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Global Continuation
of Homoclinic Solutions
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Abstract. When extending bifurcation theory of dynamical systems to nonauto-
nomous problems, it is a central observation that hyperbolic equilibria persist as
bounded entire solutions under small temporally varying perturbations. In this pa-
per, we abandon the smallness assumption and aim to investigate the global structure
of the entity of all such bounded entire solutions in the situation of nonautonomous
difference equations. Our tools are global implicit function theorems based on an
ambient degree theory for Fredholm operators due to Fitzpatrick, Pejsachowicz and
Rabier. For this we yet have to restrict to so-called homoclinic solutions, whose limit
is 0 in both time directions.
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1. Introduction

The classical local theory of (discrete) dynamical systems deals with the behav-
ior of finite-dimensional autonomous difference equations

xt+1 = g(xt, α) (1.1)

near given reference solutions, which are typically fixed or periodic points. An
elementary application of the implicit function theorem implies that such pe-
riodic solutions persist under variation of the parameter α in (1.1), provided
they are hyperbolic and α is independent of time. Hyperbolicity is a generic
property and means that there are no Floquet multipliers of the linearization
on the unit circle of the complex plane.
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In real-world models, yet, the parameter α describes the influence of the
environment on a system (1.1) and thus it is more realistic and even natural to
allow fluctuations of α in t. This leads to nonautonomous equations

xt+1 = g(xt, αt) (1.2)

and requires an extension of the established textbook theory (cf. [8]), since
aperiodic time-variant problems typically do not possess equilibria or periodic
solutions. Already on this basic level one is confronted with the question to find
adequate substitutes for equilibria under temporal forcing.

An answer can be given when (1.1) possesses a hyperbolic fixed point φ∗

at a reference parameter value α∗. Here, φ∗ persists as a continuous branch
α 7→ φ(α) of bounded entire solution to (1.2) with φ(α∗) = φ∗ (typically not
fixed points), as long as the parameter sequence αt, t ∈ Z, remains uniformly
close to α∗ (cf. [16]). The proof of this persistence result is again based on the
implicit function theorem, but now applied to an operator equation between
suitable sequence spaces. The condition yielding invertibility of the derivative
is precisely an exponential dichotomy, which therefore represents the correct
nonautonomous hyperbolicity concept. For general time-dependencies, however,
an exponential dichotomy is not generic anymore.

While this approach yields information in the vicinity of a parameter α∗,
it is nonetheless interesting to achieve insight on the global structure of the
solution branch φ(α). For this two approaches are conceivable:

(1) One works with analytical results guaranteeing (unique) existence over
the whole parameter range (cf., for instance, [20]), which are in the spirit
of the Hadamard–Levy theorem on global invertibility.

(2) One applies a global implicit function theorem obtained from topological
tools like a mapping degree.

In comparison, approach (2) works under significantly weaker assumptions and
for this reason interesting situations, if a feasible topological degree theory is
available. Inspired by the works of [5, 10] or [13, 14] we employ a Fredholm
degree developed in [6, 12]. However, since it relies on mappings having a con-
stant Fredholm index 0, this theory is unfortunately inappropriate for general
bounded perturbations (αt)t∈Z. The resulting global implicit function Theo-
rems A.1 and A.2 only apply to nonlinear Fredholm mappings of index 0. For
bounded perturbations this can be guaranteed only locally. Dealing with so-
lutions decaying to 0, however, allows the argument that the Fredholm index
is invariant under compact perturbations. In conclusion, we rather have to
restrict to parameter sequences which asymptotically vanish in both time di-
rections. Hence, we look for so-called homoclinic solutions and their global
structure under variation of α.
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1.1. Results and structure. We are interested in the global structure of
branches C of homoclinic solutions emanating from a hyperbolic fixed point, or
more general, from a hyperbolic bounded entire solution φ∗, when varying the
parameter λ not only near some reference value λ∗, but over its whole range.
We illustrate this using nonautonomous finite-dimensional difference equations

xt+1 = ft(xt, λ) (∆λ)

and roughly establish the following:

• For right-hand sides of (∆λ) defined on a proper subset of Rd × R the
branches run from boundary to boundary, unless C \ {(φ∗, λ∗)} is con-
nected (alternatives (a) and (b) of Theorem 4.4, cf. Figure 1).

• If the right-hand sides are globally defined on Rd×R, then C \ {(φ∗, λ∗)}
is either connected, or consists of two disjoint and unbounded branches
(alternatives (c) and (d) of Theorem 4.4, cf. Figure 2).

This classification of solution branches in Theorem 4.4 is based on abstract
results taken from [5, 7]. Up to our knowledge we present their first applica-
tion to discrete time dynamical systems. Thereto, (∆λ) is understood as a
parameter-dependent equation in the space of sequences with two-sided limit 0.
Its analysis is based on preparations given in Sections 2 and 3. Yet concepts
and notions from dynamical systems are ubiquitous: In Section 4 we illustrate
that the required Fredholm properties are closely connected to exponential di-
chotomies over the entire time axis Z, as well as both half axes. Furthermore, a
sufficient condition for properness is formulated in terms of limit sets for the Be-
butov flow. Our result significantly extends the properness criterion from [13].
These assumptions are particularly easy to verify in case of asymptotically peri-
odic equations (see Section 5.3). We close with various examples illustrating the
main result. For the convenience of the reader, we conclude the paper with three
appendices on our abstract global continuation results, the Bebutov flow/hull
construction and finally sufficient criteria for unique bounded solutions.

Concerning related work, the global behavior of bifurcating solution bran-
ches in `2 was studied in [13]. Moreover, global continuation of solutions to
boundary value problems for nonautonomous ordinary differential equations on
the nonnegative half-line was considered in the inspiring references [5, 10].

1.2. Notation and sequence spaces. A discrete interval I is the intersection
of a real interval with the integers and I′ := {t ∈ I : t+ 1 ∈ I}. We set Z+

0 :=
{t ∈ Z : t ≥ 0}, Z−0 := {t ∈ Z : t 6 0} for the half axes.

For Banach spaces X, Y we denote the space of linear bounded opera-
tors between X and Y by L(X, Y ), GL(X, Y ) are the invertible elements and
F0(X, Y ) ⊆ L(X, Y ) the Fredholm operators with index 0. We briefly write
L(X) := L(X,X) (similarly for the other spaces) and IX for the identity map-
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ping on X. Furthermore, N(T ) := T−1({0}) and R(T ) := TX are the kernel
resp. the range of an operator T ∈ L(X, Y ).

The cartesian product X × Y is equipped with the norm

‖(x, y)‖X×Y := max {‖x‖X , ‖y‖Y }
throughout, and we write |·| for a fixed norm on Rd. Given a subset O ⊆ X, O
denotes its closure. When Z is a metric space and B stands for a family of
subsets of X, a continuous f : X → Z is called proper on B, if for every
compact K ⊂ Z, also the intersection B ∩ f−1(K) is compact for every B ∈ B
(cf. [10, p. 10, Definition 1.4.6 and p. 11, Property 1.4.8]).

Let `∞(Ω) be the set of bounded sequences φ = (φt)t∈Z with values in Ω
and `∞ := `∞(Rd) the Banach space of bounded sequences in Rd with norm

‖φ‖ := sup
t∈Z
|φt| .

The set `0 of sequences with two-sided limit 0 is a closed subspace of `∞. Con-
vexity of Ω carries over to `0(Ω) and so does openness. A sequence (φn)n∈N
in `∞ is said to converge pointwise to φ ∈ `∞, if

lim
n→∞

φnt = φt for all t ∈ Z

holds and we abbreviate φn
p−−−→

n→∞
φ in this case.

We introduce two bounded linear operators, namely the left shift

S ∈ L(`0), (Sφ)t := φt+1 for all t ∈ Z

and the evaluation operator

evt ∈ L(`0,Rd), evt φ := φt for all t ∈ Z.

The iterates of S are denoted by Sl, l ∈ Z+
0 . Notice that the shift S is invertible

with (S−1φ)t = φt−1 and therefore Sl makes sense for all powers l ∈ Z.
Let us next prepare compactness criteria in `0, which are used to verify

properness of nonlinear operators. We say a sequence (φn)n∈N in `0 vanishes
shiftly at ∞, if for any increasing sequence (kn)n∈N in N and any sequence

(sn)n∈N in Z with lim
n→∞

|sn| =∞, Ssnφkn
p−−−→

n→∞
ψ ∈ `∞ it follows that ψ = 0.

Remark 1.1. (1) Note that pointwise convergence in `∞ does not imply weak
convergence or boundedness. In order to illustrate this, we choose d = 1
and write φ = (. . . , φ−1, φ̂0, φ1, . . .), i.e. mark the index 0 element φ0 of φ
with a hat. For example, let us take a sequence

φn := (. . . , 0, 1̂, . . . , 1︸ ︷︷ ︸
n times

, n, 0, . . .) ∈ `0 for all n ∈ N

with pointwise limit (. . . , 0, 1̂, 1, . . .). Nevertheless, (φn)n∈N is not weakly
convergent and of course unbounded due to ‖φn‖ = n for all n ∈ N.
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(2) From the sequential Tychonoff theorem it follows that, if a sequence
(φn)n∈N in `∞ is bounded, then there exists a subsequence (φnk)k∈N such

that φnk
p−−−→

k→∞
φ ∈ `∞ (see [22, p. 119, Proposition 1.8.12]).

This brings us to the desired compactness characterization in `0:

Lemma 1.2 (compactness in `0). For bounded B ⊂ `0 are equivalent:

(a) B is relatively compact,

(b) there exists a β ∈ `0(R) such that |φt| 6 βt for all t ∈ Z and φ ∈ B,

(c) for sequences (φn)n∈N in B and (sn)n∈N in Z with lim
n→∞

|sn| =∞ satisfying

Ssnφn
p−−−→

n→∞
ψ ∈ `∞ it follows that ψ = 0.

Proof. In [3, Theorem 3] it is shown that the Hausdorff measure of noncompact-
ness on `0 is given by χ(B) := limn→∞ supφ∈B supn<|t| |φt| and evidently B ⊂ `0

is relatively compact, if and only if χ(B) = 0 holds.
(a) ⇒ (c): Let (φn)n∈N be a sequence in a relatively compact set B ⊂ `0

and (sn)n∈N, ψ ∈ `∞ be as in the above assertion. As B is relatively compact,
it follows that there exist φ ∈ `0 and a subsequence (φnk)k∈N such that

lim
k→∞
‖Ssnkφnk − Ssnkφ‖ = lim

k→∞
‖φnk − φ‖ = 0 for all k ∈ N, (1.3)

since the norm on `0 is invariant under translations (S is an isometry). As

Ssnkφnk
p−−−→

k→∞
ψ and Ssnkφ

p−−−→
k→∞

0,

it consequently results from (1.3) that ψ = 0.
(c)⇒ (b): It suffices to show that

β̃n := sup
φ∈B

max {|φn| , |φ−n|} −−−→
n→∞

0.

By contradiction, assume (β̃n)n∈N does not converge to 0. Then there exist
ε > 0, a sequence (φn)n∈N in B and a sequence of integers (tn)n∈N such that

lim
n→∞

|tn| =∞ and |φntn| > ε for all n ∈ N.

Now observe φntn = ev0 S
tnφn. As Stnφn is bounded in the space `∞, we may

assume w.l.o.g., in view of Remark 1.1(2), Stnφn
p−−−→

n→∞
ψ holds for some ψ ∈ `∞.

Hence, it follows that ψ = 0 and, in particular, limn→∞ ev0 S
tnφn = 0. This

contradicts the fact that
∣∣φntn∣∣ > ε for all n ∈ N.

(b) ⇒ (a): Assume that there is β ∈ `0(R) so that |φt| 6 βt for all t ∈ Z
and φ ∈ B. Then one infers χ(B) = 0 from

sup
φ∈B

sup
n<|t|
|φt| 6 sup

n<|t|
βt −−−→

n→∞
0

and the proof is complete.
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2. Nonautonomous difference equations

Suppose that Λ ⊆ R is a nonempty, open interval. This paper addresses
parametrized nonautonomous difference equations

xt+1 = ft(xt, λ), (∆λ)

whose right-hand side ft : Ω × Λ → Rd, t ∈ Z, is defined on an open, convex
neighborhood Ω ⊆ Rd of 0 and depends on a parameter λ ∈ Λ. The general
solution to (∆λ) is given by

ϕλ(t; τ, ξ) :=

{
ξ, t = τ,

ft−1(·, λ) ◦ · · · ◦ fτ (·, λ)(ξ), τ < t,

as long as the compositions stay in Ω. An entire solution to (∆λ) is a sequence
(φt)t∈Z in Ω with φt+1 ≡ ft(φt, λ) on Z. For a fixed λ∗ ∈ Λ it is assumed
throughout that there exists an entire solution φ∗ to (∆λ∗) satisfying

lim
t→±∞

φ∗t = 0.

Such sequences are denoted as homoclinic solutions with the trivial solution as
immediate example.

In the following, we study the global structure of the set of homoclinic
solutions to (∆λ) containing the pair (φ∗, λ∗) when λ varies over the complete
parameter space Λ. Our corresponding results based on functional analytical
tools rely on two pillars, namely the Fredholmness and the properness of certain
nonlinear operators, which we are going to prepare in the subsequent section.
Throughout this requires to impose the standing

Hypothesis. Let Λ be an open interval, Ω ⊆ Rd an open, convex neighborhood
of 0 and φ∗ a homoclinic solution to (∆λ∗) for some λ∗ ∈ Λ. Assume that the
continuous mappings ft : Ω× Λ→ Rd, t ∈ Z, satisfy:

(H0) For every compact K ⊂ Rd × R one has

sup
t∈Z

sup
(x,λ)∈K∩(Ω×Λ)

|ft(x, λ)| <∞,

(H1) for every ε > 0 and compact K ⊂ Rd × R there exists a δ > 0 such that

max {|x2 − x1| , |λ2 − λ1|} < δ ⇒ sup
t∈Z
|ft(x2, λ2)− ft(x1, λ1)| < ε

for all (x1, λ1), (x2, λ2) ∈ K ∩ (Ω× Λ),
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(H2) D1ft : Ω × Λ → L(Rd) exists as continuous function, for every bounded
B ⊆ Ω one has

sup
t∈Z

sup
x∈B
|D1ft(x, λ)| <∞ for all λ ∈ Λ

and for every ε > 0, λ0 ∈ Λ there exists a δ > 0 such that

|x2 − x1| < δ ⇒ sup
t∈Z
|D1ft(x2, λ)−D1ft(x1, λ0)| < ε

for all x1, x2 ∈ Ω, λ ∈ Bδ(λ0),

(H3) limt→±∞ ft(0, λ) = 0 for all λ ∈ Λ.

Our preliminaries concerning the linear theory are as follows: For coeffi-
cients At ∈ L(Rd), t ∈ Z, we consider a linear difference equation

xt+1 = Atxt (L0)

in Rd with the evolution operator ΦA : {(t, s) ∈ Z2 | s 6 t} → L(Rd),

ΦA(t, s) :=

{
At−1 · · ·As, s < t,

IRd , s = t.

Let I be an unbounded discrete interval. An invariant projector is a sequence
of projections Pt ∈ L(Rd), t ∈ I, with

Pt+1At = AtPt, At|N(Pt) : N(Pt)→ N(Pt+1) is invertible for all t ∈ I′.

Hence, the restriction Φ̄A(t, s) := ΦA(t, s)|N(Ps) ∈ GL(N(Ps), N(Pt)) is well-
defined for arbitrary t, s ∈ I. One says the equation (L0) has an exponential
dichotomy (ED for short) on I with invariant projector (Pt)t∈I, if there exist
reals K ≥ 1, α ∈ (0, 1) such that the exponential estimates

|ΦA(t, s)Ps| 6 Kαt−s,
∣∣Φ̄A(s, t)[IRd − Pt]

∣∣ 6 Kαt−s for all s 6 t (2.1)

and s, t ∈ I hold. The associate dichotomy spectrum is given by

ΣI(A) :=
{
γ > 0 | xt+1 = γ−1Atxt has no ED on I

}
.

In general, ΣI(A) ⊆ (0,∞) is the union of up to d (closed) spectral intervals
(for this, cf. [1, Theorem 4]), which degenerate to points e.g. in the setting of

Example 2.1 (periodic linear equations). Let p ∈ N. In case (L0) is p-periodic,
i.e. At+p = At holds for all t ∈ Z, then ΣI(A) = p

√
|σ(ΦA(p, 0))| \ {0} is discrete.

In particular, for autonomous equations (L0) the dichotomy spectrum is given
by the moduli of the nonzero eigenvalues ΣI(A) = |σ(A)| \ {0}.
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It proves advantageous to introduce

Σ+(A) := ΣZ+
0

(A), Σ−(A) := ΣZ−
0

(A), Σ(A) := ΣZ(A)

as forward, backward resp. all time spectrum of (L0); it is Σ±(A) ⊆ Σ(A).
On the sequence space `0 and for a bounded sequence (At)t∈Z we introduce

the bounded operator

LA ∈ L(`0), (LAφ)t := φt − At−1φt−1 for all t ∈ Z,

whose Fredholm properties are as follows:

Lemma 2.2 (Fredholmness of LA). The following statements are equivalent:

(a) 1 6∈ Σ+(A) and 1 6∈ Σ−(A) with corresponding projectors P+ resp. P−,

(b) LA is Fredholm with indLA = rkP+
0 − rkP−0 .

Proof. (a)⇒ (b) : See [2, Theorem 8 and Cor. 17].
(b)⇒ (a) : See [9, Theorem 1.6].

3. Substitution operators on `0

Our overall approach is functional analytic and recursions (∆λ) are understood
as abstract equations in ambient sequence spaces. This initially requires a
careful analysis of the operators F0,G0 : `0(Ω)→ `0 defined by

F0(φ)t := ft(φt), G0(φ)t := φt+1 − ft(φt) for all t ∈ Z,

where the mappings ft : Ω → Rd, t ∈ Z, are assumed to satisfy (H0)–(H3)
(without dependence on λ). As a result of [16, Proposition 2.4, Theorem 2.5]
both operators F0,G0 are well-defined.

At this point we remind the reader to some basic notions from topological
dynamics (see Appendix B, though). The hull of a difference equation

xt+1 = ft(xt) (∆)

is denoted by H(f) and equipped with the metric d̄ given in (B.3). Notice that
in order to apply the results from Appendix B one has to define f(t, x) := ft(x).
From (H0) we see that f is bounded, while (H1) yields the uniform continuity
of f on every compact K ⊂ Rd. Hence, Lemma B.1 implies that both the
hull H(f), as well as the limit sets α(f), ω(f) are nonempty compact sets.

Moreover, we say a subset G ⊆ H(f) is admissible, provided

{φ ∈ `∞ | φt+1 ≡ gt(φt) on Z} = {0} for all g ∈ G.
This means that for every right-hand side gt : Ω→ Rd, t ∈ Z, the only bounded
entire solution to xt+1 = gt(xt) is the trivial one.

In what follows, we will need the next
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Lemma 3.1. If (sn)n∈N is a sequence of integers with limn→∞ |sn| = ∞ and
φ ∈ `0, then the sequence (φn)n∈N in `0 pointwise given by

φnt := φt+sn for all t ∈ Z

fulfills φn
p−−−→

n→∞
0.

Proof. The implications

φ ∈ `0 ⇒ φt+sn −−−→
n→∞

0 for all t ∈ Z

⇔ φnt −−−→
n→∞

0 for all t ∈ Z ⇔ φn
p−−−→

n→∞
0

guarantee the assertion.

Lemma 3.2 (properness). If α(f), ω(f) are admissible, then G0 : `0(Ω) → `0

is proper on all bounded, closed B ⊂ `0(Ω).

Proof. Above all, note that in view of Lemma 1.2 it suffices to show that any
bounded sequence (φn)n∈N in `0(Ω) satisfying

‖G0(φn)− ϕ‖ −−−→
n→∞

0 with some ϕ ∈ `0,

vanishes shiftly at ∞. Take any increasing sequence (kn)n∈N in N and any
sequence (sn)n∈N in Z satisfying lim

n→∞
|sn| =∞ such that

Ssnφkn
p−−−→

n→∞
ψ with some ψ ∈ `∞. (3.1)

We must show that ψ = 0. For this purpose, observe∥∥SsnG0(φkn)− Ssnϕ
∥∥ =

∥∥G0(φkn)− ϕ
∥∥ −−−→

n→∞
0 (3.2)

and put fn := f(· + sn, ·) ∈ H(f). Because H(f) is compact, we can deduce
that there exists a subsequence (sni

)i∈N such that

sni
> 0 and d̄(fni , f+) −−−→

i→∞
0 for some f+ ∈ ω(f) ⊆ H(f) (3.3)

or

sni
< 0 and d̄(fni , f−) −−−→

i→∞
0 for some f− ∈ α(f) ⊆ H(f). (3.4)

In case (3.3) we introduce the following limit operators

F+ : `0 → `0, F+(φ)t := f+
t (φt),

G+ : `0 → `0, G+(φ)t := φt+1 − f+
t (φt).
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Since ω(f) is admissible, it suffices to prove that G+(ψ) = 0 and we proceed as
follows: First, (3.3) implies that f(t + sni

, ψt) −−−→
i→∞

f+
t (ψt) for all t ∈ Z and

(3.1) with (B.2) leads to

f(t+ sni
, φkit+sni

)− f(t+ sni
, ψt) −−−→

i→∞
0 for all t ∈ Z.

Second, (3.2) leads to(
φit+1+sni

− f
(
t+ sni

, φkit+sni

))
− ϕt+sni

−−−→
i→∞

0 for all t ∈ Z,

while Lemma 3.1 and (3.1) guarantee ϕt+sni
−−−→
i→∞

0 and φkit+1+sni
−−−→
i→∞

ψt+1 for

all t ∈ Z. Finally from the above we deduce that

φkit+1+sni
− f(t+ sni

, ψt) −−−→
i→∞

0

and

φkit+1+sni
− f(t+ sni

, ψt) −−−→
i→∞

ψt+1 − f+
t (ψt).

Hence, we infer that G0(ψ) = 0. Since the dual case (3.4) can be treated
similarly, the admissibility of α(f) completes the proof.

Our further analysis is based on the substitution operators

F(φ, λ)t := ft(φt, λ), Fj(φ, λ)t := Dj
1ft(φt, λ) for all t ∈ Z, (3.5)

φ ∈ `0(Ω), λ ∈ Λ and indices j ∈ {0, 1}, whose properties are as follows:

Proposition 3.3. The operator F : `0(Ω) × Λ → `0 is well-defined with the
following properties for every φ, φ̄ ∈ `0(Ω), λ ∈ Λ:

(a) Fj : `0(Ω)× Λ→ Lj(`0) is continuous for j ∈ {0, 1},
(b) D1F : `0(Ω)× Λ→ L(`0) exists with D1F(φ, λ) = F1(φ, λ),

(c) D1F(φ, λ)−D1F(φ̄, λ) ∈ L(`0) is compact.

Proof. (a) and (b) are due to [16, Proposition 2.4], so is the well-definedness
of F.

(c): Since linear combinations of compact operators are compact (see
[23, p. 278, Theorem (i)]) it suffices to show that D1F(φ, λ) − D1F(φ̄, λ) is
compact for all φ ∈ `0(Ω) and λ ∈ Λ. Due to the representation (cf. (3.5))

[(D1F(φ, λ)−D1F(φ̄, λ))ψ]t = (D1ft(φt, λ)−D1ft(φ̄t, λ))︸ ︷︷ ︸
=:At

ψt for all t ∈ Z
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and sequences ψ ∈ `0 we see that D1F(φ, λ) − D1F(φ̄, λ) is a multiplication
operator M ∈ L(`0), (Mψ)t := Atψt. To establish its compactness, let ε > 0.
Thanks to (H2) there exists a δ > 0 such that |x− y| < δ implies

|D1ft(x, λ)−D1ft(y, λ)| < ε for all t ∈ Z.

Hence, because of φ ∈ `0(Ω) we find a T ∈ Z with |φt| < δ and therefore

|At| =
∣∣D1ft(φt, λ)−D1ft(φ̄t, λ)

∣∣ < ε for all T 6 |t| ,

which implies that limt→±∞At = 0. It remains to show that M ∈ L(`0) is
compact. Thereto, consider the sequence of compact operators Mk ∈ L(`0),

(Mkψ)t :=

{
Atψt, t ∈ [−k, k] ∩ Z,
0, else

for all k ∈ N

satisfying [(M−Mk)ψ]t = supk<|t| |Atψt| 6 supk<|t| |At| ‖ψ‖ for all t ∈ Z. This
yields that limk→∞ ‖M−Mk‖ = 0, M is the uniform limit of a sequence of
compact operators and thus compact (cf. [23, p. 278, Theorem (iii)]).

4. Entire hyperbolic solutions

Let us consider the linear difference equation

xt+1 = D1ft(φ
∗
t , λ)xt, (Vλ)

with dichotomy spectra denoted by Σ(λ) and Σ−(λ),Σ+(λ) for λ ∈ Λ. Since φ∗

needs not to be a solution to (∆λ), note that in general only (Vλ∗) is a variational
equation.

In case 1 6∈ Σ(λ∗) it follows from the usual local implicit function theorem
that there is a neighborhood Λ0 ⊆ Λ of λ∗ and a continuous function φ : Λ0 → `0

(the local branch) such that φ(λ) is the unique homoclinic solution to (∆λ) (for
this, see [16, Theorem 2.17]) in a neighborhood of (φ∗, λ∗). In the following, we
are interested in the global structure of the component

C ⊆ {(φ, λ) ∈ `0(Ω)× Λ | φt+1 ≡ ft(φt, λ) on Z}

containing the pair (φ∗, λ∗). A continuation result for homoclinic solutions to
(∆λ) relies on an immediate but crucial tool for our overall approach:

Lemma 4.1. Let λ ∈ Λ. A sequence φ ∈ `0(Ω) solves the difference equation
(∆λ) if and only if φ satisfies the nonlinear operator equation

G(φ, λ) = 0 (Oλ)

with the operator G : `0(Ω)× Λ→ `0 given by G(φ, λ) := Sφ− F(φ, λ).
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Proof. The well-definedness of G immediately follows from Proposition 3.3. The
equivalence statement is clear.

By means of Proposition 3.3 our assumptions imply that the partial deriva-
tive

D1G : `0(Ω)× Λ→ L(`0)

exists as a continuous function of the form

D1G(φ, λ)ψ = Sψ −D1F(φ, λ)ψ for all ψ ∈ `0

and possesses the following properties:

Lemma 4.2. For all φ ∈ `0(Ω) and λ ∈ Λ one has:

(a) D1G(φ∗, λ∗) ∈ GL(`0)⇔ 1 6∈ Σ(λ∗),

(b) 1 6∈ Σ(λ∗)⇒ D1G(φ, λ∗) ∈ F0(`0),

(c) D1G(φ∗, λ) ∈ F0(`0)⇔ D1G(φ, λ) ∈ F0(`0).

Proof. (a): For fixed λ ∈ Λ this is a consequence of [1, Theorem 2, Corollary 3].

(b): Due to (a) one has D1G(φ∗, λ∗) ∈ GL(`0). This obviously guarantees
D1G(φ∗, λ∗) ∈ F0(`0) and combining

D1G(φ, λ∗) = D1G(φ∗, λ∗) +D1G(φ, λ∗)−D1G(φ∗, λ∗)

= D1G(φ∗, λ∗) +D1F(φ∗, λ∗)−D1F(φ, λ∗) for all φ ∈ `0(Ω)

with Proposition 3.3(c) shows that D1G(φ, λ∗) is a compact perturbation of a
Fredholm operator with index 0. Since compact perturbations do not affect the
index (see [11, p. 161, Theorem 16]), we obtain D1G(φ, λ∗) ∈ F0(`0).

(c): Assuming D1G(φ∗, λ) ∈ F0(`0) and writing

D1G(φ, λ) = D1G(φ∗, λ) +D1F(φ∗, λ)−D1F(φ, λ) for all φ ∈ `0(Ω), λ ∈ Λ

represents D1G(φ, λ) as compact perturbation of D1G(φ∗, λ). The claim follows
as in the proof of (b).

While this already settles our required Fredholm theory, we continue with
a general criterion for the properness for G. It is based on concepts from topo-
logical dynamics introduced in Appendix B. In particular, slightly modifying
the notation there, rather than α(f(·, λ)) and ω(f(·, λ)), in order to emphasize
the parameter dependence, we write α(λ) resp. ω(λ) to denote the limit sets of
the right-hand side to (∆λ) for λ ∈ Λ.

Proposition 4.3 (properness). If α(λ), ω(λ) are admissible for all λ ∈ Λ, then
G : `0(Ω)× Λ→ `0 is proper on every product B × Λ0 with B ⊂ `0(Ω) bounded,
closed and Λ0 ⊆ Λ compact.
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Proof. By Proposition 3.3 the function G : `0(Ω) × Λ → `0 is continuous. Let
B ⊂ `0(Ω) be closed, bounded and suppose Λ0 ⊂ Λ is compact. Then G is proper
on such B×Λ0, if and only if, for all compact K ⊂ `0 the set G−1(K)∩ (B×Λ0)
is compact. This is equivalent to the fact that for all such K ⊂ `0, any sequence
in G−1(K) ∩ (B × Λ0) admits a convergent subsequence. Thus, take a compact
subset K ⊂ `0 and let ((φn, λn))n∈N be a sequence in G−1(K)∩(B×Λ0). Since K
is compact, there exists a ψ ∈ `0 and a subsequence ((φni , λni

))i∈N such that

‖G(φni , λni
)− ψ‖ −−−→

i→∞
0. (4.1)

Because Λ0 is compact, one finds a convergent subsequence (λnij
)j∈N with limit

λ0 ∈ Λ0. Using Lemma 3.2, G(·, λ0) is proper on the bounded, closed subsets of
`0 and we are about to prove

‖G(φnij , λ0)− ψ‖ −−−→
j→∞

0.

Thereto, we have from the triangle inequality and Lemma 4.1 that

‖G(φnij , λ0)− ψ‖ 6
∥∥∥G(φnij , λ0)− G(φnij , λnij

)
∥∥∥+

∥∥∥G(φnij , λnij
)− ψ

∥∥∥
=
∥∥∥F(φnij , λ0)− F(φnij , λnij

)
∥∥∥+

∥∥∥G(φnij , λnij
)− ψ

∥∥∥
for all j ∈ N and with a view to (4.1) it remains to establish∥∥∥F(φnij , λ0)− F(φnij , λnij

)
∥∥∥ −−−→

j→∞
0. (4.2)

Indeed, since B ⊂ `0 is bounded, it follows that there exists M > 0 such that
|φnij

t | 6M for all t ∈ Z and j ∈ N. Consequently, (H1) implies that∣∣∣ft(φnij

t , λnij
)− ft(φ

nij

t , λ0)
∣∣∣ −−−→
j→∞

0 uniformly in t ∈ Z,

and (3.5) leads to (4.2). Finally, since G(·, λ0) is proper, it follows that also
(φnij )j∈N has a convergent subsequence, which guarantees a convergent subse-
quence of ((φni , λni

))i∈N. This completes the proof.

We arrive at our main result, which supplements the local continuation
property of [16, Theorem 2.17], but requires a real parameter λ.

Theorem 4.4 (global continuation in `0). Beyond (H0)–(H3) let us assume for
all parameters λ ∈ Λ:

(i) The linear equations (Vλ) satisfy

1 6∈ Σ(λ∗), 1 6∈ Σ+(λ), 1 6∈ Σ−(λ) (4.3)

with corresponding invariant projectors such that rkP+
0 (λ) = rkP−0 (λ),
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(ii) α(λ), ω(λ) are admissible.

If C ⊆ `0(Ω) × Λ denotes the component of homoclinic solutions to (∆λ) con-
taining (φ∗, λ∗) and

C− := {(φ, λ) ∈ C | λ 6 λ∗} , C+ := {(φ, λ) ∈ C | λ∗ 6 λ} ,

then (at least) one the following alternatives applies (cf. Figure 1):

(a) C− ∩ C+ 6= {(φ∗, λ∗)},
(b) the branches C+ and C− are connected and

(b1) C+ is unbounded or at least one of the following sets is nonempty:

Π1(C+) ∩ ∂`0(Ω), Π2(C+) ∩ ∂Λ,

(b2) C− is unbounded or at least one of the following sets is nonempty:

Π1(C−) ∩ ∂`0(Ω), Π2(C−) ∩ ∂Λ,

where Π1,Π2 are the projection of (x, λ) onto the first resp. second component.
For Ω = Rd, Λ = R (exactly) one of the next cases occurs (cf. Figure 2):

(c) C = {(φ∗, λ∗)} ∪ Γ+ ∪ Γ− with unbounded disjoint sets Γ−,Γ+,

(d) C \ {(φ∗, λ∗)} is connected.

R

λ∗

φ∗

R

λ∗

φ∗

R

λ∗

φ∗

(a) (b1) (b2)

C−
C−

C+
C+

C+C−

`0 `0 `0

Figure 1: Alternatives from Theorem 4.4, where the grey shaded area symbolizes
`0(Ω)×Λ: (a) The intersection C−∩C+ is larger than just {(φ∗, λ∗)} or, (b1) C+

is unbounded (here C− touches the boundary of `0(Ω)) or, (b2) C− touches the
boundary of Λ (while C+ touches the boundary of `0(Ω))

Remark 4.5. (1) Compared to the local result [16, Theorem 2.17] preceding
Theorem 4.4, we assume slightly weaker differentiability, but stronger con-
tinuity assumptions on the right-hand sides ft. Thus, locally near (φ∗, λ∗)
the component C is in general merely graph of a continuous function
over Λ, and no longer of class C1.
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(2) The admissibility assumption (ii) can be verified using the criteria from
Appendix C for the unique existence of bounded entire solutions to (∆λ).

(3) Note that Theorem 4.4 applies to hyperbolic fixed points x∗ = g(x∗, α∗)
of (1.1) under time-dependent forcing of the form αt = α∗ + λµt, where
(µt)t∈Z is decaying to 0 and λ ∈ R controls the magnitude of the pertur-
bation. For this, consider the trivial solution φ∗ = 0 of (∆λ) with the
right-hand side

ft(x, λ) := g(x+ x∗, α∗ + λµt)− g(x∗, α∗ + λµt)

and the parameter value λ∗ = 0. This idea extends to periodic (and more
general) hyperbolic solutions to (1.1).

λ∗

R

λ∗

Rφ∗ φ∗

(c) (d)

Γ− Γ+

`0 `0

Figure 2: Alternatives from Theorem 4.4: (c) Two disjoint unbounded
sets Γ−,Γ+ meet at (φ∗, λ∗) or, (d) the difference C \ {(φ∗, λ∗)} is connected

Proof. Because the openness of Ω extends to `0(Ω), we can apply the abstract
Theorems A.1 and A.2 to G : O × Λ → `0 from Lemma 4.1 with O := `0(Ω).
Since S is a bounded linear operator, it results from Proposition 3.3(a) that G is
continuous. Moreover, due to Proposition 3.3(b) the derivative D1F : O×Λ→
L(`0) exists as a continuous function and it results that also D1G exists with

D1G(φ∗, λ∗)ψ = Sψ −D1F(φ∗, λ∗)ψ for all ψ ∈ `0.

ad (A.1): Thanks to Lemma 4.1 it is clear that G(φ∗, λ∗) = 0 holds.
ad (A.2): Because of the first inclusion in (4.3) the derivative D1G(φ∗, λ∗)

is invertible due to Lemma 4.2(a).
ad (A.3): Let λ ∈ Λ. The remaining inclusions of (4.3) guarantee that (Vλ)

has EDs on both Z+
0 and Z−0 . The assumptions on the corresponding projectors

thus imply D1G(φ∗, λ) ∈ F0(`0) due to Lemma 2.2. Finally, Lemma 4.2(c)
ensures that also D1G(φ, λ) is Fredholm of index 0 for all φ ∈ `0.

ad (A.4): We derive from Proposition 4.3 that G is proper on every B×Λ0

with bounded, closed B ⊂ `0(Ω) and compact Λ0 ⊆ Λ.

Now the assertions (a), (b) result from Theorem A.2, while Theorem A.1
applied to (Oλ) ensures the two alternatives (c), (d).
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5. Applications

In this section, we collect several types of nonautonomous difference equations
(∆λ) with properties in the scope our main Theorem 4.4.

R

λ∗

R

λ∗

R

λ∗

`0 `0 `0

Γ− Γ− Γ−

Γ+ Γ+ Γ+

0 0 0

Figure 3: The schematic sets G−1(0) ⊆ `0(R2) × R of homoclinic solutions to
(∆λ) and Γ−,Γ+ for the examples from Section 5.1

5.1. Piecewise constant equations. Let us illuminate Theorem 4.4 in the
light of concrete examples from bifurcation theory of [15]. They allow to deter-
mine the homoclinic solutions, and particularly the branch C explicitly.

Suppose that α ∈ (−1, 1) is a fixed nonzero real and λ ∈ R serves as
continuation parameter. We consider the linear homogeneous equation

xt+1 = ft(xt, λ) :=

(
bt 0
λ ct

)
xt (5.1)

with asymptotically constant sequences

bt :=

{
α−1, t < 0,

α, t ≥ 0,
ct :=

{
α, t < 0,

α−1, t ≥ 0.

On the one hand, since (5.1) is triangular, the dichotomy spectra reads as

Σ(λ) =

{
[|α| , 1

|α| ], λ = 0,{
|α| , 1

|α|

}
, λ 6= 0,

Σ±(λ) =
{
|α| , 1

|α|

}
for all λ ∈ R. (5.2)

It is easily seen that (5.1) fulfills (H0)–(H3) with Ω = R2 and the trivial solution
φ∗ = 0. For λ∗ 6= 0 the assumption (i) holds. Moreover, the limit sets of (5.1)
are singletons given by the limit equations

xt+1 =

(
α−1 0
λ α

)
xt, xt+1 =

(
α 0
λ α−1

)
xt.
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Both are hyperbolic with a 1-dimensional stable subspace and hence α(λ), ω(λ)
are admissible yielding (ii). On the other hand, the triangular structure of (5.1)
allows to compute the general solution ϕλ(·; 0, ξ) for arbitrary initial values
ξ ∈ R2. The first component ϕ1

λ is

ϕ1
λ(t; 0, ξ) = α|t|ξ1 for all t ∈ Z, ξ ∈ R2 (5.3)

and consequently ϕ1
λ(·; 0, ξ) ∈ `0. For the second component this yields

ϕ2
λ(t; 0, ξ) = α−|t|ξ2 + λ

{∑t−1
s=0

1
αt−s−1α

sξ1, t ≥ 0,

−∑−1
s=t α

t−s−1α−sξ1, t < 0

and we arrive at the asymptotic representation

ϕ2
λ(t; 0, ξ) =

{
α−t

(
ξ2 − λα

α2−1
ξ1

)
+ o(1), t→∞,

αt
(
ξ2 + λα

α2−1
ξ1

)
+ o(1), t→ −∞.

Thus, for λ 6= 0 the inclusion ϕλ(·; 0, ξ) ∈ `0 holds if and only if ξ2 = λα
α2−1

ξ1 and

ξ2 = − λα
α2−1

ξ1, i.e. ξ = (0, 0). In conclusion, 0 is the unique homoclinic solution
to (5.1) for λ 6= 0, while in case λ = 0 the trivial solution φ∗ = 0 is embedded
into a 1-parameter family of homoclinic solutions. This means for every λ∗ 6= 0
we are in the situation of Theorem 4.4(c) shown in Figure 3 (left).

Example 5.1 (transcritical bifurcation). Let δ ∈ R \ {0} and consider the
nonlinear difference equation

xt+1 = ft(xt, λ) :=

(
bt 0
λ ct

)
xt + δ

(
0

(x1
t )

2

)
with general solution ϕλ. Again (H0)–(H3) hold with φ∗ = 0. Since (5.2) is
satisfied, we confirm assumption (i). As autonomous limit systems one gets

xt+1 =

(
α−1 0
λ α

)
xt + δ

(
0

(x1
t )

2

)
, xt+1 =

(
α 0
λ α−1

)
xt + δ

(
0

(x1
t )

2

)
, resp.

The first component of their general solutions ϕ−λ (·; τ, ξ) and ϕ+
λ (·; τ, ξ) is bounded

on Z, if and only if ξ1 = 0 holds, and plugging this into the second equations
shows that the only bounded solution to the limit equations is the trivial one.
Hence, α(λ), ω(λ) are admissible and Theorem 4.4 applies for λ∗ 6= 0. More
detailed, while the first component of ϕλ(·; 0, ξ) given by (5.3) is homoclinic,
the second component fulfills

ϕ2
λ(t; 0, ξ) =

α
−t (ξ2 − δα

α3−1
ξ2

1 − λα
α2−1

ξ1

)
+ o(1), t→∞,

αt
(
ξ2 + δα2

α3−1
ξ2

1 + λα
α2−1

ξ1

)
+ o(1), t→ −∞;
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in summary, we see that ϕλ(·; 0, ξ) is homoclinic if and only if ξ = 0 or

ξ1 = −2
α2 + α + 1

δ(α + 1)2
λ, ξ2 = −2

α(α2 + α + 1)

δ(α + 1)4
λ2.

Hence, besides the zero solution we have a unique nontrivial entire solution
passing through the initial point ξ = (ξ1, ξ2) at time t = 0 for λ 6= 0. We are
again in the setting of Theorem 4.4(c) shown in Figure 3 (center).

Example 5.2 (pitchfork bifurcation). Let us suppose δ 6= 0 in the nonlinear
difference equation

xt+1 = ft(xt, λ) :=

(
bt 0
λ ct

)
xt + δ

(
0

(x1
t )

3

)
. (5.4)

As above we observe that assumption (i) holds. Moreover, the limit equations

xt+1 =

(
α−1 0
λ α

)
xt + δ

(
0

(x1
t )

3

)
, xt+1 =

(
α 0
λ α−1

)
xt + δ

(
0

(x1
t )

3

)
possess no nontrivial bounded entire solutions, which results as in Example 5.1.
Therefore, the admissible limit sets α(λ), ω(λ) allow to apply Theorem 4.4. In
order to get a more detailed picture, note that the first component of the general
solution to (5.4) is given by (5.3) and the second component reads as

ϕ2
λ(t; 0, ξ) =

α
−t (ξ2 − δα

α4−1
ξ3

1 − λα
α2−1

ξ1

)
+ o(1), t→∞,

αt
(
ξ2 + δα3

α4−1
ξ3

1 + λα
α2−1

ξ1

)
+ o(1). t→ −∞.

This asymptotic representation shows us that ϕλ(·; 0, ξ) ∈ `0 holds if and only

if ξ = 0 or ξ2
1 = −21

δ
λ and ξ2 = −2 α

α4−1
(δα2+4λ+δ)

δ2
λ2. Again, the assertion of

Theorem 4.4(c) holds and Figure 3 (right) gives a description of the sets Γ−,Γ+.

5.2. Semilinear equations. It is well-known that linear-inhomogeneous dif-
ference equations xt+1 = Atxt + λbt with 1 6∈ Σ(A) and b ∈ `0 possess unique
homoclinic solutions

φ∗t = λ
∑
s∈Z

G(t, s+ 1)bs

continuing the trivial one for parameters λ 6= 0, where G is the Green’s func-
tion defined in (C.3). As a natural generalization of this setting, we consider
semilinear difference equations

xt+1 = Atxt + Ft(xt, λ) (Sλ)

with a nonlinearity Ft : Rd×Λ→ Rd, t ∈ Z, satisfying (H0)–(H2). In particular,
in order to guarantee the admissibility assumption (ii), let us suppose that the
following assumptions hold for all λ ∈ Λ:
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H(5.2)1 (L0) has an ED on Z with constants α,K,

H(5.2)2 Dj
1Ft(0, λ

∗) ≡ 0 on Z and limt→±∞D
j
1Ft(0, λ) = 0 for j ∈ {0, 1},

H(5.2)3 There exist functions F± : Rd × Λ→ Rd such that F±(0, λ) = 0,

lim
t→±∞

sup
x∈B

∣∣Ft(x, λ)− F±(x, λ)
∣∣ = 0 for all bounded B ⊆ Rd

and lipF±(·, λ) < K
1−α .

Here it is Ω = Rd (for simplicity) and ft(x, λ) = Atx + Ft(x, λ). With the
reference parameter λ∗ = 0, due to assumption H(5.2)2 one can choose φ∗ = 0
as homoclinic solution to (S0). Now keep an arbitrary λ ∈ Λ fixed:

ad (i): From D1ft(0, λ) = At + Bt(λ) with Bt(λ) := D1Ft(0, λ) we first
obtain 1 6∈ Σ(0) by assumption H(5.2)1. Moreover, the limit relation in H(5.2)2

for the derivative ensures that LA+B(λ) is a compact perturbation of LA (cf. proof
of Proposition 3.3(c)). Hence, also LA+B(λ) is a Fredholm operator with index
0 and Lemma 2.2 ensures that 1 6∈ Σ±(λ) holds, i.e. (4.3) is fulfilled.

ad (ii): Thanks to H(5.2)3 the limit sets of (Sλ) consist of the respective
semilinear equations

xt+1 = Atxt + F−(xt, λ), xt+1 = Atxt + F+(xt, λ) (5.5)

having the trivial solution. In addition, Proposition C.5 guarantees that they are
the unique bounded entire solutions to (5.5) and thus α(λ), ω(λ) are admissible.

5.3. Asymptotically periodic equations. The ED assumptions (i) of The-
orem 4.4 simplify and are easier to verify, when we restrict to asymptotically
periodic equations, which can have different forward and backward periods:

Beyond (H0)–(H3) we assume there exist p−, p+ ∈ N so that the following
holds for all λ ∈ Λ:

H(5.3)1 There exist functions f±t = f±t+p± : Ω×Λ→ Rd for all t ∈ Z such that,

lim
t→±∞

sup
x∈B

∣∣ft(x, λ)− f±t (x, λ)
∣∣ = 0 for all bounded B ⊂ Ω,

H(5.3)2 1 6∈ Σ(λ∗), there exist p±-periodic sequences (A±t (λ))t∈Z such that

• D1ft(φ
∗
t , λ
∗), A±t (λ) are invertible,

• limt→±∞
∣∣D1ft(φ

∗
t , λ)− A±t (λ)

∣∣ = 0,

• the period matrices Π±(λ) := Φ±A(p±, 0) satisfy σ(Π±(λ))∩S1 = ∅,
• the stable subspaces in forward and backward time fulfill

dim
⊕

λ∈σ(Π−(λ))
|λ|<1

Eigλ σ(Π−(λ)) = dim
⊕

λ∈σ(Π+(λ))
|λ|<1

Eigλ σ(Π+(λ)),
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H(5.3)3 the trivial one is the only bounded entire solution to the limit equations

xt+1 = f+
t (xt, λ), xt+1 = f−t (xt, λ).

In order to verify that Theorem 4.4 applies, we keep λ ∈ Λ fixed.

ad (i): It results from Example 2.1 and H(5.3)2 that 1 6∈ Σ±(A±(λ)). On
both half-lines Z+

0 and Z−0 the equation (Vλ) is an `0-perturbation of the re-
spective limit equations

xt+1 = A−t (λ)xt, xt+1 = A+
t (λ)xt

and therefore [17, Corollary 3.26] implies Σ±(λ) = Σ±(A±(λ)).

ad (ii): From assumption H(5.3)1 we obtain the finite limit sets

α(λ) =
{
f−·+s(·, λ) : Z× Ω→ Rd | 0 6 s < p−

}
,

ω(λ) =
{
f+
·+s(·, λ) : Z× Ω→ Rd | 0 6 s < p+

}
,

which consists of the p±-periodic limit functions, and their time translates. Due
to H(5.3)3 these limit equations, in turn, merely have the trivial one, as bounded
entire solution. Thus, the limit sets α(λ), ω(λ) are admissible.

As a concretization we eventually arrive at:

Example 5.3 (perturbed Beverton–Holt equation). Let p−, p+ ∈ N and (at)t∈Z
be a positive sequence such that there exit p+- resp. p−-periodic sequences
(a+
t )t∈Z, (a−t )t∈Z in R with limt→±∞

∣∣at − a±t ∣∣ = 0. The nonlinear scalar differ-
ence equation

xt+1 =
atxt

1 + |xt|
+ λbt (5.6)

with right-hand side ft(x, λ) := atx
1+|x| + λbt satisfies (H0)–(H3), provided (bt)t∈Z

is a real sequence in `0 and φ∗t ≡ 0. For λ∗ = 0 the variational equation of
(5.6) along φ∗ becomes xt+1 = atxt and [18, Example 2.6(4)] guarantees the
dichotomy spectrum [min {c−, c+} ,max {c−, c+}], where

c− := p−

√
a−p−−1 · · · a−0 , c+ := p+

√
a+
p+−1 · · · a+

0 .

If 1 < min {c−, c+} or max {c−, c+} < 1, then the variational equation (V0) has
an ED on Z, while (Vλ) possess EDs on half-lines with P±t (λ) = 1. In order
to apply Theorem 4.4 with λ∗ = 0 it remains to ensure admissible limit sets
of (5.6). Thereto, notice that the limit equations of (5.6) are

xt+1 =
a+
t xt

1 + |xt|
=: f+

t (xt), xt+1 =
a−t xt

1 + |xt|
=: f−t (xt)

and lip f±t = a±t holds for all t ∈ Z. Hence, by Example C.4 the assumption
c−, c+ ∈ [0, 1) implies that α(λ), ω(λ) are admissible for all λ ∈ R.
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6. Outlook

Rather than working with difference equations (∆λ), similar results can be ob-
tained in continuous time for finite-dimensional nonautonomous ordinary dif-
ferential equations

ẋ = f(t, x, λ). (Dλ)

Indeed, both approaches are largely parallel: Heteroclinic solutions are charac-
terized as solutions to a nonlinear equation (Oλ) between the ambient function
spaces C1

0 and C0. This infinite-dimensional equation is tackled using the ab-
stract global implicit function Theorems A.1 and A.2, whose assumptions in
turn rely on Fredholm and properness criteria. Despite of these similarities, as
discrepancy one has to mention that the counterpart to the operator G, namely

G : C1
0 × Λ→ C0, G(φ, λ)(t) := φ̇(t)− f(t, φ(t), λ)

acts between different spaces and that the compactness conditions in Lemma 1.2
required for properness have to be adjusted.

A further alternative is to deal with Carathéodory differential equations
(Dλ). Such problems naturally occur as pathwise realization of random differ-
ential equations or in control theory. Here, an ambient spatial setting consists
of the spaces W

1,∞
0 and L∞0 of absolutely continuous resp. essentially bounded

functions vanishing at ±∞. These sets replace C1
0 resp. C0 in our above studies.

Corresponding compactness or properness conditions can be found in [19, The-
orem 11, Lemma 12(ii)].

In the end, our methods also apply to spaces W1,p and Lp, p ∈ (1,∞), in
continuous time, or `p in discrete time. This requires ambient growth conditions
on the right-hand side of (∆λ) for the sake of well-defined substitution operators.
Yet, such conditions might lack a physical motivation.

A. Global continuation

Let X, Y denote Banach spaces. Global implicit function theorems describe the
branch of zeros for a continuous mapping G : O × Λ → Y containing a pair
(x∗, λ∗) ∈ X × Λ such that

G(x∗, λ∗) = 0, (A.1)

where O ⊆ X is an open nonempty subset of X with x∗ ∈ O and Λ 6= ∅
denotes an open interval containing λ∗. Throughout, suppose that the derivative
D1G : O × Λ→ L(X, Y ) exists as a continuous function satisfying

D1G(x∗, λ∗) ∈ GL(X, Y ). (A.2)
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Therefore, the (local) implicit function theorem (cf. [7, p. 7, Theorem I.1.1])
applies and yields a local C0-solution branch λ 7→ x(λ) to

G(x, λ) = 0.

We define C ⊆ O × Λ as maximal connected component of G−1(0) ∩ (O × Λ)
containing the local solution branch through (x∗, λ∗). In order to obtain some
information on the global structure of C, two further assumptions are due.
First, suppose Fredholmness

D1G(x, λ) ∈ F0(X, Y ) for all (x, λ) ∈ O × Λ (A.3)

and second, we require

G|B×Λ0 is proper on closed, bounded sets B ⊆ O and compact Λ0 ⊆ Λ. (A.4)

For globally defined G one establishes

Theorem A.1 (global implicit function theorem). If (A.1)–(A.4) hold with
O = X, Λ = R, then exactly one of the following alternatives applies:

(a) C = {(x∗, λ∗)} ∪ Γ+ ∪ Γ− with unbounded disjoint sets Γ−,Γ+,

(b) C \ {(x∗, λ∗)} is connected.

Proof. The proof follows [7, pp. 231–232, Theorem II.6.1], using the mod 2
reduction of the degree for proper C1-Fredholm mappings of index zero, con-
structed by Fitzpatrick, Pejsachowicz and Rabier [6, 12].

Figure 4: Situations ruled out by Theorem A.1:
The set Γ− is a curve having a finite limit as
λ→ −∞, while the other branch Γ+ is bounded λ∗

R

X

Γ−

Γ+

x∗

Note that Theorem A.1 rules out a situation as depicted in Figure 4. A
variant of Theorem A.1 for “local” parameter spaces allows solution branches
to end at the boundary of O or Λ and reads as

Theorem A.2 (Evéquoz’s implicit function theorem). If (A.1)–(A.4) hold and
C− := {(x, λ) ∈ C | λ 6 λ∗}, C+ := {(x, λ) ∈ C | λ∗ 6 λ}, then at least one of
the subsequent alternatives applies:



Global Continuation of Homoclinic Solutions 23

(a) C− ∩ C+ 6= {(x∗, λ∗)},
(b) the branches C+ and C− are connected and

(b1) C+ is unbounded or at least one of the following sets is nonempty:

Π1(C+) ∩ ∂O, Π2(C+) ∩ ∂Λ,

(b2) C− is unbounded or at least one of the following sets is nonempty:

Π1(C−) ∩ ∂O, Π2(C−) ∩ ∂Λ,

where Π1 : X×Λ→ X, Π2 : X×Λ→ Λ stand for the projection of (x, λ)
onto the first resp. second component.

Proof. In [5, Theorem 2.2] it is shown that

(a’) C+ ∩ C− = {(x∗, λ∗)}
yields (b). Since this implication (a′) ⇒ (b) is equivalent to ¬(a′) ∨ (b) we
obtain the assertion.

B. Topological dynamics

This appendix collects some required preliminaries from topological dynamics
(cf. [4, 21]) and particular properties of the Bebutov flow.

Let Ω ⊆ Rd be open. Given a continuous function f : Z×Ω→ Rd we define
its hull by

H(f) := {f(·+ s, ·) : Z× Ω→ Rd| s ∈ Z} ⊆ C(Z× Ω,Rd).

This allows to introduce the Bebutov flow

Ss : H(f)→ H(f), Ssg := g(·+ s, ·) for all s ∈ Z (B.1)

induced by f . The closure in the above definition of H(f) is chosen w.r.t. an
ambient topology such that (s, g) 7→ Ssg becomes continuous (cf. [4]). Thus,
(B.1) defines a dynamical system on H(f). Given a compact subset K ⊂ Rd, it
is convenient to write KΩ := K ∩ Ω and to denote f as

• bounded on K, if f(Z×KΩ) ⊆ Rd is bounded

• uniformly continuous on K, if for every ε > 0 there is a δ > 0 with

|x− y| < δ ⇒ sup
t∈Z
|f(t, x)− f(t, y)| < ε for all x, y ∈ KΩ. (B.2)

For instance, if (t, x) 7→ g(t, x) is bounded on bounded sets (uniformly in
t ∈ Z), then

|g|l := sup
(t,x)∈Z×(B̄l(0)∩Ω)

|g(t, x)|
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are semi-norms yielding the compact-open topology, i.e. the topology of uniform
convergence on compact sets induced by the metric

d̄(g, ḡ) :=
∞∑
l=1

1

2l
|g − ḡ|l . (B.3)

This construction of the Bebutov flow equips us with tools from dynamical
systems in a natural way. For instance,

ω(f) :=
{
g ∈ H(f)

∣∣∣ ∃sn →∞ : lim
n→∞

d̄(f(·+ sn, ·), g) = 0
}

defines the ω-limit set of f and the α-limit set is

α(f) :=
{
g ∈ H(f)

∣∣∣∃sn →∞ : lim
n→∞

d̄(f(· − sn, ·), g) = 0
}
.

Lemma B.1. If f is bounded and uniformly continuous on any compact subset
of Ω, then H(f) 6= ∅ is compact and the following holds

(a) α(g), ω(g) 6= ∅ are compact for all g ∈ H(f),

(b) the elements of α(f) and ω(f) are bounded and uniformly continuous on
any compact subset of Ω.

Proof. Due to [4, Theorem 2.7, Remark 2.8(ii)] the hull H(f) 6= ∅ is compact.
(a): Since the Bebutov flow is continuous (see also [4, Theorem 2.7 and

Remark 2.8(ii)]), the assertion is standard (see e.g. [8, p. 11]).
(b): Let K ⊂ Rd be compact and g ∈ ω(f). Hence, there exists a sequence

(sn)n∈N in Z with limn→∞ sn =∞ such that

lim
n→∞

d̄(fn, g) = 0, where fn(t, x) := fn(t+ sn, x).

Boundedness of g(Z ×KΩ) readily follows from the corresponding property of
the image f(Z ×KΩ). In order to show that g is uniformly continuous on K,
we choose ε > 0. First, g ∈ ω(f) in the compact open topology guarantees that
there exists a N ∈ N with

|g(t, x)− fn(t, x)| < ε
3
, |fn(t, y)− g(t, y)| < ε

3
for all n ≥ N, t ∈ Z

and x, y ∈ KΩ. Second, by (B.2) there is a δ > 0 such that |x− y| < δ implies
|f(t, x)− f(t, y)| < ε

3
for all t ∈ Z and x, y ∈ KΩ. Combining this with the

triangle inequality and n ≥ N leads to

|g(t, x)− g(t, y)| 6 |g(t, x)− fn(t, x)|+ |fn(t, x)− fn(t, y)|+ |fn(t, y)− g(t, y)|
< ε

3
+ ε

3
+ ε

3
= ε for all t ∈ Z, x, y ∈ KΩ

such that |x− y| < δ. Passing to the supremum over t ∈ Z implies (B.2), i.e. g
is uniformly continuous on K. The proof for g ∈ α(f) follows analogously, when
sn is replaced by −sn.
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Example B.2. Almost periodic and almost automorphic functions f yield a
compact hull H(f) (see [4, Proposition 3.9]) and thus compact limit sets.

Example B.3 (asymptotically periodic equations). A function f as above is
called asymptotically periodic, if there exist p+, p− ∈ N and limit functions
f± : Z× Ω→ Rd satisfying f±(t, x) = f±(t+ p±, x) and

lim
t→±∞

sup
x∈B

∣∣f(t, x)− f±(t, x)
∣∣ = 0 for all B ⊆ Ω bounded.

This implies finite limit sets

ω(f) =
{
Stf+ : Z× Ω→ Rd| 0 6 t < p+

}
,

α(f) =
{
Stf− : Z× Ω→ Rd| 0 6 t < p−

}
with p+ resp. p− elements.

Lemma B.4. If f is bounded and uniformly continuous on any compact subset
of Rd, then every sequence (sn)n∈N in Z with limn→∞ |sn| =∞ has a subsequence
(snk

)k∈N such that (Ssnkf)k∈N converges.

Proof. Let us suppose w.l.o.g. that |sn| ≥ 1 holds for all n ∈ N, define the sets
Cn := Z× (Ω ∩ B̄n(0)) and the restrictions

fn : C1 → Rd, fn(t, x) := f(t+ sn, x) for all n ∈ N.

First, the boundedness of f on B̄n(0) shows that (fn)n∈N is a bounded sequence.
Second, by the uniform continuity of f on B̄1(0) we see from (B.1) that for every
ε > 0 there exists a δ > 0 such that

|x− y| < δ ⇒ |fn(t, x)− fn(t, y)| = |f(t+ sn, x)− f(t+ sn, y)| < ε

holds for all n ∈ N and t ∈ Z, x, y ∈ C1; thus, the set {fn}n∈N of functions on
Z× C1 is equicontinuous. By the Arzelá-Ascoli theorem (see [23, p. 85]) there
is a subsequence (fn1

m
)m∈N of (fn)n∈N with

∣∣sn1
m

∣∣ > 1 having a continuous limit
g1 : Z× C1 → Rd.

Iterating this construction, for every integer k ≥ 2 one extracts a subse-
quence (nkm)m∈N from (nk−1

m )m∈N with
∣∣snk

m

∣∣ > k such that the sequence (fnk
m

)m∈N
of restrictions fnk

m
: Z×Ck → Rd, fnk

m
(t, x) := f(t+snk

m
, x) converges uniformly

to a continuous function gk : Z×Ck → Rd. By construction, each gk+1(t, ·) is an
extension of gk(t, ·) to the compact set Ck+1, since passing to a subsequence has
no effect on the values in Ck ⊆ Ck+1. This allows us to define the continuous
function

g : Z× Ω→ Rd, g(t, x) := gk(t, x) if (t, x) ∈ Ck
and we claim that g is the limit of the diagonal sequence (Ssnm

mf)m∈N. Indeed,
for every compact C ⊆ Rd there exists a n ∈ N such that CΩ ⊆ Cn. Thus,
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(S
s
nk
mf)m∈N converges to g uniformly on Z × CΩ. Moreover, the remainder of

the diagonal sequence (Ssnm
mf)m∈N is a subsequence of (S

s
nk
mf)m∈N and converges

uniformly to gk on Z × CΩ. Since g and gk have the same values on Z × CΩ,
this concludes our argument.

A rather similar construction as in case of nonlinear functions f is possible
for bounded sequences A : Z→ L(Rd): Indeed, one defines the hull

H(A) := {A(·+ s) : Z→ L(Rd)| s ∈ Z},
on which the Bebutov flow reads as

Ss : H(A)→ H(A), Ss(B) := B(·+ s) for all s ∈ Z.

The closure in this definition of H(A) is again taken in the uniform topology
induced by the metric

d̄(A, Ā) := sup
t∈Z

∣∣A(t)− Ā(t)
∣∣

and the limit sets now become

ω(A) :=
{
B ∈ H(A)

∣∣∣ ∃sn →∞ : lim
n→∞

d̄(A(·+ sn), B) = 0
}
,

α(A) :=
{
B ∈ H(A)

∣∣∣ ∃sn →∞ : lim
n→∞

d̄(A(· − sn), B) = 0
}
.

Lemma B.5. If A : Z → L(Rd) is bounded, then H(A) 6= ∅ and the limit sets
α(A), ω(A) are nonempty and compact.

Proof. The function f : Z×Rd → Rd, f(t, x) := A(t)x is bounded and uniformly
continuous on every set Z×K with a compactK ⊆ Rd. Accordingly, Lemma B.1
applies and implies the claim.

C. Bounded solutions

In order to verify that a subset of the hull H(f) is admissible and hence being
able to apply Theorem 4.4, it is crucial to have criteria for the existence and
uniqueness of bounded entire solutions at hand. For this purpose, let us consider
nonautonomous difference equations (∆) and begin with a folklore

Lemma C.1. Let X be a complete metric space. If a mapping F : X → X has
a contractive iterate Fp, p ∈ N, then F possesses a unique fixed point.

Proof. Thanks to the contraction mapping principle, Fp has a unique fixed
point x∗. In order to see that x∗ is also a fixed point of F, we observe that
any fixed point y∗ of F satisfies Fp(y∗) = y∗ and thus y∗ = x∗. Moreover,
F(x∗) = F(Fp(x∗)) = Fp(F(x∗)) guarantees that F(x∗) is a fixed point of Fp

and consequently x∗ = F(x∗) by uniqueness.
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Proposition C.2 (contractive equations). If ft : Rd → Rd, t ∈ Z, are globally
Lipschitz and satisfy

(i) ft is bounded uniformly in t ∈ Z, i.e. supt∈Z supx∈B |ft(x)| < ∞ for all
bounded B ⊂ Rd,

(ii) there exists a n ∈ N with

sup
t∈Z

t+n−1∏
s=t

lip fs < 1, (C.1)

then (∆) has a unique bounded entire solution.

Remark C.3 (expansive equations). The same conclusion as in Proposition C.2
holds for expansive difference equations (∆). Here, ft : Rd → Rd, t ∈ Z, are
assumed to be bijective with Lipschitzian inverses satisfying conditions corre-
sponding to (i) and (ii).

Proof. Notice that φ = (φt)t∈Z ∈ `∞ is an entire solution to (∆), if and only
if φ is a fixed point of the mapping F : `∞ → `∞, F(φ)t := ft−1(φt−1) for all
t ∈ Z, which is well-defined due to (i). Using mathematical induction it is not
difficult to show that the iterates of F allow the representation

Fn(φ)t = ft−1 ◦ . . . ◦ ft−n(φt−n) for all t ∈ Z, φ ∈ `∞,
which guarantees∣∣Fn(φ)t − Fn(φ̄)t

∣∣ 6 ( t−1∏
s=t−n

lip fs

)∣∣φt−n − φ̄t−n∣∣ 6 sup
t∈Z

(
t+n−1∏
s=t

lip fs

)∥∥φ− φ̄∥∥
for all t ∈ Z, n ∈ N. This leads us to the Lipschitz estimate∥∥Fn(φ)− Fn(φ̄)

∥∥ 6 sup
t∈Z

(
t+n−1∏
s=t

lip fs

)∥∥φ− φ̄∥∥ for all φ, φ̄ ∈ `∞.

Thus, Fn is a contraction by (C.1) and Lemma C.1 with X = `∞ implies a
unique fixed point φ, which in turn is a bounded entire solution to (∆).

Example C.4 (asymptotically periodic equations). We return to Example B.3
and its terminology. If the p±-periodic limit functions f±t : Rd → Rd, t ∈ Z, are
globally Lipschitz with

p±−1∏
t=0

lip f±t < 1, f±t (0) ≡ 0 on Z,

then the limit sets α(f), ω(f) are admissible. Indeed, Proposition C.2 implies
unique bounded solutions φ+, φ− to the respective limit equations

xt+1 = f+
t (xt), xt+1 = f−t (xt)

and finally, by uniqueness, φ± = 0. So the limit sets are admissible.



28 C. Pötzsche and R. Skiba

The following criteria address semilinear equations (∆), where

ft(x) := Atx+ rt(x) (C.2)

with At ∈ L(Rd) and rt : Rd → Rd, t ∈ Z. They require the Green’s function

G(t, s) :=

{
ΦA(t, s)Ps, s 6 t,

−Φ̄A(t, s)[IRd − Ps], s > t,
(C.3)

where Pt ∈ L(Rd), t ∈ Z, is an invariant projector for (L0).

Proposition C.5 (semilinear equations). If ft : Rd → Rd, t ∈ Z, are of the
form (C.2) with globally Lipschitzian rt : Rd → Rd, t ∈ Z, satisfying

(i) 1 6∈ Σ(A)

(ii) supt∈Z lip rt <
K

1−α (with the constants K,α from (2.1)),

then (∆) has a unique bounded entire solution.

Proof. We just sketch the argument and point out that the entire solutions
φ ∈ `∞ to (∆λ) can be characterized as solutions to the equation

φt =
∑
s∈Z

G(t, s+ 1)rs(φs) for all t ∈ Z.

Thanks to the dichotomy estimates (2.1) and assumption (i), a contraction
mapping argument applies, provided the inequality (ii) holds.
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Editorial Remarks

We recommend to consider the following hints and remarks:

1. Page 19: Is (5.2)1, . . . connected with equation (5.2), . . .? Please make
clear the notation. (The number (5.2)1, . . . refers to the Section 5.2,
in which the assumptions are imposed. In order to avoid misun-
derstandings, we write H(5.2)1, . . . now).

2. Please, try to avoid numbers of formulas on which you don’t refer to.
(Authors’ comment: Just now all numbers of the formulas admit
the corresponding links. We checked it by using the usepackage:
refcheck)

3. Please check the references. We have adjusted the indications to the ZAA
style and MathSciNet. (The authors accept the references.)

4. We have made some minor stylistic modifications. Please check them. Do
you agree? (The authors accept the modifications.)
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