

e 0
λµ0µ2√

e
0 0

− λµ0

2
√
e
− 1

8 − λ
4
√
e

1
8


and the Floquet spectrum reduces to

σ3(λ) =

{
1

8
,−λ

3/2√µ
e3/4

,
λ3/2√µ
e3/4

}
, (5.10)
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were we abbreviated µ := µ0µ1µ2. Thus, we get a Floquet multiplier 1 for the critical
parameter λ∗ =

√
e

3
√
µ and particularly σ3(λ∗) =

{
1
8 ,−1, 1

}
. Moreover,

N(I3 − Ξ3(λ∗)) = R

 7µ1
3
√
µ

7µ

−4µ0µ1 − 3
√
µµ1 − 2 3

√
µ2

 ,

N(I3 − Ξ3(λ∗)T ) = R

 3
√
µ2

µ1

0


and we arrive at the bifurcation indicators

g11 = 21µ4/3

√
e(4µ0µ1+ 3

√
µµ1+2 3

√
µ2)

> 0,

g20 = 14cµ
7 3
√
µ2(1−µ2)+2 3

√
µµ2+µ1( 3

√
µ+µ2)−µ0(µ1(7µ2−4)−µ2(2−7 3

√
µ)−4 3

√
µ)

(4µ0µ1+ 3
√
µµ1+2 3

√
µ2)

2 .

Since the transversality condition (4.7) is always fulfilled, Thm. 4.3 shows that a branch
of 3-periodic solutions bifurcates at λ =

√
e

3
√
µ from the constant solution φ∗. Gener-

ically this bifurcation is transcritical (cf. Cor. 4.4) and we have plotted the triples
(µ0, µ1, µ2) for which the necessary condition g20 = 0 is violated in Fig. 15 (left).
Furthermore, from (5.10) one sees that φ∗ looses its asymptotic stability at λ∗ =

√
e

3
√
µ

2 4 6 8 10

-1.0

-0.5

0.5

1.0

Figure 15: Triples (µ0, µ1, µ2) ∈ (0,∞)3 where the condition g20 is violated (left) and zeros of the
function δω from Thm. 4.7 for ω0 = 7 (solid) and ω0 = 8 (dashed) (right)

and becomes unstable.
To detect bifurcation values of λ for periods ω0 > 0 one can make use of Thm. 4.7.

We illustrate this by means of the brief

Example 5.2. Choosing the ω0-periodic sequence

µk :=

{
1/2, k mod ω0 = 0,

1/3, k mod ω0 6= 0,
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in Fig. 15(right) we plotted the graphs of δω0

1+|δω0 | in order to indicate bifurcation values,

where δω0
is the function (4.11) from Thm. 4.7 corresponding to the constant solution

branch φ∗. Here, the special case ω0 = 7 yields one bifurcation value, while ω0 = 8
guarantees two bifurcation values for ω0-periodic solutions.

6. Perspectives

Our global continuation results can be generalized to periodic difference eqns. (∆λ)
with infinite-dimensional state spaces. Since their proofs are based on the Leray-
Schauder degree, it suffices to additionally assume that the right-hand side of (∆λ)
is completely continuous — a situation often met for integro-difference equations.

Although our bifurcation criteria are basically applications of more abstract and
meanwhile classical, as well as celebrated results due to Crandall-Rabinowitz (our ver-
sions hail from [25, 46]), they deserve certain remarks:

• A situation, where the generic assumption g10 6= 0 of our fold bifurcation
Thm. 4.1 does not hold, can be tackled using [29, Thm. 2.1].

• In infinite-dimensional spaces (and for completely continuous right-hand sides
of (∆λ)), the global statements of Thm. 4.3 require an adjustment: The assertion
(c), as well as the alternatives (e1) and (e2) have to be replaced by ”C (resp. the
branch C±) is not compact in `ω(Ω)× Λ” (see [45, Rem. 4.2]).

• For a violated transversality condition g11 6= 0, the structure of the bifurcating
solutions can be determined using a Newton polygon technique (see [25, pp. 112,
Sect. I.15] for details).

• In applications one rarely knows a given solution branch in advance. Thus, it
might be desirable to obtain transcritical- or pitchfork-like bifurcation patterns
using local information at the critical parameter value λ∗ only. This can be done
using [29, Cor. 2.3].

The examples from Sect. 5 had essentially a demonstrative character and were kept
short due to the overall length of the paper. Nevertheless, without doubt a more com-
prehensive analysis of them might be of interest.

As a concluding aspect we briefly discuss the situation of continuous time models
of parameter-dependent periodic ordinary differential equations

ẋ = F (t, x, λ) (Dλ)

with a sufficiently smooth F : R × Ω × Λ → Rd and F (t + ω0, ·) ≡ F (t, ·) on the
real axis R for some basic period ω0 > 0. On the one hand, its periodic solutions
can be detected using fixed or periodic points of the corresponding ω0-map, i.e. the
autonomous difference equation

xk+1 = f(xk, λ), f(x, λ) := φλ(ω0; 0, x),
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where φλ is the general solution to (Dλ). This transition allows to apply our above
time-discrete results to deduce continuation and bifurcation properties for (Dλ). On
the other hand, one can also directly carry over the proofs given below in Sect. 7.1 to
continuous time problems (Dλ). Basically, the resulting conditions contain integrals∫ τ+ω

τ
rather than sums

∑κ+ω
j=κ and the complex unit circle has to be replaced by the

imaginary axis.

7. Appendix

These appendices contain rigorous proofs for our results in Sects. 2–4, as well as
their mathematical background and the required functional-analytical machinery.

7.1. Proofs — Periodic difference equations

Although we proceed according to the previous numeration, the proof of Prop. 2.2
is postponed to the end of this section and we begin with

Proof of Prop. 2.1. Let φ(η), η ∈ U , solve eqn. (gη) with minimal period ω.
(I) We begin with a preparation on the robustness of injectivity: Given λ, λ̄ ∈ Λ

with g(φ∗k, λ) = g(φ∗k, λ̄), due to the mean value theorem one has the representation∫ 1

0

D2g(φ∗k, λ+ t(λ̄− λ)) dt(λ̄− λ) = g(φ∗k, λ̄)− g(φ∗k, λ) = 0

and our assumption (2.3) immediately leads to λ − λ̄ = 0. Thus, the linear mappings∫ 1

0
D2g(φ∗k, λ + t(λ̄ − λ)) dt ∈ L(Rp,Rd) are one-to-one and as finite-dimensional

operators also bounded below by [1, p. 70, Thm. 2.5]. Thanks to the continuity of
the branch φ, [1, p. 70, Lemma. 2.4(2)] allows us to deduce that

∫ 1

0
D2g(φ(η)k, λ +

t(λ̄ − λ)) dt is bounded below (and injective) for every sequence ν ∈ Bρ(ν∗) with a
sufficiently small ρ > 0. Therefore, since we have∫ 1

0

D2g(φ(η)k, λ+ t(λ̄− λ)) dt(λ̄− λ) = g(φ(η)k, λ)− g(φ(η)k, λ̄) for all k ∈ Z,

the assumption g(φ(η)k, λ) = g(φ(η)k, λ̄) enforces λ = λ̄.
(II) Due to the limit relation limν→ν∗ φ(ν) = φ∗ also φ∗ is ω-periodic and thus ω

is a multiple of ω1; this shows (a). On the other hand, we have

g(φ(η)k, ηk) = φ(η)k+1 = φ(η)k+ω+1 = g(φ(η)k+ω, ηk+ω) = g(φ(η)k, ηk+ω)

for all k ∈ Z, and step (I) guarantees νk+ω = νk for parameter sequences ν ∈ Bρ(ν∗).
Since ν has the minimal period ω0, we conclude that ω must be a multiple of ω0. In
particular, φ(ν) is lcm {ω0, ω1}-periodic and we have ω = lcm {ω0, ω1}.

Proof of Thm. 2.3. Let λ ∈ Λ be fixed. Since the dichotomy spectrum of (Vλ) is

Σ(λ) =
{

ω
√
|ν| : ν ∈ σω(λ) \ {0}

}
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(see [38, Ex. 2.8]), we obtain:
(a) It is Σ(λ) ⊆ (0, 1) and the claim follows from [37, Prop. 3.9(b)].
(b) Here Σ(λ) contains an element with modulus greater than 1 and thus the asser-

tion results by [37, Prop. 3.10(a)].

The essential tool for our approach is an equivalent formulation of an ω0-periodic
difference eqn. (∆λ) depending on λ ∈ Λ as abstract equation in a space `ω(Ω) resp.
`ω of sequences with ambient period ω ≥ ω0. We equip `ω with the inner product

〈〈φ, ψ〉〉 :=

ω−1∑
k=0

〈φk, ψk〉 for all φ, ψ ∈ `ω,

where 〈·, ·〉 denotes the usual Euclidean inner product on Rd and observe

〈〈φ, ψ〉〉 =

κ+ω−1∑
k=κ

〈φk, ψk〉 for all κ ∈ Z, φ, ψ ∈ `ω. (7.1)

This makes `ω a dω-dimensional real Hilbert space. Moreover, one has the continuous
embedding `ω ↪→ `ω1 for every multiple ω1 of ω ∈ N. The finite dimensionality of `ω
simplifies various of our later global (and topological) arguments drastically.

In the following, suppose Ω ⊆ Rd, Λ ⊆ Rp are open and fk : Ω × Λ → Rd is of
class Cm, m ∈ N. For our abstract calculus it is worth to point out (and not difficult to
see) that `ω(Ω) is an open subset of `ω . Moreover, if ω is a multiple of both ω0 and ω1,
then the mapping G : `ω1(Ω)× Λ→ `ω , pointwise given as

G(φ, λ)k := φk − fk−1(φk−1, λ) for all k ∈ Z

is well-defined and of class Cm. One easily computes the partial derivatives

[D1G(φ, λ)ψ]k = ψk −D1fk−1(φk−1, λ)ψk−1, (7.2)
[Dn1

1 Dn2
2 G(φ, λ)ψn1ηn2 ]k = −Dn1

1 Dn2
2 fk−1(φk−1, λ)ψn1

k−1η
n2 (7.3)

for all φ ∈ `ω1(Ω), λ ∈ Λ, ψ ∈ `ω1 , η ∈ Rp. The integers n1, n2 ∈ N0 in (7.3) have
to fulfill (n1, n2) 6∈ {(0, 0), (1, 0)} and n1 + n2 ≤ m. A precise verification of these
facts follows along the lines of [38, Prop. 2.3], where the corresponding situation with
the space `∞ of bounded sequences is considered. Being finite-dimensional operators,
for ω = ω1 the partial derivatives D1G(φ, λ) ∈ L(`ω) are Fredholm with index 0.

The next result is merely an observation, but crucial for our overall approach. We
leave its straight forward proof to the interested reader.

Theorem 7.1. Given λ ∈ Λ, let ω1 ∈ N and ω be a multiple of ω0 and ω1.

(a) If φ ∈ `ω1(Ω) solves the ω0-periodic difference eqn. (∆λ), then

G(φ, λ) = 0. (Oλ)

(b) Conversely, if φ ∈ `ω(Ω) solves (Oλ), then φ is an ω-periodic solution of (∆λ).
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From now on let us suppose that φ(λ) ∈ `ω(Ω), λ ∈ Λ, denotes a branch of periodic
solutions to (∆λ). Then there exists a close relationship between the Floquet spectrum
σω(λ) of (Vλ) and the eigenvalues of the derivative D1G(φ(λ), λ), when G(·, λ) is
considered as a mapping between sequence spaces of equal period ω:

Proposition 7.2. Let κ ∈ Z, λ ∈ Λ. For υ 6= 1 the assertions are equivalent:

(a) ψ is a nontrivial ω-periodic solution of

xk+1 = 1
1−υD1fk(φ(λ)k, λ)xk, (7.4)

(b) ψ ∈ `ω is an eigenvector of D1G(φ(λ), λ) ∈ L(`ω) with eigenvalue υ,

(c) ψκ ∈ Rd is an eigenvector of Ξω(λ) ∈ Rd×d with eigenvalue (1− υ)ω .

In particular, one has the spectral mapping relation

[1− σ(D1G(φ(λ), λ))]
ω

= σ(Ξω(λ)). (7.5)

Remark 7.1. The kernel of D1G(φ(λ), λ) consists of ω-periodic solutions to the vari-
ational eqn. (Vλ) and consequently allows the representation

N(D1G(φ(λ), λ)) = J−1
κ

(
Φλ(k, κ)N(Id − Ξω(λ))

)κ+ω−1

k=κ
. (7.6)

If all the matrices D1fk(φ(λ)k, λ) ∈ Rd×d, κ ≤ k < κ+ ω, are invertible, then

N(D1G(φ(λ), λ)) = {Φλ(·, κ)ξ ∈ `ω : ξ ∈ N(Id − Ξω(λ))} .

Proof of Prop. 7.2. Let κ ∈ Z, λ ∈ Λ and υ 6= 1.
(a)⇒ (b) Given a solution ψ ∈ `ω \ {0} of (7.4) we get

υψk = ψk −D1fk−1(φ(λ)k−1, λ)ψk−1
(7.2)
= [D1G(φ(λ), λ)ψ]k for all k ∈ Z

and thus υ is an eigenvalue of D1G(φ(λ), λ) with eigenvector ψ.
(b) ⇒ (c) The eigenvector identity implies ψk+1 ≡ 1

1−υD1fk(φ(λ)k, λ)ψk on
the whole integer axis Z and thus ψκ+ω = (1− υ)

−ω
Φλ(κ + ω, κ)ψκ. Due to the

periodicity ψ ∈ `ω this shows (1 − υ)ωψκ = Ξω(λ)ψκ (cf. (2.4)). If we assume
ψκ = 0, then the eigenvalue-eigenvector identity D1G(φ(λ), λ)ψ = υψ and (7.2)
imply ψ = 0 and thus ψ cannot be an eigenvector. Therefore, ψκ 6= 0 and (c) follows.

(c)⇒ (a) results from [35, p. 109, Prop. 3.2.3] applied to (7.4).

Besides the derivative D1G(φ∗, λ∗) also its adjoint plays an important role:

Lemma 7.3. Let φ∗ ∈ `ω1
(Ω), λ∗ ∈ Λ and ω be a multiple of ω0 and ω1. The adjoint

of the partial derivative D1G(φ∗, λ∗) ∈ L(`ω) to G : `ω(Ω) × Λ → `ω is given by
[D1G(φ∗, λ∗)′ψ]k = ψk −D1fk(φ∗k, λ

∗)Tψk+1 for all k ∈ Z.
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Proof of Lemma 7.3. For arbitrary sequences φ, ψ ∈ `ω we obtain

〈〈D1G(φ∗, λ∗)φ, ψ〉〉 (7.2)
=

ω−1∑
k=0

〈φk −D1fk−1(φ∗k−1, λ
∗)φk−1, ψk〉

(7.1)
=

ω−1∑
k=0

〈φk, ψk〉 −
ω−1∑
k=0

〈D1fk(φ∗k, λ
∗)φk, ψk+1〉

=

ω−1∑
k=0

〈φk, ψk −D1fk(φ∗k, λ
∗)Tψk+1〉

= 〈〈φ,D1G(φ∗, λ∗)′ψ〉〉

and consequently the claim.

In addition to (Vλ), we introduce the dual variational equation

xk = D1fk(φ(λ)k, λ)Txk+1 (V ′λ)

of the branch φ(λ) ∈ `ω1(Ω) for (∆λ), and the dual transition operator

Φ′λ(k, l) :=

{
D1fk(φ(λ)k, λ)T · · ·D1fl−1(φ(λ)l−1, λ)T , k < l,

Id, k = l;

thus, Φ′λ(·, κ)ξ : Z−κ → Rd, κ ∈ Z, ξ ∈ Rd with Z−κ := {n ∈ Z : n ≤ κ}, is the
general backward solution of (V ′λ). Moreover, one has the relation

Φ′λ(k, l) = Φλ(l, k)T for all k ≤ l (7.7)

and we arrive at a dual version of Prop. 7.2:

Proposition 7.4. Let κ ∈ Z, λ ∈ Λ. For υ 6= 1 the assertions are equivalent:

(a) ψ is a nontrivial ω-periodic solution of

xk = 1
1−υD1fk(φ(λ)k, λ)Txk+1, (7.8)

(b) ψ ∈ `ω is an eigenvector of D1G(φ(λ), λ)′ ∈ L(`ω) with eigenvalue υ,

(c) ψκ ∈ Rd is an eigenvector of Ξω(λ)T ∈ Rd×d with eigenvalue (1− υ)ω .

Remark 7.2. Using the notation introduced in (4.5), due to Lemma 7.3 and (7.7) the
kernel of D1G(φ(λ), λ)′ allows the representation

N(D1G(φ(λ), λ)′) = Φ̂λ∗(κ, ·)TN(Id − Ξω(λ)T ). (7.9)

For the invertible special case D1fk(φ(λ)k, λ) ∈ GL(Rd), κ ≤ k < κ + ω, this
simplifies to N(D1G(φ(λ), λ)′) =

{
Φλ(κ, ·)T η ∈ `ω : η ∈ N(Id − Ξω(λ)T )

}
.

35



Proof of Prop. 7.4. With given κ ∈ Z, λ ∈ Λ, υ 6= 1 it is not surprising that the proof
resembles the one of Prop. 7.2.

(a)⇒ (b) By Lemma 7.3, every solution ψ ∈ `ω \ {0} to (7.8) satisfies

υψk = ψk −D1fk(φ(λ)k, λ)Tψk+1 = [D1G(φ(λ), λ)′ψ]k for all k ∈ Z,

which implies that ψ is an eigenvector of D1G(φ(λ), λ)′ with eigenvalue υ.
(b)⇒ (c) By the eigenvector relation, ψk = 1

1−υD1fk(φ(λ)k, λ)Tψk+1 and

ψκ = (1− υ)
−ω

Φ′λ(κ, κ+ ω)ψκ+ω
(7.7)
= (1− υ)

−ω
Φλ(κ+ ω, κ)Tψκ.

This relation, in turn, ensures (1− υ)ωψκ = Ξω(λ)Tψκ and therefore (c).
(c)⇒ (a) By assumption we have the relation

(1− υ)ωψκ = Ξω(λ)Tψκ
(7.7)
= Φ′λ(κ, κ+ ω)ψκ = Φ′λ(κ− ω, κ)ψκ

and define ψk := (1− υ)k−κΦ′λ(k, κ)ψκ for all k ∈ Z−κ . Hence, we obtain

ψk−ω = (1− υ)k−κ−ωΦ′λ(k − ω, κ− ω)Φ′λ(κ− ω, ω)ψκ

= (1− υ)k−κΦ′λ(k − ω, κ− ω)ψκ = ψk for all k ∈ Z−κ ;

thus, the sequence ψ is ω-periodic on Z−κ and solves (7.8) by definition. Moreover,
due to ψκ 6= 0 we have that ψ is nontrivial and the sequence ψ can be extended ω-
periodically to an entire solution of (7.8) in `ω .

It remains to provide the promised

Proof of Prop. 2.2. First, the relation (7.5) shows that σω(λ) = σ(Ξω(λ)) does not
depend on the initial time κ ∈ Z. Given n ∈ N, λ ∈ Λ one also has

σnω(λ) = σ(Φλ(κ+ nω, κ))
(2.1)
= σ(Ξω(λ)n) = σ(Ξω(λ))n = σω(λ)n

using the spectral mapping theorem (cf., e.g., [24, p. 45]).

7.2. Proofs — Continuation of periodic solutions

Proof of Thm. 3.1. We solve eqn. (Oλ) in `ω with the implicit function theorem (cf.,
e.g., [46, pp. 150–151, Thm. 4.B]). First, by Thm. 7.1(a) we have G(φ∗, λ∗) = 0. On
the other hand, by virtue of [35, p. 113, Prop. 3.2.10] our assumption 1 6∈ σω(λ∗) im-
plies that for every h ∈ `ω there exists a unique solution ψ ∈ `ω of the inhomogeneous
equation xk+1 = D1fk(φ∗k, λ

∗)xk + hk, i.e. it is

[D1G(φ∗, λ∗)ψ]k = ψk −D1fk−1(φ∗k−1, λ
∗)ψk−1 = hk−1 for all k ∈ Z

(cf. (7.2)). This, in turn, means that D1G(φ∗, λ∗) ∈ L(`ω) is invertible and conse-
quently there exists a unique branch φ(λ) ∈ `ω(Ω) of solutions with G(φ(λ), λ) ≡ 0
on Bρ(λ∗). Using Thm. 7.1(b) we obtain the assertions (a) and (b), except the formula
(3.2) for φ′(λ∗): Concerning this, differentiating the identity φ(λ)k+1 = fk(φ(λ)k, λ)
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on Bρ(λ∗) immediately yields that the derivative φ′(λ∗) solves the linear inhomoge-
neous and ω-periodic difference eqn. xk+1 = D1fk(φ∗k, λ)xk +D2fk(φ∗k, λ). Thanks
to our assumption (3.1), from [35, p. 113, Prop. 3.2.10] we obtain a unique solution in
`ω . Its value at time κ is precisely ξκ and the claimed formula (3.2) follows from the
variation of constants formula.

For assertion (c), we observe that the period matrix Ξω : Λ→ Rd×d is continuous.
Also the eigenvalues of Ξω(λ) depend continuously on λ (see [24, pp. 107–108]), as
well as the Floquet spectrum σω(λ). Hence, for a hyperbolic solution φ∗ to (∆λ∗), i.e.
σω(λ∗) ∩ S1 = ∅, we deduce σω(λ) ∩ S1 = ∅ for λ in a whole neighborhood Bρ(λ∗)
and thus also the φ(λ) are hyperbolic.

Proof of Cor. 3.2. From Thm. 3.1 we get a unique branch φ(λ) ∈ `ω(Ω) consisting of
nω-periodic solutions. By Prop. 2.2 it is 1 6∈ σω(λ)n = σnω(λ) and thus one shows
as in the proof of Thm. 3.1 that (∆λ) has a uniquely determined solution branch in
`nω(Ω), which has to coincide with φ(λ).

Proof of Thm. 3.3. We make use of the global implicit function theorem [25, p. 210,
Thm. II.6.1] to solve the operator eqn. (Oλ). First of all, the mapping G is of the form
G(φ, λ) = φ − F (φ, λ) with the continuous substitution operator F : `ω × Λ → `ω ,
F (φ, λ)k := fk−1(φk−1, λ). Since `ω is finite-dimensional, F (·, λ) is completely
continuous and degree theory due to Leray-Schauder (even Brouwer!) applies.

Thanks to Thm. 7.1(a) we know that G(φ∗, λ∗) = 0 holds. Moreover, as in the
proof of Thm. 3.1 one shows D1G(φ∗, λ∗) ∈ GL(`ω). Then [25, p. 210, Thm. II.6.1]
applies directly and the claim follows using Thm. 7.1(b).

7.3. Proofs — Bifurcations of periodic solutions

In the nonhyperbolic situation 1 ∈ σω(λ∗) we tackle the problem (∆λ) or equiv-
alently (Oλ) using the Lyapunov-Schmidt method (see, e.g., [46, 25]). This classical
reduction principle allows an algorithmic formulation:

1. Given the orthonormal vectors ξ1, . . . , ξn ∈ Rd defined in (4.3), we introduce
sequences φi := Φλ∗(κ+ (· − κ mod ω), κ)ξi. Referring to Prop. 7.4, each φi

defines a nontrivial ω-periodic solution to the variational eqn. (Vλ∗); moreover,
φ1, . . . , φn ∈ `ω are linearly independent. Furthermore, with the ω-periodic
sequences ψj := δ·−κ mod ω,0ξj one obtains the orthonormality relations

〈〈φi, ψj〉〉 (7.1)
=

κ+ω−1∑
k=κ

〈Φλ∗(k, κ)ξi, ψj,k〉 = 〈ξi, ξj〉 = δi,j for all 1 ≤ i, j ≤ n,

where δi,j stands for the Kronecker symbol.

2. With the orthonormal vectors ξ′1, . . . , ξ
′
r ∈ Rd from (4.4) and the notation intro-

duced in (4.5), we define the ω-periodic sequences

φ′i := Φ̂λ∗(κ, ·)T ξ′i, ψj := δ·−κ mod ω,0ξ
′
j . (7.10)
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Using Prop. 7.4 we see that φ′1, . . . , φ
′
r ∈ `ω are linearly independent ω-periodic

solutions to the dual variational eqn. (V ′λ∗) satisfying

〈〈φ′i, ψj〉〉 =

κ+ω−1∑
k=κ

〈Φ̂λ∗(κ, k)T ξ′i, ψ
j
k〉 = 〈ξ′i, ξ′j〉 = δi,j for all 1 ≤ i, j ≤ r

and, in addition, the set
{
ψ1, . . . , ψr

}
⊆ `ω is orthonormal.

Our next result allows a convenient representation for R(D1G(φ∗, λ∗)).

Lemma 7.5. Let φ∗ ∈ `ω(Ω) and λ∗ ∈ Λ. With the linear functionals

µi : `ω → R, µi(χ) :=

κ+ω−1∑
j=κ

〈Φ̂λ∗(κ, j)T ξ′i, χj〉 for all 1 ≤ i ≤ r,

one has R(D1G(φ∗, λ∗)) =
⋂r
i=1N(µi).

Proof. Using [46, p. 366, Prop. 8.14(2)] we obtain the equivalences

χ ∈ R(D1G(φ∗, λ∗)) ⇔ χ ∈ N(D1G(φ∗, λ∗)′)⊥

⇔ 〈〈ψ′, χ〉〉 = 0 for all ψ′ ∈ N(D1G(φ∗, λ∗)′)
(7.9)⇔ 〈〈Φ̂λ∗(κ, ·)T ξ′i, χ〉〉 = 0 for all 1 ≤ i ≤ r
(7.1)⇔

κ+ω−1∑
j=κ

〈Φ̂λ∗(κ, j)T ξ′i, χj〉 = 0 for all 1 ≤ i ≤ r

⇔ µi(χ) = 0 for all 1 ≤ i ≤ r ⇔ χ ∈
r⋂
i=1

N(µi),

which verify our claim.

Proof of Thm. 4.1. We determine the zeros of G : `ω(Ω)× Λ→ `ω . Because φ∗ is an
ω-periodic solution of (∆λ∗), we obtain G(φ∗, λ∗) = 0 from Thm. 7.1(a). Moreover,
since 1 is a simple eigenvalue of Ξω(λ∗), referring to the representation (7.6) we see
that N(D1G(φ∗, λ∗)) = span

{
φ1
}

with φ1 = Φλ∗(·, κ)ξ1 (see above). Using the
linear functional µ = µ1 from Lemma 7.5 our assumptions guarantee

µ(D2G(φ∗, λ∗))
(7.3)
= −

κ+ω−1∑
j=κ

〈〈Φ̂λ∗(κ, j)T ξ′i, D2fj−1(φ∗j−1, λ
∗)〉〉 6= 0.

This makes the abstract fold bifurcation result [25, p. 12, Thm. I.4.1] applicable (see
also [36, Thm. A.2]) in the Hilbert space `ω . The claim follows using Thm. 7.1(b).

For later use we formulate a technical tool of independent interest. It addresses the
smooth dependence of real eigenvalues and -vectors on parameters. Thereto, suppose
that Ξω : Λ→ Rd×d is a matrix function of class Cm, for instance a period matrix.
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Theorem 7.6 (perturbation of simple eigenvalues). Let λ∗ ∈ Λ. If ν∗ ∈ R is a simple
eigenvalue for Ξω(λ∗) ∈ Rd×d with corresponding eigenvector x∗ ∈ Rd of norm 1,
then there exist open neighborhoods Λ0 ⊆ Λ of λ∗, U ⊆ R of ν∗ and unique Cm-
functions ν : Λ0 → U , x : Λ0 → Rd such that

(a) (ν(λ∗), x(λ∗)) = (ν∗, x∗),

(b) Ξω(λ)x(λ) = ν(λ)x(λ) for all λ ∈ Λ0,

(c) |x(λ)| ≡ 1 on Λ0.

Proof of Thm. 7.6. We define the Cm-mapping F : Rd × R× Λ→ Rd × R by

F (x, ν;λ) :=

(
Ξω(λ)x− νx
〈x, x〉 − 1

)
.

It satisfies F (x∗, ν∗;λ∗) = (Ξω(λ∗)x∗ − ν∗x∗, |x∗|2 − 1) = (0, 0) and moreover

D(1,2)F (x∗, ν∗;λ∗)

(
x
ν

)
=

(
Ξω(λ∗)x− ν∗x− νx∗

2〈x, x∗〉

)
for all x ∈ Rd, ν ∈ R. Hence, D(1,2)F (x∗, ν∗;λ∗)

(
x
ν

)
=
(

0
0

)
is equivalent to

[Ξω(λ∗)− ν∗Id]x = νx∗ ∈ N, x ∈ N⊥, (7.11)

where we have abbreviated N := N(Ξω(λ∗) − ν∗Id) = span {x∗}. Since ν∗ is a
simple eigenvalue of Ξω(λ∗), the subspace N reduces Ξω(λ∗)− ν∗Id, i.e.,

[Ξω(λ∗)− ν∗Id]N ⊆ N, [Ξω(λ∗)− ν∗Id]N⊥ ⊆ N⊥

and so [Ξω(λ∗) − ν∗Id]x ∈ N ∩ N⊥ = {0} holds. Hence, we arrive at the inclusion
x ∈ N , the right relation in (7.11) leads to x = 0 and with the left relation in (7.11) we
also get ν = 0. Furthermore, it is N(D(1,2)F (x∗, ν∗;λ∗)) = {(0, 0)} and

D(1,2)F (x∗, ν∗;λ∗) ∈ GL(Rd × R).

Hence, the implicit mapping theorem (cf., e.g., [46, pp. 150–151, Thm. 4.B]) implies
the existence of Cm-functions x(λ), ν(λ) with F (x(λ), ν(λ);λ) ≡ 0 satisfying the
assertions.

By Thm. 7.6 we know that a real eigenvalue of, for instance, the period matrix
Ξω(λ) perturbs as a real number under variation of the parameter λ and inherits its
smoothness from the above matrix function Ξω .

Corollary 7.7. Suppose that ν(λ∗) = ±1 is a simple eigenvalue of Ξω(λ∗). If the
characteristic polynomial has the representation (4.10), then

ν′(λ∗) = ∓
∑d
j=0(±1)jp′j(λ

∗)∑d
j=1 j(±1)jpj(λ∗)

.
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Proof. By Thm. 7.6 we have
∑d
j=0 pj(λ)ν(λ)j ≡ det(Ξω(λ) − ν(λ)Id) ≡ 0 on Λ,

where we set pd(λ) :≡ 1. Differentiation w.r.t. λ yields

d−1∑
j=0

p′j(λ)ν(λ)j + ν′(λ)

d∑
j=1

jpj(λ)ν(λ)j−1 ≡ 0.

The claim follows, if we insert the condition ν(λ∗) = ±1.

Proof of Cor. 4.2. Denote the period matrix to the variational equation

xk+1 = D1fk(ψ(s)k, λ(s))xk

along Γ by Ξω(s) and its corresponding Floquet spectrum by σω(s).
By assumption the period matrix Ξω(λ∗) has a simple eigenvalue 1 and using

Thm. 7.6 we see that 1 is contained in a unique Cm−1-curve ν(s) of eigenvalues to
Ξω(s) with ν(0) = 1. Referring to Prop. 7.2 one knows that D1G(ψ∗, λ∗) has the
simple eigenvalue 0. Analogously, in [25, p. 22, Thm. I.7.2] it is shown that 0 is lo-
cated on a unique Cm−1-curve υ(s) of eigenvalues to D1G(ψ(s), λ(s)) with υ(0) = 0
and moreover, [25, p. 26, (I.7.30)] shows υ′(0) = −g20. By Prop. 7.2(c) we have
the relation ν(s) = (1 − υ(s))ω yielding ν′(s) = −ω(1 − υ(s))ω−1υ′(s) and thus
ν′(0) = ωg20. After these preparations, the stability assertions for the ω-periodic
solutions to (∆λ) on Γ yield as follows: Referring to (4.6) and the continuous depen-
dence of the spectrum under perturbations (cf. [24, pp. 107–108]), the disjoint splitting
σω(s) = {ν(s)} ∪̇Σ with Σ ⊆ B1(0) persists for |s| near 0. Hence, the location of the
dominant eigenvalue ν(s) implies stability.

(a) If g20 > 0, then ν(s) leaves the stability interval (−1, 1) at 1 for increasing
parameters s. So, the solutions ψ(s) for s > 0 become unstable.

(b) For g20 < 0 a dual argument applies.

Proof of Thm. 4.3. We can apply [25, p. 15, Thm. I.5.1] (or, in our notation, [36,
Thm. A.3]) to the mapping G : `ω(Ω) × Λ → `ω . Thereto, assumption (O′) and
Thm. 7.1(a) guarantee a constant solution branch G(φ∗, λ) ≡ 0 on Λ and with (7.6)
the kernel N(D1G(φ∗, λ∗)) is spanned by the sequence φ1 := Φλ∗(·, κ)ξ1 ∈ `ω .
By (4.7) and (7.3) it is µ(D1D2G(φ∗, λ∗)φ1) 6= 0 with the functional µ = µ1 from
Lemma 7.5. Consequently, the abstract branching results [25, p. 15, Thm. I.5.1] or [36,
Thm. A.3] imply a further solution curve γ = (γ1, γ2) for the abstract eqn. (Oλ), we
set ψ := γ1, λ := γ2 and each ψ(s) is an ω-periodic solution of (∆λ(s)).

The global assertions (c) and (d) follow directly from [45, Thm. 4.3]. In order to
verify our statements on the structure of the nontrivial solution branches C+ and C−,
we apply [45, Thm. 4.4]. As complement to span

{
φ1
}

in `ω we use the orthogonal
complement yielding the condition (4.8).

Proof of Cor. 4.4. The formula (7.3) for the partial derivatives of G yields g20 6= 0 and
the claim is immediately implied by [36, Thm. A.3].

It remains to establish the stability assertions, where we argue as in the proof of
Cor. 4.2. The simple eigenvalue 0 of D1G(φ∗, λ∗) allows a continuation as a uniquely
determined smooth branch of eigenvalues υ(λ) to D1G(ψ(λ), λ) satisfying υ′(λ∗) =
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−g11 (cf. [25, p. 26, (I.7.34)]). Thus, the corresponding continuation ν(λ) of the simple
eigenvalue 1 for Ξω(λ∗) fulfills ν′(λ∗) = ωg11 and we obtain:

(a) If g11 > 0, then ν(λ) leaves (−1, 1) at λ∗ for growing parameters λ and
χ(λ) becomes unstable. Thanks to the stability exchange principle from [25, p. 29,
Thm. I.7.4], the solution φ∗ has inverse stability properties.

(b) For g11 < 0 the solution χ(λ) becomes asymptotically stable, as λ grows
through the value λ∗ and the claim follows dually to (a).

Proof of Cor. 4.5. The formula (7.3) for the derivatives of G : `ω(Ω)× Λ → `ω guar-
antees µ(D2

1G(φ∗, λ∗)(φ1)2) = 0 and g30 = −µ(D3
1G(φ∗, λ∗)(φ1)3) 6= 0 holds. Our

claim follows from [36, Thm. A.4] or [25, I.6].

Proof of Prop. 4.6. We define the stability indicator θ :=
∑d−1

j=0 p
′
j(λ∗)

d+
∑d−1

j=1 jpj(λ∗)
.

(a) For θ < 0 we derive from Cor. 7.7 that the simple eigenvalue ν(λ) of Ξω(λ)
leaves the stability interval (−1, 1) at ν(λ∗) = 1 as λ grows through the critical value
λ∗, due to ν′(λ∗) > 0. Thus, the solution φ∗ to (∆λ) becomes unstable for λ > λ∗

and using the stability exchange principle from [46, pp. 663, Sect. 15.5] or [25, p. 29,
Thm. I.7.4], stability properties get transferred from φ∗ to the nonconstant branch.

(b) Here, θ > 0 implies that ν(λ) enters (−1, 1) at ν(λ∗) = 1 for a growing
parameter λ, since ν′(λ∗) < 0 and the proof follows analogously to (a).

Before we are in a position to finally prove the global bifurcation criterion Thm. 4.7,
one needs the following result on the determinant of block matrices:

Lemma 7.8. For ω ∈ N \ {1} and A0, . . . , Aω−1 ∈ Rd×d one has

det



Id Aω−1

A0 Id
A1 Id

. . .
. . .

Aω−3 Id
Aω−2 Id


= det

(
Id + (−1)ω−1Aω−1 · · ·A0

)
. (7.12)

Proof. We begin with some preparations on 2 × 2-block matrices. With A ∈ Rn×n,
D ∈ Rd×d, B ∈ Rn×d and 0 ∈ Rd×n, using the Laplace expansion theorem choosing
the first n columns, one shows det

(
A B
0 D

)
= detAdetD and with an appropriate

factorization into block-triangular matrices one arrives at

det

(
A B
C D

)
= detD det(A−BD−1C) for all C ∈ Rd×n (7.13)

and D ∈ GL(Rd). We verify (7.12) using induction over ω. For ω = 2 one has

det

(
Id A1

A0 Id

)
(7.13)
= det Id det(Id −A1I

−1
d A2) = det(Id −A1A0)
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and in the induction step ω → ω + 1 we suppose that (7.12) holds. Then

det


Id Aω
A0 Id

. . . . . .
Aω−2 Id

Aω−1 Id


(7.13)
= det Id det



Id
A0 Id

. . . . . .
Aω−2 Id

−

Aω
0
...
0

(0, . . . , 0, Aω−1

)


= det


Id −AωAω−1

A0 Id
. . . . . .

Aω−2 Id

 (7.12)
= det (Id + (−1)ωAω · · ·A0) ,

which concludes the proof.

We remind the reader about the isomorphism Jκ : `ω → Rdω from (2.2) and
introduce the continuous function δ : R→ R,

δ(λ) := det JκD1G(φ(λ), λ)J−1
κ . (7.14)

Proof of Thm. 4.7. Let λ ∈ Λ. A sequence φ ∈ `ω(Ω) solves (Oλ) and thus the
eqn. (∆λ), if and only if x := Jκφ ∈ Rdω solves Ĝ(x, λ) = 0 with the mapping
Ĝ : Rdω × R→ Rdω , Ĝ(x, λ) := JκG(J−1

κ x, λ). Our claim follows, if we can apply
the global bifurcation result [46, p. 658, Prop. 15.1] to

Ĝ(x, λ) = 0. (7.15)

Thereto, it is clear that also the mapping Ĝ is of class C1 and possesses the solution
branch φ̂(λ) := Jκφ(λ) ∈ Rdω , λ ∈ R. It remains to show that the function δ defined
above has a sign change. By the chain rule, Ĝ has the partial derivative D1Ĝ(x, λ) =
JκD1G(J−1

κ x, λ)J−1
κ and using (7.2) together with the definition of Jκ, we arrive at

the explicit block matrix representation

D1Ĝ(φ̂(λ), λ) =



Id Aω−1(λ)
A0(λ) Id

A1(λ) Id
. . . . . .

Aω−3(λ) Id
Aω−2(λ) Id


,

with Aj(λ) := −D1fκ+j(φ(λ)κ+j , λ) ∈ Rd×d for all 0 ≤ j < ω. Referring to
Lemma 7.8 the determinant of D1Ĝ(φ̂(λ), λ) can be computed as

detD1Ĝ(φ̂(λ), λ)
(7.12)
= det (Id −D1fκ+ω−1(φ(λ)κ+ω−1, λ) · · ·D1fκ(φ(λ)κ, λ))
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and by (2.4) the functions δω defined in (4.11) and δ from (7.14) coincide on R. Our
assumption guarantees a sign change in δ and the claims follow.
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