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ABSTRACT. We follow an approach to a bifurcation theory for nonautonomous differen-
tial equations based on a change in the structure of bounded complete solutions. In the
framework of Carathéodory differential equations, we provide sufficient criteria for such
a nonhyperbolic solution to bifurcate into two branches of solutions. This scenario is
somewhat typical in the sense that (a) transcritical and pitchfork bifurcations are special
cases, but (b) no branch of trivial solutions is supposed to exist. In particular, we discuss
a degenerate fold bifurcation pattern, where the transversality assumption is replaced by
a nondegeneracy condition on the second order derivative. Both bifurcation patterns are
intrinsically nonautonomous and do not occur for time-invariant equations.

Our notion of a nonhyperbolic solution is based on the fact that the associate variational
equation possesses exponential dichotomies on both semiaxes with compatible projectors.
The resulting Fredholm theory allows to apply recent abstract bifurcation results due to
Liu, Shi and Wang (2007).

1. INTRODUCTION

Nonautonomous difference or differential equations, whose right hand side depends ex-
plicitly on time, naturally occur in a large variety of applications where seasonal, adaption,
modulation, control or random influences on a particular model cannot be neglected. In
order to tackle such problems mathematically, it turned out that the classical theory of
dynamical systems has to be extended. In fact, one needs suitable notions of hyperbolic-
ity, invariance and attractors. Such tools have been developed in the last decades in form
of dichotomies (see, e.g., [Cop78]), nonautonomous sets, integral manifolds or pullback
attraction (see [Klo03]).

Yet, in this context it appears that a bifurcation theory for nonautonomous evolutionary
equations is a quite recent field of research. The initial reason for this might be the fact that
problems with arbitrary time dependence lack equilibria or periodic solutions — the prime
examples of bifurcating objects in the classical autonomous theory. Therefore, one had
to establish appropriate invariant objects for a nonautonomous setting first, which serve as
bifurcating sets. This led to dynamical systems-driven approaches like attractor bifurcation
(cf., e.g. [LRS06, Ras07b]) or, within a skew-product setting, a change in the dynamics on
the base space (see [NO08]). For a more comprehensive survey on the relevant literature
dealing with nonautonomous bifurcations or transitions, the interested reader is referred to
[Ras07a, Pöt10a] or to [KS05] for a phenomenological approach.

As opposed to a somewhat crude attractor bifurcation, we aim to obtain a more detailed
insight into the dynamical behavior of differential equations depending on a parameter λ.
It is based on the observation that equilibria of autonomous equations generically persist
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as globally bounded complete solutions under small perturbations fluctuating in time (cf.,
e.g. [BM03, Pöt10b]). Keeping this in mind, we roughly understand a nonautonomous
bifurcation as a local change in the number (or topological structure) of bounded complete
solutions to a given evolutionary equation under variation of λ. This goes hand in hand
with a lack of hyperbolicity for a complete solution φ∗, i.e. the fact that the corresponding
variational equation for λ = λ∗ loses its exponential dichotomy on the whole time axis.
Instead, we investigate variational equations with dichotomies on both semiaxes, whose
projectors fulfill a compatibility condition (see Hypothesis (H2) for details). The resulting
Fredholm theory (see [Pal84, Pal88]) allows us to tackle two bifurcation scenarios:

• The crossing curve bifurcation from Thm. 4.1 resembles a transcritical bifurcation.
Yet, the structurally unstable assumption of a trivial solution branch is replaced by
a second order nondegeneracy condition. We obtain that the bifurcating solution
φ∗ is the intersection of two transversal branches of bounded complete solutions.
This pattern occurs under weaker assumptions than the usual transcritical bifurca-
tion, and a pitchfork-like pattern appears as a degenerate situation.

• On the other hand, we also obtain a degenerate fold bifurcation in Thm. 4.2, where
the associate transversality condition is violated (cf. (4.8) or (A.4)). Instead of
having a nonhyperbolic solution φ∗ being embedded as fold of a smooth curve
of complete bounded solutions, a different scenario occurs: In the bifurcation dia-
gram, either the pair (φ∗, λ∗) is isolated, or the intersection point of two transversal
branches of bounded complete solutions.

It seems worth to point out that (cf. Exs. 4.1 and 4.2) the crossing curve bifurcation cannot
be detected using the dichotomy spectrum (see [SS78, Sie02]) alone.

Since (global) attractors consist of bounded complete solutions, in a way we comple-
ment attractor bifurcations. Yet, differing from earlier contributions [LRS06, Ras07b,
NO08] dealing with scalar equations, the present approach applies to problems of arbitrary
finite dimension d ≥ 2. Indeed, our bifurcation scenarios follow essentially from recent
abstract analytical results due to [Shi99, LSW07]. Rather surprisingly, until now tools
from analytical bifurcation theory (for example, [Zei93, Chapt. 8], [Kie04]) have rarely
been used in order to approach general nonautonomous branching problems, although the
essential Fredholm theory was established in [Pal84, Pal88] already. Following this leit-
motiv, in [Pöt10a] we applied classical analytical bifurcation results from [CR71, CR73] to
deduce fold, transcritical and pitchfork bifurcation patterns for nonautonomous difference
and differential equations.

Our present contribution extends these earlier results from [Pöt10a] in three aspects: On
the one hand, in form of the crossing curve bifurcation from Thm. 4.1 we obtain a more
general scenario than [Pöt10a, Thm. 3.14], since a trivial solution branch is replaced by
local conditions on the second order derivative. In this sense, [Pöt10a] dealt with primary
bifurcations while we address secondary bifurcations now. Beyond that, in Thm. 4.2 we
complement the fold bifurcation studied in [Pöt10a, Thm. 3.13] by investigating a degener-
ate version violating the usual transversality condition (cf. (4.8)). The latter means that an
integral over R vanishes, an assumption satisfied for a large class of functions containing
e.g. odd ones. Hence, the treated degenerate situation is not that exceptional. This requires
a detailed linear solution theory in form of Cor. 3.3. Finally, in this paper we deal with
Carathéodory differential equations, whose right hand sides need to be only measurable in
time. The required basics on such equations can be found in [Kur86, pp. 315ff] or [AW96].
Such a broader setting is motivated from possible applications to control theory, where the
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controls are typically L∞-functions (see [CK99]), or continuous random dynamical sys-
tems, whose pathwise realization gives rise to Carathéodory equations (see [Arn98]).

Our presentation splits into three parts: In Section 2 we provide the essential prelimi-
naries on Carathéodory differential equations and introduce an ambient spatial setting in
order to formulate them as operator equations. It follows the necessary Fredholm theory
for linear differential equations and its close connection to exponential dichotomies. The
final Section 4 contains a discussion of our promised bifurcation scenarios and illustrates
it using basic examples. Lastly, for the reader’s convenience, and in order to be consistent
with our earlier contributions, we reproduce the required and essential bifurcation theory
of [Shi99, LSW07] in an appendix.

Notation: Banach spaces are denoted by X,Y and equipped with norm |·|; when deal-
ing with function spaces, we denote the norm by ‖·‖. The interior of a set Ω ⊆ X is
denoted by Ω◦ and Bε(x) is the open ball with center x and radius ε > 0. The space
of bounded linear operators between spaces X and Y is L(X,Y ), L(X) := L(X,X),
for the corresponding toplinear endomorphisms we write GL(X) and id ∈ GL(X) is the
identity mapping on X . Given T ∈ L(X,Y ), we write R(T ) := TX for the range and
N(T ) := T−1(0) for the kernel. The dual space of X is X ′, 〈x′, x〉 := x′(x) the duality
product and T ′ ∈ L(Y ′, X ′) is the dual operator to T . For a given subspace X0 ⊆ X the
annihilator is defined as the set of functionals

X⊥0 := {x′ ∈ X ′ : 〈x′, x0〉 = 0 for all x0 ∈ X0} .

We interpret Rd as Euclidean space, i.e. it is equipped with the canonical inner product
〈x, y〉 :=

∑d
j=1 xjyj (dot product) for all x, y ∈ Rd and the induced norm |·|. In this

context, T ′ is the transpose of T ∈ L(Rd). For a given subspace X0 ⊆ Rd the orthogonal
complement is defined as the subspace X⊥0 :=

{
y ∈ Rd : 〈y, x0〉 = 0 for all x0 ∈ X0

}
.

Finally, suppose that the operator T † ∈ L(Rd) denotes the pseudo-inverse of T (see
[CM79, p. 8, Def. 1.1.1]) given by linear extension using

T †x :=

{
0, x ∈ R(T )⊥,
T |−1
R(T ′)x, x ∈ R(T );

this is consistent with the Moore-Penrose axioms (cf. [CM79, p. 9, Thm. 1.1.1]).

2. CARATHÉODORY DIFFERENTIAL EQUATIONS

Let us suppose throughout the paper that Ω ⊆ Rd and the parameter space Λ ⊆ Y
are nonempty open convex sets. Subsets V ⊆ R × Ω are called nonautonomous sets and
V(t) := {x ∈ Rd : (t, x) ∈ V} as the t-fiber, t ∈ R, of V .

In the following, notions of measurability and integrability are always understood in the
Lebesgue sense. Suppose that f : R× Ω× Λ→ Rd is a Carathéodory function, i.e.

• for almost every t ∈ R the mapping f(t, ·, λ), λ ∈ Λ, is continuous,
• for every (x, λ) ∈ Ω× Λ the mapping f(·, x, λ) is measurable

(cf., e.g., [AW96, Def. 2.1]). Then a Carathéodory differential equation (CDE for short)
depending on a parameter λ ∈ Λ reads as

ẋ = f(t, x, λ). (D)λ
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Given an interval I ⊆ R, a solution to equation (D)λ is a function φ : I → Ω such that
f(·, φ(·), λ) is locally integrable and one has identity

φ(t)− φ(τ) =
∫ t

τ

f(s, φ(s), λ) ds for all τ, t ∈ I. (2.1)

From [Kur86, p. 325, 18.2.3] we know that φ is (locally) absolutely continuous and there-
fore differentiable a.e. (see [Kur86, p. 323, 18.1.22]).

For a solution satisfying the initial condition x(τ) = ξ with given τ ∈ R, ξ ∈ Ω,
we write ϕλ(·; τ, ξ) and denote ϕλ as general solution to (D)λ, provided existence and
uniqueness is given (for this, see [Kur86, pp. 331ff]). An entire or complete solution
of equation (D)λ exists on R. Moreover, in case 0 ∈ Ω a complete solution satisfying
limt→±∞ φ(t) = 0 is called homoclinic to 0 and we speak of a permanent solution, if

inf
t∈R

dist(φ(t),Ω) > 0.

The next assumptions hold for right hand sides of equation (D)λ, which areCm-smooth
in the second and third variable, and whose derivatives map bounded sets into bounded sets
uniformly in time. In particular, this guarantees that the solutions of (D)λ exist and are
uniquely determined by [Kur86, p. 331, 18.4.2].

Hypothesis. Let m ∈ N, suppose f : R × Ω × Λ → Rd is a Carathéodory function and
that almost every f(t, ·) : Ω × Λ → Rd, t ∈ R, is a Cm-function such that the following
holds for 0 ≤ j ≤ m:

(H0) For all bounded B ⊆ Ω one has

ess sup
t∈R

sup
x∈B

∣∣∣Dj
(2,3)f(t, x, λ)

∣∣∣ <∞ for all λ ∈ Λ (2.2)

(well-definedness) and for all λ∗ ∈ Λ and ε > 0 there exists a δ > 0 with

|x− y| < δ ⇒ ess sup
t∈R

∣∣∣Dj
(2,3)f(t, x, λ)−Dj

(2,3)f(t, y, λ)
∣∣∣ < ε (2.3)

for all x, y ∈ Ω and λ ∈ Bδ(λ∗) (uniform continuity).
(H1) We have 0 ∈ Ω and limt→±∞ f(t, 0, λ) = 0 for all λ ∈ Λ.

For the sake of finding bounded complete solutions for a CDE (D)λ we need an ambient
functional-analytical setting. This requires the spaces AC(Ω) of locally absolutely contin-
uous, L∞(Ω) of essentially bounded and W 1,∞(Ω) of bounded functions φ : R→ Ω with
essentially bounded (weak) derivative. For Ω = Rd we writeAC := AC(Rd) and proceed
similarly with the other spaces. It is clear that L∞ is a Banach space w.r.t. the norm

‖φ‖0 := ess sup
t∈R

|φ(t)| <∞.

Moreover, every φ ∈W 1,∞ possesses a bounded Lipschitz-continuous representative (see
[Leo09, p. 224, Thm. 7.17]) and by Rademachers theorem the (strong) derivative φ̇ exists
almost everywhere in R. From [Leo09, p. 224, Ex. 7.18] we know that W 1,∞ is a Banach
space under the norm ‖φ‖1 := max

{
‖φ‖0 , ‖φ̇‖0

}
; we have the continuous embedding

W 1,∞ ↪→ L∞, ‖φ‖0 ≤ ‖φ‖1 . (2.4)

As closed subspaces of L∞ and W 1,∞ we also introduce the corresponding spaces

L∞0 :=
{
φ ∈ L∞ : lim

t→±∞
φ(t) = 0

}
, W 1,∞

0 :=
{
φ ∈W 1,∞ : φ, φ̇ ∈ L∞0

}
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of limit 0 functions. Under the above assumptions, we introduce substitution operators

F (φ, λ)(t) := f(t, φ(t), λ), F υ(φ, λ)(t) := Dυ1
2 Dυ2

3 f(t, φ(t), λ) for all t ∈ R

and pairs υ = (υ1, υ2) ∈ N2
0 such that υ1 + υ2 ≤ m.

Proposition 2.1. Under (H0) the operator F : L∞(Ω) × Λ → L∞ is well-defined and
m-times continuously differentiable on L∞(Ω)◦ × Λ with partial derivatives

DυF (φ, λ) = F υ(φ, λ) for all φ ∈ L∞(Ω)◦, λ ∈ Λ.

If (H0) and (H1) are satisfied, then the same holds for F : L∞0 (Ω)× Λ→ L∞0 .

Proof. Given φ ∈ L∞(Ω) there exists a boundedB ⊆ Ω such that φ(t) ∈ B a.e. for t ∈ R.
Thus, (2.2) implies ess supt∈R

∣∣∣Dj
(2,3)f(t, φ(t), λ)

∣∣∣ < ∞ for all λ ∈ Λ, 0 ≤ j ≤ m and
the substitution operators F : L∞ × Λ → L∞ and F υ are well-defined. The smoothness
assertion for F can be shown as in [Pöt10b, Prop. 3.4], where we considered continuous
right hand sides f on the space BC of bounded continuous functions instead of L∞. The
interested reader is invited to verify that the present situation of functions L∞ causes no
additional difficulties. �

Corollary 2.2. Under (H0) the operator G : W 1,∞(Ω)× Λ→ L∞,

G(φ, λ) = φ̇− F (φ, λ) (2.5)

is well-defined and m-times continuously differentiable on W 1,∞(Ω)◦ × Λ. If (H0) and
(H1) are satisfied, then the same holds for G : W 1,∞

0 (Ω)× Λ→ L∞0 .

Proof. First of all, φ 7→ φ̇ is a bounded linear mapping from W 1,∞ to L∞, and hence of
class C∞. Thus, the claim follows with Prop. 2.1 using the embedding (2.4). �

As we will see next, the appropriate function space to solve (2.5) is W 1,∞, because
L∞-solutions to (D)λ are actually Lipschitzian and not only in AC. Then the crucial tool
for our overall analysis is:

Theorem 2.3. For every parameter λ ∈ Λ the following holds under (H0):

(a) If φ ∈ L∞(Ω) has a (strong) derivative a.e. in R and is a complete solution of
(D)λ, then φ ∈W 1,∞(Ω) and

G(φ, λ) = 0; (O)λ

conversely, if φ ∈ L∞(Ω) has a (strong) derivative a.e. in R and solves (O)λ, then
φ is a complete bounded solution of (D)λ in W 1,∞(Ω).

(b) Under additionally (H1), if φ ∈ L∞0 (Ω) is a complete solution of (D)λ, then
φ ∈ W 1,∞

0 (Ω) and (O)λ holds; conversely, provided φ ∈ L∞0 (Ω) has a (strong)
derivative a.e. in R and solves (O)λ, then φ is a complete bounded solution of
(D)λ in W 1,∞

0 (Ω).

Proof. We suppress the dependence on the fixed parameter λ ∈ Λ.
(a) Given a complete solution φ ∈ L∞(Ω) of (D)λ and a bounded set B ⊆ Ω with

φ(t) ∈ B a.e. for t ∈ R we obtain from (2.2) that c := ess supt∈R |f(t, φ(t))| < ∞.
Using [Kur86, p. 327, 18.2.7 and p. 325, 18.2.1] we know that the derivative φ̇ exists a.e.
in R. Moreover, |φ̇(t)| ≤ ess supt∈R |f(t, φ(t))| =: c < ∞ a.e. for t ∈ R and we deduce
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φ̇ ∈ L∞. In order to establish the inclusion φ ∈ W 1,∞ it remains to show that φ is
Lipschitz. This, however, follows from

|φ(t)− φ(τ)| (2.1)=
∣∣∣∣∫ t

τ

f(s, φ(s)) ds
∣∣∣∣ ≤ ∣∣∣∣∫ t

τ

c ds

∣∣∣∣ = c |t− τ |

a.e. for t ∈ R. In addition, since φ is a solution to (D)λ, relation (O)λ holds a.e. for t ∈ R.
Conversely, if the derivative of φ ∈ L∞(Ω) exists and fulfills φ̇(t) = f(t, φ(t)) a.e. in

the reals R, we deduce as above that φ ∈W 1,∞(Ω) and that φ solves (D)λ.
(b) Now suppose that also (H1) holds. For a homoclinic solution φ ∈ L∞0 (Ω) we have

the identity φ̇(t) = f(t, φ(t)) and (H2) ensures |D2f(t, hφ(t))| ≤ C for h ∈ [0, 1] a.e. in
R, with some C > 0. The mean value inequality (see [Lan93, p. 342, Cor. 4.3]) implies∣∣∣φ̇(t)

∣∣∣ ≤ |f(t, φ(t))− f(t, 0)|+ |f(t, 0)|
≤ ess sup

t∈R
sup
h∈[0,1]

|D2f(t, hφ(t))| |φ(t)|+ |f(t, 0)| ≤ C|φ(t)|+ |f(t, 0)|

a.e. for t ∈ R. Passing over to the limit t → ±∞ yields the inclusion φ̇ ∈ L∞0 and the
remaining assertion follows as in (a). �

3. FREDHOLM THEORY FOR LINEAR EQUATIONS

In order to solve equation (O)λ using tools from Appendix A, it is essential that the
derivativeD2G is Fredholm. This can be characterized in terms of exponential dichotomies
(see [Sac79, Pal84, Pal88]) and we present the required theory for CDEs in the following:

For this, let I ⊆ R be an interval and suppose that A : I → L(Rd) is measurable,
locally integrable and essentially bounded:

ess sup
t∈I

|A(t)| <∞. (3.1)

We consider a linear CDE
ẋ = A(t)x, (L)

whose right hand side defines a Carathéodory function satisfying (H0). This assumption
allows us to define the general solution ϕ to (L) and the associated transition operator
Φ(t, s) ∈ GL(Rd) via Φ(t, s)ξ := ϕ(t; s, ξ), t, s ∈ I (cf. [AW96, Lemma. 2.9]).

We say a family of projections Pt ∈ L(Rd), t ∈ I , is an invariant projector for (L),
provided the mapping t 7→ Pt is continuous and

PtΦ(t, s) = Φ(t, s)Ps for all t, s ∈ I. (3.2)

From this commutativity relation we conclude that the nonautonomous sets

V+ :=
{

(τ, ξ) ∈ I × Rd : ξ ∈ R(Pτ )
}
, V− :=

{
(τ, ξ) ∈ I × Rd : ξ ∈ N(Pτ )

}
form invariant vector bundles for equation (L). This means that the fibers V±(t) are linear
spaces satisfying the invariance relation Φ(t, s)V±(s) = V±(t)Φ(t, s) for all s, t ∈ I . In
addition, we can introduce Green’s function as

GP (t, s) :=
{

Φ(t, s)Ps for t ≥ s,
−Φ(t, s)[id−Ps] for s > t.

(3.3)

A linear CDE (L) is said to have an exponential dichotomy (ED for short) on I , if there
exist an invariant projector Pt and reals K ≥ 1, α > 0 with

|Φ(t, s)Ps| ≤ Ke−α(t−s) for all s ≤ t, |Φ(t, s)[id−Ps]| ≤ Keα(t−s) for all t ≤ s
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and t, s ∈ I . For equations with an ED, the set V+ is called the stable vector bundle (if I
is unbounded above), while V− is the unstable vector bundle (if I is unbounded below).

Along with the linear CDE (L) we also need the dual equation

ẋ = −A(t)′x, (L′)

with the transition operator Φ′(t, s) = Φ(s, t)′ for all s, t ∈ I . Also (L′) admits an
exponential dichotomy on I with data K,α and the invariant projector Qt := id−P ′t .

For the sake of a convenient notation, let us assume that X denotes the space W 1,∞

(resp.W 1,∞
0 ), while Z stands for L∞ (resp. L∞0 ). Essential for our approach are Fredholm

properties for the Frechét derivative of the operator G defined in Cor. 2.2. This derivative
has the form of a differential operator

L : X → Z, (Lφ)(t) := φ̇(t)−A(t)φ(t) for almost every t ∈ R, (3.4)

which is well-defined and continuous under (3.1). Let us restrict to the case where (L)
has EDs on both semiaxes [τ,∞) and (−∞, τ ], τ ∈ R. For the corresponding situation of
continuous ODEs rather than CDEs we refer to [Pal84, Boi01].

Proposition 3.1. Let τ ∈ R, n, r ∈ N0 and suppose a linear CDE (L) admits an ED both
on [τ,∞) (with projector P+

t ) and on (−∞, τ ] (with projector P−t ). If there exist linearly
independent vectors ξ1, . . . , ξn ∈ Rd, ξ′1, . . . , ξ

′
r ∈ Rd satisfying

R(P+
τ ) ∩N(P−τ ) = span {ξ1, . . . , ξn} ,

(R(P+
τ ) +N(P−τ ))⊥ = span {ξ′1, . . . , ξ′r} ,

(3.5)

then L ∈ L(X,Z) is Fredholm with kernel N(L) = span {Φ(·, τ)ξi ∈ X : 1 ≤ i ≤ n}
and codimR(L) = r. In particular, we have indL = n− r.

Remark 3.1. If R(P+
τ ) ∩ N(P−τ ) = {0} and R(P+

τ ) + N(P−τ ) = Rd holds, one argues
as [Pal84, Prop. 2.1] to show that (L) has an ED on R.

Proof. For linear ODEs (L) with a continuous coefficient matrix A the proof can be found
in [Pal84, Lemma 4.2], whereX = BC1 and Z = BC. The interested reader might verify
that the same arguments also hold for linear CDEs, with our appropriately modified spatial
setting X = W 1,∞, Z = L∞ or X = W 1,∞

0 , Z = L∞0 . �

Corollary 3.2. The linear functionals

µi : Z → R, µi(ψ) :=
∫

R
〈Φ(τ, s)′ξ′i, ψ(s)〉 ds for all 1 ≤ i ≤ r

are continuous with |µi| ≤ 2K
α |ξ′i| and R(L) =

⋂r
i=1N(µi).

Proof. Let Q±t ∈ L(Rd) denote the invariant projectors associated to the ED of the dual
equation (L′). Then the vectors ξ′i ∈ Rd from (3.5) satisfy ξ′i ∈ (R(P−τ ) + N(P+

τ ))⊥ =
R((Q+

τ )′)∩N((Q−τ )′) and thus, using the assumed dichotomy estimates, we can estimate
the functionals µi(ψ) as follows

|µi(ψ)| ≤
∫ τ

−∞

∣∣〈Φ(τ, s)′P−τ ξ
′
i, ψ(s)〉∣∣ ds+

∫ ∞
τ

∣∣〈Φ(τ, s)′(id−P+
τ )ξ′i, ψ(s)〉∣∣ ds

≤
∫ τ

−∞

∣∣Φ(τ, s)P−s
∣∣ |ξ′i| |ψ(s)| ds+

∫ ∞
τ

∣∣Φ(τ, s)(id−P+
s )
∣∣ |ξ′i| |ψ(s)| ds

≤ K |ξ′i| ‖ψ‖0
(∫ τ

−∞
eα(s−τ) ds+

∫ ∞
τ

eα(τ−s) ds

)
for all 1 ≤ i ≤ r
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and functions ψ ∈ Z. This implies the given bound for |µi|. From Prop. 3.1 we get that
the operator L is Fredholm and [Zei93, p. 366, Prop. 8.14(2)] guarantees the equivalences

ψ ∈ R(L) ⇔ ψ ∈ N(L′)⊥ ⇔
∫

R
〈Φ(τ, s)′ξ′i, ψ(s)〉 ds = 0 for all 1 ≤ i ≤ r

⇔ µi(ψ) = 0 for all 1 ≤ i ≤ r ⇔ ψ ∈
r⋂
i=1

N(µi),

which leads to our assertion. �

Corollary 3.3. Let ψ ∈ R(L). IfX0 ⊆ X denotes a complement ofN(L), then the inverse
of the restriction L|X0 : X0 → R(L) is given by L|−1

X0
ψ = ψ with

ψ(t) :=

{
Φ(t, τ)P+

τ ξ
∗
τ +

∫∞
τ
GP+(t, s)ψ(s) ds, t ≥ τ,

Φ(t, τ)[id−P−τ ]ξ∗τ +
∫ τ
−∞GP−(t, s)ψ(s) ds, t ≤ τ, (3.6)

ξ∗τ := [P+
τ + P−τ − id]†

(∫ τ

−∞
Φ(τ, s)P−s ψ(s) ds+

∫ ∞
τ

Φ(τ, s)[id−P+
s ]ψ(s) ds

)
.

Proof. Let ψ ∈ R(L) ⊆ Z and ξ ∈ Rd. Thanks to the dichotomy assumptions on both
semiaxes we know that the bounded (resp. limit zero) forward solutions φ+ : [τ,∞)→ Rd
to the linear inhomogeneous system

ẋ = A(t)x+ ψ(t) (3.7)

are φ+(t) = Φ(t, τ)P+
τ ξ +

∫∞
τ
GP+(t, s)ψ(s) ds, while the corresponding backward so-

lutions φ− : (−∞, τ ] → Rd are φ−(t) = Φ(t, τ)[id−P−τ ]ξ +
∫ τ
−∞GP−(t, s)ψ(s) ds.

Consequently, the initial values ξ for complete solutions to (3.7) inX can be deduced from
the condition φ+(τ) = φ−(τ). This, in turn, is equivalent to

(P+
τ + P−τ − id)ξ =

∫ τ

−∞
GP−(τ, s)ψ(s) ds−

∫ ∞
τ

GP+(τ, s)ψ(s) ds

(3.3)=
∫ τ

−∞
Φ(τ, s)P−s ψ(s) ds+

∫ ∞
τ

Φ(τ, s)(id−P+
s )ψ(s) ds

and the general solution ξ ∈ Rd to this finite-dimensional linear equation is given by (see
[CM79, p. 29, Thm. 2.1.2])

ξ = [id−(P+
τ + P−τ − id)†(P+

τ + P−τ − id)]η

+(P+
τ + P−τ − id)†

(∫ τ

−∞
Φ(τ, s)P−s ψ(s) ds+

∫ ∞
τ

Φ(τ, s)(id−P+
s )ψ(s) ds

)
with any η ∈ Rd. Thanks to [CM79, p. 12, Thm. 1.2.2] we have

R(id−(P+
τ + P−τ − id)†(P+

τ + P−τ − id)) = N(P+
τ + P−τ − id)

and consequently ξ =
∑n
i=1 γiξi + ξ∗τ with arbitrary coefficients γ1, . . . , γn ∈ R. Thus,

(3.7) has an n-parameter family of bounded (resp. homoclinic) solutions

φ = φγ + ψ with φγ := Φ(·, τ)
n∑
i=1

γiξi ∈ N(L)

using Prop. 3.1. Due to the direct decomposition X = N(L)⊕X0 the unique solution in
the complement X0 is given by (3.6). �
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We close this section with a prototype example illustrating various situations covered
by the above Prop. 3.1 and Cors. 3.2, 3.3 with the aid of a diagonal system in R2:

Example 3.1. Let γ−, β−, γ+, β+ ∈ R be given and suppose d = 2. We define a piecewise
constant coefficient matrix for the linear equation (L) by

A(t) :=
(
b(t) 0
0 c(t)

)
, b(t) :=

{
β−, t < 0,
β+, t ≥ 0,

c(t) :=

{
γ−, t < 0,
γ+, t ≥ 0

and easily deduce the transition operator

Φ(t, s) :=


diag(eβ+(t−s), eγ+(t−s)), t ≥ s ≥ 0,
diag(eβ+t−β−s, eγ+t−γ−s), t ≥ 0 > s,

diag(eβ−(t−s), eγ−(t−s)), 0 > t ≥ s;
for t < s one extends Φ to R2 by virtue of Φ(t, s) := Φ(s, t)−1. We distinguish several
cases to describe dichotomy and Fredholm properties of (L) resp. (3.4). In each case, (L)
admits an ED on [0,∞) and (−∞, 0] with constant projectors P−t resp. P+

t . In the spatial
set-up of Prop. 3.1 the operator L : X → Z is Fredholm and we arrive at:

(a) β+, γ+ < 0: P+
t ≡ id on [0,∞), thus (P+

0 + P−0 − id)† = (P−0 )† and L is onto.
(a1) β−, γ− < 0: P−t ≡ id on (−∞, 0], L is invertible, (L) has an ED on R with

projector Pt ≡ id on R and (L) is uniformly asymptotically stable
(a2) β− < 0 < γ−: P−t ≡

(
1 0
0 0

)
on (−∞, 0] and dimN(L) = 1

(a3) γ− < 0 < β−: P−t ≡
(

0 0
0 1

)
on (−∞, 0] and dimN(L) = 1

(a4) 0 < β−, γ−: P−t ≡ 0 on (−∞, 0] and dimN(L) = 2
In any case, for every ψ ∈ Z there exists a dimN(L)-parameter family of solu-
tions φ ∈ X to the inhomogeneous equation (3.7) and indL = dimN(L)

(b) β+ < 0 < γ+: (L) admits an ED on [0,∞) with projector P+
t ≡

(
1 0
0 0

)
(b1) β−, γ− < 0: P−t ≡ id on (−∞, 0], L has 0-dimensional kernel, index −1

and (P+
0 + P−0 − id)† = P+

0

(b2) β− < 0 < γ−: P−t ≡
(

1 0
0 0

)
on (−∞, 0], L is invertible, (L) has an ED on

R with Pt ≡
(

1 0
0 0

)
and (P+

0 + P−0 − id)† =
(

1 0
0 −1

)
(b3) γ− < 0 < β−: P−t ≡

(
0 0
0 1

)
on (−∞, 0], dimN(L) = 1, indL = 0 and

(P+
0 + P−0 − id)† = 0. One can choose ξ1 = (1, 0), ξ′1 = (0, 1) and the

functional µ1 : Z → R from Cor. 3.2 reads as

µ1(ψ) =
∫ 0

−∞
e−γ−sψ2(s) ds+

∫ ∞
0

e−γ+sψ2(s) ds.

Thus, for inhomogeneities ψ ∈ Z satisfying µ1(ψ) = 0 the inverse of L|X0

from Cor. 3.3 reads as

ψ(t) =

{∫ t
0
eβ+(t−s)( ψ1(s)

0

)
ds− ∫∞

t
eγ+(t−s)( 0

ψ2(s)

)
ds, t ≥ 0,∫ t

−∞ eγ−(t−s)( 0
ψ2(s)

)
ds− ∫ 0

t
eβ−(t−s)( ψ1(s)

0

)
ds, t ≤ 0

(b4) 0 < β−, γ−: P−t ≡ 0 on (−∞, 0], dimN(L) = 1, indL = 1 and further-
more (P+

0 + P−0 − id)† =
(

0 0
0 −1

)
(c) γ+ < 0 < β+: (L) admits an ED on [0,∞) with projector P+

t =
(

0 0
0 1

)
(c1) β−, γ− < 0: P−t ≡ id on (−∞, 0], dimN(L) = 0, indL = −1 and

(P+
0 + P−0 − id)† = P+

0
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(c2) β− < 0 < γ−: P−t ≡
(

1 0
0 0

)
on (−∞, 0], dimN(L) = 1, indL = 0

and (P+
0 + P−0 − id)† = 0. The situation is dual to (b3) and one chooses

ξ1 = (0, 1), ξ′1 = (1, 0). The functional µ1 : Z → R from Cor. 3.2 reads as

µ1(ψ) =
∫ 0

−∞
e−β−sψ1(s) ds+

∫ ∞
0

e−β+sψ1(s) ds.

With ψ ∈ Z satisfying µ1(ψ) = 0 the inverse of L|X0 from Cor. 3.3 is

ψ(t) =

{∫ t
0
eγ+(t−s)( 0

ψ2(s)

)
ds− ∫∞

t
eβ+(t−s)( ψ1(s)

0

)
ds, t ≥ 0,∫ t

−∞ eβ−(t−s)( ψ1(s)
0

)
ds− ∫ 0

t
eγ−(t−s)( 0

ψ2(s)

)
ds, t ≤ 0

(c3) γ− < 0 < β−: P−t ≡
(

0 0
0 1

)
on (−∞, 0], L is invertible, (L) has an ED on

R with Pt ≡
(

0 0
0 1

)
and (P+

0 + P−0 − id)† =
(−1 0

0 1

)
(c4) 0 < β−, γ−: P−t ≡ 0 on (−∞, 0], dimN(L) = 1, indL = 1 and further-

more (P+
0 + P−0 − id)† =

(
1 0
0 0

)
(d) 0 < β+, γ+: P−t ≡ 0 on [0,∞), thus (P+

0 + P−0 − id)† = (P−0 − id)† and L is
one-to-one

(d1) β−, γ− < 0: P−t ≡ id on (−∞, 0], L has 0-dimensional kernel, index −2
and (P+

0 + P−0 − id)† = 0
(d2) β− < 0 < γ−: P−t ≡

(
1 0
0 0

)
on (−∞, 0], indL = −1 and furthermore

(P+
0 + P−0 − id)† =

(
0 0
0 −1

)
(d3) γ− < 0 < β−: P−t ≡

(
0 0
0 1

)
on (−∞, 0], indL = −1 and furthermore

(P+
0 + P−0 − id)† =

(−1 0
0 0

)
(d4) 0 < β−, γ−: P−t ≡ 0 on (−∞, 0], L is invertible, (L) has an ED on R with

Pt ≡ 0 and (P+
0 + P−0 − id)† = − id

4. BIFURCATION OF BOUNDED SOLUTIONS

Suppose that for a fixed parameter λ∗ ∈ Λ the CDE (D)λ∗ has a complete reference
solution φ∗ = φ(λ∗) ∈ L∞(Ω). We say (D)λ undergoes a bifurcation at λ = λ∗ along φ∗,
or φ∗ bifurcates at λ∗, if there exist a convergent parameter sequence (λn)n∈N in Λ with
limit λ∗ so that (D)λn has two distinct complete solutions φ1

λn
, φ2
λn
∈ L∞ both satisfying

lim
n→∞

φ1
λn

= lim
n→∞

φ2
λn

= φ∗.

In other words, the pair (φ∗, λ∗) is a bifurcation point of the abstract nonlinear equation
(O)λ in W 1,∞(Ω) (cf. [Zei93, p. 358, Defn. 8.1]).

Bifurcation properties of a solution φ∗ crucially depend on the variational equation

ẋ = D2f(t, φ∗(t), λ∗)x (V )

with associated dichotomy spectrum Σ(λ∗) (cf. [SS78, Sie02]) and transition operator Φ.
In this context, we say the solution φ∗ is hyperbolic, provided (V ) has an ED on the

whole axis R or equivalently 0 6∈ Σ(λ∗). On the other hand, nonhyperbolicity is a nec-
essary condition for bifurcation, which also applies to complete solutions in W 1,∞

0 (Ω),
if (H1) holds — a proof follows the lines of [Pöt10a, Prop. 3.6]. Next we will also give
sufficient conditions for bifurcations, where we restrict to real parameters λ ∈ R.

Hypothesis. Let τ ∈ R, λ∗ ∈ Λ ⊆ R be given and suppose (D)λ∗ admits a complete
permanent solution φ∗ ∈ L∞(Ω) with
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(H2) the variational equation (V ) admits an ED both on [τ,∞) and (−∞, τ ] with re-
spective projectors P+

t and P−t so that there exist ξ1, ξ′1 ∈ Rd with

R(P+
τ ) ∩N(P−τ ) = span {ξ1} , (R(P+

τ ) +N(P−τ ))⊥ = span {ξ′1} . (4.1)

In order to fulfill (H2) the state space Ω ⊆ Rd has to be at least 2-dimensional. More-
over, since the projectors P−τ , P

+
τ need to be nontrivial so that (4.1) holds, our reference

solution φ∗ is unstable a priori. Note that one cannot fulfill (H2) for almost periodic vari-
ational equations, since in this class an ED on [τ,∞) already implies that φ∗ is hyperbolic
(see [Cop78, p. 70, Prop. 3]).

The above assumption allows a local dynamical insight into the abstract results from
Thm. A.1 and A.2 applied to (O)λ resp. (D)λ: Because (V ) admits an ED on [τ,∞) there
exists a stable integral manifold φ∗+W+

λ∗ consisting of all solutions to (D)λ∗ approaching
φ∗ in forward time, andW+

λ∗ is locally a graph over the stable vector bundle V+
λ∗ . Analo-

gously, the ED on (−∞, τ ] guarantees an unstable integral manifold φ∗ +W−λ∗ consisting
of solutions decaying to φ∗ in backward time. Both integral manifolds persist under varia-
tion of λ near λ∗ as φ∗ +W+

λ and φ∗ +W−λ (cf. [Pöt10b, Cor. 3.11]). Then the bounded
complete solutions to (D)λ are contained in (φ∗ +W+

λ ) ∩ (φ∗ +W−λ ). We conclude that
the intersection of the corresponding fibers

S(λ) :=
(
φ∗(τ) +W+

λ (τ)
) ∩ (φ∗(τ) +W−λ (τ)

) ⊆ Ω

yields initial values for bounded complete solutions (see Figure 1). Here, a bifurcation
means a (topological) change in the intersection S(λ) for λ near λ∗.

R

φ∗ +W+
λ

φ∗ +W−λ

t = τ

φ1

φ2Rd

S(λ)

FIGURE 1. Intersection S(λ) ⊆ Ω of the stable integral manifold φ∗ +
W+
λ ⊆ [τ,∞) × Rd with the unstable integral manifold φ∗ +W−λ ⊆

(−∞, τ ]×Rd at t = τ yields two bounded complete solutions φ1, φ2 to
(D)λ indicated as dotted lines

Using this geometric intuition we arrive at our first bifurcation result. It replaces the
trivial solution branch typically imposed for transcritical or pitchfork bifurcations by a
local condition on the partial derivatives w.r.t. the parameter:

Theorem 4.1 (crossing curve bifurcation). Letm ≥ 2, φ∗ ∈ X = W 1,∞ and suppose that
(H0), (H2) are fulfilled with D3f(t, φ∗(t), λ∗) ≡ 0 on R,

g02 :=
∫

R
〈Φ(τ, s)′ξ′1, D

2
3f(s, φ∗(s), λ∗)〉 ds = 0. (4.2)
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If the transversality condition

g11 :=
∫

R
〈Φ(τ, s)′ξ′1, D2D3f(s, φ∗(s), λ∗)Φ(s, τ)ξ1〉 ds 6= 0 (4.3)

holds, then the complete solution φ∗ of (D)λ∗ bifurcates at λ∗. In detail, there exist open
convex neighborhoods S ⊆ R of 0, U1 × U2 ⊆ X(Ω) × Λ of (φ∗, λ∗) and Cm−1-curves
γ1, γ2 : S → U1 × U2 with the following properties:

(a) The set of bounded complete solutions for (D)λ in U1 is given by the set intersec-
tion (γ1(S) ∪ γ2(S)) ∩X × {λ} (see Fig. 2).

(b) γ1(s) = (γ(s), λ∗ + s) with γ1(0) = (φ∗, λ∗), γ̇(0) = 0 and

γ2(0) =
(
φ∗

λ∗

)
, γ̇2(0) =

(
Φ(·, τ)ξ1
− h22

2g11

)
where h22 :=

∫
R〈Φ(τ, s)′ξ′1, D

2
2f(s, φ∗(s), λ∗)[Φ(s, τ)ξ1]2〉 ds.

If (H0) to (H2) are satisfied, then the same holds with X = W 1,∞
0 .

Remark 4.1. If the complete solution φ∗ is embedded into a branch of trivial solutions to
(D)λ, then (4.2) is automatically fulfilled and γ1 resp. γ represents the zero branch. In
this sense, Thm. 4.1 generalizes [Pöt10a, Thm. 3.14 and Cors. 3.15, 3.16]. Moreover, the
direction of the crossing curve bifurcation from Thm. 4.1 is given by the coefficient h22

2g11
:

(1) For h22 6= 0 there are locally exactly two complete solutions to (D)λ in W 1,∞(Ω)
for λ 6= λ∗; these solutions are in X(Ω). This yields a transcritical pattern (see Figure 2
(left) and Cor. A.3).

(2) In the degenerate case h22 = 0 we assume a higher order condition

g30 :=
∫

R
〈Φ(τ, s)′ξ′1, D

3
2f(s, φ∗(s), λ∗)[Φ(s, τ)ξ1]3〉 ds

− 3
∫

R
〈Φ(τ, s)′ξ′1, D

2
2f(s, φ∗(s), λ∗)Φ(s, τ)ξ1D2

2f(s, φ∗(s), λ∗)[Φ(s, τ)ξ1]2〉 ds

withψ(s) defined in Cor. 3.3, yielding a pitchfork pattern (see Figure 2 (right) and Cor. A.4):

(a) For g30/g11 < 0 (supercritical case) there is a unique complete solution of (D)λ
inW 1,∞(Ω) for parameters λ ≤ λ∗ and (D)λ has exactly three complete solutions
in W 1,∞(Ω) for λ > λ∗.

(b) For g30/g11 > 0 (subcritical case) there is a unique complete solution of (D)λ in
W 1,∞(Ω) for parameters λ ≥ λ∗ and (D)λ has exactly three complete solutions
in W 1,∞(Ω) for λ < λ∗.

The complete solutions are in X(Ω).

Proof. Since the solution φ∗ is permanent, φ∗ is an interior point ofX(Ω). Thanks to (H0)
the coefficient matrix in (V ) fulfills (3.1).

(I) We use Thm. A.2 with X = W 1,∞, Z := L∞ applied to the abstract equation (O)λ.
Since φ∗ ∈ L∞(Ω) solves (D)λ∗ we know from Thm. 2.3(a) thatG(φ∗, λ∗) = 0, i.e. (A.1)
holds with x0 = φ∗ and λ0 = λ∗. The assumption (H2) guarantees that Prop. 3.1 can be
applied to the variational equation (V ) with n = r = 1. Due to the identity

[D1G(φ∗, λ∗)ψ](t) ≡ ψ̇(t)− [F (1,0)(φ∗, λ∗)ψ](t) ≡ ψ̇(t)−D2f(t, φ∗(t), λ∗)ψ(t)
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λ(λ∗, φ∗)

W 1,∞

λ(λ∗, φ∗)

W 1,∞

γ1 γ1

γ2

γ2

FIGURE 2. Crossing curve bifurcation of Thm. 4.1: Generic case of
a transcritical situation (left) and the degenerate case of a supercritical
pitchfork situation (right)

a.e. for t ∈ R (cf. Prop. 2.1) we therefore obtain that also (A.2) holds with x1 = Φ(0, ·)ξ1.
In addition,

[D2G(φ∗, λ∗)](t) = −D3f(t, φ∗(t), λ∗) = 0 a.e. in R.

Thanks to our Cor. 3.2 on the functional µ1 : Z → R, the condition (A.8) takes the form
(4.2) and (4.3). Then the claim for X = W 1,∞ follows using both Thm. A.2 and 2.3(a).

(II) When dealing with a homoclinic solution φ∗, i.e. for spacesX = W 1,∞
0 , Z := L∞0 ,

the proof follows along the same lines using Thm. 2.3(b). Yet, we can apply Thm. A.2
twice: Step (I) shows that the bifurcating solutions are unique in the large space W 1,∞ of
bounded functions, while itself being in W 1,∞

0 . �

We illustrate Thm. 4.1 and our further results using a class of examples, whose linear
parts are nonhyperbolic in the sense that they match the assumptions of Exam. 3.1(b3).

Example 4.1 (quadratic perturbations). For α > 0 we consider the planar CDE

ẋ = f(t, x, λ) =
(
b(t)

c(t)

)
x+ g(t, x, λ) (4.4)

depending on λ ∈ R as bifurcation parameter, measurable functions

b(t) :=

{
α, t < 0,
−α, t ≥ 0,

c(t) :=

{
−α, t < 0,
α, t ≥ 0

(4.5)

and a quadratic nonlinearity g : R× R2 × R→ R2 given by

g(t, x, λ) := λ

(
b1(t) b2(t)
c1(t) c2(t)

)
x+

(
b20(t)x2

1 + b11(t)x1x2 + b02(t)x2
2

c20(t)x2
1 + c11(t)x1x2 + c02(t)x2

2

)
+ λ2

(
b0(t)
c0(t)

)
with coefficients bi, ci ∈ L∞ for i = 0, 1 and bij , cij ∈ L∞ for i, j = 0, 1, 2 satisfying∫

R
e−α|s|c0(s) ds = 0,

∫
R
e−2α|s|c1(s) ds 6= 0; (4.6)

note that the first condition in (4.6) holds for odd functions c0. We conclude that (4.4)
fulfills (H0) with Ω = R2 but not necessarily (H1); so choose X = W 1,∞ and Z = L∞.

We observe that the linear part of (4.4) is nonhyperbolic for λ = 0, since the dichotomy
spectrum is Σ(0) = [−α, α]. Indeed, from Exam. 3.1(b3) we see that (4.4) satisfies (H2)
with τ = 0, φ∗(t) ≡ 0 on R, λ∗ = 0 and dichotomy projectors P+

t ≡
(

1 0
0 0

)
, P−t ≡

(
0 0
0 1

)
.
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Thus, we choose ξ1 =
(

1
0

)
and ξ′1 =

(
0
1

)
and the functional µ1 : L∞ → R from Cor. 3.2,

which characterizes R(L), is

µ1(ψ) =
∫

R
e−α|s|ψ2(s) ds.

Now we compute the derivatives required to apply Thm. 4.1 and obtain

D3f(s, 0, 0) =
(

0
0

)
, D2

3f(s, 0, 0) = 2
(
b0(s)
c0(s)

)
,

D2D3f(s, 0, 0)[Φ(s, 0)ξ1] = e−α|s|
(
b1(s)
c1(s)

)
,

D2
2f(s, 0, 0)[Φ(s, 0)ξ1]2 = 2e−2α|s|

(
b20(s)
c20(s)

)
,

which in turn yields the coefficients

g02 = 2
∫

R
e−α|s|c0(s) ds, g11 =

∫
R
e−2α|s|c1(s) ds, h22 =

∫
R
e−3α|s|c20(s) ds.

Thanks to the assumptions (4.6) our Thm. 4.1 is applicable and yields that the zero solution
to (4.4) for λ = 0 is at the intersection of two branches of bounded complete solutions.
More precisely, there exists a neighborhood S ⊆ R of 0 such that (4.4) for λ = s has the
complete solution φ1(s) = γ(s) ∈ W 1,∞, while for parameters λ = − h22

2g11
s + o(s) the

equation (4.4) admits complete solutions of the form

φ2(s) = s

(
e−α|·|

0

)
+ o(s) ∈W 1,∞ for all s ∈ S.

In addition, every bounded complete solution to (4.4) in a neighborhood of 0 is either φ1(s)
or φ2(s). Finally, in case b0, c0 ∈ L∞0 our assumption (H1) is fulfilled and the bifurcating
solutions φ1(s), φ2(s), s ∈ S, are homoclinic.

Being a quadratic system, the CDE from Exam. 4.1 cannot fulfill the assumptions for
a pitchfork bifurcation as stated in Rem. 4.1(2). Yet we discuss a minimal cubic system
exhibiting this pattern:

Example 4.2 (minimal pitchfork bifurcation). In this example, let α > 0 and γ, δ, ε ∈ R
with γ, δ 6= 0 be real parameters. We consider the planar asymptotically autonomous CDE

ẋ = f(t, x, λ) =
(
b(t) 0
γλ c(t)

)
x+ δ

(
0
x3

1

)
+ ε

(
0
λ3

)
(4.7)

depending on a bifurcation parameter λ ∈ R and coefficients c, d defined in (4.5). The right
hand side of (4.7) fulfills (H0) with Ω = R2 but not (H1); we also see that (H2) holds with
the same data as in Exam. 4.1. In order to apply Thm. 4.1 we observe D2f(s, 0, 0) ≡ 0,

D2
3f(s, 0, 0) =

(
0
0

)
, D2D3f(s, 0, 0)[Φ(s, 0)ξ1] = γ

(
0

e−α|s|

)
,

D2
2f(s, 0, 0)[Φ(s, 0)ξ1]2 =

(
0
0

)
, D3

2f(s, 0, 0)[Φ(s, 0)ξ1]3 = 6δ
(

0
e−3α|s|

)
a.e. for s ∈ R. Note that Exam. 3.1(b3) ensures D2

2f(s, 0, 0)[Φ(s, 0)ξ1]2 = 0 using the
notation of Cor. 3.3. This yields the relations

g02 = 0, g11 = γ
α 6= 0, h22 = 0, g30 = 3δ

α
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and so there is a crossing curve bifurcation pattern near the trivial solution φ∗ of (4.7) for
λ = 0. Therefore, φ∗ is at the intersection of two branches of bounded complete solutions

φ1(s) = γ(s) for all λ = s, φ2(s) = s

(
e−α|·|

0

)
+ o(s) for all λ = o(s)

with s ∈ S. More precisely, following Rem. 4.1(2) there is a pitchfork bifurcation of
φ∗ = 0 with g30

g11
= 3δ

γ ; in particular, 0 is the unique bounded complete solution to (4.7) for
λ = 0. If δ, γ have the same sign, the bifurcation is subcritical and otherwise supercritical.

Λ

λ < λ∗
λ = λ∗

λ > λ∗

R2

R2

R2

Λ

λ < λ∗
λ = λ∗

λ > λ∗

R2

R2

R2

FIGURE 3. Left (γδ > 0): Initial values for a subcritical pitchfork bifur-
cation of a bounded complete solution of (4.9) at λ = λ∗.
Right (γδ < 0): Initial values for a supercritical pitchfork bifurcation of
a bounded complete solution of (4.9) at λ = λ∗.

On the other hand, equation (4.7) also allows an explicit solution: The general solution
ϕλ to (4.7) has the first component ϕ1

λ(t; 0, η) = e−α|t|η1 for all t ∈ R. The second
component follows by the variation of constants formula (cf. [AW96, Thm. 2.10]) applied
to the scalar equation ẋ2 = c(t)x2 + γλϕ1

λ(t; 0, η) + δϕ1
λ(t; 0, η)3 + ελ3 as:

ϕ2
λ(t; 0, η) = eα|t|η2 +

∫ t

0

eα|t−s|
(
γλe−α|s|η1 + δe−3α|s|η3

1 + ελ3
)
ds for all t ∈ R.

This implies the asymptotic representation

ϕ2
λ(t; 0, η) =

e
αt
(
η2 + λγ

2αη1 + δ
4αη

3
1 + ελ3

α

)
+O(t) as t→∞,

e−αt
(
η2 − λγ

2αη1 − δ
4αη

3
1 − ελ3

α

)
+O(t) as t→ −∞

from which we derive the 0-fibers

W+
λ (0) :=

{(
η1,−λγ2αη1 − δ

4αη
3
1 − ελ3

α

)
: η1 ∈ R

}
,

W−λ (0) :=
{(
η1,

λγ
2αη1 + δ

4αη
3
1 + ελ3

α

)
: η1 ∈ R

}
of the stable resp. unstable integral manifolds of (4.7). In order to determine their intersec-
tion, i.e. initial values η = (η1, η2) ∈ R2 for globally bounded solutions, one solves the
nonlinear equations η2 = −λγ2αη1− δ

4αη
3
1− ελ3

α , η2 = λγ
2αη1 + δ

4αη
3
1 + ελ3

α , or equivalently

λγ

2
η1 +

δ

4
η3

1 + ελ3 = 0, η2 = 0.

The cubic equation for η1 has the discriminant ∆ := −( δγλ4 )2[27
(
ελ2

γ

)2 + 2λγδ
]

and for
parameters λ close to the critical value λ∗ = 0 one has sgn ∆ = − sgn(λγδ ). Thus, in case
δ, γ have the same sign, it follows ∆ > 0 for λ < 0 guaranteeing three distinct initial value
pairs η yielding bounded complete solutions (subcritical case). On the other hand, in case
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δ, γ having different signs, one has ∆ > 0 for λ > 0 and the bifurcation is supercritical.
This corresponds to the conclusion of Thm. 4.1 and we refer to Fig. 3 for an illustration.

An interesting observation can be made for ε = 0. Then one of the crossing curves is the
trivial solution branch and the corresponding linearization ẋ =

( b(t) 0
γλ c(t)

)
x has constant

dichotomy spectrum Σ(λ) = [−α, α] for all λ ∈ R. Hence, the pitchfork bifurcation
occurs without a change in Σ(λ) alone.

Next we tackle a nongeneric fold bifurcation, where the second order degeneracy con-
dition (4.2) is replaced by a first order one:

Theorem 4.2 (degenerate fold bifurcation). Let m ≥ 2, φ∗ ∈ X = W 1,∞, suppose that
(H0), (H2) are fulfilled with

g01 :=
∫

R
〈Φ(τ, s)′ξ′1, D3f(s, φ∗(s), λ∗)〉 ds = 0 (4.8)

and define

h11 :=
∫

R
〈Φ(τ, s)′ξ′1, D

2
3f(s, φ∗(s), λ∗)− 2D2D3f(s, φ∗(s), λ∗)D3f(s, φ∗(s), λ∗)

+D2
2f(s, φ∗(s), λ∗)[D3f(s, φ∗(s), λ∗)]2〉 ds,

h12 :=
∫

R
〈Φ(τ, s)′ξ′1, D2D3f(s, φ∗(s), λ∗)Φ(s, τ)ξ1

+D2
2f(s, φ∗(s), λ∗)Φ(s, τ)ξ1D3f(s, φ∗(s), λ∗)〉 ds,

with the function ψ(s) defined in Cor. 3.3. If h11h22 6= h2
12, then the complete solution

φ∗ ∈ X of (D)λ∗ bifurcates at λ∗. In detail, there exist open convex neighborhoods
S ⊆ R of 0 and U1 × U2 ⊆ X(Ω)× Λ of (φ∗, λ∗) such that the following holds:

(a) For h11h22 > h2
12 the unique complete solution of (D)λ∗ in X(Ω) is φ∗, whereas

equation (D)λ has no solution in X(Ω) for λ 6= λ∗ (see Fig. 4 (left)),
(b) for h11h22 < h2

12 there exist two Cm−1-curves γ1, γ2 : S → U1 × U2 such that
the set of complete solutions for (D)λ in W 1,∞(Ω) is given by the intersection(
(γ1(S) ∪ γ2(S)) ∩X)× {λ} (see Fig. 4 (right)). One has the representation

γi(0) =
(
φ∗

λ∗

)
, γ̇i(0) =

(
ρiΦ(·, τ)ξ1

νi

)
for all i ∈ {1, 2} ,

where (ρ1, ν1), (ρ2, ν2) ∈ R2 are nonzero linearly independent solutions of

h11ν
2 + 2h12ρν + h22ρ

2 = 0.

If (H0) to (H2) are satisfied, then the same holds with X = W 1,∞
0 .

Proof. The proof is very similar to the one of Thm. 4.1 and thus kept shorter. One applies
Thm. A.1 with X = W 1,∞, Z := L∞ to (2.3). Our assumption (H2) implies (A.1), (A.2)
and (A.4) is guaranteed by (4.8). Due to Prop. 2.1 the abstract equation (A.5) reads as

ẋ = D2f(t, φ∗(t), λ∗)x+D3f(t, φ∗(t), λ∗)

and by Cor. 3.3 its unique solution in Z is given by D3f(·, φ∗(·), λ∗). Having this at
hand, the matrix from Thm. A.1 reads as H(φ∗, λ∗) =

(
h11 h12
h12 h22

)
. Hence, Thm. A.1 is

applicable and implies the claim. �
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λ λ

h11h22 > h2
12 h11h22y < h2

12

(λ∗, φ∗)(λ∗, φ∗)

W 1,∞ W 1,∞

γ1

γ2

FIGURE 4. Degenerate fold bifurcation of Thm. 4.2:
Definite case h11h22 > h2

12 (left), where the pair (φ∗, λ∗) is isolated.
Indefinite case h11h22 < h2

12 (right), where (φ∗, λ∗) is a transversal
intersection for two branches of bounded complete solutions in W 1,∞

Example 4.3 (quadratic perturbation). The situation is similar to Exam. 4.1. We perturb its
linear part by a general quadratic system. Thereto, given α > 0 consider a planar CDE

ẋ = f(t, x, λ) =
(
b(t) 0
0 c(t)

)
x+ λg(t, x) (4.9)

depending on a bifurcation parameter λ ∈ R and functions b, c : R → R given by (4.5).
Exactly as in Exam. 4.1 our Hypothesis (H1) is satisfied with φ∗ = 0, λ∗ = 0 and di-
chotomy projectors P+

t ≡
(

1 0
0 0

)
, P−t ≡

(
0 0
0 1

)
. It is

[
P+

0 + P−0 − id
]†

= 0† = 0 and
ξ∗0 = 0 for the vector from (3.6).

We study (4.9) with general quadratic perturbations g : R×R2 → R2, whose coefficient
functions are essentially bounded, bi, ci ∈ L∞ for i = 0, 1 and bij , cij ∈ L∞ for i, j =
0, 1, 2. As consequence, the right hand side of (4.9) fulfills (H0) and not (H1). In addition,
suppose an inhomogeneity in g acts only on the first component, i.e. we have

g(t, x) :=
(
b1(t)x1 + b2(t)x2 + b20(t)x2

1 + b11(t)x1x2 + b02(t)x2
2

c1(t)x1 + c2(t)x2 + c20(t)x2
1 + c11(t)x1x2 + c02(t)x2

2

)
+
(
b0(t)

0

)
and we assume that ∫

R
e−α|s|c1(s) ds 6= 0; (4.10)

for instance, c1 is not an odd function. From the explicit form D3f(s, 0, 0) =
(
b0(s)

0

)
and

Cor. 3.2 we obtain D3f(·, 0, 0) ∈ R(L). By Exam. 3.1(b3) the relation (3.6) reduces to

D2f(s, 0, 0) =



(∫ t
0
e−α(t−s)b0(s) ds

0

)
, t ≥ 0,(

− ∫ 0

t
eα(t−s)b0(s) ds

0

)
, t < 0

=
(∫ t

0
e−α|t−s|b0(s) ds

0

)
.

Furthermore, we compute the derivatives D2
3f(s, 0, 0) = 0, D2

2f(s, 0, 0) = 0 and

D2D3f(s, 0, 0)ζ =
(
b1(s)ζ1 + b2(s)ζ2
c1(s)ζ1 + c2(s)ζ2

)
for all ζ ∈ R2,

consequently,

D2D3f(s, 0, 0)D3f(s, 0, 0) =
∫ s

0

e−α|t−r|b0(r) dr
(
b1(s)
c1(s)

)
,
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D2D3f(s, 0, 0)Φ(s, 0)ξ1 = e−α|s|
(
b1(s)
c1(s)

)
,

which implies g01 = 0, h12 =
∫

R e
−2|s|c1(s) ds, h22 = 0 and

h11 = −2
∫

R
e−α|s|c1(s)

∫ s

0

e−α|s−r|b0(r) dr ds.

Due to our generic assumption (4.10) we are in the scope of Thm. 4.2(b) and choose pairs
(ρ1, ν1) = (1, 0), (ρ2, ν2) = (− h11

2h12
, 1). Thus, there exists a neighborhood S ⊆ R of 0

such that the solutions of (4.9)

• with λ = o(s) are of the form φ1(s) = s

(
e−α|·|

0

)
+ o(s)

• with λ = s+ o(s) are of the form φ2(s) = − h11
2h12

(
e−α|·|

0

)
+ o(s).

In case of inhomogeneities b0 ∈ L∞0 these solutions φ1(s), φ2(s) are homoclinic.

The previous Exam. 4.3 was not able to cover the full scope of Thm. 4.2, since it only
reproduced the case (b). For the other alternative (a) we refer to

Example 4.4. With given α > 0 and δ, ε ∈ R with δ, ε 6= 0 we consider a planar CDE

ẋ = f(x, λ) =
(
b(t) 0
0 c(t)

)
x+ δ

(
0
x2

1

)
+ ε

(
0
λ2

)
(4.11)

depending on a bifurcation parameter λ ∈ R and functions b, c : R→ R from (4.5). Again,
the right hand side of (4.11) fulfills (H0), not (H1) and as in Exam. 4.1 the assumption
(H2) holds with the same data. The derivatives of the right hand side of (4.11) are

D3f(s, 0, 0) =
(

0
0

)
, D2

3f(s, 0, 0) =
(

0
2ε

)
, D3

3f(s, 0, 0) =
(

0
0

)
and consequently we see from (3.6) and Exam. 3.1(b3) that D3f(s, 0, 0) is the zero func-
tion. Thus, it remains to compute the derivatives

D2D3f(s, 0, 0)Φ(s, 0)ξ1 =
(

0
0

)
, D2

2f(s, 0, 0)[Φ(s, 0)ξ1]2 = 2δ
(

0
e−2α|s|

)
a.e. for s ∈ R. This yields the relations

g01 = 0, h11 = 2ε
α 6= 0, h12 = 0, h22 = 4δ

3α 6= 0

and Thm. 4.2 is applicable with h11h22 = 8εδ
3α2 . This guarantees

• for εδ > 0 that bounded solutions of (4.11) exist for λ = 0 only (see Fig. 5 (left)),
• for εδ < 0 that the trivial solution φ∗ is the intersection of two branches of

bounded solutions to (4.11) (see Fig. 5 (right)).
The decoupled structure of (4.11) allows us to verify this statement explicitly. Indeed, as

indicated the general solution ϕλ of (4.11) has the first component ϕ1
λ(t; 0, η) = e−α|t|η1

for all t ∈ R and for the second component one deduces an asymptotic representation

ϕ2
λ(t; 0, η) =

e
αt
(
η2 + δ

αη
2
1 + ελ2

α

)
+O(t) as t→∞,

e−αt
(
η2 − δ

αη
2
1 − ελ2

α

)
+O(t) as t→ −∞.

From this we see that ϕλ(·; 0, η) ∈ L∞ holds if and only if

η2 = − δ
α
η2

1 −
ελ2

α
, η2 =

δ

α
η2

1 +
ελ2

α
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Λ

λ < λ∗
λ = λ∗

λ > λ∗

R2

R2

R2

Λ

λ < λ∗
λ = λ∗

λ > λ∗

R2

R2

R2

FIGURE 5. Left (εδ > 0): Isolated initial value yielding a bounded
complete solution of (4.11) for λ = λ∗.
Right (εδ < 0): Intersection of two branches of initial values yielding
bounded complete solutions of (4.11)

and we conclude:
• If ε

δ > 0, then the initial value η = (0, 0) yields the unique bounded solution to
(4.11) for λ = 0, while there are no bounded solutions for λ 6= 0,

• if εδ < 0, then initial values for bounded solution to (4.11) are η =
(
0,±|λ|√− εδ ).

5. PERSPECTIVES

As shown in [LSW07] the crossing curve bifurcation from Thm. 4.1 (see Thm. A.2
for the abstract form) is actually a corollary of the degenerate fold scenario in Thm. 4.2
(resp. Thm. A.1). Further results of [Shi99, LSW07] also allow to investigate degenerate
versions of the transcritical and pitchfork bifurcation patterns for bounded complete solu-
tions of nonautonomous difference and differential equations, whose generic (and primary)
versions have been formulated in [Pöt10a]. We think this paper contains the essential in-
gredients (for instance, Cor. 3.3) and techniques, so that the interested reader is able to
deduce such corresponding results on secondary bifurcations.

Furthermore, as a concluding remark we point out that our whole theory clearly applies
to nonautonomous differential equations with continuous time dependence. Under this as-
sumption, one replaces W 1,∞ by the space of bounded C1-functions BC1 and L∞ by the
bounded functions BC; then the present theory resembles the previous situation consid-
ered in [Pöt10a, Sect. 3]. With obvious modifications, quite similar results also hold for
differential equations with a right hand side being piecewise continuous in time, or in the
discrete case of nonautonomous difference equations.

APPENDIX A. ABSTRACT BIFURCATION RESULTS

We review the results of [Shi99, LSW07] in a notation appropriate for our purposes and
already established in [Pöt10b]. Throughout, assume that X,Z are real Banach spaces and
Ω ⊆ X , Λ ⊆ R denote nonempty open neighborhoods of x0 ∈ X , λ ∈ R in the respective
spaces. We consider Cm-mappings G : Ω × Λ→ Z, m ≥ 2, vanishing at (x0, λ0),

G(x0, λ0) = 0 (A.1)

and with a partial Fréchet derivative D1G(x0, λ0) ∈ L(X,Z) satisfying

dimN(D1G(x0, λ0)) = codimR(D1G(x0, λ0)) = 1,

N(D1G(x0, λ0)) = span {x1} (A.2)

for some nonzero x1 ∈ X . Hence, the derivative D1G(x0, λ0) is a Fredholm operator of
index 0. Thus, from the Hahn-Banach theorem (cf. [Lan93, p. 69, Thm. 1.1]) we get the
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existence of a continuous functional µ ∈ L(Z,R) such that N(µ) = R(D1G(x0, λ0)).
The Fredholm property (A.2) yields that the kernel N(D1G(x0, λ0)), as well as the range
R(D1G(x0, λ0)) split the respective space X and Z, i.e. there exist two closed subspaces
X0 ⊆ X , Z0 ⊆ Z with

X = N(D1G(x0, λ0))⊕X0, Z = Z0 ⊕R(D1G(x0, λ0)). (A.3)

We conclude that the restriction D1G(x0, λ0)|X0 : X0 → R(D1G(x0, λ0)) is a toplinear
isomorphism and under the assumption

D2G(x0, λ0) ∈ R(D1G(x0, λ0)) (A.4)

there exists a unique solution x̄ ∈ X0 to the linear equation

D2G(x0, λ0) +D1G(x0, λ0)x̄ = 0. (A.5)

For the sake of a convenient notation we abbreviate Gij := Di
1D

j
2G(x0, λ0) for i, j ∈ N0

with i+ j ≤ m, and formulate the basic bifurcation results:
First of all, locally near (x0, λ0) the solution set to G(x, λ) = 0 is either an isolated

point or the transversal intersection of two smooth curves (cf. Fig. 4).

Theorem A.1 (abstract degenerate fold bifurcation). Let m ≥ 2 and suppose that the
mapping G : Ω × Λ→ Z satisfies (A.1), (A.2) and (A.4). If the matrix

H(x0, λ0) :=
(
µ(G02 + 2G11x̄+G20x̄

2) µ(G11x1 +G20x1x̄)
µ(G11x1 +G20x1x̄) µ(G20x

2
1)

)
is invertible, then there exist open convex neighborhoods S ⊆ R of 0 and U1×U2 ⊆ Ω×Λ
of (x0, λ0) such that the following holds:

(a) For detH(x0, λ0) > 0 one has

{(x, λ) ∈ U1 × U2 : G(x, λ) = 0} = {(x0, λ0)} ,
(b) for detH(x0, λ0) < 0 there exist two Cm−1-curves γ1, γ2 : S → U1 × U2 with

{(x, λ) ∈ U1 × U2 : G(x, λ) = 0} = γ1(S) ∪ γ2(S)

and the branches γ1(S), γ2(S) have the explicit representation

γi(s) =
(
x0 + sρix1 + syi(s)
λ0 + sνi + sθi(s)

)
for all s ∈ S,

where (ρ1, ν1), (ρ2, ν2) ∈ R2 are nonzero linearly independent solutions of

µ(G02 + 2G11x̄+G20x̄
2)ν2 + 2µ(G11x1 +G20x1x̄)ρν + µ(G20x

2
1)ρ2 = 0 (A.6)

and θi : S → R, yi : S → X0 are functions satisfying

θi(0) = θ̇i(0) = 0, yi(0) = ẏi(0) = 0 for all i = 1, 2.

Remark A.1. Geometrically, the set of all pairs (ν, ρ) ∈ R2 satisfying (A.6) is given by
two straight lines in the plane R2 intersecting at the origin.

Proof. The case of C2-smoothness is formulated in [LSW07, Thm. 2.1], but a closer look
to [LSW07, Lemma 2.6] yields the claimedCm−1-regularity of the curves γi, i = 1, 2. �

For the classical result of Crandall-Rabinowitz [CR71, Thm. 17] it is assumed that a
trivial solution branch G(x0, λ) ≡ 0 on Λ exists. Here, we weaken this to

D2G(x0, λ0) = 0 (A.7)

and a transversality condition. This guarantees that one of the intersecting curves γi(S) is
tangential to the λ-axis in (x0, λ0) (cf. Fig. 2):
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Theorem A.2 (abstract crossing curve bifurcation). Let m ≥ 2 and suppose that the map-
ping G : Ω × Λ→ Z satisfies (A.1), (A.2) and (A.7). If the transversality condition

g11 := µ(G11x1) 6= 0, g02 := µ(G02) = 0 (A.8)

holds, then there exist open convex neighborhoods S ⊆ R of 0 and U1 × U2 ⊆ Ω × Λ of
(x0, λ0) such that

{(x, λ) ∈ U1 × U2 : G(x, λ) = 0} = Γ1 ∪ Γ2,

where the branches Γ1,Γ2 have the following properties:
(a) Γ1 = γ1(S) with a Cm−1-curve γ1 : S → U1 × U2, γ1(s) = (γ(s), λ0 + s) and

γ1(0) = (x0, λ0), γ̇(0) = 0,

(b) Γ2 = γ2(S) with a Cm−1-curve γ2 : S → U1 × U2 and

γ2(s) =
(
x0 + sx1 + sy2(s)
λ0 + sµ2 + sθ2(s)

)
, µ2 := −µ(G20x

2
1)

2g11
,

where the properties of y2, θ2 are given in Thm. A.1.

Proof. See [LSW07, Cor. 2.3]. �

Corollary A.3 (abstract transcritical bifurcation). If µ(G20x
2
1) 6= 0, then

# {x ∈ U1 : G(x, λ) = 0} =

{
1, λ = λ0,

2, λ 6= λ0.

Proof. Due to µ(G20x
2
1) 6= 0 one has µ2 6= 0 and the claim follows from Thm. A.2. �

Concerning the degenerate case µ(G20x
2
1) = 0 we point out that the linear equation

G20x
2
1 +G10x̄1 = 0 has a unique solution x̄1 ∈ X0, which yields

Corollary A.4 (abstract pitchfork bifurcation). If m ≥ 3 and

µ(G20x
2
1) = 0, µ(G30x

3
1) + 3µ(G20x1x̄1) 6= 0

then γ̈2
2(0) = −µ(G30x

3
1)+3µ(G20x1x̄1)

3g11
holds true and

(a) If γ̈2
2(0) > 0, then # {x ∈ U1 : G(x, λ) = 0} =

{
1, λ ≤ λ0,

3, λ > λ0,

(b) If γ̈2
2(0) < 0, then # {x ∈ U1 : G(x, λ) = 0} =

{
3, λ < λ0,

1, λ ≥ λ0.

Proof. The formula determining γ̈2(0) has been given in [Shi99, (4.6)] and then Thm. A.2
yields the assertion. �
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[LRS06] J.A. Langa, J.C. Robinson, and A. Suárez, Bifurcations in non-autonomous scalar equations, J. Differ.

Equations 221 (2006), 1–35.
[LSW07] P. Liu, J. Shi, and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal. 251

(2007), 573–600.
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CHRISTIAN PÖTZSCHE, TECHNISCHE UNIVERSITÄT MÜNCHEN, ZENTRUM MATHEMATIK, BOLTZMANN-
STRASSE 3, D-85758 GARCHING, GERMANY

E-mail address: christian.poetzsche@ma.tum.de


