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Abstract. This paper continues our work on local bifurcations for nonauton-
omous difference and ordinary differential equations. Here, it is our premise

that constant or periodic solutions are replaced by bounded entire solutions

as bifurcating objects in order to encounter right-hand sides with an arbitrary
time dependence.

We introduce a bifurcation pattern caused by a dominant spectral interval

(of the dichotomy spectrum) crossing the stability boundary. As a result, differ-
ing from the classical autonomous (or periodic) situation, the change of stability

appears in two steps from uniformly asymptotically stable to asymptotically

stable and finally to unstable. During the asymptotically stable regime, a whole
family of bounded entire solutions occurs (a so-called ”shovel”). Our basic

tools are exponential trichotomies and a quantitative version of the surjective
implicit function theorem yielding the existence of strongly center manifolds.

1. Motivation and introduction. Bifurcation phenomena in dynamical systems
typically go hand in hand with an exchange of stability induced by the fact that
eigenvalues (or Floquet multipliers) of a variational equation along an equilibrium
(or a periodic orbit) cross the stability boundary as parameters vary. Depending
whether continuous or discrete systems are considered, this stability boundary is the
imaginary axis resp. the unit circle in the complex plane, and stability properties
change from being asymptotically stable to being unstable or conversely. Moreover,
in nondegenerate cases, i.e. under a transversality condition, the crossing happens
instantly and at the bifurcation value itself, the stability behavior depends on non-
linear effects and can be investigated using well-established techniques like center
manifold reduction.

In case of nonautonomous difference or differential equations, the generic bifur-
cation phenomena slightly differ. Here, it is crucial to have a suitable hyperbolicity
and spectral notion for the linear parts available, which appropriately replaces the
discrete set of eigenvalues (or Floquet multipliers). It turned out that a natural con-
cept for this purpose are exponential dichotomies, trichotomies and the associated
dichotomy spectrum. Indeed, for nonautonomous equations, eigenvalues have to be
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replaced by spectral intervals of the dichotomy spectrum, also known as dynamical
or Sacker-Sell spectrum (see [35]). More detailed, linearizing an equation along a
heteroclinic solution, typically yields a dichotomy spectrum consisting of compact
intervals with positive lengths. Thus, a nonautonomous bifurcation can consist of
two transitions, namely a spectral interval entering, staying on, and leaving the sta-
bility boundary. As we will see, the corresponding loss (or gain) of stability happens
in two steps as well.

We tackle nonautonomous bifurcation problems from an abstract functional-
analytical perspective. A given nonautonomous difference or differential equation is
formulated as operator equation in the space of bounded sequences resp. functions.
Thus, a bifurcation is understood as a change in the number of bounded entire
solutions when parameters vary. For the resulting operator equations it is essential
to have a Fredholm theory for the linearization L in a (possible) bifurcation point
available. From the perspective of an abstract branching theory, the operator L, in
turn, offers three possibilities of interest:

(a) L is invertible
(b) L is noninvertible with Fredholm index 0
(c) L is onto with nontrivial kernel.

These functional-analytical conditions allow a dynamical interpretation, since Fred-
holm properties of L are closely connected to the notion of an exponential dichotomy
(for this, see [24, 10]). Geometrically the latter notion means that the extended state
space of a linear equation allows a hyperbolic splitting into a stable bundle of vector
spaces containing forward solutions decaying to zero, and a complementary unsta-
ble bundle of limit zero backward solutions — both bundles are described using
complementary projectors.

Above all, hyperbolicity in form of an exponential dichotomy on the whole time
axis is a sufficiently robust property to prevent bifurcations (cf. [29, Props. 2.8,
3.7]). This corresponds to the above case (a) of an invertible operator L. There-
fore, one approach to describe nonhyperbolicity and to obtain sufficient conditions
for bifurcations, is to assume exponential dichotomies on both semiaxes. For the
purpose of a suitable Fredholm theory capturing the above cases (b) and (c), on both
time-axes the corresponding projectors onto the stable resp. unstable bundle have
to fit together in an appropriate way. Regarding our case (b), the resulting 0-index
Fredholm theory enabled us to tackle bifurcation problems via Lyapunov-Schmidt
reduction yielding nonautonomous bifurcation scenarios of fold, transcritical and
pitchfork type (among others, cf. [29]). Such an approach had the disadvantage
that, beyond being applicable to at least 2-dimensional systems only, merely unsta-
ble solutions came into question as bifurcation points. This is somehow unsatisfying
from the perspective of understanding bifurcations as a change in stability.

To address the remaining case (c), in this paper another form of nonhyperbolicity
is investigated, namely an exponential trichotomy (cf. [15, 26, 16]). This concept
weakens a dichotomy in the sense that there exists an additional strongly center
bundle containing the entire solutions which decay exponentially in both time di-
rections. In terms of the dichotomy spectrum, this means that a spectral interval
exists on the stability boundary. We are interested in the situation when, under
varying parameters, spectral intervals enter and cross this boundary, i.e. when we
have a transition from an exponentially dichotomic into a trichotomic situation or
conversely. In a functional-analytical language this implies a jump in the Fred-
holm index, which ensures that a unique entire bounded solution bifurcates into
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a whole family of bounded solutions. While the corresponding Fredholm operator
L remains onto, its kernel becomes nontrivial. In order to describe this situation,
our basic tool is a quantitative version of the surjective implicit function theorem
(cf. Thm. 2.1 and Cor. 2.2). It guarantees the existence of a center-like fiber bundle
(for differential equations we speak of a manifold) consisting of exponentially decay-
ing entire solutions. In the bifurcation diagram the occurrence of such a strongly
center fiber bundle (resp. manifold), i.e. of a family of bounded solutions, yields a
shovel-shaped pattern — we therefore speak of a shovel bifurcation (cf. Fig. 4 or 5).
Admittedly, the (dis)appearance of a family of bounded entire solutions is a quite
crude description, but it features two characteristic prerequisites of a bifurcation
phenomenon: A change in the number of bounded solutions, as well as a change in
stability properties under varying parameters.

Our discussion divides into two parts, one devoted to difference equations (Sec-
tion 3) and one presenting the analogous theory for ODEs (Section 4). We begin
formulating our standing assumptions and the key idea behind our overall approach:
Interpret difference or differential equations as operator equations in ambient func-
tion spaces. After that, the necessary linear theory is developed in terms of a
suitable exponential trichotomy notion, different dichotomy spectra and the corre-
sponding Fredholm theory. We relate the dichotomy spectra to classical stability
notions, prove the existence of strongly center bundles (resp. manifolds) and pro-
ceed to the central topic of the paper — sufficient conditions are given that whole
families of bounded entire solutions bifurcate in a super- or subcritical fashion.

We close this introduction with the remark that our earlier paper [29] contains a
brief overview of various approaches to describe bifurcation and transition patterns
for nonautonomous equations. For this reason, we restrict our discussion of the
related literature to a supplementary two-step bifurcation pattern for stochastic
equations observed by L. Arnold and his coworkers (cf. [3]): Given a family of
stochastic ODEs in the plane R2 depending on a parameter λ ∈ R, where the
origin 0 is an equilibrium of each member of this family. Suppose that 0 looses
its asymptotic stability for a particular parameter value λ = λ1 (interpret these
statements in the almost everywhere sense with respect to the measure µ on the
path space). Then various examples feature the following behavior: For λ > λ1

near λ1 there is an attracting invariant random measure on R2, whose topological
support is essentially a two-point set. The first step of the two-step pattern consists
of the transfer of the stability to this random invariant measure. Second, there is a
value λ2 > λ1 such that for λ > λ2 close to λ2, then there is a random attracting
invariant (topological) circle, which contains two attractor-repeller pairs of points.
The two-step bifurcation process is completed when λ crosses λ2. We refer to the
paper [20] discussing the above phenomenon, in particular, for deterministic but
nonautonomous ODEs.

2. Preliminaries. As usual, Z denotes the ring of integers, N are the positive inte-
gers and a discrete interval I is the intersection of a real interval with Z; sometimes
it is convenient to introduce the shifted interval I′ := {k ∈ I : k + 1 ∈ I}. Given an
integer κ ∈ Z we define the discrete intervals

Z+
κ := {k ∈ Z : κ ≤ k} , Z−κ := {k ∈ Z : κ ≥ k} .

Real Banach spaces are denoted by X,Y, Z and equipped with norm |·|; Bε(x) is
the open ball with radius ε > 0 and center x. The space of bounded linear operators
from X to Y is L(X,Y ), L(X) := L(X,X) and for the corresponding toplinear
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isomorphisms we write GL(X,Y ), GL(X) := GL(X,X). Given T ∈ L(X,Y ), we
write R(T ) := TX for the range and N(T ) := T−1(0) for the kernel.

Suppose Ω ⊆ X×Y is a nonempty open convex set and the mapping G : Ω→ Z
is of class Cm, m ∈ N. We begin with a quantitative version of the surjective
implicit function theorem. It combines results of [37, p. 177, Thm. 4.H] and [18].

Theorem 2.1 (surjective implicit function theorem). Suppose that (x∗, y∗) ∈ Ω
fulfills G(x∗, y∗) = 0 and D1G(x∗, y∗) ∈ L(X,Z) is onto with complemented kernel.
Provided P ∈ L(X) denotes the projection onto N(D1G(x∗, y∗)), then there exist
reals ε, ρ > 0 and a unique Cm-mapping φ : Bρ(0, y

∗) ⊆ R(P )×Y → Bε(0) ⊆ N(P )
with

G(x∗ + ξ + φ(ξ, η), η) ≡ 0 on Bρ(0, y
∗)

and φ(0, y∗) = 0. Moreover, for the derivatives of φ one has

Diφ(0, y∗) = [D1G(x∗, y∗)(I − P )]
−1
DiG(x∗, y∗) for all i = 1, 2. (2.1)

Proof. Due to our assumption we have the splitting X = X1 ⊕ N
(
D1(G(x∗, y∗))

)
with closed subspaces X1 = N(P ) and N

(
D1(G(x∗, y∗))

)
= R(P ). Having this at

our disposal, we define a Cm-mapping F (x1, x2, y) := G(x∗+x1 +x2, y) depending
on variables x1 ∈ N(P ), x2 ∈ R(P ) from a suitable open neighborhood of 0. This
yields the relation

D1F (x1, x2, y) = D1G(x∗ + x1 + x2, y)[I − P ]

and D1F (0, 0, y∗) = D1G(x∗, y∗) ∈ GL(X1, Z). By the implicit function theorem
(see, for instance, [37, pp. 150–151, Thm. 4.B]) there exist ρ, ε > 0, neighborhoods
Bρ(0) ⊆ R(P ), Bε(0) ⊆ N(P ) and a unique Cm-mapping φ : Bρ(0, y

∗) → Bε(0)
satisfying the identity

0 ≡ F (ξ, φ(ξ, η), η) ≡ G(x∗ + ξ + φ(ξ, η), η) on Bρ(0, y
∗).

Finally, if we differentiate the latter identity, then (2.1) follows.

Corollary 2.2. If there exist functions ω1 : R × R → [0,∞), ω2 : R → [0,∞),
nondecreasing in each argument, so that

|[D1G(x, y)−D1G(x∗, y∗)] [I − P ]| ≤ ω1(|x− x∗| , |y − y∗|),
|G(x, y∗)| ≤ ω2(|x− x∗|) (2.2)

for all x ∈ Bρ(x
∗), y ∈ Bε(y

∗), then the reals ρ, ε > 0 from Thm. 2.1 can be
determined using the conditions∣∣∣[D1G(x∗, y∗)(I − P )]

−1
∣∣∣ω1(ρ, ε) ≤ ω < 1,∣∣∣[D1G(x∗, y∗)(I − P )]
−1
∣∣∣ω2(ρ) ≤ ε(1− ω).

Proof. The assertion on the size of ρ, ε > 0 results, if we apply the quantitative
result [18] in the above implicit function theorem argument.

3. Difference equations. A central aspect of our overall approach is to rephrase
difference equations as operator equations in suitable sequence spaces (cf. [29, 30]).
Throughout, for a nonempty open convex subset Ω ⊆ X we denote the set of
bounded sequences φ = (φk)k∈Z with φk ∈ Ω, k ∈ Z, by `∞(Ω) and in case 0 ∈ Ω we
write `0(Ω) for the space of such sequences converging to 0 in both time directions.
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We briefly write `∞ := `∞(X), `0 := `0(X) or simply ` for one of these two spaces,
which both are Banach spaces equipped with the natural norm

‖φ‖ := sup
k∈I
|φk| .

Since Ω is convex, also the sets `∞(Ω) and `0(Ω) inherit this property. Nevertheless,
in general `∞(Ω) needs not to be open, whereas `0(Ω) is.

Let the parameter space Λ ⊆ Y be a nonempty open convex set. We consider
functions fk : Ω×Λ→ X, k ∈ Z, which serve as right-hand sides of nonautonomous
parameter-dependent difference equations

xk+1 = fk(xk, λ). (∆)λ

For a fixed parameter λ ∈ Λ, a solution of the difference equation (∆)λ is a sequence
φ = (φk)k∈I with φk ∈ Ω for k ∈ I, satisfying the recursion (∆)λ on a discrete
interval I′. In order to emphasize the dependence on λ, we sometimes write φ(λ).
Particularly, a complete or entire solution is a solution defined on the whole integer
axis Z and a persistent solution satisfies infk∈I dist(φk,Ω) > 0. For given times
κ ∈ Z and states ξ ∈ Ω, the solution φ of (∆)λ satisfying φκ = ξ is denoted as
general solution ϕλ(·;κ, ξ).

The following assumptions hold for Cm-smooth right-hand sides fk of (∆)λ,
whose derivatives map bounded into bounded sets uniformly in time.

Hypothesis. Let m ∈ N and suppose each fk : Ω×Λ→ X, k ∈ Z, is a Cm-function
such that the following holds for 0 ≤ j ≤ m:

(H0) For all bounded B ⊆ Ω one has

sup
k∈Z

sup
x∈B

∣∣Djfk(x, λ)
∣∣ <∞ for all λ ∈ Λ

(well-definedness) and for all λ∗ ∈ Λ and ε > 0 there exists a δ > 0 with

|x− y| < δ ⇒ sup
k∈Z

∣∣Djfk(x, λ)−Djfk(y, λ)
∣∣ < ε for all x, y ∈ Ω (3.1)

and λ ∈ Bδ(λ∗) (uniform continuity).
(H1) We have 0 ∈ Ω and limk→±∞ fk(0, λ) = 0 for all λ ∈ Λ.

With this at hand, we arrive at the crucial

Theorem 3.1. For every parameter λ ∈ Λ a sequence φ in Ω is a solution of the
difference equation (∆)λ, if and only if φ solves the nonlinear equation

G(φ, λ) = 0 (3.2)

with G(φ, λ)k = φk+1 − fk(φk, λ). For the mapping G one has under (H0):

(a) G : `∞(Ω)× Λ→ `∞ is well-defined and of class Cm on `∞(Ω)◦ × Λ.
(b) If (H1) holds, then G : `0(Ω)× Λ→ `0 is well-defined and of class Cm.

Proof. See [30, Lemma 2.3, Prop. 2.4 and Thm. 2.5].

3.1. Linear difference equations. In this subsection suppose I is a discrete in-
terval. For a given operator sequence Ak ∈ L(X), k ∈ Z, linear difference equations
are of the form

xk+1 = Akxk (L∆)
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with associated transition operator Φ(k, l) ∈ L(X), k, l ∈ Z, defined by

Φ(k, l) :=

{
I for k = l,

Ak−1 · · ·Al for k > l;

if every Ak is invertible, we additionally set Φ(k, l) := A−1
k · · ·A−1

l−1 for k < l.
A dichotomy (or trichotomy) means that the extended state space Z×X of (L∆)

splits into invariant vector bundles consisting of solutions with a specific asymptotic
behavior; these vector bundles are described using projectors. More precisely, we
say a sequence of projections Pk ∈ L(X), k ∈ I, is an invariant projector for (L∆),
provided

AkPk = Pk+1Ak for all k ∈ I′.
We speak of a regular projector for (L∆), if the restriction Ak : R(Pk)→ R(Pk+1) is
an isomorphism. Thus, the restricted transition operator Φ(k, l) : R(Pl) → R(Pk),
k ≤ l, exists.

The following terminology generalizes earlier considerations from [26, 16] to the
noninvertible situation: A linear nonautonomous difference equation (L∆) is said
to have an exponential trichotomy (ET for short) on I, if the following holds:

(i) There exist invariant projectors Pk, Qk satisfying PkQk = QkPk = 0 and
moreover the projectors Qk, I − Pk −Qk, k ∈ I, are regular,

(ii) there exist reals K ≥ 1, α ∈ (0, 1) and a κ ∈ I such that

|Φ(k, l)Pl| ≤ Kαk−l for all l ≤ k,
|Φ(k, l)Ql| ≤ Kα|k−l| for all κ ≤ l ≤ k or k ≤ l ≤ κ, (3.3)

|Φ(k, l)[I − Pl −Ql]| ≤ Kαl−k for all k ≤ l.
To provide some dynamic insight, an ET means that the extended state space I×X
of equation (L∆) splits into three invariant vector bundles, namely

• the stable bundle consisting of exponentially decaying forward solutions on Z+
κ

and given by the ranges R(Pk)⊕R(Qk) (if I is unbounded above),
• the unstable bundle consisting of solutions which exist in backward time on Z−κ

and are exponentially decaying, given by the kernel N(Pk) (if I is unbounded
below),

• the strongly center bundle consisting of solutions existing in backward time
and exponentially decaying both in forward and backward time, given by
R(Qk) (if I = Z). Therefore, Qk is called central projector.

In absence of a strongly center bundle, i.e. for Qk ≡ 0, we speak of an exponential
dichotomy (ED for short, cf. [17, p. 229, Def. 7.6.4]) on I. Note that our trichotomy
notion is stronger than the Sacker-Sell trichotomy (i.e. the discrete counterpart to
[36, pp. 197ff]), where the above estimates hold with condition (3.3) weakened to

|Φ(k, l)Ql| ≤ K for all k, l ∈ I;
this means the center bundle consists of bounded solutions existing on the whole
axis Z, as opposed to exponentially decaying ones in the strongly center bundle.

Remark 3.1. (1) Linear difference equations (L∆) with bounded growth yield ex-
amples of EDs on Z with trivial projectors Pk ≡ 0 or Pk ≡ I. More detailed, one
says (L∆) has bounded forward growth resp. bounded backward growth, provided
there exist reals K0 ≥ 1, ω−, ω+ > 0 such that

|Φ(k, l)| ≤ K0ω
k−l
+ for all k ≥ l, |Φ(k, l)| ≤ K0ω

k−l
− for all l ≥ k, (3.4)
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where in the latter case we suppose the invertibility assumption

Ak ∈ GL(X). (3.5)

The condition supk∈Z |Ak| < ∞ is necessary and sufficient for bounded forward

growth; bounded backward growth holds when supk∈Z
∣∣A−1

k

∣∣ < ∞. Thus, finite-
dimensional equations possessing bounded forward growth and fulfilling

inf
k∈Z

detAk > 0

also have bounded backward growth (see [12, p. 74, Lemma 1]).
(2) A θ-periodic, θ ∈ N, linear equation with monodromy operator

M := Φ(κ+ θ, κ)

admits an ED on Z, provided the spectrum of M does not intersect the closed
concentric annulus

{
z ∈ C : |z| ∈

[
αθ, α−θ

]}
(cf., for instance, [31, Prop. 2.2] for

the finite-dimensional case). If semisimple eigenvalues of M exist on the complex
unit circle, then (L∆) has a Sacker-Sell trichotomy on Z. Thus, this notion in a
natural extension of classical autonomous nonhyperbolic behavior.

Differing from the commonly used Sacker-Sell trichotomy, the above trichotomy
concept is tailor-made to investigate linear equations with EDs on both semiaxes.
Indeed, if a linear equation (L∆) admits an ET on Z, then it has an ED on Z+

κ

with projector Pk +Qk, as well as an ED on Z−κ with Pk (see also [16, Lemma 2]).
For the converse we have

Lemma 3.2. Let κ, κ ∈ Z with κ ≤ κ and suppose (3.5) holds. If a linear difference
equation (L∆) has an ED on Z+

κ (with projector P+
k ) and on Z−κ (with projector

P−k ), then it admits an ET on Z, provided one of the following conditions holds:

(i) Every solution of (L∆) is the sum of a solution bounded on Z+
κ and a solution

bounded on Z−κ ,

(ii) one has the relation

P−κ = P−κ Φ(κ, κ)P+
κ Φ(κ, κ) = Φ(κ, κ)P+

κ Φ(κ, κ)P−κ , (3.6)

where the projectors associated to the ET read as Pk := Φ(k, κ)P−κ Φ(κ, k) and

Qk := Φ(k, κ)P+
κ Φ(κ, k)− Φ(k, κ)P−κ Φ(κ, k).

Remark 3.2. (1) If (L∆) has an almost-periodic coefficient operator Ak, an ED on
a semiaxis Z+

κ or Z−κ yields an ED on Z (cf. [2, Prop. 3.2] or [25]). Hence, for
almost-periodic equations the notions of ED and ET on Z coincide, i.e. the strongly
center bundle is trivial.

(2) In case κ := κ = κ the relation (3.6) simplifies to

P−κ = P−κ P
+
κ = P+

κ P
−
κ (3.7)

and has a couple of consequences. Above all, (3.6) is equivalent to N(P+
κ ) ⊆ N(P−κ )

and R(P−κ ) ⊆ R(P+
κ ). In addition, this implies

R(P+
κ (I − P−κ )) = R(P+

κ ) ∩N(P−κ ), R(P+
κ ) +N(P−κ ) = X

and the relation between R(P+
κ ) and N(P−κ ) will be crucial for our further investi-

gations. In this sense, condition (3.6) is complementary to the assumptions imposed
previously in [29].



8 CHRISTIAN PÖTZSCHE

Proof. We extend the projector P+
k from Z+

κ to the discrete interval Z+
κ as follows

P+
k := Φ(k, κ)P+

κ Φ(κ, k) for all κ ≤ k ≤ κ
and verify that P+

k serves as invariant projector of an ED for (L∆) on the larger
interval Z+

κ . Hence, the linear difference equation (L∆) admits an ED both on Z−κ
and on Z+

κ . Now, under assumption (i) the claim follows from [26, Lemma 4], and

assumption (ii) yields the assertion using [16, Lemma 2]. In particular, (3.6) implies
that Qk is a projector

Our upcoming results allow an elegant formulation extending the classical au-
tonomous situation using the dichotomy spectrum, which in finite dimensions has
been introduced in [9] (for one-sided time) and in [5] (for two-sided time, see also
[4] for the noninvertible case). Thereto, for given reals γ > 0 we consider the scaled
difference equation

xk+1 = γ−1Akxk (L)γ

and we define the

dichotomy spectrum Σ(A) := {γ > 0 : (L)γ has no ED on Z} ,
forward dichotomy spectrum Σ+(A) :=

{
γ > 0 : (L)γ has no ED on Z+

κ

}
,

backward dichotomy spectrum Σ−(A) :=
{
γ > 0 : (L)γ has no ED on Z−κ

}
of equation (L∆). It is not hard to see that Σ+(A),Σ−(A) ⊆ Σ(A) and under (3.5)
the sets Σ+(A),Σ−(A) are independent of κ ∈ Z. Furthermore, the dichotomy
spectra Σ+(A),Σ−(A) are invariant under compact perturbations, i.e.

Σ±(A) = Σ±(A+B)

for sequences of compact operators Bk ∈ L(X) satisfying limk→±∞Bk = 0 (see [9,
Thm. 2.3]).

For a linear equation (L∆) with bounded forward growth (cf. (3.4)) one has
Σ(A) ⊆ (0, ω+] and additional bounded backward growth yields Σ(A) ⊆ [ω−, ω+].
In case d := dimX < ∞ it was shown in [9, 4] that Σ(A) is the disjoint union of
n ≤ d nonempty spectral intervals σ1, . . . , σn ⊆ (0,∞), i.e.

Σ(A) =

n⋃
i=1

σi, supσi < inf σi+1 for all 1 ≤ i < n.

Here, σn is called the dominant spectral interval of (L∆).
Under bounded forward growth σ2, . . . , σn are compact and bounded backward

growth yields the compactness of σ1. We follow [4] to provide a further dynamical
interpretation, suppose I = Z and pick reals 0 < b1 < a2 < . . . < bn−1 < an such
that

Σ(A) ∩
n−1⋃
i=1

(bi, ai+1) = ∅.

If possible, choose γ0 ∈ (0,∞)\Σ(A) with (0, γ0) ⊆ (0,∞)\Σ(A) and otherwise set

S−γ0 := Z×X, S+
γ0 := Z× {0} .

We choose γn ∈ (0,∞) \ Σ(A) with (γn,∞) ⊆ (0,∞) \ Σ(A) and otherwise define

S−γn := Z× {0} , S+
γn := Z×X.
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For reals γ > 0 we introduce nonautonomous sets

S±γ :=
{

(κ, ξ) ∈ Z×X : sup
k∈Z±

κ

|Φ(k, κ)ξ| γκ−k <∞
}

and finally choose γi ∈ (bi, ai+1) for 1 ≤ i < n in order to define spectral bundles

Wi := S−γi−1
∩ S+

γi for all 1 ≤ i ≤ n.
They are invariant vector bundles for (L∆), independent of γi, and satisfy

W1 ⊕ . . .⊕Wn = Z×X. (3.8)

The (constant) dimension ofWi is called multiplicity of the spectral interval σi. The
Whitney sum (3.8) generalizes the autonomous situation, where the state space X
is the decomposition of the generalized eigenspaces corresponding to the spectrum
of Ak ≡ A.

In the hyperbolic case
1 6∈ Σ(A) (3.9)

we can choose growth rates γ+, γ− ∈ (0,∞) \ Σ(A) satisfying γ+ < 1 < γ− and
the two sets S+

γ+ , S−γ− are denoted as stable resp. unstable bundle of (L∆). In the

nonhyperbolic situation 1 ∈ Σ(A), i.e. 1 ∈ σi for some 1 ≤ i < n, we say that S+
γi is

the center-stable, S−γi−1
the center-unstable and Wi the center bundle of (L∆).

An ET is a specific form of nonhyperbolicity:

Proposition 3.3. In case (L∆) has an ET on Z with Qk 6≡ 0, then
[
α, α−1

]
⊆ Σ(A)

and the center fiber bundle is given by {(κ, ξ) ∈ Z×X : ξ ∈ R(Qκ)}.
Proof. Let κ ∈ Z, γ > 0. The transition operator of (L)γ is Φγ(k, l) := γl−kΦ(k, l).
Since (L∆) admits an ET, we obtain

|Φγ(k, l)Ql|
(3.3)

≤ K max
{
αγ, αγ

}|k−l|
for all κ ≤ l ≤ k or k ≤ l ≤ κ,

and therefore (L)γ has nontrivial solutions bounded on Z, provided α ≤ γ ≤ α−1.
Hence, (L)γ has no ED on Z (cf. [17, p. 230, Thm. 7.6.5]) and the first claim follows.
The assertion on the center bundle is clear.

In general the dichotomy spectra can be computed only numerically (cf. [19]).
Nonetheless, we can illustrate the above by combining results of [7] and [8, Section 4]
to deduce the following finite-dimensional examples.

Example 3.1 (scalar equations). For scalar equations, the dichotomy spectrum is
related to Bohl exponents. More precisely, let ak ∈ R \ {0} satisfy

sup
k∈Z

{
|ak| ,

∣∣a−1
k

∣∣} <∞.
For a scalar equation (L∆) with Ak = ak one has Σ(a) = [β−(Z), β+(Z)],

Σ+(a) =
[
β−(Z+

κ ), β+(Z+
κ )
]
, Σ−(a) =

[
β−(Z−κ ), β+(Z−κ )

]
for κ ∈ Z,

where the lower resp. upper Bohl exponent is given by

β−(I) = sup

{
γ > 0 : sup

k≤l, k,l∈I
γk−l |Φ(k, l)| <∞

}
,

β+(I) = inf

{
γ > 0 : sup

l≤k, k,l∈I
γk−l |Φ(k, l)| <∞

}
.
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In particular, for asymptotically autonomous scalar difference equations, where
α+, α− ∈ R \ {0} and κ ∈ Z such that — with ak = α− for k < κ and ak = α+ for
k ≥ κ — one immediately deduces Σ(a) = [min {|α−| , |α+|} ,max {|α−| , |α+|}],

Σ+(a) = {|α+|} , Σ−(a) = {|α−|} .
Example 3.2 (autonomous systems). For autonomous difference equations (L∆)
with coefficient matrix Ak ≡ A ∈ L(Rd) and σ(A) = {λ1, . . . , λn}, n ≤ d, one has

Σ(A) = Σ+(A) = Σ−(A) =

n⋃
i=1

{|λi|} .

Example 3.3 (periodic systems). Let θ ∈ N. For θ-periodic difference equations
(L∆) with monodromy matrix M and σ(M) = {λ1, . . . , λn}, n ≤ d, one gets

Σ(A) = Σ+(A) = Σ−(A) =

n⋃
i=1

{
θ
√
|λi|
}
.

Example 3.4. Suppose that A−, A+ ∈ GL(Rd) and κ ∈ Z. For a real ρ > 0 we
denote by N(A−, ρ) (resp. R(A+, ρ)) the kernel (resp. range) of the Riesz projection
corresponding to {z ∈ C : |z| ≤ ρ}. For a difference equations (L∆) with Ak = A−
for k < κ and Ak = A+ for k ≥ κ we suppose σ(A−) ∪ σ(A+) = {λ1, . . . , λ2d},
where the complex numbers λi are ordered according to

|λ1| = . . . = |λn1
| < |λn1+1| = . . . = |λnk | < |λnk+1| = . . . =

∣∣λnk+1

∣∣ ,
i.e. the indices n1 < . . . < nk indicate one of the k < 2d jumps in the moduli
of the elements of σ(A−) ∪ σ(A+), and we set nk+1 := 2d. Moreover, choose
i1 < . . . < il−1 in the set {1, . . . , k} such that N(A−,

∣∣λnim ∣∣)⊕R(A+,
∣∣λnim ∣∣) = Rd

holds for 0 ≤ m < l. Then one obtains l ≤ d + 1 and, with i0 = 0, il = k + 1, the
dichotomy spectra for (L∆) read as

Σ(A) =

l−1⋃
m=0

[∣∣λnim+1

∣∣ , ∣∣∣λnim+1

∣∣∣] ,
Σ+(A) = {|λ| ∈ R : λ ∈ σ(A+)} ,
Σ−(A) = {|λ| ∈ R : λ ∈ σ(A−)} .

Before discussing two further examples, some functional-analytical results are
due. As previously in [29] we study Fredholm properties of the difference operator

L : `→ `, (Lφ)k := φk+1 −Akφk for all k ∈ Z, (3.10)

which is easily seen to be well-defined and continuous under bounded forward growth
of equation (L∆) — an assumption we impose throughout this remaining subsection.

Proposition 3.4. Let κ ∈ Z. If a linear difference equation (L∆) has an ET on
the full axis Z, then

(a) L : `→ ` is semi-Fredholm with

N(L) = {Φ(·, κ)ξ ∈ ` : ξ ∈ R(Qκ)} , R(L) = `,

(b) N(L) is complemented and the projector P ∈ L(`) with R(P ) = N(L) is given
by (Pφ)k := Qkφk

and, provided dimR(Qκ) < ∞, it is Fredholm with index dimR(Qκ) ≥ 0. In case
of an ED on Z one has L ∈ GL(`).
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Remark 3.3. Referring to the estimate (3.3), the kernel N(L) consists of solutions to
(L∆) in the strongly center bundle. Indeed, we have the dynamical characterization

N(L) =

{
Φ(·, κ)ξ ∈ ` : sup

k∈Z
|Φ(k, κ)ξ|α−|k−κ| <∞

}
⊆ `0.

Proof of Prop. 3.4. For the case of an ED we refer to [17, p. 230, Thm. 7.6.5] (where
` = `∞) and to [7, Cor. 3] (where ` = `0), while the assertion for an ET can be
shown along the lines of [26, Prop. 1]. Moreover, since Qk is an invariant projector
for (L∆), the linear mapping P : ` → ` defined above is a bounded projector onto
N(L) and therefore the kernel N(L) is complemented.

Corollary 3.5. The restriction L|N(P ) is invertible and the inverse L|−1
N(P ) : ` →

N(P ) fulfills
∥∥L|−1

N(P )

∥∥ ≤ K
1−α .

Proof. For every given sequence ψ ∈ ` it has been shown in [26, Proof of Prop. 1]
or [16, Proof of Thm. 4] that φ :=

∑
n∈ZG(·, n+ 1)ψn is a solution to the linearly

inhomogeneous equation
xk+1 = Akxk + ψk (3.11)

in the space `, where Green’s function reads as

G(k, l) :=


Φ(k, l)Pl, l ≤ κ ≤ k, l ≤ k ≤ κ,
−Φ(k, l)Ql, k < l ≤ κ,
Φ(k, l)[Pl +Ql], κ < l ≤ k
−Φ(k, l)[I − Pl −Ql], κ ≤ k < l, k ≤ κ < l.

This means we have Lφ = ψ and L ∈ L(`) is onto. Due to the relation

φ = LPφ+ L[I − P ]φ = L[I − P ]φ

we see that [I −P ]φ is the unique solution of (3.11) in the space N(P ). Due to the
relations PkG(k, l) = 0 for k < l and |G(k, l)| ≤ Kαk−l for l ≤ k we deduce

|((I − P )φ)k| ≤
∑
n<k

|G(k, n+ 1)| |ψn| ≤ K
k−1∑

n=−∞
αk−n−1 ‖ψ‖ =

K

1− α ‖ψ‖

for all k ∈ Z and consequently one has
∥∥∥L|−1

N(P )

∥∥∥ ≤ K
1−α .

Corollary 3.6. If R(L) = ` and there is an α ∈ (0, 1) such that [α, α−1] ⊆ Σ(A),
then (L∆) admits an ET on Z with nonzero central projector Qk 6≡ 0.

Proof. By assumption, we know that for each inhomogeneity ψ ∈ ` there exists a
solution φ ∈ ` of (3.11) and thanks to [26, Prop. 1] or [16, Proof of Thm. 4] we know
that (L∆) has an ET on Z. Since there exists a spectral interval σ∗ ⊇ [α, α−1], we
define Qk to be the projector onto the fibers of the corresponding spectral bundle,
which is nontrivial.

Proposition 3.7 (nodal operator). Let κ, κ ∈ Z with κ < κ. Suppose a linear
difference equation (L∆) admits an ED on Z+

κ (with projector P+
k ) and on Z−κ

(with projector P−k ). Then L : `→ ` is Fredholm, if and only if the nodal operator

Ξ(κ, κ) := (I − P+
κ )Φ(κ, κ)(I − P−κ ) : N(P−κ )→ N(P+

κ )

is Fredholm. Both operators have the same Fredholm index, which for finite-dimen-
sional kernels N(P−κ ), N(P+

κ ) is given by dimN(P−κ )− dimN(P+
κ ).
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Proof. See [10, Thm. 8] and [37, p. 367, Example 8.15] for the index.

Corollary 3.8. N(L) =
{

Φ(·, κ)ξ ∈ ` : ξ ∈ N((I − P+
κ+1)Aκ(I − P−κ ))

}
for κ ∈ Z.

Proof. We refer to [10, Thm. 4].

The following two prototype examples illustrate the above concepts:

Example 3.5. Let α−, α+ ∈ R \ {0} be given and suppose X = R. As in Ex. 3.1 we
define a piecewise constant coefficient matrix for (L∆), resp. its transition matrix
by

Ak :=

{
α−, k < 0,

α+, k ≥ 0,
Φ(k, l) :=


αk−l+ , k ≥ l ≥ 0,

αk+α
−l
− , k ≥ 0 > l,

αk−l− , 0 > k ≥ l;
and due to the invertibility of Ak one sets Φ(k, l) := Φ(l, k)−1 for k < l. We discuss
several cases in order to describe dichotomy and Fredholm properties of (L∆). First
of all, the dichotomy spectra are given in Ex. 3.1; in particular Σ+(A) = {|α+|}.

Moreover, due to Prop. 3.7 the operator L : `→ ` is Fredholm for |α±| 6= 1 and
using Lemma 3.2 we arrive at:

(a) |α+| < 1: ED on Z+
0 with P+

k ≡ 1 and Σ+(A) = {|α+|} ⊆ (0, 1)

(a1) |α−| < 1: ED on Z−0 with P−k ≡ 1, Σ(A) ⊆ (0, 1), L is invertible, (L∆)
has an ED on Z with Pk ≡ 1 and 0 is uniformly asymptotically stable

(a2) |α−| = 1: Σ(A) = [|α+| , 1] and 0 is uniformly asymptotically stable
(a3) |α−| > 1: ED on Z−0 with P−k ≡ 0, 1 ∈ Σ(A) = [|α+| , |α−|], L is

Fredholm with index 1, (L∆) has an ET on Z with Qk ≡ 1 and 0 is
asymptotically stable

See Fig. 1 to illustrate the loss of stability in the transition from (a1) to (a3).
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Figure 1. Example 3.5(a): Solutions in the asymptotically stable
case |α+| < 1 with |α−| < 1 (left), |α−| = 1 (middle) and |α−| > 1
(right)

(b) |α+| = 1: No ED on Z+
0 .

(b1) |α−| < 1: ED on Z−0 with P−k ≡ 1, Σ(A) = [|α−| , 1] and 0 is uniformly
stable

(b2) |α−| = 1: Σ(A) = {1}, (L∆) has a Sacker-Sell trichotomy on Z and 0 is
uniformly stable

(b3) |α−| > 1: Σ(A) = [1, |α−|] and 0 is stable, but not uniformly stable
(Fig. 2).
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Figure 2. Example 3.5(b): Solutions in the stable case |α+| = 1
with |α−| < 1 (left), |α−| = 1 (middle) and |α−| > 1 (right)

(c) |α+| > 1: ED on Z+
0 with P+

k ≡ 0

(c1) |α−| < 1: ED on Z−0 with P−k ≡ 1, 1 ∈ Σ(A) = [|α−| , |α+|], L is
Fredholm with index −1 and 0 is unstable

(c2) |α−| = 1: Σ(A) = [1, |α+|] and 0 is unstable
(c3) |α−| > 1: ED on Z−0 with P−k ≡ 1, Σ(A) ⊆ (1,∞), (L∆) has an ED on

Z with Pk ≡ 0, i.e. 0 is uniformly unstable (see Fig. 3).
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Figure 3. Example 3.5(c): Solutions in the unstable case |α+| > 1
with |α−| < 1 (left), |α−| = 1 (middle) and |α−| > 1 (right)

Of particular interest is the nonhyperbolic situation 1 ∈ Σ(A). Here, by virtue of
the cases (a3) and (c1) it is easy to construct examples showing that the dichotomy
spectrum Σ(A) is insufficient for stability assertions, whereas Σ+(A) is.

Example 3.6. Let γ−, β−, γ+, β+ ∈ R\{0} be given and suppose X = R2. We define
a piecewise constant coefficient matrix for (L∆) by

Ak :=

(
bk 0
0 ck

)
, bk :=

{
β−, k < 0,

β+, k ≥ 0,
ck :=

{
γ−, k < 0,

γ+, k ≥ 0

and arrive at the transition matrix

Φ(k, l) :=


diag(βk−l+ , γk−l+ ), k ≥ l ≥ 0,

diag(βk+β
−l
− , γ

k
+γ
−l
− ), k ≥ 0 > l,

diag(βk−l− , γk−l− ), 0 > k ≥ l;
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due to the invertibility of Ak one sets Φ(k, l) := Φ(l, k)−1 for k < l. In our present
situation the dichotomy spectra read as

Σ(A) = Σ(b) ∪ Σ(c), Σ+(A) = {|β+| , |γ+|} ,
where Σ(b),Σ(c) can be computed as in Ex. 3.1. We distinguish several generic
cases in order to describe the dichotomy and Fredholm properties of (L∆). In each
case, (L∆) admits an ED on Z+

0 and Z−−1 with constant projectors P−k resp. P+
k ;

it is easy to see that the ED on Z−−1 extends to Z−0 . Referring to Prop. 3.7 the
operator L : `→ ` is Fredholm for |β±| , |γ±| 6= 1 and using Lemma 3.2(ii) we arrive
at:

(a) |β+| , |γ+| < 1: P+
k ≡ I and Σ+(A) ⊆ (0, 1)

(a1) |β−| , |γ−| < 1: P−k ≡ I,

Σ(A) ⊆ (0, 1),

L is invertible, (L∆) has an ED on Z and 0 is uniformly asymptotically
stable

(a2) |β−| < 1 < |γ−|: P−k ≡
(

1 0
0 0

)
,

1 ∈ Σ(A) = Σ(b) ∪ [|γ+| , |γ−|],
L has 1-dimensional kernel, index 1, (L∆) admits an ET on Z and 0 is
asymptotically stable

(a3) |γ−| < 1 < |β−|: P−k ≡
(

0 0
0 1

)
,

1 ∈ Σ(A) = [|β+| , |β−|] ∪ Σ(c),

L has 1-dimensional kernel, index 1, (L∆) admits an ET on Z and and 0
is asymptotically stable

(a4) 1 < |β−| , |γ−|: P−k ≡ 0,

1 ∈ Σ(A) = [min{|β+| , |γ+|},max{|β−| , |γ−|}],
L has 2-dimensional kernel, index 2, (L∆) admits an ET on Z and 0 is
asymptotically stable

(b) |β+| < 1 < |γ+|: (L∆) admits an ED on Z+
0 with P+

k ≡
(

1 0
0 0

)
and 0 is

unstable
(b1) |β−| , |γ−| < 1: P−k ≡ I,

1 ∈ Σ(A) = Σ(b) ∪ [|γ−| , |γ+|],
L has 0-dimensional kernel and index −1

(b2) |β−| < 1 < |γ−|: P−k ≡
(

1 0
0 0

)
,

1 6∈ Σ(A) = Σ(b)∪̇Σ(c),

L is invertible, (L∆) has an ED on Z and 0 has an unstable manifold
(b3) |γ−| < 1 < |β−|: P−k ≡

(
0 0
0 1

)
,

1 ∈ Σ(A) = [min{|β+| , |γ−|},max{|β−| , |γ+|}],
L has 1-dimensional kernel and index 0

(b4) 1 < |β−| , |γ−|: P−k ≡ 0,

1 ∈ Σ(A) = [|β+| , |β−|] ∪ Σ(c),

L has 1-dimensional kernel, index 1 and (L∆) admits an ET on Z
(c) |γ+| < 1 < |β+|: (L∆) admits an ED on Z+

0 with P+
k =

(
0 0
0 1

)
and 0 is

unstable



NONAUTONOMOUS BIFURCATION OF BOUNDED SOLUTIONS II 15

(c1) |β−| , |γ−| < 1: P−k ≡ I,

1 ∈ Σ(A) = [|β−| , |β+|] ∪ Σ(c),

L has 0-dimensional kernel and index −1
(c2) |β−| < 1 < |γ−|: P−k ≡

(
1 0
0 0

)
,

1 ∈ Σ(A) = [min{|β−| , |γ+|},max{|β+| , |γ−|}],
L has 1-dimensional kernel and index 0

(c3) |γ−| < 1 < |β−|: P−k ≡
(

0 0
0 1

)
,

1 6∈ Σ(b)∪̇Σ(c),

L is invertible and (L∆) has an ED on Z
(c4) 1 < |β−| , |γ−|: P−k ≡ 0,

1 ∈ Σ(A) = Σ(b) ∪ [|γ+| , |γ−|],
L has 1-dimensional kernel, index 1 and (L∆) admits an ET on Z

(d) 1 < |β+| , |γ+|: (L∆) admits an ED on Z+
0 with P+

k = 0 and 0 is unstable

(d1) |β−| , |γ−| < 1: P−k ≡ I,

1 ∈ Σ(A) = [min{|β−| , |β+|},max{|γ−| , |γ+|}],
L has 0-dimensional kernel and index −2

(d2) |β−| < 1 < |γ−|: P−k ≡
(

1 0
0 0

)
,

1 ∈ Σ(A) = [|β−| , |β+|] ∪ Σ(c),

L has 0-dimensional kernel and index −1
(d3) |γ−| < 1 < |β−|: P−k ≡

(
0 0
0 1

)
,

1 ∈ Σ(A) = Σ(b) ∪ [|γ−| , |γ+|],
L has 0-dimensional kernel and index −1

(d4) 1 < |β−| , |γ−|: P−k ≡ 0,

Σ(A) ⊆ (1,∞),

L is invertible and (L∆) has an ED on Z, i.e. 0 is uniformly unstable

3.2. Stability, spectra and strongly center fiber bundles. Let us suppose
that, for a given parameter λ ∈ Λ, our nonautonomous difference equation (∆)λ
has a fixed entire reference solution φ(λ) ∈ `∞(Ω). We consider the variational
equation

xk+1 = D1fk(φ(λ)k, λ)xk, (V )λ

denote its transition operator by Φλ(k, l) ∈ L(X) and its dichotomy spectra by
Σ(λ) and Σ+(λ),Σ−(λ). If (V )λ admits an ET on Z, we say the solution φ(λ) is
weakly hyperbolic and for a hyperbolic solution φ(λ), equation (V )λ has an ED on
the whole axis Z.

While Σ(λ) is a useful notion to characterize hyperbolicity (cf. [30]) and in par-
ticular uniform asymptotic stability, as seen in Ex. 3.5 it is not adequate to detect
asymptotic stability: Thus, we need a finer insight into Σ(λ) by virtue of the one-
sided dichotomy spectra Σ+(λ) and Σ−(λ). Indeed, one has:

Proposition 3.9. Let λ ∈ Λ. Under (H0) the following holds:

(a) If max Σ+(λ) < 1, then φ(λ) is asymptotically stable,
(b) if max Σ(λ) < 1, then φ(λ) is uniformly asymptotically stable.
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Proof. Let κ ∈ Z. We neglect the dependence on the fixed parameter value λ ∈ Λ
in our notation and consider the equation of perturbed motion

xk+1 = D1fk(φk)xk + rk(xk) (3.12)

with general solution ϕ(·;κ, ξ) and rk(x) := fk(x + φk)− fk(φk)−D1fk(φk)x sat-
isfying

lim
x→0

rk(x)
|x| = 0 uniformly in k ∈ Z.

(a) By assumption max Σ+ < 1 we know that (V )λ admits an ED on Z+
κ with

invariant projector Pk ≡ I for some κ ∈ Z, i.e. |Φ(k, l)| ≤ Kαk−l holds for all
κ ≤ l ≤ k. Using the standard cut-off technique one can modify rk outside a neigh-
borhood Bρ(0) ⊆ X, ρ > 0, such that (3.12) satisfies the global assumptions of [1,
p. 256, Thm. 5.6.2], yielding that its trivial solution is exponentially asymptotically
stable. This means that there exist a γ ∈ (0, 1) such that for any given ε > 0, there
is a δ = δ(κ) > 0 with

|ϕ(l;κ, ξ)| < δ ⇒ |ϕ(k;κ, ξ)| ≤ εγk−l for all κ ≤ l ≤ k
and in particular the trivial solution of (3.12) is attractive. By continuous depen-
dence on the initial conditions, for every κ0 ≤ κ there exists a δ0 > 0 with |ξ| < δ0
guaranteeing |ϕ(k;κ0, ξ)| < δ for all κ0 ≤ k ≤ κ. This yields that the trivial solu-
tion of equation (3.12) is asymptotically stable and, in turn, φ is an asymptotically
stable solution of (∆)λ.

(b) In contrast to (a), one has the uniform estimate |Φ(k, l)| ≤ Kαk−l for all
l ≤ k, and δ > 0 can be chosen independently of κ ∈ Z. Therefore, the zero solution
of (3.12) and consequently the solution φ of (∆)λ are uniformly asymptotically
stable.

We say that an entire solution φ(λ) of the difference equation (∆)λ admits an
unstable fiber bundle, if for every κ ∈ Z and ε > 0 there exists a backward solution
ψ : Z−κ → Ω with ψ(κ) ∈ Ḃε(φ(λ)κ) satisfying the limit relation

lim
k→−∞

|ψk − φ(λ)k| = 0.

Proposition 3.10. Let λ ∈ Λ. Under (H0) suppose the dichotomy spectrum of
(V )λ allows a splitting Σ(λ) = Σ−∪̇σ, where σ and σ+ are the dominant spectral
intervals of Σ(λ) and Σ+(λ) respectively. The following holds:

(a) If minσ+ > 1, then φ(λ) is unstable,
(b) if Σ− 6= ∅, max Σ− < 1 and minσ > 1, then φ(λ) is unstable and admits an

unstable fiber bundle.

Proof. We again suppress the dependence on λ ∈ Λ.
(a) The assumption minσ+ > 1 guarantees that (V )λ admits an ED on Z+

κ for
some κ ∈ Z, with associated invariant projector Pk 6= I. Thus, as in the proof
of Prop. 3.9 an appropriate modification of the nonlinearity rk in (3.12) outside a
neighborhood of 0 makes [1, p. 261, Cor. 5.6.9] applicable, yielding that the solution
φ is unstable.

(b) The claim follows from [32, Thm. 3.2(b)] applied to (3.12).

One easily constructs examples showing that the center bundle in a Sacker-Sell
trichotomy does not survive under (nonlinear) perturbations as bundle consisting
of bounded entire solutions. Our trichotomy notion is more robust and we obtain
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that the strongly center bundle persists as graph of a smooth mapping consisting
of entire solutions decaying exponentially to 0 in both time directions.

Proposition 3.11 (strongly center fiber bundles). Let λ∗ ∈ Λ, κ ∈ Z and suppose
that (H0) is fulfilled. If ` = `∞ and φ∗ ∈ `(Ω) is an entire permanent and weakly
hyperbolic solution of equation (∆)λ∗ , then there exist reals ε, ρ > 0 and a unique
Cm-function ψ : Bρ(0, λ

∗) ⊆ R(Qκ)× Λ→ Bε(φ
∗) ⊆ `(Ω) such that one has:

(a) ψ(0, λ∗) = φ∗,
(b) ψ(ξ, λ) is an entire weakly hyperbolic solution of difference equation (∆)λ

for all (ξ, λ) ∈ Bρ(0, λ
∗). If (H0)–(H1) are satisfied, then the same holds with

` = `0.

Remark 3.4. Our goal is to employ the above results to the difference equation (∆)λ
resp. its operator formulation (3.2), as well as the Fredholm theory for the linear
operator L defined in (3.10) presented in Subsection 3.1 with Ak = D1fk(φ∗k, λ

∗).
Here, it is important to note that the variational equation (V )λ has bounded forward
growth, since (H0) yields

sup
k∈Z
|D1fk(φ∗k, λ

∗)| <∞ for entire solutions φ∗ ∈ `∞(Ω).

Proof of Prop. 3.11. We give the proof only for `∞(Ω) and set L := D1G(φ∗, λ∗).
(a) Our assumption and Prop. 3.4 imply that N(L) ∼= R(Qκ) is complemented,

i.e. we have `∞ = X1 ⊕ N(L) with a closed subspace X1 ⊆ `∞; in addition, the
map L ∈ L(`∞) is onto. Since Thm. 3.1(a) implies that G : `∞(Ω)◦ ×Λ→ `∞ is of
class Cm, we can apply Thm. 2.1 to the equation G(φ, λ) = 0 with X = Z = `∞.
This yields a family of entire solutions to (∆)λ given by

ψ(ξ, λ) := φ∗ + Φ(·, κ)ξ + φ(ξ, λ).

(b) follows from the `∞-roughness of ETs (cf. [26, Prop. 2]).

Thanks to Cor. 2.2 we can obtain quantitative information on the domain and
range of the function ψ, i.e. the `∞-norm of the bounded entire solutions.

Corollary 3.12. If there exist functions ω0 : R → [0,∞), ω1 : R × R → [0,∞),
nondecreasing in each argument, so that

|fk(x, λ)− fk(φ∗k, λ
∗)| ≤ ω0(|x− φ∗k|),

|D1fk(x, λ)−D1fk(φ∗k, λ
∗)| ≤ ω1(|x− φ∗k| , |λ− λ∗|)

for all k ∈ Z and x ∈ Ω, λ ∈ Λ, then the reals ε, ρ > 0 from Prop. 3.10 can be
determined from the relations

K(1+K)
1−α ω1(ρ, ε) ≤ ω < 1, K

1−α (ρ+ ω0(ρ)) ≤ ε(1− ω).

Proof. We have to verify the conditions of Cor. 2.2. First of all, thanks to the
above Cor. 3.5 we derive

∣∣(D1G(φ∗, λ∗)(I − P ))−1
∣∣ ≤ K

1−α . Furthermore, due to
the relations

G(φ∗, λ∗)k = 0, (D1G(φ, λ)ψ)k = ψk+1 −D1fk(φk, λ)ψk for all k ∈ Z

and ψ ∈ `, it is not difficult to deduce the estimates (2.2) from our assumptions.
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3.3. Jump and shovel bifurcations. In the standard terminology from branch-
ing theory (cf., for example, [37]) already used in [29], an entire solution φ∗ of (∆)λ∗

bifurcates at a fixed parameter value λ∗ ∈ Λ, if there exists a convergent sequence
(λn)n∈N in Λ with limit λ∗ such that each difference equation (∆)λn has two distinct
entire solutions φ1(λn), φ2(λn) ∈ ` satisfying the limit relation

lim
n→∞

φ1(λn) = lim
n→∞

φ2(λn) = φ∗ in `.

For a parameter space Λ ⊆ R, one speaks of a subcritical or a supercritical bifur-
cation, if the sequence (λn)n∈N can be chosen according to λn < λ∗ or λn > λ∗,
respectively.

In [30, Prop. 2.8] we showed that, in order to establish bifurcation results, it
is essential to consider nonhyperbolic solutions φ∗ of (∆)λ, i.e. solutions satisfying
the inclusion 1 ∈ Σ(λ∗). Based on an index 0 Fredholm theory and a Lyapunov-
Schmidt reduction, we deduced criteria for finitely many bounded entire solutions
to bifurcate (see [29]). Now we are interested in an although nonhyperbolic but
weakly hyperbolic situation, where an index 0 Fredholm approach is not applicable.
In addition, the bifurcation scenario we are about to study now, differs from the
results in [29], since they also apply to linear equations.

Hypothesis. Let κ ∈ Z and Λ ⊆ R.

(H2) For all λ ∈ Λ the equation (∆)λ has an entire permanent solution φ(λ) ∈ `(Ω).

Now suppose that for every λ 6= λ∗ the variational equation (V )λ along φ(λ)
admits an ET on Z with projectors Pk(λ), Qk(λ) and dimR(Qk(λ)) < ∞. This
ensures that (V )λ has an ED on Z+

κ with projector P+
k (λ) = Pk(λ)+Qk(λ), and an

ED on Z−κ with projector P−k (λ) = Pk(λ). Consequently, by Prop. 3.4 the operator
Lλ ∈ L(`) given by

(Lλψ)k := ψk+1 −D1fk(φ(λ)k, λ)ψk

is onto with Fredholm index dimR(P+
κ (λ)(I − P−κ (λ))) = dimR(Qκ(λ)) — we are

dealing with positive index bifurcations. Choosing a fixed λ∗ ∈ Λ, we define the
function r : Λ \ {λ∗} → N0 by

r(λ) := dimR
(
P+
κ (λ)(I − P−κ (λ))

)
= dimR(Qκ(λ)).

Introducing the one-sided limits

r+(λ∗) := lim
λ↘λ∗

r(λ), r−(λ∗) := lim
λ↗λ∗

r(λ),

we say r has a jump at λ∗, if the following difference is nonzero:

j(λ∗) := r+(λ∗)− r−(λ∗).

For instance, as the next result shows, an ET does not guarantee that a finite
number of solutions bifurcates.

Proposition 3.13 (jump bifurcation). Suppose that hypotheses (H0), (H2) hold
and for every λ 6= λ∗ the variational equation (V )λ admits an ET on Z with projec-
tors Pk(λ), Qk(λ) and dimR(Qk(λ)) <∞. In case ` = `∞ and φ∗ = φ(λ∗) ∈ `(Ω),
there exist open convex neighborhoods U ⊆ `(Ω) of φ∗ and Λ1 ⊆ Λ of λ∗ such that
one has for λ ∈ Λ1:

(a) Subcritical case: If −r−(λ∗) = j(λ∗) < 0, then the unique entire bounded
solution of (∆)λ is φ(λ) for λ > λ∗, while φ(λ) is embedded into a r−(λ∗)-
parameter family ψ(ξ, λ) ∈ `(Ω) of entire solutions in U of (∆)λ for λ < λ∗.
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(b) Supercritical case: If r+(λ∗) = j(λ∗) > 0, then the unique entire bounded
solution of (∆)λ is φ(λ) for λ < λ∗, while φ(λ) is embedded into a r+(λ∗)-
parameter family ψ(ξ, λ) ∈ `(Ω) of entire solutions in U of (∆)λ for λ > λ∗.

(c) The properties of the mapping ψ are given in Prop. 3.11 and Cor. 3.12.

If (H0)–(H1) are satisfied, then the same holds with ` = `0.

Proof. Let λ ∈ Λ \ {λ∗} and due to analogy we restrict to assertion (b). By
Prop. 3.11 we see that a difference equation (∆)λ has a r+(λ)-parameter family
of bounded entire solutions ψ : Bρ(0, λ

∗) ⊆ R(Qκ(λ∗)) × Λ → `(Ω) forming an
r(λ)-dimensional manifold C(λ) ⊆ `∞(Ω). By assumption, the function r has a
jump at λ∗ and dimC(λ) increases from 0 by j(λ∗), as λ grows trough λ∗. On the
other hand, r−(λ) = 0 and thus (V )λ admits an ED on Z for λ < λ∗. This implies
that equation (∆)λ has a unique bounded entire solution for λ < λ∗. Finally, the
same argument applies in case ` = `0.

Corollary 3.14. If j(λ∗) 6= 0, then 1 ∈ Σ(λ∗).

Proof. Let κ ∈ Z. Arguing indirectly, we suppose that 1 6∈ Σ(λ∗), i.e. (V )λ∗ has
an ED on Z. By the roughness theorem for EDs (see [17, p. 232, Thm. 7.6.7])
there exists a neighborhood Λ1 of λ∗ such that also (V )λ admits an ED on Z for all
λ ∈ Λ1 with projector Pk(λ). In particular, (V )λ has dichotomies on both semiaxes
Z+
κ and Z−κ with the same projector Pk(λ). This guarantees Pκ(λ)(I − Pκ(λ)) = 0

and therefore r(λ) ≡ 0 on Λ1, which contradicts the assumption j(λ∗) 6= 0.

Example 3.7. The quantity r(λ) ∈ N0 can also be computed in the parameter-free
situations from Examples 3.5 (left) and 3.6 (right). One obtains the following tables

r(λ) (ai) (ci)
i = 1 0 0
i = 3 1 0

r(λ) (ai) (bi) (ci) (di)
i = 1 0 0 0 0
i = 2 1 0 1 0
i = 3 1 1 0 0
i = 4 2 1 1 0

where (ai), . . . , (di) refers to the corresponding constellations for α±, β±, γ±.

Hypothesis. Let D1fk(φ∗k, λ
∗) ∈ GL(X) for all λ ∈ Λ ⊆ R and k ∈ Z.

(H3) Suppose the dichotomy spectra of (V )λ allow a splitting

Σ(λ) = Σ−(λ)∪̇σ(λ), Σ±(λ) = Σ±−(λ)∪̇σ±(λ) for all λ ∈ Λ,

and supλ∈Λ max Σ−(λ) < 1.

Remark 3.5. Let m be the multiplicity of σ(λ). In case max Σ−(λ) < 1 the equation
(∆)λ possesses a center fiber bundle (cf. [27, Thm. 2.4]) and the stability analysis for
the permanent entire solution φ(λ) ∈ ` reduces to an m-dimensional problem, where
a corresponding nonautonomous reduction principle can be found in [27, Thm. 3.5].
In the remaining two results we neglect the situation maxσ+(λ) = 1. Here, the
behavior of φ∗ is determined by the restriction of (∆)λ on a center fiber bundle
and particularly on Taylor coefficients of nonlinear terms (cf. [32]). As opposed to
this setting, in the following stability and bifurcation results are determined by the
linear part alone.

In the autonomous (or periodic) situation one has a powerful perturbation theory
for isolated eigenvalues available, yielding their differentiable dependence on the
parameters (see, for instance, [21, Chapter 7]). Since the dichotomy spectrum
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depends only upper-semicontinuously on parameters (cf. [28, Cor. 4]), one cannot
expect a similar behavior for the boundary points of spectral intervals and instead
we have to assume certain monotonicity properties for them. In this context, given
a function f : Λ → R, a convenient terminology is as follows: We briefly say
f(λ∗) = 1 increases (decreases), if f(λ∗) = 1 and the function f is strictly increasing
(decreasing) in a neighborhood of λ∗.

In addition, a typical case where the function r has a jump is when spectral inter-
vals cross the stability boundary 1. In the following two theorems we restrict to the
dominant spectral interval σ(λ), since it yields the essential stability information.

Theorem 3.15 (shovel bifurcation I). Let ` = `∞ and suppose (H0), (H2), (H3)
hold. If

maxσ(λ∗) = 1

and the dominant spectral interval σ−(λ) has constant multiplicity m < ∞, then
there exists a neighborhood Λ1 ⊆ Λ of λ∗ such that:

(a) Subcritical case: If maxσ is decreasing at λ∗, then
(a1) for λ < λ∗ one has
•1 if maxσ+(λ∗) < 1 or maxσ+(λ∗) = 1 increases, then φ(λ) is asymptot-
ically stable, and if also minσ−(λ∗) = 1 decreases, then φ(λ) is embedded
into an m-parameter family of bounded entire solutions to (∆)λ in `(Ω),
•2 if minσ+(λ∗) = 1 decreases, then φ(λ) is unstable,

(a2) for λ = λ∗ and maxσ+(λ∗) < 1 the solution φ(λ) is asymptotically
stable,

(a3) for λ > λ∗ the unique entire bounded solution of (∆)λ is φ(λ); it is
uniformly asymptotically stable

(b) Supercritical case: If maxσ is increasing at λ∗, then
(b1) for λ < λ∗ the unique entire bounded solution of (∆)λ is φ(λ); it is

uniformly asymptotically stable,
(b2) for λ = λ∗ and maxσ+(λ∗) < 1 the solution φ(λ) is asymptotically stable,
(b3) for λ > λ∗ one has
•1 if maxσ+(λ∗) < 1 or maxσ+(λ∗) = 1 decreases, then φ(λ) is asymp-
totically stable, and if also minσ−(λ∗) = 1 increases, then φ(λ) is em-
bedded into an m-parameter family of bounded entire solutions to (∆)λ in
`(Ω),
•2 if minσ+(λ∗) = 1 increases, then φ(λ) is unstable

for all λ ∈ Λ1. If (H0)–(H3) are satisfied, then the same holds with ` = `0.

We refer to Fig. 4 for a schematic illustration of the bifurcation patterns described
in the previous Thm. 3.15. To explain our terminology, the set of solutions in ` for
different values of the parameter λ resembles a shovel rather than e.g. a pitchfork.
The shape of the shovel depends on the nonlinearity (see the discussion in Ex. 3.8).
For linear difference equations, the bifurcating family of bounded solutions fills the
whole half-plane left (subcritical case) resp. right (supercritical case) of the critical
parameter λ∗.

Proof. Let κ ∈ Z and suppose that we have max Σ(λ∗) = maxσ(λ∗) = 1.
(a) Let maxσ : Λ→ R be decreasing at λ∗.

(a1) Thus, for λ < λ∗ one has maxσ(λ) > 1 and information on the stability of
φ(λ) can be obtained from the forward spectrum: If maxσ+(λ∗) < 1 then the
upper-semicontinuity of Σ+(·) (see [28, Cor. 4]) guarantees max Σ+(λ) < 1 in a
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Λ

`
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`

φ(λ)
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Figure 4. Bifurcation diagram for Thm. 3.15•1 with a subcriti-
cal shovel bifurcation (left) and a supercritical shovel bifurcation
(right) of an entire solution φ∗ (double arrows indicate uniform
asymptotic stability).

neighborhood of λ∗ and consequently φ(λ) is asymptotically stable by Prop. 3.9(a).
In case maxσ+(λ∗) = 1 increases, it is max Σ+(λ) < 1 in a left-sided neighborhood
of λ∗ and φ(λ) is asymptotically stable as above. Both situations feature an ED on
Z+
κ with identity projector P+

k (λ) ≡ I. If we additionally have that minσ−(λ∗) = 1
is decreasing, then minσ−(λ) > 1. This ensures that (V )λ has an ED on Z−κ
with projector P−k (λ) and dimN(P−k (λ)) = m, where m is the multiplicity of σ−.
Consequently, the projectors P−κ (λ), P+

κ (λ) ≡ I fulfill (3.7) and (V )λ has an ET
on Z by Lemma 3.2(b) and the solution φ(λ) is weakly hyperbolic. Moreover, the
associated central projector satisfies dimR(Qk(λ)) = dimN(P−k (λ)) = m. Thanks
to Prop. 3.11 the solution φ(λ) is embedded into a m-parameter family of entire
solutions in `∞. Finally, if maxσ+(λ∗) = 1 decreases, then minσ+(λ∗) > 1 for
λ < λ∗ and Prop. 3.10(a) guarantees that φ(λ) is unstable.
(a2) The assertion follows from Prop. 3.9(a).
(a3) For λ > λ∗ one has min Σ(λ) < 1 and consequently the stability claim follows
from Prop. 3.9(b). In particular, φ(λ) is hyperbolic in the sense that (V )λ admits
an ED on Z. Hence, the uniqueness assertion on the solution φ(λ) is a consequence
of [30, Thm. 2.11].

(b) The proof in the supercritical situation is dual to (a).

Theorem 3.16 (shovel bifurcation II). Let ` = `∞ and suppose (H0), (H2), (H3)
hold. If

minσ(λ∗) = 1

and the dominant spectral interval σ−(λ) has constant multiplicity m < ∞, then
there exists a neighborhood Λ1 ⊆ Λ of λ∗ such that:

(a) Subcritical case: If minσ is increasing at λ∗, then
(a1) for λ < λ∗ one has
•1 if maxσ(λ∗) = 1 increases, then φ(λ) is uniformly asymptotically stable
and the unique entire bounded solution of (∆)λ,
•2 if maxσ+(λ∗) = 1 increases, then φ(λ) is asymptotically stable, and if
also minσ−(λ∗) > 1 or minσ−(λ∗) = 1 decreases, then φ(λ) is embedded
into an m-parameter family of bounded entire solutions to (∆)λ in `(Ω),
•3 if minσ+(λ∗) > 1 or minσ+(λ∗) = 1 decreases, then φ(λ) is unstable,

(a2) for λ = λ∗ and minσ+(λ∗) > 1 the solution φ(λ) is unstable,
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(a3) for λ > λ∗ the solution φ(λ) is unstable and the unique entire bounded
solution of (∆)λ; in case Σ(λ) 6= ∅ it has an unstable fiber bundle

(b) Supercritical case: If minσ is decreasing at λ∗, then
(b1) for λ < λ∗ the unique entire bounded solution of (∆)λ is φ(λ); it is

unstable; in case Σ(λ) 6= ∅ it has an unstable fiber bundle,
(b2) for λ = λ∗ and minσ+(λ∗) > 1 the solution φ(λ) is unstable,
(b3) for λ > λ∗ one has
•1 if maxσ(λ∗) = 1 decreases, then the unique entire bounded solution of
(∆)λ is φ(λ); it is uniformly asymptotically stable,
•2 if maxσ+(λ∗) = 1, then φ(λ) is asymptotically stable, and if also
minσ−(λ∗) > 1 or minσ−(λ∗) = 1 increases, then φ(λ) is embedded into
an m-parameter family of bounded entire solutions to (∆)λ in `(Ω),
•3 if minσ+(λ∗) > 1 or minσ+(λ∗) = 1 increases, then φ(λ) is unstable

for all λ ∈ Λ1. If (H0)–(H3) are satisfied, then the same holds with ` = `0.

See Fig. 5 for the bifurcation diagram illustrating Thm. 3.16.

Λ

`

φ(λ)

φ∗

λ∗ Λ

`

φ(λ)

φ∗

λ∗

Figure 5. Bifurcation diagram for Thm. 3.16•2 with a subcriti-
cal shovel bifurcation (left) and a supercritical shovel bifurcation
(right) of an entire solution φ∗

Remark 3.6 (size of the shovel). In Prop. 3.13 and Thms. 3.15, 3.16 we have es-
tablished the existence of a strongly center fiber bundle using Prop. 3.11. Thus, an
estimate on the `∞-norm of the bifurcating entire solutions in `(Ω) can be derived
using Cor. 3.12.

Proof. Let κ ∈ Z and suppose the relation minσ(λ∗) = 1.
(a) Let minσ be increasing at λ∗.

(a1) For parameters λ < λ∗ one obtains minσ(λ) < 1. If maxσ(λ∗) = 1 increases,
then maxσ(λ) = max Σ(λ) < 1 and the claim immediately follows from Prop. 3.9(b)
and [30, Thm. 2.11], since (V )λ has an ED on Z with Pk(λ) ≡ I. If maxσ+(λ∗) = 1
increases, then maxσ+(λ) = max Σ+(λ) < 1 and φ(λ) is asymptotically stable by
Prop. 3.9(a). In particular, we have an ED on Z+

κ with P+
k (λ) ≡ I. However, if

minσ−(λ∗) > 1 or minσ−(λ∗) = 1 decreases, one deduces minσ−(λ) > 1 and (V )λ
admits an ED on Z−κ with dimN(P−k (λ)) = m. We conclude from Lemma 3.2(ii)
that (V )λ has an ET on the whole axis Z and Prop. 3.11 implies that the weakly
hyperbolic solution φ(λ) ∈ ` is embedded into a m-parametric family of entire
solutions in `. Finally, provided minσ+(λ∗) > 1 or minσ+(λ∗) = 1 decreases, then
minσ+(λ∗) > 1 and thus, the solution φ(λ) is unstable by Prop. 3.10(a).
(a2) For minσ+(λ∗) > 1 the assertion follows from Prop. 3.10(a).



NONAUTONOMOUS BIFURCATION OF BOUNDED SOLUTIONS II 23

(a3) For λ > λ∗ one has minσ(λ) > 1. Hence, the solution φ(λ) is unstable by
Prop. 3.10; in case Σ−(λ) 6= ∅ one has an unstable fiber bundle.

(b) The situation is dual to the above case (a).

We conclude this section with a simple nonlinear example illustrating the essential
assertions of Prop. 3.13, as well as both Thm. 3.15 and 3.16.

Example 3.8 (shovel bifurcation). For given parameters δ ∈ (0, 1) and a bifurcation
parameter λ > 0, let us consider the scalar nonlinear difference equation

xk+1 = ak(λ)xk + x3
k, ak(λ) :=

{
λ, k ≥ 0,

λ+ δ, k < 0,
(3.13)

whose right-hand side fk(x, λ) = ak(λ)x + x3 satisfies (H0)–(H2) with Ω = R and
the family of entire solutions φ(λ) ≡ 0 for all λ. From Ex. 3.5 the linearization

xk+1 = ak(λ)xk (3.14)

along φ(λ) has the dichotomy spectra

Σ(λ) = [λ, λ+ δ] , Σ−(λ) = {λ+ δ} , Σ+(λ) = {λ}
and the corresponding dominant spectral intervals

σ(λ) = {λ+ δ} , σ−(λ) = {λ+ δ} , σ+(λ) = {λ} .
Obviously, the functions maxσ, minσ and maxσ± = minσ± are increasing. For
the sake of a bifurcation analysis, the parameter values λ∗ = 1− δ and λ∗ = 1 are
of interest. Apart from these values, the linear part (3.14) admits an ET on Z with

Pk(λ) ≡
{

1, λ < 1− δ,
0, λ > 1− δ, Qk(λ) ≡

{
1, λ ∈ (1− δ, 1),

0, λ 6∈ [1− δ, 1]
on Z

for all λ 6∈ {1− δ, 1}. This yields the bifurcation results:

• For λ∗ = 1− δ one has

r−(λ∗) = 0, r+(λ∗) = 1, j(λ∗) = 1

and Prop. 3.13(b) implies a supercritical jump bifurcation. For λ < 1 − δ
the unique entire bounded solution of (3.13) is 0 and for λ ∈ (1 − δ, 1) the
zero solution embeds into a 1-parameter family of entire solutions in `0. By
Thm. 3.15(b) the above jump bifurcation is actually a supercritical shovel bi-
furcation, where the uniformly asymptotically stable trivial solution of (3.13)
becomes asymptotically stable, as λ passes through the value 1− δ. The cor-
responding qualitative change in the solution portrait of (3.13) is depicted in
Fig. 6 (left and middle).

• For λ∗ = 1 one has

r−(λ∗) = 1, r+(λ∗) = 0, j(λ∗) = −1

and Prop. 3.13(a) ensures a subcritical jump bifurcation; the 1-parameter
family of entire solutions in `0 collapses to the zero solution as unique bounded
solution, when λ passes through 1. We obtain a subcritical shovel bifurcation
from Prop. 3.16(a), where the asymptotically stable zero solution becomes
unstable. In Fig. 6 (middle, right) we have illustrated the related qualitative
change in the solution portrait of (3.13). Note that Thm. 3.16 does not imply
stability assertions of the trivial solution in case λ∗ = 1. Here nevertheless,
[32, Prop. 5.4] yields that 0 is unstable.



24 CHRISTIAN PÖTZSCHE
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Figure 6. Shovel bifurcation: Solution portraits of the differ-
ence equation (3.13) from Ex. 3.8 with δ = 1

5 for different values

of the parameter λ and k = −20, . . . , 20. For λ < 4
5 the trivial

solution is the unique entire solution in `0 and uniformly asymp-
totically stable (left, λ = 7

10 ). For λ ∈ ( 4
5 , 1) the trivial solution

becomes asymptotically stable and is embedded into a 1-parameter
family of solutions in `0 (middle, the points of the bounded solu-
tions are marked as boxes �, λ = 0.9). Finally, for 1 < λ the zero
solution is the unique bounded solution in `0, but unstable (right,
λ = 11

10 ).

Since the right-hand side fk(·, λ) : R→ R, k ∈ Z, λ ∈ R, of (3.13) is a C∞-diffeo-
morphism, through every pair (κ, ξ) ∈ Z × R there exists a uniquely determined
entire solution ϕλ(·;κ, ξ). For k ≥ 0 and λ ∈ [1 − δ, 1] the mappings fk(·, λ) have
the fixed points 0, ±

√
1− λ and using graphical iterations one therefore sees that

the entire solutions of (3.13) in `0 are exactly those with initial values satisfying

|ϕλ(0;κ, ξ)| ≤
√

1− λ.
In particular, for κ = 0 the pairs (λ, ξ) yielding entire solutions for (3.13) in `0 are
given by

{
(λ, ξ) ∈ R2 : ξ = 0 or λ ∈ [1− δ, 1], |ξ| ≤

√
1− λ

}
.

Various other examples for transitions from an ED into an ET or backwards can
be constructed by virtue of the linear parts discussed in Ex. 3.6.

4. Differential equations. In this section, we deal with finite-dimensional non-
autonomous ordinary differential equations. Our investigations are parallel to the
above case of discrete systems, although the dichotomy and Fredholm theory is sim-
pler due to the existence of backward solutions. For this reason we prefer a more
compact presentation.

As state space we consider an open convex nonempty subset Ω ⊆ Rd and the
continuously differentiable functions φ : R→ Ω are denoted by C1(R,Ω). The space
of bounded continuous functions BC(R,Rd) is equipped with the natural norm

‖φ‖ := sup
t∈R
|φ(t)| ;

moreover, BC1(R,Ω) denotes the bounded continuously differentiable functions
with bounded derivative, BC0(R,Ω) the functions in BC(R,Ω) decaying to 0 in the

limit t→ ±∞ and BC1
0 (R,Ω) such functions φ ∈ BC1(R,Ω) with φ, φ̇ ∈ BC0(R,Ω).

It is convenient to abbreviate BC := BC(R,Rd) and to proceed accordingly with
the other spaces.
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The nonempty parameter space Λ ⊆ Y is assumed to be open and convex. We
consider functions f : R × Ω × Λ → Rd and nonautonomous parameter-dependent
ordinary differential equations (ODE for short)

ẋ = f(t, x, λ). (D)λ

Under the assumptions given below, solutions φ : I → Ω of (D)λ are uniquely
determined and exist on maximal open intervals I ⊆ R. An entire solution to (D)λ
is a solution existing on the whole axis R, and a permanent solution fulfills

0 < inf
t∈I

dist(φ(t),Ω).

Hypothesis. Let m ∈ N, suppose f : R × Ω × Λ → Rd is continuous and f(t, ·),
t ∈ R, is a Cm-function such that the following holds for 0 ≤ j ≤ m:

(H0) For all bounded B ⊆ Ω one has supt∈R supx∈B

∣∣∣Dj
(2,3)f(t, x, λ)

∣∣∣ < ∞ for all

λ ∈ Λ (well-definedness) and for all λ∗ ∈ Λ and ε > 0 there exists a δ > 0
with

|x− y| < δ ⇒ sup
t∈R

∣∣∣Dj
(2,3)f(t, x, λ)−Dj

(2,3)f(t, y, λ)
∣∣∣ < ε

for all x, y ∈ Ω and λ ∈ Bδ(λ∗) (uniform continuity).
(H1) We have 0 ∈ Ω and limt→±∞ f(t, 0, λ) = 0 for all λ ∈ Λ.

Under these assumptions the following substitution operators

F (φ, λ)(t) := f(t, φ(t), λ), F υ(φ, λ)(t) := Dυ1
2 Dυ2

3 f(t, φ(t), λ)

are defined for t ∈ R, 0 ≤ j ≤ m and υ = (υ1, υ2) ∈ N2
0 such that υ1 + υ2 ≤ m. We

profit from our earlier preparations on such operators in [30] and simply quote:

Proposition 4.1. Under (H0) the operator F : BC(R,Ω)×Λ→ BC is well-defined
and m-times continuously differentiable on BC(R,Ω)◦ × Λ with partial derivatives

DυF (φ, λ) = F υ(φ, λ) for all φ ∈ BC(R,Ω)◦, λ ∈ Λ.

If (H0)–(H1) are satisfied, then the same holds for F : BC0(R,Ω)× Λ→ BC0.

Proof. See [30, Lemma 3.3 and Prop. 3.4].

Corollary 4.2. Under (H0) the operator G : BC1(R,Ω)× Λ→ BC,

G(φ, λ) = φ̇− F (φ, λ)

is well-defined and m-times continuously differentiable on BC1(R,Ω)◦×Λ. If (H0)–
(H1) are satisfied, then the same holds for G : BC1

0 (R,Ω)× Λ→ BC0.

Proof. See [30, Cor. 3.5].

Finally, we can state that the bounded solutions to the ODE (D)λ and zeros of
the abstract nonlinear operator G are related by

Theorem 4.3. For λ ∈ Λ the following holds under (H0):

(a) If φ ∈ BC(R,Ω) is an entire solution of (D)λ, then φ ∈ BC1(R,Ω) and

G(φ, λ) = 0; (4.1)

conversely, if φ ∈ C1(R,Ω) ∩ BC solves (4.1), then φ ∈ BC1(R,Ω) and φ is
an entire bounded solution of (D)λ.
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(b) Under additionally (H1), if φ ∈ BC0(R,Ω) is an entire solution of (D)λ, then
φ ∈ BC1

0 (R,Ω) and (4.1) holds; conversely, if φ ∈ C1(R,Ω) ∩ BC0 solves
(4.1), then φ ∈ BC1

0 (R,Ω) and φ is an entire bounded solution of (D)λ.

Proof. See [30, Thm. 3.6].

4.1. Linear differential equations. We consider a linear homogeneous differen-
tial equation

ẋ = A(t)x (LD)

with a given continuous coefficient operator A : R→ L(Rd). Its transition operator
Φ(t, s) ∈ L(Rd), t, s ∈ R, is the unique solution of the matrix valued initial value

problem Ẋ = A(t)X, X(s) = I in L(Rd).
Let us suppose that I ⊆ R is a real interval. We describe invariant splittings of the

extended state space I×Rd for (LD) using invariant projectors, i.e. projection-valued
functions P : I → L(Rd) which commute with the transition operator by means of
the relation Φ(t, s)P (s) = P (t)Φ(t, s) for all t, s ∈ I. The following terminology
due to [15] defines (LD) to admit an exponential trichotomy (ET for short) on I,
provided:

(i) There exist invariant projectors P,Q : I→ L(Rd) with P (t)Q(t) ≡ Q(t)P (t) ≡
0 on I,

(ii) there exist reals K ≥ 1, α > 0 and τ ∈ I such that

|Φ(t, s)P (s)| ≤ Ke−α(t−s) for all s ≤ t,
|Φ(t, s)Q(s)| ≤ Ke−α|t−s| for all τ ≤ s ≤ t or t ≤ s ≤ τ,

|Φ(t, s)[I − P (s)−Q(s)]| ≤ Keα(t−s) for all t ≤ s.
Similarly to the difference equations case, the ranges of P,Q form the stable and
strongly center bundle for (LD), resp., while the kernels of P +Q are the unstable
bundle. In particular, for Q = 0, we say (LD) admits an exponential dichotomy
(ED for short) on I.

Remark 4.1. Let θ > 0. A θ-periodic linear differential equation (LD) with mon-
odromy operator M := Φ(τ+θ, τ) admits an ED on R, provided the spectrum σ(M)
does not intersect the complex unit circle (cf. [13, p. 203, Thm. 2.1]).

Lemma 4.4. Let τ , τ ∈ R with τ ≤ τ . If a linear differential equation (LD) has an
ED both on [τ ,∞) (with projector P+) and on (−∞, τ ] (with projector P−), then
it has an ET on R, provided one of the following conditions holds:

(i) Every solution of (LD) is the sum of a solution bounded on [τ ,∞) and a
solution bounded on (−∞, τ ],

(ii) one has the relation

P−(τ) = P−(τ)Φ(τ , τ)P+(τ)Φ(τ , τ) = Φ(τ , τ)P+(τ)Φ(τ , τ)P−(τ), (4.2)

where the projectors associated to the ET read as P := Φ(·, τ)P−(τ)Φ(τ , ·)
and Q := Φ(·, τ)P+(τ)Φ(τ , ·)− Φ(·, τ)P−(τ)Φ(τ , ·).

Remark 4.2. (1) The argument of Rem. 3.2(1) and [12, p. 70, Prop. 3] (for this see
also [23]) yield that for almost-periodic differential equations (LD) one necessarily
has Q = 0.
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(2) In case τ := τ = τ we know that (4.2) is equivalent to N(P+(τ)) ⊆ N(P−(τ))
and R(P−(τ)) ⊆ R(P+(τ)); moreover one has

R(P+(τ)(I − P−(τ))) = R(P+(τ)) ∩N(P−(τ)), R(P+(τ)) +N(P−(τ)) = Rd.

Proof. As in the proof of Lemma 3.2 we establish EDs on the intervals [τ ,∞) and
(−∞, τ ] and refer to [15, Lemma 1.2].

Let γ ∈ R. As in [35, 34], a spectral notion for linear differential equations (LD)
can be formulated using the shifted linear differential equation

ẋ = [A(t)− γI]x (LD)γ

and now we are in a position to define the

dichotomy spectrum Σ(A) := {γ ∈ R : (LD)γ has no ED on R} ,
forward dichotomy spectrum Σ+(A) := {γ ∈ R : (LD)γ has no ED on [τ,∞)} ,
backward dichotomy spectrum Σ−(A) := {γ ∈ R : (LD)γ has no ED on (−∞, τ ]}
of (LD) for some τ ∈ I. The dichotomy spectra Σ+(A),Σ−(A) are independent of
the instant τ ∈ R and the inclusions Σ+(A),Σ−(A) ⊆ Σ(A) hold true. However,
for general coefficient matrices A only numerical methods enable us to approximate
Σ(A) or Σ±(λ) (see [14]). From a theoretical side the following is known:

The dichotomy spectrum Σ(A) is a compact subset of R, provided (LD) has
bounded growth (cf. [34, Thm. 3.1]), i.e. there exist reals K0 ≥ 1, ω ≥ 0 such that

|Φ(t, s)| ≤ K0e
ω|t−s| for all s, t ∈ I. (4.3)

In this situation it has been shown in [34, Spectral Theorem] that Σ(A) is the
disjoint union of n ≤ d nonempty compact spectral intervals σ1, . . . , σn ⊆ R, i.e.

Σ(A) =

n⋃
i=1

σi, supσi < inf σi+1 for all 1 ≤ i < n

and we call σn the dominant spectral interval. Information on Σ(A) yields a decom-
position of the extended state space into invariant vector bundles. For this, suppose
I = R and choose reals b1 < a2 < . . . < bn−1 < an with Σ(A) ∩⋃n−1

i=1 (bi, ai+1) = ∅.
If possible, pick γ0 ∈ R \ Σ(A) with (−∞, γ0) ⊆ R \ Σ(A) and otherwise set

S−γ0 := R× Rd, S+
γ0 := R× {0} .

Moreover, choose γn ∈ R \ Σ(A) with (γn,∞) ⊆ R \ Σ(A) and otherwise define

S−γn := R× {0} , S+
γn := R× Rd.

For growth rates γ ∈ R we introduce nonautonomous sets

S+
γ :=

{
(τ, ξ) ∈ R× Rd : sup

τ≤t
|Φ(t, τ)ξ| eγ(τ−t) <∞

}
,

S−γ :=
{

(τ, ξ) ∈ R× Rd : sup
t≤τ
|Φ(t, τ)ξ| eγ(τ−t) <∞

}
and choose γi ∈ (bi, ai+1) for 1 ≤ i < n to define spectral manifolds via the inter-
section Wi := S−γi−1

∩ S+
γi , 1 ≤ i ≤ n. They are linear integral manifolds for (LD),

independent of γi, and also fulfill W1⊕ . . .⊕Wn = R×Rd. We adopt our notation
and terminology from the above discrete case, where the hyperbolicity condition
(3.9) has to be replaced by 0 6∈ Σ(A).
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Proposition 4.5. In case (LD) has an ET on R with Q 6= 0, then [−α, α] ⊆ Σ(A).

Proof. Proceed as in Prop. 3.3 and use [15, Thm. 5.2]. Here the transition operator
of the shifted equation (LD)γ reads as Φγ(t, s) := eγ(s−t)Φ(t, s).

Crucial for our approach are surjectivity properties of the differential operator

L : C1 → C, (Lφ)(t) := φ̇(t)−A(t)φ(t) for all t ∈ R, (4.4)

where C denotes one of the linear spaces BC or BC0. A bounded coefficient function
A : R→ L(Rd) ensures that L is well-defined and continuous — an assumption we
impose from now on.

Proposition 4.6. Let τ ∈ R. If a linear equation (LD) has an ET on R, then
L : C1 → C is Fredholm, has a complemented kernel with

N(L) =
{

Φ(·, τ)ξ ∈ C1 : ξ ∈ R(Q(τ))
}
, R(L) = C

and index dimR(Q(τ)). In case of an ED on R one has L ∈ GL(C1, C).

Proof. This follows from the proof of [15, Thm. 5.2].

Corollary 4.7. If R(L) = C and there exists a real α > 0 such that [−α, α] ⊆ Σ(A),
then (LD) admits an ET on R with nonzero central projector Q 6= 0.

Proof. Proceed dually to the proof of Cor. 3.6.

Proposition 4.8. Let τ ∈ R. If a linear differential equation (LD) admits an
ED both on [τ,∞) (with projector P+) and on (−∞, τ ] (with projector P−), then
L : C1 → C is Fredholm with index dimR(P+(τ))− dimR(P−(τ)).

Proof. See [22, Lemma 4.2].

4.2. Stability, spectra and strongly center integral manifolds. In this sub-
section, we keep a parameter λ ∈ Λ fixed and suppose that φλ stands for a bounded
entire solution of (D)λ. The corresponding stability properties of φλ can be inves-
tigated using the dichotomy spectra of the variational equation

ẋ = D2f(t, φλ(t), λ)x, (V D)λ

whose transition operator is denoted by Φλ(t, s) and its dichotomy spectrum by
Σ(λ). We say the solution φλ is weakly hyperbolic, if (V D)λ has an ET on R and
for a hyperbolic solution the equation (V D)λ is exponentially dichotomous on R. A
comprehensive stability theory for (V D)λ has been developed for instance in [11]
and we obtain

Proposition 4.9. Let λ ∈ Λ. Under (H0) the following holds:

(a) If max Σ+(λ) < 0, then φλ is asymptotically stable,
(b) if max Σ(λ) < 0, then φλ is uniformly asymptotically stable.

Proof. We proceed as in the proof of Prop. 3.9 and use [11, p. 68, Thm. 8] to justify
(a), while [11, p. 70, Thm. 9] is appropriate to show assertion (b).

An entire solution φ : R → Ω of (D)λ is said to admit an unstable integral
manifold, if for τ ∈ R and ε > 0 there exists a backward solution ψ : (−∞, τ ]→ Ω

satisfying the relations ψ(τ) ∈ Ḃε(φ(τ)) and limt→−∞ |ψ(t)− φ(t)| = 0.
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Proposition 4.10. Let λ ∈ Λ. Under (H0) suppose the dichotomy spectrum of
(V D)λ allows a splitting Σ(λ) = Σ−∪̇σ, where σ and σ+ are the dominant spectral
intervals of Σ(λ) resp. Σ+(λ). Then the following holds:

(a) If minσ+ > 0, then φλ is unstable,
(b) if Σ− 6= ∅, max Σ− < 0 and minσ > 0, then φλ is unstable and admits an

unstable integral manifold.

Proof. Proceed analogously to the difference equations case considered in Prop. 3.10
using the result [11, p. 74, Thm. 10]. The existence of an unstable integral manifold
can be deduced from [33, Thm. 3.2] applied to the equation of perturbed motion.

The continuous counterpart to Prop. 3.11 reads as follows:

Proposition 4.11 (strongly center integral manifolds). Let λ∗ ∈ Λ, τ ∈ R and
suppose that (H0) is fulfilled. If C = BC and φ∗ ∈ C(R,Ω) is an entire permanent
and weakly hyperbolic solution of equation (D)λ∗ , then there exists a ρ > 0 and a
unique Cm-function ψ : Bρ(0, λ

∗) ⊆ R(Q(τ))× Λ→ C(R,Ω) such that one has:

(a) ψ(0, λ∗) = φ∗,
(b) ψ(ξ, λ) is an entire weakly hyperbolic solution of equation (D)λ

for all (ξ, λ) ∈ Bρ(0, λ
∗). If (H0)–(H1) are satisfied, then the same holds with

C = BC0.

Proof. This can be shown as in Prop. 3.11. Here, the appropriate counterpart
to Prop. 3.4 is Prop. 4.6, while Cor. 4.2 serves as substitute for Thm. 3.1(a). A
combination of Thm. 2.1 with X = C1, Z = C and Thm. 4.3 yields our claim.

4.3. Jump and shovel bifurcations. We adopt our bifurcation notion for
bounded entire solutions φ∗ of (D)λ∗ from the previous explanations for difference
equations given in Subsection 3.3 and suppose:

Hypothesis. Let τ ∈ R and Λ ⊆ R.

(H2) For all λ ∈ Λ the differential equation (D)λ has an entire permanent solution
φλ ∈ C(R,Ω).

Let us assume that the variational equation (V D)λ along φλ admits an ET on
the whole axis R with associated projectors Pλ, Qλ for all λ 6= λ∗. Hence, the
assumptions of Prop. 4.8 are met with P−λ = Pλ and P+

λ = Pλ +Qλ. Therefore, we
know that the operator

Lλ : C1 → C, (Lλψ)(t) := ψ̇(t)−D2f(t, φλ(t), λ)ψ(t)

is Fredholm. By Prop. 4.6 it is onto with Fredholm index

dimR
(
P+
λ (τ)(I − P−λ (τ))

)
= dimR(Qλ(τ)).

As in the discrete case we are confronted with positive index bifurcations. We define
r : Λ \ {λ∗} → N0 by r(λ) := dimR

(
P+
λ (τ)(I − P−λ (τ))

)
= dimR(Qλ(τ)) and say

that the function r has a jump at λ∗, if

j(λ∗) := r+(λ∗)− r−(λ∗) 6= 0,

with the one-sided limits

r+(λ∗) := lim
λ↘λ∗

r(λ), r−(λ∗) := lim
λ↗λ∗

r(λ).
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Proposition 4.12 (jump bifurcation). Suppose that hypotheses (H0), (H2) hold
and for every λ 6= λ∗ the variational equation (V D)λ admits an ET on R with
projectors Pλ, Qλ. In case C = BC and φ∗ = φλ∗ ∈ C(R,Ω), there exist open
convex neighborhoods U ⊆ C(R,Ω) of φ∗ and Λ1 ⊆ Λ of λ∗ such that the following
holds for λ ∈ Λ1:

(a) Subcritical case: If −r−(λ∗) = j(λ∗) < 0, then the unique entire bounded so-
lution of (D)λ is φλ for λ > λ∗, while φλ is embedded into a r−(λ∗)-parameter
family ψ(ξ, λ) ∈ C(R,Ω) of entire solutions in U of (D)λ for λ < λ∗.

(b) Supercritical case: If r+(λ∗) = j(λ∗) > 0, then the unique entire bounded so-
lution of (D)λ is φλ for λ < λ∗, while φλ is embedded into a r+(λ∗)-parameter
family ψ(ξ, λ) ∈ C(R,Ω) of entire solutions in U of (D)λ for λ > λ∗.

(c) The properties of the mapping ψ are given in Prop. 4.11.

If (H0)–(H1) are satisfied, then the same holds with C = BC0.

Proof. The proof is mimics that of Prop. 3.13, with Prop. 3.11 replaced by the
above Prop. 4.11.

Corollary 4.13. If j(λ∗) 6= 0, then 0 ∈ Σ(λ∗).

Proof. Proceed analogously to Cor. 3.14. Concerning the corresponding roughness
theorem for EDs we refer to [12, p. 42, Prop. 1].

Hypothesis. Let λ ∈ Λ ⊆ R.

(H3) Suppose the dichotomy spectra of (V D)λ allow a splitting

Σ(λ) = Σ−(λ)∪̇σ(λ), Σ±(λ) = Σ±−(λ)∪̇σ±(λ) for all λ ∈ Λ,

and supλ∈Λ max Σ−(λ) < 0.

In the subsequent results stability properties are determined by the linear part
(V D)λ alone. We neglect the situation maxσ+(λ∗) = 0, where a nonautonomous
center manifold reduction is required, which involves preparations from [6, 33].

Theorem 4.14 (shovel bifurcation I). Let C = BC and suppose (H0), (H2), (H3)
hold. If

maxσ(λ∗) = 0

and the dominant spectral interval σ−(λ) has constant multiplicity m < ∞, then
there exists a neighborhood Λ1 ⊆ Λ of λ∗ such that:

(a) Subcritical case: If maxσ is decreasing at λ∗, then
(a1) for λ < λ∗ one has
•1 if maxσ+(λ∗) < 0 or maxσ+(λ∗) = 0 increases, then φλ is asymp-
totically stable, and if also minσ−(λ∗) = 0 decreases, then φλ is embed-
ded into an m-parameter family of bounded entire solutions to (D)λ in
C(R,Ω),
•2 if minσ+(λ∗) = 0 decreases, then φλ is unstable,

(a2) for λ = λ∗ and maxσ+(λ∗) < 0 the solution φλ is asymptotically stable,
(a3) for λ > λ∗ the unique entire bounded solution of (D)λ is φλ; it is uni-

formly asymptotically stable
(b) Supercritical case: If maxσ is increasing at λ∗, then

(b1) for λ < λ∗ the unique entire bounded solution of (D)λ is φλ; it is uni-
formly asymptotically stable,

(b2) for λ = λ∗ and maxσ+(λ∗) < 0 the solution φλ is asymptotically stable,
(b3) for λ > λ∗ one has
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•1 if maxσ+(λ∗) < 0 or maxσ+(λ∗) = 0 decreases, then φλ is asymp-
totically stable, and if also minσ−(λ∗) = 0 increases, then φλ is embed-
ded into an m-parameter family of bounded entire solutions to (D)λ in
C(R,Ω),
•2 if minσ+(λ∗) = 0 increases, then φλ is unstable

for all λ ∈ Λ1. If (H0)–(H3) are satisfied, then the same holds with C = BC0.

Proof. One proceeds as in the proof of the discrete version given in Thm. 3.15.
Here, both the Props. 3.9 and 3.10 have to be replaced by the corresponding results
stated in Prop. 4.9 resp. 4.10. The required strongly center integral manifold result
is given in Prop. 4.11.

Theorem 4.15 (shovel bifurcation II). Let C = BC and suppose (H0), (H2), (H3)
hold. If

minσ(λ∗) = 0

and the dominant spectral interval σ−(λ) has constant multiplicity m < ∞, then
there exists a neighborhood Λ1 ⊆ Λ of λ∗ such that:

(a) Subcritical case: If minσ is increasing at λ∗, then
(a1) for λ < λ∗ one has
•1 if maxσ(λ∗) = 0 increases, then φλ is uniformly asymptotically stable
and the unique entire bounded solution of (D)λ,
•2 if maxσ+(λ∗) = 0 increases, then φλ is asymptotically stable, and if
also minσ−(λ∗) > 0 or minσ−(λ∗) = 0 decreases, then φλ is embed-
ded into an m-parameter family of bounded entire solutions to (D)λ in
C(R,Ω),
•3 if minσ+(λ∗) > 0 or minσ+(λ∗) = 0 decreases, then φλ is unstable,

(a2) for λ = λ∗ and minσ+(λ∗) > 0 the solution φλ is unstable,
(a3) for λ > λ∗ the solution φλ is unstable and the unique entire bounded

solution of (D)λ; in case Σ(λ) 6= ∅ it has an unstable fiber bundle
(b) Supercritical case: If minσ is decreasing at λ∗, then

(b1) for λ < λ∗ the unique entire bounded solution of (D)λ is φλ; it is unstable;
in case Σ(λ) 6= ∅ it has an unstable fiber bundle,

(b2) for λ = λ∗ and minσ+(λ∗) > 0 the solution φλ is unstable,
(b3) for λ > λ∗ one has
•1 if maxσ(λ∗) = 0 decreases, then the unique entire bounded solution of
(D)λ is φλ; it is uniformly asymptotically stable,
•2 if maxσ+(λ∗) = 0, then φλ is asymptotically stable, and if additionally
minσ−(λ∗) > 0 or minσ−(λ∗) = 0 increases, then φλ is embedded into
an m-parameter family of bounded entire solutions to (D)λ in C(R,Ω),
•3 if minσ+(λ∗) > 0 or minσ+(λ∗) = 0 increases, then φλ is unstable

for all λ ∈ Λ1. If (H0)–(H3) are satisfied, then the same holds with C = C0.

Proof. The proof is a dual version of the corresponding arguments in Thm. 3.16.
Again, one has to replace the Props. 3.9, 3.10, Prop. 3.11 by Prop. 4.9, 4.10 and
4.11, respectively.
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[27] C. Pötzsche, Stability of center fiber bundles for nonautonomous difference equations, Differ-

ence and Differential Equations (et al Elaydi, S., ed.), Fields Institute Communications 42,

American Mathematical Society, Providence, RI, 2004, pp. 295–304.

http://www.ams.org/mathscinet-getitem?mr=MR1740241&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1697341&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1723992&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1870729&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2016054&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0682449&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1401914&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1118967&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1254114&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1820636&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0190463&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0481196&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0352639&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2333410&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0924294&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1618103&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0610244&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0261325&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2740541&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1897353&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1335452&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0764125&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0902544&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0958058&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0996892&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1095407&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2089619&return=pdf


NONAUTONOMOUS BIFURCATION OF BOUNDED SOLUTIONS II 33

[28] , A note on the dichotomy spectrum, J. Difference Equ. Appl. 15 (2009), no. 10,
1021–1025.

[29] , Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,

Discrete and Continuous Dynamical Systems (Series B) 14 (2010), no. 2, 739–776.
[30] , Nonautonomous continuation of bounded solutions, Commun. Pure Appl. Anal. 10

(2011), no. 3, 937–961.
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