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We prove an abstract and flexible continuation theorem for zeros of parametrized Fredholm maps between Banach
spaces. It guarantees not only the existence of zeros to corresponding equations, but also that they form a continuum
for parameters from a connected manifold. Our basic tools are transfer maps and a specific topological degree. The
main result is tailor-made to solve boundary value problems over infinite time-intervals and for the (global) continuation
of homoclinic solutions.
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1 Introduction

This paper investigates the global solution structure of abstract equations

G(x, λ) = 0 (Oλ)

depending on a parameter λ. Locally near a given reference solution (x∗, λ∗) this apparently is the setting of the classical
implicit function theorem (e.g. [14, 27]), which found countless applications over the last century. Yet, it is of intrinsic
interest to obtain information on the global structure of the solution branches. A first approach to this problem using
Leray-Schauder degree theory is due to [25] (see also [14, pp. 321ff]), where applications to nonlinear elliptic partial
differential equations are given, or [15]. A more recent contribution from [9] applies to Fredholm maps and allows to
study boundary value problems on unbounded intervals (see [19, 20] or [23]). For real parameters λ, such global implicit
function theorems roughly state that solution branches C to (Oλ) run from boundary to boundary of the domain of G,
unless the set C − {(x∗, λ∗)} is connected (see Fig. 1). In case G is globally defined, then C − {(x∗, λ∗)} is either
connected, or consists of two disjoint and unbounded branches (see Fig. 2).
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Fig. 1 Alternatives in global implicit function theorem, where the grey shaded area symbolizes the domain of G: The intersection
C− ∩ C+ is larger than just {(x∗, λ∗)} (left) or, C+ is unbounded (center, here C− touches the boundary of X) or C− touches the
boundary of Λ (right, while C+ touches the boundary of X)
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Fig. 2 Alternatives in global implicit function theorem for globally
defined G: Two disjoint unbounded sets Γ−,Γ+ meet at (x∗, λ∗) (left)
or, the difference C − {(x∗, λ∗)} is connected (right)
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x∗ x∗Λ Λ Fig. 3 Illustration of Thm. 1.1, where the grey shaded area symbolizes
O × Λ: For every parameter value λ there exists a solution of (Oλ)
(left). Yet, only the solution branch C in the right figure covers the
entire parameter space Λ and is guaranteed by Thm. 1.1.

The setting of continuation principles is slightly different. Rather than asking for the behavior of a global solution
branch through a given solution (x∗, λ∗), one is interested in the question, whether a solution exists for every parameter
λ, and if these solutions are part of a continuum? In equivalent terms, is there a solution branch covering the entire
parameter space?

In order to describe our approach to this problem, let us be more specific. We deal with oriented Fredholm mappings
G : O × Λ→ Y between Banach spaces X,Y , where O ⊆ X is nonempty, open and suppose

(A1) the parameter space Λ is a connected metrizable (Banach) manifold (or more general, a connected absolute neigh-
borhood retract, cf. [8, p. 287, Cor. (5.4)]),

(A2) for any compact set Λ0 ⊆ Λ the restriction G|O×Λ0
is proper,

(A3) G−1(0) ∩ ((∂O)× Λ) = ∅ and G(·, λ)|O is Fredholm of index 0 for all λ ∈ Λ,

(A4) there exists a λ∗ ∈ Λ such that deg(G(·, λ∗), O, 0) 6= 0,

where deg(G(·, λ∗), O, 0) is an ambient topological degree, we are going to specify later. Under these assumptions, our
main result reads as follows (cf. Fig. 3):

Theorem 1.1 (global continuation principle) If (A1–A4) hold, thenG−1(0)∩ (O×Λ) has a connected component
C which for every λ ∈ Λ contains a solution x ∈ O of (Oλ).

The proof of Thm. 1.1 combines techniques from functional analysis (oriented Fredholm operators), algebraic
topology (transfer homomorphisms) and differentiable manifolds, as well as topology (mapping degrees), and will be
given in §3. As a prototypical result we would like to mention the approach in [1, Thm. 2.1]. Here, the structure of
G−1(0) is studied for semilinear Fredholm maps G(x, λ) = Lλx+ Cλ(x) for all λ ∈ Λ, where Lλ : X → Y is a linear
Fredholm operator of index 0 and Cλ : O → Y is completely continuous on an open, nonempty subset O of a vector
bundle over Λ with fibers isomorphic to a Banach space X and Λ being a connected differentiable manifold without
boundary.

One motivation for our work is an extension of [1] (or [15]). Rather than assuming a semilinear structure of G
with completely continuous perturbation, we investigate (nonlinear) Fredholm operators ab initio. This requires to use
different and novel techniques in the proof of Thm. 1.1:

First, following [7] and using cohomology theory, we extend the construction of transfer homomorphisms to finite-
dimensional manifolds and prove several general properties. It should be noted that the results concerning the transfer
homomorphisms are of independent interest and can be applied to further relevant problems not considered here. What
is more, the study of this subject at hand is far from being complete. For example, the results obtained in §2 can be
extended to functions defined on any topological bundle over a base Λ (observe that in the setting of §2, Mn × Λ has a
structure of a trivial topological bundle over Λ). The most general case requires additional techniques from cohomology
theory, such as Thom classes, and is postponed to a future paper. More precisely, we essentially follow the Dold
fixed point transfer [7]. However, the construction from [7] does not immediately apply, since parameterized mappings
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G : E × Λ→ E between the same space E (being a Euclidean neighborhood retract) are considered, as opposed to our
situation of maps G : X × Λ → Y with possibly different Banach spaces X and Y . Whence, compared to [7, 1] the
construction of the transfer homomorphism must be deeply modified. Our approach is based on advanced techniques
from algebraic topology.

Second, since Fredholm mappings are not necessarily compact perturbations of the identity, the Leray-Schauder
degree used in [1] does not apply. As an appropriate replacement serves a degree for (oriented) Fredholm maps. Among
various corresponding constructions, the most popular ones are due to Benevieri and Furi [2], Fitzpatrick, Pejsachowicz
and Rabier [10, 11, 21] or the topological degree obtained in Väth [27]. We found the latter one to have two advantages:

(1) The proof of Thm. 1.1 is extensively based on the reduction property (B.2) of a topological degree, shared by all
the degrees mentioned above. However, what is interesting, this property was used directly in [27]. Thus, in order
to obtain clear and transparent proofs, it appears natural to work with this degree.

(2) Our approach is based on transfer homomorphism methods involving homology and cohomology theory. This
requires to relate the degree for Fredholm maps with the possibly lesser known (co)homological degree between
finite-dimensional oriented manifolds constructed in [6, Chap. VIII]. Once again, the approach of [27] allows us to
do this quickly.

Summarizing, although our arguments remain valid when using the Benevieri-Furi [2], as well as the Fitzpatrick-
Pejsachowicz-Rabier degree [10, 21], we feel that the corresponding reasoning would be longer and more complicated.

Another motivation for our work are applications to boundary value problems on unbounded domains [19, 9, 20]
or in the field of nonautonomous dynamical systems [22, 23, 24].

The paper is organized as follows: §2 introduces some preliminaries from the theory of differentiable manifolds,
but essentially focusses on the technique of transfer homomorphisms. Here, the central Prop. 2.9 appears to be of
independent interest. §3 is devoted to the proof of our main theoretical contribution, i.e. Thm. 1.1. Finally, our three
appendices aim to help readers possibly unfamiliar with single perquisites of this paper, and intend to keep it largely
self-contained. App. A introduces topological tools like direct sums of abelian groups (and their limits), the tautness of
cohomology, cross products and Künneth’s theorem for singular cohomology. The required degree theory is summarized
in App. B. It presents essential properties of both the homological degree between oriented manifolds due to [6], as well
as of the Benevieri-Furi degree [2].

Notation and preliminaries

In what follows, we use the notation N0 for N ∪ {0}. On a metric space X , Br(x) and B̄r(x) are the open resp. closed
r-balls centered in a point x ∈ X , the interior of a set Ω ⊂ X is Ω◦, the closure is Ω and ∂Ω the boundary.

For Banach spaces X,Y we denote the space of linear bounded operators from X to Y by L(X,Y ), GL(X,Y )
are the invertible elements and Φ0(X,Y ) the linear index 0 Fredholm operators. We briefly write L(X) := L(X,X)
(similarly for other spaces) and idX for the identity map on X . Furthermore, N(T ) := T−1(0) and R(T ) := TX are
the kernel resp. the range of T ∈ L(X,Y ). Norms on finite-dimensional linear spaces are denoted by |·|.

Being guided by [2], suppose thatC(T ) denote the correctors of T ∈ L(X,Y ), that is, the set ofK ∈ L(X,Y ) with
dimR(K) <∞ and T +K ∈ GL(X,Y ). We call K1,K2 ∈ C(T ) equivalent, if det((T +K1)−1(T +K2)|X0) > 0
holds, where X0 is a finite-dimensional subspace of X containing the range R((T +K1)−1(K1−K2)). One can prove
that C(T ) contains exactly two equivalence classes and C(T ) 6= ∅ holds if and only if T ∈ Φ0(X,Y ). An orientation of
T ∈ Φ0(X,Y ) is an equivalence class of correctors for T according to the above equivalence relation; by the opposite
orientation of T we mean the complemented equivalence class in C(T ). An oriented linear Fredholm operator is a pair
(T, σ) consisting of a T ∈ Φ0(X,Y ) and an orientation σ.

A closed subspace Y0 ⊆ Y is transversal to T ∈ Φ0(X,Y ), if R(T ) + Y0 = Y and Y0 is complemented in Y (or
T−1(Y0) is complemented in X). For an oriented Fredholm map (T, σ) and Y0 ⊆ Y being transversal to T one has:

• If X0 := T−1(Y0), then the inherited orientation of T0 := T |X0 is

σ0 := {K|X0
∈ L(X0, Y0) | K ∈ σ and R(K) ⊆ Y0} , (1.1)

T |(X0,Y0) ∈ Φ0(X0, Y0) and dimY0 <∞ implies dimX0 = dimY0,

• Y0 is transversal to T if and only if there are closed subspaces Y1 ⊆ Y and X1 ⊆ X satisfying Y = Y0 ⊕ Y1 and
X = X0 ⊕X1 such that T |(X1,Y1) ∈ GL(X1, Y1).
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Given a nonempty, open set O ⊆ X and a nonlinear C1-map F : O → Y , a point x ∈ O (resp. y ∈ Y ) is called
regular (resp. regular value) of F , if the Fréchet derivative DF (x) ∈ L(X,Y ) is onto (resp. if each element of F−1(y)
is regular). One speaks of a Fredholm map F : O → Y with index 0, if DF (x) ∈ Φ0(X,Y ) holds for all x ∈ O. A
submanifold Y0 ⊆ Y is called transversal to F on M ⊆ X , if for each x ∈ M ∩ F−1(Y0) the subspace TF (x)Y0 ⊆ Y
is transversal to DF (x).

Typically dealing with mappings G : O × Λ → Y depending on two variables, it is convenient to abbreviate
Gλ := G(·, λ) : O → Y . Finally, a generalized Fredholm homotopy of index 0 is a continuous map H : O× [0, 1]→ Y
with continuous derivative (x, t) 7→ DHt(x) ∈ Φ0(X,Y ) for every t ∈ [0, 1].

2 Transfer homomorphism for oriented manifolds

We begin our investigations with preliminaries concerning orientations on manifolds and (co)homological fundamental
classes. Throughout the paper we use the Alexander-Spanier cohomology Ȟ∗, singular cohomology H∗ with rational
coefficients (see [26]) and consider singular homology H∗ with integer coefficients. The abbreviation ANR stands for
Absolute Neighborhood Retract.

In the following, suppose Mn is an n-dimensional manifold (n-manifold), while U ⊆Mn andK ⊆Mn are generic
open resp. compact and connected subsets 6= ∅.

Remark 2.1 For every x ∈ Mn, the relative homology group Hk(Mn,Mn − x) is an infinite cyclic group for
k = n and vanishes for k 6= n.

Given the disjoint union

M̃n :=
∐
x∈Mn

Hn(Mn,Mn − x),

let p : M̃n →Mn be a mapping given by the condition p−1(x) = Hn(Mn,Mn−x) for any x ∈Mn. One can construct
a topology on M̃n such that p becomes a covering map (see [5, pp. 391–393]). Let q : M̃n → Z be given by q(kα) = |k|,
where α ∈ Hn(Mn,Mn − x) is a generator and define

ΓK :=
{
s : K → M̃n | p(s(x)) = x for all x ∈ K

}
,

as well as a homomorphism

JK : Hn(Mn,Mn −K)→ ΓK, JK(γ)(x) = (iK,x)∗(γ) for all x ∈ K, γ ∈ Hn(Mn,Mn −K),

where (iK,x)∗ : Hn(Mn,Mn −K)→ Hn(Mn,Mn − x) denotes the homomorphism induced by the inclusion.

An n-manifold Mn is said to be orientable, if there is a section µ ∈ ΓMn (called an orientation of Mn) such that
q(µ(x)) ≡ 1 on Mn holds and the pair (Mn, µ) is called oriented n-manifold. The restriction µ|U is an orientation of
the submanifold U (more precisely: for x ∈ U one has (µ|U )(x) = (jU,x)−1

∗ (µ(x)), where (jU,x)∗ : Hn(U,U − x) →
Hn(Mn,Mn − x) is the excision isomorphism). For simplicity, the induced orientation µ|U of U is again denoted by µ.

Moreover, JK defines an isomorphism (see [5, pp. 395–397]) and there exists a unique class

µK ∈ Hn(Mn,Mn −K) with JK(µK) = µ|K ,

where µ|K : K → M̃n stands for the restriction of µ : Mn → M̃n to K. This class µK is called fundamental homology
class of K and characterized by the property that the inclusion homomorphism

(iK,x)∗ : Hn(Mn,Mn −K)→ Hn(Mn,Mn − x) takes µK into the orientation µ(x) for all x ∈ K.

Moreover, (iK,x)∗ is an isomorphism for all x ∈ K (see [5, p. 397]). Thus, in this case, µK is a generator of the group
Hn(Mn,Mn −K) because of Hn(Mn,Mn − x) = Z. If K ⊂ U , then one can consider the fundamental classes µK
and µUK w.r.t. Mn and U , respectively. The excision isomorphism (jU,K)∗ : Hn(U,U −K)→ Hn(Mn,Mn−K) takes
µUK into µK . Whence, one can skip the symbol U from the notation µUK .

We will need the following result from [3, Prop. 6.6, Cor. 7.2]:
Theorem 2.2 (universal coefficient theorem) If K ⊂ U is a compact and connected subset, then

IK : Hn(U,U −K)→ Hom(Hn(U,U −K),Q), IK([ϕ])([α]) := ϕ(α)

is an isomorphism.
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For later convenience, the value of ϕ at α is denoted by 〈〈ϕ, α〉〉. Based on Thm. 2.2 we introduce the fundamental
cohomology class of a compact, connected set K ⊂ U ⊂ (Mn, µ) as unique element µK ∈ Hn(U,U − K) so that
〈〈µK , µK〉〉 = 1, where µK is the fundamental homology class of K (note Hom(Hn(U,U −K),Q) ' Hom(Z,Q)). The
latter admits the following properties:

Lemma 2.3 Let U1, U2 ⊆Mn be open and assume K1,K2 are compact, connected with K2 ⊂ K1 ⊂ U1 ⊂ U2. If
h∗ : Hn(U2, U2−K2)→ Hn(U1, U1−K1) denotes the homomorphism induced by the inclusion h : (U1, U1−K1) ↪→
(U2, U2 −K2), then h∗(µK2) = µK1 .

P r o o f. Because of h∗(µK1
) = µK2

(cf. [6, VIII, 2.8]) and

〈〈µK1 , µK1
〉〉 = 1 = 〈〈µK2 , µK2

〉〉 = 〈〈µK2 , h∗(µK1
)〉〉 = 〈〈h∗(µK2), µK1

〉〉

the uniqueness of the cohomological fundamental class yields h∗(µK2) = µK1 .

This property explains, analogously to the concept of a fundamental class in homology, why we can neglect the
symbol U in the notation of µK ∈ Hn(U,U −K).

Corollary 2.4 The homomorphism i∗K,x : Hn(Mn,Mn − x) → Hn(Mn,Mn − K) is an isomorphism, which
satisfies i∗K,x(µx) = µK for all x ∈ K.

P r o o f. The first conclusion results from the following commutative diagram:

Hn(Mn,Mn − x)

Ix ∼=
��

i∗K,x // Hn(Mn,Mn −K)

IK∼=
��

Hom(Hn(Mn,Mn − x),Q)
Hom((iK,x)∗)

∼=
// Hom(Hn(Mn,Mn −K),Q),

where Hom((iK,x)∗) is given by Hom((iK,x)∗)(h) := h ◦ (iK,x)∗ for all h ∈ Hom(Hn(Mn,Mn− x),Q). The second
conclusion is due to Lemma 2.3.

If Mn is of class C1, then orientability can be characterized as follows (see [3, pp. 347–348] or [13, pp. 267–268]):
Mn is orientable if and only if there is an atlas A of Mn such that for (U, φ), (V, ψ) ∈ A the relation D(ψφ−1) > 0 on
φ(U ∩ V ) > 0 holds (such an atlas A is called orienting). Suppose that f : (Mn, µ) → (Nn, µ̂) is a homeomorphism
between two oriented n-manifolds. We will say that f preserves (resp. reverses) the orientations of Mn and Nn, provided
that f∗(µx) = µ̂f(x) (resp. f∗(µx) = −µ̂f(x)) for all x ∈ Mn holds. What is interesting [13, pp. 266–267, Thm. 3.4] is
that, if f : (Rn, µ)→ (Rn, µ) is a diffeomorphism, then f∗ : Hn(Rn,Rn − x)→ Hn(Rn,Rn − f(x)) satisfies

f∗(µx) = (sgn detDf(x)) · µf(x) for x ∈ Rn.

Suppose now that (Mn, µ) is an oriented n-manifold and A ⊆ X , B ⊆ Y are open.

Corollary 2.5 If K ⊂Mn is connected and compact, then

× : Hn(Mn,Mn −K)⊗Hd(Y,B)→ Hn+d((Mn,Mn −K)× (Y,B))

is an isomorphism for all d ∈ N0.

P r o o f. First, observe that Rem. 2.1, Cor. 2.4 and the universal coefficient Thm. 2.2 imply

Hp(Mn,Mn −K) =

{
0 if p 6= n,
Q if p = n,

hence,
⊕

p+q=n+dH
p(Mn,Mn −K) ⊗Hq(Y,B) = Hn(Mn,Mn −K) ⊗Hd(Y,B) and from Künneth’s Thm. A.5

we deduce the conclusion.

We shall make use of the following suspension homomorphism:
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Proposition 2.6 (suspension homomorphism) If K ⊂ Mn is compact and connected with fundamental class µK ,
then the so-called suspension homomorphism

σn : Hd(Y,B)→ Hn+d((Mn,Mn −K)× (Y,B)), σn(ξ) := µK × ξ

is an isomorphism for all d ∈ N0.

P r o o f. Given d ∈ N0, observe that Cor. 2.5 implies that cross product

× : Hn(Mn,Mn −K)⊗Hd(Y,B)→ Hn+d((Mn,Mn −K)× (Y,B))

is an isomorphism. The assertion follows, since µK ∈ Hn(Mn,Mn −K) = Q is a generator.

Corollary 2.7 If pr2 : (Mn,Mn −K)× (Y,B)→ (Y,B) is the projection on the second component and

σn : Hq(Y,B)→ Hq+n((Mn,Mn −K)× (Y,B)),

then the suspension homomorphism satisfies

σn(ξ ^ η) = σn(ξ) ^ pr∗2(η) for all ξ ∈ Hq1(Y,B), η ∈ Hq2(Y,B).

P r o o f. Let q1, q2 ∈ N0. If ξ ∈ Hq1(Y,B) and η ∈ Hq2(Y,B), then

σn(ξ ^ η) = µK × (ξ ^ η) = (µK ^ 1Mn)× (ξ ^ η) = (µK × ξ) ^ (1Mn × η) = σn(ξ) ^ pr∗2(η)

yields the assertion.

Next, we explain the relationship of the cohomological fundamental class with the suspension homomorphism from
Prop. 2.6. For this purpose, we need the homomorphisms

DEG : H0({λ∗})→ H0({λ∗}), DEG(1λ∗) = q · 1λ∗ ,
H : Hn(En,En −K)→ Hn(Mn,Mn − x), H(µ̂K) = q · µx,

where 1λ∗ ∈ H0({λ∗}) = Q, µ̂K ∈ Hn(En,En −K) and µx ∈ Hn(Mn,Mn − x) are generators. Then

H0({λ∗}) H0({λ∗})DEGoo

σn∼=
��

Hn((Mn,Mn − x)× {λ∗})

(σn)−1∼=

OO

Hn((En,En −K)× {λ∗})

(pr∗1)−1∼=
��

Hn(Mn,Mn − x)

pr∗1∼=

OO

Hn(En,En −K)
Hoo

(2.1)

is commutative with the suspension isomorphisms (see also (A.4))

σn : H0({λ∗})→ Hn((Mn,Mn − x)× {λ∗}), σn : H0({λ∗})→ Hn((En,En −K)× {λ∗}).

On an oriented n-manifold (Mn, µ) without boundary, an n-dimensional oriented normed space (En, µ̂) and an
open, connected O ⊆Mn, we consider maps g : O × Λ→ En satisfying:

(a1) The parameter space Λ is a connected ANR,

(a2) for every compact set Λ0 ⊂ Λ, g−1(0) ∩ (O × Λ0) is compact,

(a3) there exists λ∗ ∈ Λ with deg0(gλ∗ , O,En) 6= 0,
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where deg0(gλ∗ , O,En) denotes the homological degree defined as in (B.1).

Fix a compact and connected subset Λ0 ⊆ Λ. For a subset U ⊆ O × Λ0 we define the λ-fiber

Uλ := {x ∈ O | (x, λ) ∈ U} for all λ ∈ Λ0

and abbreviate S := g−1(0) ⊂ O×Λ, S|U := g−1(0)∩U , S|Λ0 := S ∩ (O×Λ0) for the set of zeros. Our construction
of the transfer map is based on the subsequent topological result which follows from the proof of Lemma 3.22 contained
in [16, p. 77]:

Lemma 2.8 If Mn is connected and C ⊂ Mn × Λ0 is compact, then there is a compact, connected set M ⊂ Mn

with C ⊆M × Λ0 ⊆Mn × Λ0.

The above assumptions (a1-a3) imply further properties of g for all λ ∈ Λ:

• deg0(gλ, O,En) 6= 0 for all λ ∈ Λ (the proof is that of Lemma 3.2 below),

• there exists a compact, connected M ⊂Mn with S|Λ0 ⊂M × Λ0 (by Lemma 2.8).

Let U be any open subset of O × Λ0 such that ∂U ∩ S|Λ0 = ∅ with deg0(gλ∗ ,Uλ∗ ,En) 6= 0 for some λ∗ ∈ Λ0. This
brings us into the position to consider the following diagram

(En,En − 0)× U (U ,U − S|U)
(g,id)oo i1 // (Mn × Λ0,Mn × Λ0 − S|U)

(Mn,Mn − x)× Λ0 (Mn,Mn −M)× Λ0

ix,M×idΛ0oo (Mn × Λ0,Mn × Λ0 −M × Λ0)
idoo

i2

OO
(2.2)

for all x ∈M , which requires some comments: First of all, the map

(g, id) : (U ,U − S|U)→ (En,En − 0)× U , (g, id)(x) = (g(x), x)

is well-defined because (En,En − 0)× U = (En × U , (En − 0)× U),

(g, id)(U − S|U) ⊂ (En − 0)× U , (g, id)(U) ⊂ En × U .

Given (X ;X1,X2) := (Mn × Λ0,U ,Mn × Λ0 − S|U) one observes that

• X1 ∩ X2 = U − S|U , X1 ∪ X2 = Mn × Λ0,

• U is open in Mn × Λ0, Mn × Λ0 − S|U is open in Mn × Λ0 and hence X1 ∪ X2 = X ◦1 ∪ X ◦2 .

Thus, (X ;X1,X2) is an excisive triad and therefore the inclusion (X1,X1 ∩ X2) ↪→ (X1 ∪ X2,X2) induces an isomor-
phism on cohomology groups in all dimensions (and the above inclusion coincides with the map i1, cf. App. A.3). The
Künneth Thm. A.5 implies that

Hn(Mn,Mn − x)⊗Hd(Λ0)

× ∼=
��

i∗⊗id∗ // Hn(Mn,Mn −M)⊗Hd(Λ0)

×∼=
��

Hn+d((Mn,Mn − x)× Λ0)
i∗3 // Hn+d((Mn,Mn −M)× Λ0)
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commutes. By applying functor cohomology to the diagram (2.2) and the suspension homomorphisms from Prop. 2.6
we arrive at the diagram

Hd(U)

tU (g)

��

σn

∼=
// Hn+d((En,En − 0)× U)

(g,id)∗

��
Hn+d(U ,U − S|U)

(i∗1)−1

��
Hn+d(Mn × Λ0,Mn × Λ0 − S|U)

i∗2
��

Hn+d(Mn × Λ0,Mn × Λ0 −M × Λ0)

id∗

��
Hn+d((Mn,Mn −M)× Λ0)

((ix,M×idΛ0
)∗)−1

��
Hd(Λ0) Hn+d((Mn,Mn − x)× Λ0)

(σn)−1

∼=
oo

(2.3)

for all d ∈ N0, which in turn motivates
Definition 2.9 The composition in diagram (2.3) is denoted by tU (g) : Hd(U) → Hd(Λ0) and called transfer

homomorphism of g over U .

In the remaining section, we derive those properties of the transfer homomorphism which are necessary in the proof
of our main Thm. 1.1.

Proposition 2.10 (properties of the transfer homomorphism) Given the diagram

Hd(Λ0)
1Λ0⊗id

injective
//

π∗

��

H0(Λ0)⊗Hd(Λ0)

π∗0⊗id

��
Hd(U)

tU (g)

��

H0(U)⊗Hd(Λ0)
id∗0^π∗oo

tU (g)⊗id

��
Hd(Λ0) H0(Λ0)⊗Hd(Λ0),

^
∼=

oo

(2.4)

where π∗0 : H0(Λ0)→ H0(U) is induced by π : U → Λ0, the unit element ofH0(U) is the constant map 1Λ0
: H0(Λ0)→

H0(Λ0) and id∗0 : H0(U)→ H0(U) the identity, it holds:

(a) The transfer homomorphism tU (g) makes (2.4) commutative,

(b) if tU (g)(1U ) 6= 0, then π∗ : Hd(Λ0)→ Hd(U) is injective.

P r o o f. (a): Let pr2 : Mn × Λ0 → Λ0 stand for the projection onto the second component. In the proof we use the
cup and cross products introduced in Sects. A.3, A.4, whose properties are due to Prop. A.4. Let us proceed in five steps:

(I) We will prove that the diagram

Hd(Λ0)
1Λ0
⊗id

∼=
//

π∗

��

H0(Λ0)⊗Hd(Λ0)

π∗0⊗id

��
Hd(U) H0(U)⊗Hd(Λ0)

id∗0^π∗oo
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is commutative. Actually, if ξ ∈ Hd(Λ0), then commutativity follows from

[(id∗0 ^ π∗) ◦ (π∗0 ⊗ id) ◦ (1Λ0
⊗ id)](ξ) = [(id∗0 ^ π∗) ◦ (π∗0 ⊗ id)](1Λ0

⊗ ξ)
= [id∗0 ^ π∗](π∗0(1Λ0

)⊗ ξ) = [id∗0 ^ π∗](1U ⊗ ξ) = id∗0(1U ) ^ π∗(ξ)

= 1U ^ π∗(ξ) = π∗(ξ).

(II) Now we show the commutativity of the diagram

Hd(U)

σn

��

H0(U)⊗Hd(Λ0)
id∗0^π∗oo

σn⊗id

��
Hn+d((En,En − 0)× U)

(g,id)∗

��

Hn((En,En − 0)× U)⊗Hd(Λ0)

(g,id)∗⊗id

��
Hn+d(U ,U − S|U) Hn(U ,U − S|U)⊗Hd(Λ0).

id^π∗oo

Indeed, if ξ ∈ Hd(Λ0) and η ∈ H0(U), then commutativity results from

[(g, id)∗ ◦ σn ◦ (id∗0 ^ π∗)](η ⊗ ξ) = [(g, id)∗ ◦ σn] (η ^ π∗(ξ))

= (g, id)∗(σn(η ^ π∗(ξ))) = (g, id)∗(µ0 × [η ^ π∗(ξ)])

= [∆∗(g∗ × id∗)]
(
µ0 × [η ^ π∗(ξ)]

)
= ∆∗

(
g∗(µ0)× id∗[η ^ π∗(ξ)]

)
= ∆∗

(
g∗(µ0)× [η ^ π∗(ξ)]

)
= g∗(µ0) ^ (η ^ π∗(ξ))

= (g∗(µ0) ^ η) ^ π∗(ξ) = [g∗(µ0) ^ id∗(η)] ^ π∗(ξ)

= ∆∗[g∗(µ0)× id∗(η)] ^ π∗(ξ) = ∆∗[(g × id)∗](µ0 × η) ^ π∗(ξ)

= ∆∗[(g × id)∗](σn(η)) ^ π∗(ξ) = (g, id)∗(σn(η)) ^ π∗(ξ)

= [(id ^ π∗) ◦ ((g, id)∗ ⊗ id) ◦ (σn ⊗ id)](η ⊗ ξ).

(III) It is straight forward to show that the following diagram is commutes:

Hn+d(U ,U − S|U) Hn(U ,U − S|U)⊗Hd(Λ0)
id^π∗oo

Hn+d(Mn × Λ0,Mn × Λ0 − S|U)

i∗1

OO

Hn(Mn × Λ0,Mn × Λ0 − S|U)⊗Hd(Λ0).

i∗1⊗id

OO

id^pr∗2oo

(IV) Take the diagram

Hn+d(Mn × Λ0,Mn × Λ0 − S|U)

(i∗1)−1

��

Hn(Mn × Λ0,Mn × Λ0 − S|U)⊗Hd(Λ0)

(i∗1)−1⊗id

��

id^pr∗2oo

Hn+d(Mn × Λ0,Mn × Λ0 −M × Λ0)

i∗2
��

Hn(Mn × Λ0,Mn × Λ0 −M × Λ0)⊗Hd(Λ0)
id^pr∗2oo

i∗2⊗id

��
Hn+d((Mn,Mn −M)× Λ0)

((ix,M×idΛ0
)∗)−1

��

Hn((Mn,Mn −M)× Λ0)⊗Hd(Λ0)
id^pr∗2oo

((ix,M×idΛ0
)∗)−1⊗id

��
Hn+d((Mn,Mn − x)× Λ0) Hn((Mn,Mn − x)× Λ0)⊗Hd(Λ0),

id^pr∗2oo

whose associate homomorphisms are as in (2.3). Since (id ^ pr∗2)(α ^ β) = α ^ pr∗2 β holds for any corresponding
cohomology classes α and β, the commutativity follows.
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(V) Finally, let us consider the diagram

Hn+d((Mn,Mn − x)× Λ0) Hn((Mn,Mn − x)× Λ0)⊗Hd(Λ0)
id^pr∗2oo

Hd(Λ0)

σn

OO

H0(Λ0)⊗Hd(Λ0).
^oo

σn⊗id

OO

It suffices to prove

σn(ξ ^ η) = σn(ξ) ^ pr∗2(η)

for all ξ ∈ H0(Λ0), η ∈ Hd(Λ0), which follows from Cor. 2.7 for K := {x}, Y := Λ0, B := ∅, q1 := 0, q2 := d. The
conclusion results from the above steps and the construction of the transfer map (see Def. 2.9).

(b): Let c1 := tU (g)(1U ). As for the injectivity of π∗ : Hd(Λ0)→ Hd(U), let us observe that 1Λ0
∈ H0(Λ0) = Q

is a generator,

tU ◦ π∗0 : Q→ Q, [tU ◦ π∗0 ](1Λ0
) = c1 · 1Λ0

, c1 6= 0.

Hence, the commutativity of (2.4) from (a) yields that tU (g) ◦ π∗ : Hd(Λ0) → Hd(Λ0) is a monomorphism and thus
π∗ : Hd(Λ0)→ Hd(U) is injective. This establishes Prop. 2.10.

We conclude this section with a sufficient condition for a nontrivial transfer homomorphism:
Lemma 2.11 If deg(gλ∗ ,Uλ∗ , 0) 6= 0 holds for some parameter λ∗ ∈ Λ0, then the transfer homomorphism

tU (g) : H0(U)→ H0(Λ0) has a non-zero value at 1U .

P r o o f. It suffices to show that

tU (g)(1U ) = deg0(gλ∗ ,Uλ∗ , 0) · 1Λ0
.

Thereto, consider

(En,En − 0)× U
pr // (En,En − 0)

(U ,U − S|U)

(g,id)

OO

i1

��

(Uλ∗ ,Uλ∗ − g−1
λ∗ (0) ∩ Uλ∗)

jλ∗oo

j1

��

gλ∗

OO

(Mn × Λ0,Mn × Λ0 − S|U) (Mn,Mn − g−1
λ∗ (0) ∩ Uλ∗)

jλ∗oo

(Mn,Mn −M)× Λ0

i2

OO

pr //

ix,M×idΛ0

��

(Mn,Mn −M)

j2

OO

ix,M

��
(Mn,Mn − x)× Λ0

pr // (Mn,Mn − x),

(2.5)

where ik, jk and ix,M are the corresponding inclusions, pr denotes the projection, jλ∗ is given by jλ∗(x) = (x, λ∗) and
M ⊂ Mn is compact, connected containing S|U ⊂ M . Thus, by applying the cohomology functor to (2.5) we obtain
the commutative diagram

Hn((En,En − 0)× U)

Tg

��

Hn(En,En − 0)∼=

pr∗oo

Hg

��
Hn((Mn,Mn − x)× Λ0) Hn(Mn,Mn − x)

pr∗oo

(2.6)
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with

Tg = [(ix,M × idΛ0)∗]−1 ◦ i∗2 ◦ (i∗1)−1 ◦ (g, id)∗ and Hg = (i∗x,M )−1 ◦ j∗2 ◦ (j∗1 )−1 ◦ (gλ∗)
∗.

Since µx is a generator of Hn(Mn,Mn − x) ' Q, it follows that

Hg(µ̂
0) = c0 · µx, (2.7)

where c0 ∈ Q. We will show that

c0 = deg(gλ∗ ,Uλ∗ , 0).

Indeed, one has

c0 = c0〈〈µx, µx〉〉 = 〈〈c0 · µx, µx〉〉 = 〈〈Hg(µ̂
0), µx〉〉 = 〈〈[(i∗x,M )−1j∗2 (j∗1 )−1(gλ∗)

∗](µ̂ 0), µx〉〉
= 〈〈(gλ∗)∗(µ̂ 0), [(j1)−1

∗ (j2)∗(ix,M )−1
∗ ](µx)〉〉 = 〈〈(gλ∗)∗(µ̂ 0), µg−1

λ∗ (0)∩Uλ∗ 〉〉

= 〈〈µ̂ 0, (gλ∗)∗(µg−1
λ∗ (0)∩Uλ∗ )〉〉 = 〈〈µ̂ 0,deg(gλ∗ ,Uλ∗ , 0) · µ̂0〉〉

= deg(gλ∗ ,Uλ∗ , 0) · 〈〈µ̂ 0, µ̂0〉〉 = deg(gλ∗ ,Uλ∗ , 0),

with the scalar products having properties discussed in [6, Chap. VII, pp. 187–189]

〈〈·, ·〉〉 : Hn(Mn,Mn−x)⊗Hn(Mn,Mn−x)→ Q resp. 〈〈·, ·〉〉 : Hn(En,En−0)⊗Hn(En,En−0)→ Q.

Next, by applying the suspensions homomorphisms to (2.6) we obtain

H0(U)
i∗λ∗ //

σn∼=
��

H0({λ∗})

σn∼=
��

Hn((En,En − 0)× U)

id

��

(id×iλ∗ )∗ // Hn((En,En − 0)× {λ∗})

(pr∗)−1∼=
��

Hn((En,En − 0)× U)

Tg

��

Hn(En,En − 0)
pr∗oo

Hg

��
Hn((Mn,Mn − x)× Λ0)

id

��

Hn(Mn,Mn − x)
pr∗oo

pr∗

��
Hn((Mn,Mn − x)× Λ0)

(σn)−1∼=
��

(id×iλ∗ )∗// Hn((Mn,Mn − x)× {λ∗})

(σn)−1∼=
��

H0(Λ0) ∼=

i∗λ∗ // H0({λ∗})

and arrive at (
i∗λ∗ ◦ (σn)−1 ◦ Tg ◦ σn

)
(1U ) =

(
(σn)−1 ◦ pr∗ ◦Hg ◦ (pr∗)−1 ◦ σn

)
(i∗λ∗(1U )).

Yet, in view of (2.3), one obtains

tU|Λ1
(g)(1U ) =

(
i∗λ∗ ◦ (σn)−1 ◦ Tg ◦ σn

)
(1U ).

On the other hand, (2.1) and (2.7) imply that

((σn)−1 ◦ pr∗ ◦Hg ◦ (pr∗)−1 ◦ σn)(1λ∗) = DEG(1λ∗) = deg(gλ∗ ,Uλ∗ , 0) · 1λ∗

Furthermore, basic properties of the unit cohomology classes (collected in App. A.3) imply both i∗λ∗(1U ) = 1λ∗ and
i∗λ∗(1Λ0

) = 1λ∗ . Finally, taking into account the above considerations, we conclude

tU (g)(1U ) = deg(gλ∗ ,Uλ∗ , 0) · 1Λ0 .

This completes the proof.
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3 Proof of Thm. 1.1

Before proving Thm. 1.1 we illustrate its assumptions by means of the elementary

λλ

xx

0 0

00

−π
2

π
2

SS

0

0
λ

x1

x2

Fig. 4 Global branches not covering the parameter space Λ = R from Ex. 3.1(1) (left), (2) (center) and (3) (right)

Example 3.1 It is clear that Thm. 1.1 fails on a disconnected parameter space. Thus, we suppose Λ = R in the
following, but throughout conclude that Λ is not covered by solutions:

(1) For X = Y = R, G(x, λ) := arctanx − λ is Fredholm of index 0 for all λ, but we obtain an unbounded
G−1([−π2 ,

π
2 ]). Here, the properness assumption (A2) fails to hold (see Fig. 4 (left)).

(2) Let X = R2, Y = R and consider G(x, λ) := x2
1 − λ. Then the Fredholm index of DGλ(x) is equal to 1

for all x ∈ R2, i.e. (A3) is violated (cf. Fig. 4 (center)). For an example with the infinite-dimensional spaces
X = Y = c0 consisting of real sequences (φk)k∈N satisfying lim

k→∞
φk = 0 (equipped with the sup-norm), consider

the mapping G : c0 ×Λ→ c0, G(φ, λ) := (φ2
1 − λ, 0, φ2

2 − λ
2 , 0, φ

2
3 − λ

3 , 0, . . .), which is not Fredholm, due to the
infinite-dimensional kernels of DGλ(x). Again, (A3) fails.

(3) If X = Y = R, then G(x, λ) := x2 − λ is Fredholm of index 0, but deg(Gλ, O, 0) = 0 vanishes for all λ and
bounded, open O ⊆ R. Hence, (A4) is not satisfied (see Fig. 4 (right)).

The proof of Thm. 1.1 needs several tools. We first abbreviate S := G−1(0) ∩ (O × Λ) for the set of all solutions
to (Oλ) in O × Λ. The Benevieri-Furi degree of App. B.2 is denoted by deg(Gλ, O, 0).

Lemma 3.2 deg(Gλ, O, 0) 6= 0 for all λ ∈ Λ.

Whence, property (bf1) from App. B.2 implies that (Oλ) has a solution for every λ ∈ Λ. It remains to show that all
these solutions can be chosen from a continuum.

P r o o f. Fix λ1 ∈ Λ. Since Λ is path-connected (connected ANRs are locally path-connected [18], thus as connected
metric spaces, they are path-connected), it follows that there exists a continuous function σ : [0, 1] → Λ such that
σ(0) = λ∗ and σ(1) = λ1. Then the continuous mapping

H : O × [0, 1]→ Y, H(x, t) := G(x, σ(t)) for all x ∈ O, t ∈ [0, 1]

is an index 0 Fredholm homotopy. Since H−1(0) = G−1(0) ∩ (O × σ([0, 1])) is compact, we infer

0 6= deg(Gλ∗ , O, 0) = deg(H0, O, 0) = deg(H1, O, 0) = deg(Gλ1 , O, 0)

from the homotopy invariance property (bf2).

Lemma 3.3 The solution set S has a component C so that for every compact, connected subset Λ0 ⊂ Λ containing
λ∗, every open neighborhood U of C|Λ0 in O × Λ0 satisfying S|Λ0 ∩ ∂U = ∅ contains a neighborhood V of C|Λ0 in U
with S|Λ0 ∩ ∂V = ∅ and deg(Gλ∗ ,Vλ∗ , 0) 6= 0.

P r o o f. We argue by contradiction. That is, for any component C of S there exists a compact and connected subset
Λ0 ⊂ Λ with λ∗ ∈ Λ0 and a neighborhood UC of C|Λ0 in O×Λ0 with S|Λ0 ∩ ∂UC = ∅ and such that any neighborhood
V of C|Λ0 in O × Λ0 admits

V ⊂ UC and S0 ∩ ∂V = ∅ =⇒ deg(Gλ∗ ,Vλ∗ , 0) = 0. (3.1)
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The compactness of G−1
λ∗ (0) ∩O implies that there exist finitely many components C1, . . . , Cr of S such that the family

of sets Ui := {x ∈ O | (x, λ∗) ∈ UCi}, i = 1, . . . , r, is covering G−1
λ∗ (0) ∩ O. If Ciλ∗ := {x ∈ O | (x, λ∗) ∈ Ci}, then

Ciλ∗ ⊂ Ui, i = 1, . . . , r. Let us observe that (3.1) implies

deg(Gλ∗ , Ui, 0) = 0 for all i = 1, . . . , r.

Now we show deg(Gλ∗ , U1 ∪ U2, 0) = 0 by distinguishing two cases:
Case 1: UC1 ∩ UC2 = ∅: Then U1 ∩ U2 = ∅ and hence

deg(Gλ∗ , U1 ∪ U2, 0) = deg(Gλ∗ , U1, 0) + deg(Gλ∗ , U2, 0) = 0 + 0 = 0.

Case 2: UC1 ∩ UC2 6= ∅. Consider the following decomposition:

UC1 ∪ UC2 = (UC1 − UC2) ∪ (UC1 ∩ UC2) ∪ (UC2 − UC1).

Since ∂(UC1 − UC2) ∪ ∂(UC2 − UC1) ∪ ∂(UC1 ∩ UC2) ⊆ ∂UC1 ∪ ∂UC2 and S ∩ (∂UC1 ∪ ∂UC2) = ∅, it follows that
C1 ⊂ UC1 − UC2 or C1 ⊂ UC1 ∩ UC2 . Observe that if C1 ⊂ UC1 − UC2 , then C1

λ∗ ⊂ U1 − U2. Thus the set U1 − U2

is a neighborhood of C1
λ∗ and consequently, by (3.1), we deduce that deg(Gλ∗ , U1 − U2, 0) = 0. Hence the additivity

property (bf3) of the degree implies

0 = deg(Gλ∗ , U1, 0)
(bf3)
= deg(Gλ∗ , U1 − U2, 0) + deg(Gλ∗ , U1 ∩ U2, 0)

and therefore deg(Gλ∗ , U1 ∩ U2, 0) = 0. If C1 ⊂ UC1 ∩ UC2 , then reasoning similarly as above we first conclude
deg(Gλ∗ , U1 ∩ U2, 0) = 0 and then that deg(Gλ∗ , U1 − U2, 0) = 0. What is more,

0 = deg(Gλ∗ , U2, 0)
(bf3)
= deg(Gλ∗ , U2 − U1, 0) + deg(Gλ∗ , U1 ∩ U2, 0) = deg(Gλ∗ , U2 − U1, 0) + 0,

which leads to deg(Gλ∗ , U2 − U1, 0) = 0. Consequently, we obtain

deg(Gλ∗ , U1 ∪ U2, 0)
(bf3)
= deg(Gλ∗ , U1 − U2, 0) + deg(Gλ∗ , U1 ∩ U2, 0) + deg(Gλ∗ , U2 − U1, 0) = 0.

Note that the above considerations actually imply

deg(Gλ∗ , Ui ∪ Uj , 0) = 0, i 6= j, 1 6 i, j 6 r,

which is more general. Now assume by induction that for any sequence 1 6 i1 < i2 < . . . < is 6 r one has the relation

deg(Gλ∗ ,

s⋃
k=1

Uik , 0) = 0

and we will prove

deg(Gλ∗ ,

s+1⋃
k=1

Uik , 0) = 0.

Let
⋃s+1
k=1 UCik = UCi1 ∪ UC̃ , where UC̃ :=

⋃s+1
k=2 UCik . From the induction step we know that

deg(Gλ∗ ,

s+1⋃
k=2

Uik , 0) = 0

holds and two cases arise: Either UCi1 ∩ UC̃ = ∅ or UCi1 ∩ UC̃ 6= ∅. Reasoning as in the case of the sets UC1 and UC2
we deduce that

deg(Gλ∗ ,

s+1⋃
k=1

Uik , 0) = 0.

Hence, taking s := r and the excision property (bf3) of the topological degree yields

deg(Gλ∗ , O, 0) = deg(Gλ∗ ,

r⋃
i=1

Ui, 0) = 0,

which implies a contradiction, and Lemma 3.3 is shown.
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Lemma 3.4 (Whyburn’s lemma, [4]) Let P,Q be disjoint closed subsets of a compact metric space M . If there is
no closed, connected subset of M that intersects both P and Q, then there exist disjoint closed subsets KP and KQ of
M such that P ⊂ KP , Q ⊂ KQ and M = KP ∪KQ.

Lemma 3.5 If C ⊂ O × Λ is as in Lemma 3.3, then for any compact, connected set Λ0 ⊂ Λ containing λ∗, there
exists a (descending) family {Vγ}γ∈Γ of neighborhoods (inO×Λ0) of C|Λ0 with S|Λ0∩∂Vγ = ∅, deg(Gλ∗ ,Vγλ∗ , 0) 6= 0
and

⋂
γ∈Γ Vγ = C|Λ0.

P r o o f. Fix a compact and connected subset Λ0 ⊂ Λ with λ∗ ∈ Λ0. We proceed in two steps and mimic the notation
of Lemma 3.4.

(I) (special case). We assume S = C. Take any neighborhood U of C|Λ0 in O×Λ0. It is clear that ∂U ∩S|Λ0 = ∅.
Then from Lemma 3.3 it follows that there exists a neighborhood V of C|Λ0 in O × Λ0 contained in U such that

deg(Gλ∗ ,Vλ∗ , 0) 6= 0 and ∂V ∩ S|Λ0 = ∅.

For any ε > 0 we set Vε := V ∩ Oε(C|Λ0), where Oε(C|Λ0) is the ε-neighborhood of C|Λ0 in O × Λ0. Since
S|Λ0 = C|Λ0 and ∂V ∩ S|Λ0 = ∅, we deduce that ∂Vε ∩ S|Λ0 = ∅ (we take the boundary ∂Vε in O × Λ0). Moreover,
the excision property (bf3) of the degree implies

0 6= deg(Gλ∗ ,Vλ∗ , 0) = deg(Gλ∗ ,Vελ∗ , 0).

Then
⋂
ε>0 Vε = C|Λ0 establishes the special case.

(II) (general case). Let us assume that S consists at least of two connected components. Let S = (
⋃
α∈Γ

Cα) ∪ C,

where Cα are the connected components of S and C is as above. Choose a finite subset Γα ⊂ Γ and define

M := S|Λ0, PΓα :=
⋃
β∈Γα

Cβ0 , QΓα := C|Λ0.

Any Cβ cannot be connected with C in the space S, i.e., there is no closed, connected subset of S intersecting both Cβ and
C. This follows from the fact that Cβ and C are connected components of M . Thus, we can conclude that no connected
subset of M intersects both P and Q. Whyburn’s Lemma 3.4 shows that there exist two disjoint closed subsets KPΓα

and KQΓα
of M fulfilling

PΓα ⊂ KPΓα
, QΓα ⊂ KQΓα

, M = KPΓα
∪KQΓα

.

Observe that KPΓα
and KQΓα

are compact. Hence, there exists εΓα > 0 with

Oε
(
KPΓα

)
∩Oε

(
KQΓα

)
= ∅ for all ε 6 εΓα (3.2)

and ε-neighborhoods taken w.r.t. O × Λ0. Hence, Lemma 3.3 implies for any UΓα,ε := Oε(KQΓα
), 0 < ε 6 εΓα there

exists a neighborhood VΓα,ε of C|Λ0 contained in UΓα,ε satisfying

deg(Gλ∗ ,VΓα,ε
λ∗ , 0) 6= 0, ∂VΓα,ε ∩ S|Λ0 = ∅

(notice that ∂UΓα,ε ∩ S|Λ0 = ∅ because of S|Λ0 = KPΓα
∪KQΓα

and (3.2)), whence

C|Λ0 ⊂
⋂
ε6εΓα

VΓα,ε ⊂
⋂
ε6εΓα

UΓα,ε = KQΓα
,

⋂
Γα⊂Γ

KQΓα
= C|Λ0 (since

⋃
Γα⊂Γ

KPΓα
= S|Λ0 − C|Λ0).

A family {Vγ}γ∈Γ satisfies the required property with

Γ = {γ = (Γα, ε) | Iα ⊂ Γ is finite, ε 6 εΓα}.

This completes the proof.

Note that Lemma 3.2, 3.3, 3.5 extend to parameterized maps between an oriented n-manifolds. The only difference
in the proofs is that one employs topological degree for maps between oriented n-manifolds instead of the topological
degree for Fredholm maps in Banach spaces.
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Lemma 3.6 The solution set S has a component C such that for each compact, connected ANR Λ0 ⊂ Λ, there
exists an injective homomorphism π∗ : Ȟ∗(Λ0)→ Ȟ∗(C|Λ0) induced by the restriction π : C|Λ0 → Λ0.

P r o o f. Fix a compact, connected ANR Λ0 6= ∅, λ∗ ∈ Λ0 and let C be a component of S as in Lemma 3.3. Since
G|O×Λ0

is proper, we infer that C|Λ0 is compact. Furthermore, Lemma 3.5 implies that there exists a family {Vγ}γ∈Γ

of neighborhoods of C|Λ0 in O × Λ0 such that

S|Λ0 ∩ ∂Vγ = ∅, deg(Gλ∗ ,Vγλ∗ , 0) 6= 0,
⋂
γ∈Γ

Vγ = C|Λ0.

Then the tautness property of the Alexander-Spanier cohomology (see (A.1)) implies that

Ȟ∗(C|Λ0) = lim
−→
{Hq(Vγ)}. (3.3)

Moreover, consider the family of homomorphisms {π∗Vγ : H∗(Λ0) → H∗(Vγ) | γ ∈ Γ}, which forms a direct system
of injective homomorphisms by Prop. 2.10 and Lemma 2.11. Hence, we obtain the direct limit

lim
−→
{π∗Vγ} : Ȟ∗(Λ0)→ Ȟ∗(C|Λ0)

that by Rem. A.3 (see also (3.3)) coincides with the homomorphism π∗ : Ȟ∗(Λ0)→ Ȟ∗(C|Λ0). Finally, since the direct
limits preserve monomorphisms (see Cor. A.2), we obtain that lim

−→
{π∗Vγ} is a monomorphism, which in turn implies that

π∗ is also injective. This completes the proof.

Proof of Thm. 1.1. For C ⊆ S as in Lemma 3.3, we prove Cλ 6= ∅ for all λ ∈ Λ. It suffices to show that a
homomorphism (induced by π) π∗0 : Q = Ȟ0(Λ0) → Ȟ0(C|Λ0) is nontrivial (notice that in the proof we take Λ0 ⊂ Λ
to be Λ0 := {λ}). For this purpose we consider the restriction Gλ : O → Y of G : O × Λ→ Y does not depend on the
parameter λ ∈ Λ. Since Gλ is proper, G−1

λ (0) is compact and thus there exists a finite-dimensional subspace Y0 ⊂ Y

and an open subset Õ ⊆ O of G−1
λ (0) in which Gλ is transversal to Y0. Consequently, Mλ := G−1

λ (Y0) ∩ Õ is a
differentiable oriented manifold of dimension dimY0. Using G−1

λ (0) ⊂ Mλ we deduce C|Λ0 = C ∩ π−1(λ) ⊂ Mλ.
Hence, it suffices to consider the map Gλ|Mλ

: Mλ → Y0. Using Lemma 3.5 it follows that there exists a family
{Vγ}γ∈Γ of neighborhoods of C|Λ0 (in O × Λ0) with

S|Λ0 ∩ ∂Vγ = ∅, deg (Gλ,Vγλ , 0) 6= 0,
⋂
γ∈Γ

Vγ = C|Λ0.

One can assume w.l.o.g. that Vγλ ⊂ Õ for all γ ∈ Γ (because Vγλ is a descending family). Whence, in view of (B.2)
one has 0 6= deg(Gλ,Vγλ , 0) = degB(Gλ|Mλ,Vγλ ∩Mλ, 0), where the right-hand side denotes the C1-Brouwer degree
for manifolds (see [27, Chap. 9]). On the other hand, the uniqueness of the topological degree for maps defined on
C1-manifolds (see Rem. B.1) implies degB(Gλ|Mλ

,Vγλ ∩Mλ, 0) = deg0(Gλ|Mλ
,Vγλ ∩Mλ, Y0), where the right-hand

side denotes the homological degree. Therefore, Lemma 2.11 for manifolds implies that the homomorphism

(π|Vγλ∩Mλ
)∗0 : H0(Λ0)→ H0(Vγλ ∩Mλ)

is injective. Finally, taking into account
⋂
γ∈Γ(Vγλ ∩ Mλ) = C|Λ0 and Lemma 3.6 we deduce that the mapping

π∗0 : Ȟ0(Λ0)→ Ȟ0(C|Λ0) is injective and hence nontrivial. Thus, Ȟ0(C|Λ0) 6= 0, which in turn implies that C|Λ0 6= ∅,
concluding the present proof.

Remark 3.7 Notice that Thm. 1.1 admits also a relative version as in [1, Thm. 2.1]. But the relative version in the
case of all Fredholm maps requires some new techniques from the transfer homomorphism theory and is therefore left
for future work.

Appendices

A Topological tools

A.1 Direct systems of abelian groups and their limits

A group is understood as additive abelian group throughout. Let (D,6) be a directed set and {Gα}α∈D a family of
groups. Given homomorphisms gα,β : Gα → Gβ with α 6 β in D such that gα,α = id and gα,γ = gβ,γ ◦ gα,β for
α 6 β 6 γ, the family {Gα} = {Gα, gα,β | α, β ∈ D} is called direct system of groups over D.
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16 Christian Pötzsche and Robert Skiba: A Continuation Principle for Fredholm maps I

The direct limit group G∞ = lim
−→
{Gα, gα,β} is the quotient group of the direct sum of groups G∞ = ⊕α∈DGα/∼

modulo the equivalence relation ∼ defined as follows: For gα ∈ Gα, gβ ∈ Gβ set

gα ∼ gβ :⇐⇒ gα,γ(gα) = gβ,γ(gβ) for some γ ∈ D with α 6 γ and β 6 γ.

In other words, gα,β(g) ∼ g for all g ∈ Gα and for all β ∈ D with α 6 β.

The inclusions Gα ↪→
⊕

α∈D Gα induce homomorphisms iα : Gα → G∞ with iβ ◦ gα,β = iα, α 6 β. We next
explain how to use the algebraic notion of the limit of homomorphisms:

Proposition A.1 ([3, pp. 534–536]) Let {G′α}, {Gα} and {G′′α} be direct system over the same directed set D. If

for each α ∈ D there is an exact sequence G′α
f ′α−→ Gα

fα−→ G′′α such that

G′α

g′α,β
��

f ′α // Gα

gα,β

��

fα // G′′α

g′′α,β
��

G′β
f ′β // Gβ

fβ // G′′β

commutes, then there exist two unique homomorphisms

lim
−→
{fα} : (G∞, {iα})→ (G′′∞, {i′′α}) and lim

−→
{f ′α} : (G′∞, {i′α})→ (G∞, {iα})

such that i′′α ◦ fα = (lim
−→
{fα}) ◦ iα, iα ◦ fα = (lim

−→
{f ′α}) ◦ i′α for all α ∈ D and the induced sequence

lim
−→
{G′α}

lim
−→
{f ′α}
// lim
−→
{Gα}

lim
−→
{fα}
// lim
−→
{G′′α} is exact.

Corollary A.2 If fα is a monomorphism (or epimorphism) for every α ∈ D, then lim
−→
{fα} is also a monomorphism

(resp. epimorphism).

A.2 Tautness of the cohomology

Let us assume that A ⊆ X is a closed subset of a metric space X . By a neighborhood of A in X we shall understand
an open subset U of X containing A in its interior. In this way we obtain the family {Uα} of neighborhoods of A in X .
For inclusions of the form iαβ : Uα ↪→ Uβ (if Uα ⊂ Uβ) and jα : A ↪→ Uα we consider the following homomorphisms
i∗αβ : Ȟq(Uβ)→ Ȟq(Uα) and j∗α : Ȟq(Uα)→ Ȟq(A), respectively. Then {Ȟq(Uα), i∗αβ} is a direct system of abelian
groups induced by the system {Uα, iαβ}. We say A is a taut subspace of X , if Ȟq(A) is the direct limit of the direct
system {Ȟq(Uα), i∗αβ} for every q ∈ N0 (w.r.t. the homomorphisms jα). This fact is denoted by the following symbol:

lim
−→
{Ȟq(Uα)} = Ȟq(A) for all q ∈ N0. (A.1)

It is known that X0 ⊂ X is taut in X w.r.t. the Alexander-Spanier cohomology (see [16, p. 238]), provided X0 is a
compact subset of X or X0 is a retract of some open subset of X . Since Alexander-Spanier cohomology and singular
cohomology are functorially isomorphic ([16, p. 262] and [26, Chap. 6]) on the category of ANRs (see [8, Chap. IV]), it
follows that tautness can be expressed using singular cohomology.

Remark A.3 Let q ∈ N0. If X0 ⊂ X , X ′0 ⊂ X ′ are compact subsets of ANRs X,Y , then

lim
−→
{Hq(Uα)} = Ȟq(X0)

and if f : (X,X0)→ (X ′, X ′0), then

lim
−→
{f∗ : Hq(U ′α)→ Hq(Uα)} = f∗ : Ȟq(X ′0)→ Ȟq(X0)

holds.
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A.3 Cup products

We continue with results on the cohomology functor needed throughout the text. First, we recall the notion of the cup
product for singular cohomology H∗ and for Alexander-Spanier cohomology Ȟ∗ (based on all cochains), respectively.

For subspaces X1, X2 ⊆ X the triple (X;X1, X2) is called a triad. It is denoted as excisive (for a given cohomol-
ogy theory) if both the inclusions (X1, X1 ∩ X2) ↪→ (X1 ∪ X2, X2) and (X2, X1 ∩ X2) ↪→ (X1 ∪ X2, X1) induce
isomorphisms of cohomology groups in all dimensions. A triad (X;X1, X2) is excisive, if

X1 ∪X2 = X◦1 ∪X◦2 , (A.2)

with the interior taken w.r.t.X1∪X2. This holds (see [16]) whenX1 andX2 are open inX , or whenX1 = ∅ orX2 = ∅.
If a triad (X;X1, X2) is excisive, then there is an internal product

^ : Hp(X,X1)⊗Hq(X,X2)→ Hp+q(X,X1 ∪X2). (A.3)

The construction of the cup product (A.3) for Alexander-Spanier cohomology under the assumption that (X;X1, X2)
satisfies (A.2) can be found in [16]. A homomorphism ε : C0(X) → Z (resp. ε : C0(X) → Z) sending singular 0-
simplices σ (resp. any point x ∈ X) to 1 ∈ Z may be considered as 0-cochain in singular cohomology theory (resp. in
Alexander-Spanier cohomology). We write 1X ∈ H0(X) (resp. 1X ∈ Ȟ0(X)) for its cohomology class and call it unit
cohomology class.

Proposition A.4 (properties of the cup product, [12, 16]) The cup product (A.3) satisfies:

(a) ^ is natural, i.e., if f : X → Y , then f∗(α ^ β) = f∗(α) ^ f∗(β),

(b) for any α ∈ H∗(X,A), α ^ 1X = α = 1X ^ α,

(c) α ^ (β ^ γ) = (α ^ β) ^ γ.

It is shown in [6, p. 288] that the cup product can also be defined for triads (X;X1, X2) whenever X1, X1 ⊂ X
are locally compact subspaces of some Euclidean neighborhood retract (see [7, p. 81]). In particular, if X,X1, X2 are
closed subspaces, [6, p. 288] provides a construction for the Čech cohomology theory which is in turn true for the
Alexander-Spanier cohomology theory because both cohomology theories are functorially isomorphic on the category
of paracompact spaces (see [26]).

A.4 Cross product and Künneth theorem for singular cohomology

Given subsets A ⊆ X , B ⊆ Y such that the triad (X × Y ;A× Y,X ×B) is excisive, define

× : Hp(X,A)⊗Hq(Y,B)→ Hp+q((X,A)× (Y,B)), ξ1 × ξ2 := pr∗1(ξ1) ^ pr∗2(ξ2)

as external product, where pr1 (resp. pr2) is the projection of X × Y onto X (resp. Y ).

The cohomological cross product admits the following properties for p, pi ∈ N0:

• If pr1 : (X,A)× Y → (X,A), pr2 : X × (Y,B)→ (Y,B) are corresponding projections, then

u× 1Y = pr∗1(u) for u ∈ Hp(X,A) and 1X × v = pr∗2(v) for v ∈ Hp(Y,B), (A.4)

• (ξ1 × ξ2)× ξ3 = ξ1 × (ξ2 × ξ3) for ξi ∈ Hpi(Xi, Ai) with open Ai ⊂ Xi, i = 1, 2, 3,

• if ∆: (X,A1∪A2)→ (X,A1)×(X,A2) is the diagonal map, then ∆∗(ξ×η) = ξ ^ η holds for ξ ∈ Hp1(X,A1)
and η ∈ Hp2(X,A2) with open Ai ⊂ X .

Let us state the following result for singular cohomology:
Theorem A.5 (Künneth theorem, [17, p. 197]) Let A ⊂ X , B ⊂ Y and (X × Y ;A × Y,X × B) be an excisive

triad. If Hp(X,A) is finitely generated for all p ∈ N0, then the external cross product

× :
⊕
p+q=n

Hp(X,A)⊗Hq(Y,B)→ Hn((X,A)× (Y,B))

defines an isomorphism.
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Furthermore, the following diagram

Hp(X,A)⊗Hq(Y,B)

f∗⊗g∗

��

× // Hn((X,A)× (Y,B))

(f×g)∗

��
Hp(X ′, A′)⊗Hq(Y ′, B′)

× // Hn((X ′, A′)× (Y ′, B′))

is commutative, where f : (X,A)→ (X ′, A′) and g : (Y,B)→ (Y ′, B′).

B Topological degrees

We next discuss two topological degrees. The first one applies to mappings between differentiable n-manifolds Mn

and coincides with the classical Brouwer degree in case Mn = Rn. Some properties playing a crucial role in the proof
of Thm. 1.1 are shown. The second topological tool under the name of Benevieri-Furi degree is advantageous when
dealing with differential equations. We concentrate on the main properties and provide facts helping us to calculate the
Benevieri-Furi degree of some operators appearing in applications.

B.1 Homological degree between oriented manifolds

We are using singular homology. Let f : U → En, where U is an open subset of an oriented n-manifold (Mn, µ), K is a
compact and connected subset of an n-dimensional oriented normed space (En, µ̂), and f−1(K) is compact. Note that
f∗ : Hn(U,U − f−1(K))→ Hn(En,En −K) takes the fundamental class µf−1(K) into the multiple of µ̂K .

Following [6, Chap. VIII] we introduce the homological degree degK(f, U,En) of f overK as an integer satisfying
the equality:

f∗(µf−1(K)) = degK(f, U,En)µ̂K , (B.1)

where f∗ : Hn(U,U − f−1(K))→ Hn(En,En −K), and abbreviate deg0 := deg{0}.

The properties of the above defined degree important for us, read as follows:

(h0) (normalization) If f is a homeomorphism preserving (reversing) the orientations of Mn and En, then it holds

deg0(f,Mn,En) = 1 (resp. deg0(f,Mn,En) = −1),

(h1) (existence) if degK(f, U,En) 6= 0, then f−1(K) 6= ∅,

(h2) (excision) degK(f, U,En) = degK(f, Ũ ,En), if Ũ ⊂ U is open and f−1(K) ⊂ Ũ ,

(h3) (homotopy invariance) if h : U × [0, 1]→ En is a deformation and K ⊂ En is a compact, connected set such that
h−1(K) is compact, then

degK(h0, U,En) = degK(h1, U,En),

(h4) (additivity) if U is a finite union of open sets Ui, i = 1, . . . , r, such that K ′i := f−1(K)∩Ui are mutually disjoint,
then

degK(f, U,En) =

r∑
i=1

degK(f |Ui, Ui,En),

(h5) if K ′ ⊂ f−1(K) is compact, then f∗ : Hn(U,U −K ′)→ Hn(En,En −K) takes the fundamental class µK′ into
degK(f, U,En)µ̂K .

Remark B.1 Let K = {0}.
(1) If Mn = En = Rn and f : U → Rn, then degK(f, U,Rn) reduces to the classical homological topological

degree deg(f, U, 0) (cf. [6, Chap. VIII]).

(2) If (Mn, µ) and (En, µ̂) are of class C1 and f : (U, µ) → (En, µ̂) is of class C1, then [27, Thm. 9.56] implies
that the homological degree for oriented n-manifolds defined by Dold coincides with the classical Brouwer degree (for
manifolds of class C1).
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B.2 The Benevieri-Furi degree

Let F : O → Y denote an index 0 Fredholm map. For open O ⊆ X the Benevieri-Furi degree deg(F,O, y) ∈ Z
(resp. deg(F,O, y) ∈ Z2 in the nonoriented case) is constructed as follows:

Let Y0 ⊂ Y be a finite-dimensional submanifold transversal to F on an open neighborhood O0 ⊂ O of F−1(0), F
oriented on O0. The intersection X0 := O0 ∩ F−1(Y0) is either empty or a submanifold of the same dimension as Y0

and of class C1 (see [27, Thm. 8.55]). If dimY0 > 0, then F0 := F |X0
∈ C1(X0, Y0) satisfies the reduction property

deg(F,O, 0) = degB(F0, X0, 0), (B.2)

where degB is the C1-Brouwer degree. For X0 = ∅ the right-hand side is set to be zero. In the oriented situation,
the orientation of F0 is defined as in (1.1). The sign of an oriented Fredholm operator (T, σ) is sgnT = 1 if 0 ∈ σ,
sgnT = −1 otherwise and sgnT = 0 if T 6∈ GL(X,Y ).

Such a degree is uniquely determined and has the following properties (see [2, 27]):

(bf0) (regular normalization) deg(F,O, 0) =
∑
x∈F−1(0) sgnDF (x) is a finite sum, if 0 is a regular value of F ,

(bf1) (existence) if deg(F,O, 0) 6= 0, then 0 ∈ F (O),

(bf2) (homotopy invariance) if H : O × [0, 1] → Y is a generalized (oriented) Fredholm homotopy of index 0 with
H−1(0) being compact, then

deg(H0, O, 0) = deg(H1, O, 0),

(bf3) (excision-additivity) if Oi ⊂ O, i ∈ I , is a family of pairwise disjoint open subsets with F−1(0) ⊂
⋃
i∈I Oi such

that Oi ∩ F−1(0) is compact for all i ∈ I , then

deg(F,O, 0) =
∑
i∈I

deg(F,Oi, 0),

where in the right-hand side has a finite number of nonzero summands,

(bf4) (compatibility with the Brouwer degree) if dimX = dimY <∞, then the Benevieri-Furi degree coincides with
the C1-Brouwer degree.
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