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Abstract. This paper contains an approach to compute Taylor approxima-
tions of invariant manifolds associated with arbitrary fixed reference solutions
of nonautonomous difference equations. Our framework is sufficiently general
to include, e.g., stable and unstable manifolds of periodic orbits, or classical
center-stable/-unstable manifolds corresponding to equilibria. In addition, our
focus is to give applicable and quantitative results.

Finally, in the appendix we present a short manual to the Maple program
IFB Comp to calculate Taylor approximations of invariant manifolds.

1. Preliminaries

1.1. Introduction. The role of invariant manifolds as a qualitative tool in the
modern theory of autonomous dynamical systems cannot be overestimated (cf.,
e.g., [Shu87]). However, in general, it is difficult to determine invariant manifolds
explicitly. Nevertheless, in many situations, it suffices to know only their Taylor
approximation up to a certain order, like, e.g., in bifurcation theory or to apply
Pliss’s center manifold reduction.

Although this seems classical and well-established, even recently some papers
on the Taylor approximation of invariant manifolds appeared (cf. [BK98, EvP04]).
Beyond such systematic approaches, concrete computations can be found at many
places, like, e.g., in the monograph [Kuz95, pp. 151–165, Section 5.4]. They
all have in common that one has to solve a (possibly high-dimensional) linear
algebraic equation to determine the desired Taylor coefficients, and, what is more
important, they apply to the setting of autonomous equations only.

In this paper we present an algorithmic approach to obtain Taylor coefficients
of invariant manifolds for nonautonomous difference equations, which is based on
the theoretical results developed in [PR05]. The importance of a nonautonomous
theory is due to the fact that, e.g., we are able to tackle more realistic problems
with time-dependent parameters, or investigate the behavior near nonconstant
solutions (cf. Subsection 3.1). Differing from the formal methods developed in
[PR05], the present paper is focused on applicability of results: the propositions
and theorems are quantitative to a large extend and necessary transformations
of difference equations are given in a constructive way, such that they can be
applied to given examples without further preparations.
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The appendix contains a brief description of our Maple program IFB Comp to
calculate Taylor approximations of invariant fiber bundles for nonautonomous
difference equations.

1.2. Notation. The field of real numbers is denoted by R, the complex numbers
by C, the integers by Z, and for given κ ∈ Z we write Z+

κ := {k ∈ Z : κ ≤ k},
Z−κ := {k ∈ Z : k ≤ κ}, N := Z+

1 .
For arbitrary N ∈ N, we consider the N -dimensional Euclidean space RN with

inner product 〈x, y〉 :=
∑N

k=1 xkyk and induced norm ‖x‖ :=
√
〈x, x〉 for vectors

x, y ∈ RN with components xk, yk, respectively. Elements of RN are always
understood as columns throughout the paper. The orthogonal complement V ⊥

of a linear subspace V ⊆ RN is given by
{
y ∈ RN : 〈x, y〉 = 0 for all x ∈ V

}
.

The r-ball with center of x is denoted as BN
r (x) =

{
y ∈ RN : ‖x− y‖ < r

}
; we

abbreviate BN
r := BN

r (0).
We write L(RN) for the set of real square matrices with N rows, GL(RN) for the

subset of regular square matrices, 1N is the identity matrix and 0N the zero matrix
in L(RN). For T ∈ L(RN), the linear subspaces kerT :=

{
x ∈ RN : Tx = 0

}
and

imT :=
{
Tx ∈ RN : x ∈ RN

}
denote the kernel and range of T , respectively; the

determinant of T is denoted by detT . Finally, the spectrum of T is given by the
set σ(T ) := {λ ∈ C : det(λ1N − T ) = 0}.

It is important to point out that, for a vector- or matrix-valued sequence x, we

use the convenient notation x′(k) = x(k + 1). The k-fiber of a set S ⊆ Z×RN is
given by S(k) :=

{
x ∈ RN : (k, x) ∈ S

}
.

1.3. Linear difference equations. With a matrix sequence A : Z→ L(RN) we
define the transition matrix Φ(k, κ) ∈ L(RN) of the linear difference equation

(1.1) x′ = A(k)x

in RN as the mapping

Φ(k, κ) :=

{
1N for k = κ

A(k − 1) · · ·A(κ) for k > κ
,

and if A(k) is invertible for k < κ, then Φ(k, κ) := A(k)−1 · · ·A(κ− 1)−1.
A projection-valued mapping P+ : Z→ L(RN) is called an invariant projector

of (1.1) if

(1.2) P ′+(k)A(k) = A(k)P+(k) for k ∈ Z

holds, and an invariant projector P+ is denoted as regular if

(1.3) A(k)|kerP+(k) : kerP+(k)→ kerP ′+(k) is bijective for all k ∈ Z.

Then the restriction Φ̄(k, κ) := Φ(k, κ)|kerP+(κ) : kerP+(κ) → kerP+(k), κ ≤ k,
is a well-defined isomorphism, and we write Φ̄(κ, k) for its inverse. Let I denote
either Z or Z+

κ . Then the linear difference equation (1.1) is said to possess an
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exponential dichotomy on I (ED for short) with rates 0 < α+ < α− if there exists
a regular invariant projector P+ : Z→ L(RN) such that the dichotomy estimates

sup
l,k∈I,l≤k

‖Φ(k, l)P+(l)‖αl−k+ <∞, sup
l,k∈I,l≤k

∥∥Φ̄(l, k)P−(k)
∥∥αk−l− <∞(1.4)

are satisfied, where P−(k) := 1N − P+(k) denotes the complementary projector.
In the following, the symbol P± simultaneously stands for P+ or P−, respectively,
and we proceed accordingly with our further notation. Hence, the set

(1.5) V± :=
{

(k, x) ∈ Z×RN : x ∈ imP±(k)
}

is invariant w.r.t. (1.1), i.e., its fibers satisfy Φ(k, κ)V±(κ) ⊆ V±(k) for κ ≤ k.

1.4. Statement of the problem. After these preparation we can present our
primary objectives. Thereto, let Ũ ⊆ RN be a nonempty open convex set and
f : Ũ×Z → RN be a mapping. We consider the nonautonomous difference
equation

(1.6) x′ = f(x, k),

whose maximal forward solution satisfying the initial condition x(k0) = x0 is
denoted by ϕ(·, k0, x0) for k0 ∈ Z and x0 ∈ Ũ .

Let us assume there exists a fixed reference solution ν : Z → Ũ of (1.6) with
BN
r (ν(k)) ⊆ Ũ for k ∈ Z and some r > 0. Typical examples of such reference

solutions are equilibria, periodic or homo-/heteroclinic solutions, but we do not
restrict ourself to such a situation here. Rather it is our goal to describe the
domain of exponential attraction for ν and to provide local approximations of it.

Thereto, we say a solution µ of (1.6) is exponentially decaying to ν on Z±κ if µ
exists on Z±κ for some κ ∈ Z and satisfies

sup
k∈Z±κ
‖µ(k)− ν(k)‖αk± <∞

for some α+ < 1 < α−. Our global set-up will be as follows:

Hypothesis. Let f : Ũ×Z→ RN be a mapping such that the partial derivatives
D1f, . . . , D

m
1 f w.r.t. the first variable exist and are continuous for some m ≥ 2.

Moreover, we assume the following:

(H1) The variational equation

(1.7) x′ = D1f(ν(k), k)x

possesses an ED on Z with rates α+, α− and invariant projector P+.
(H2) For each n ∈ {2, . . . ,m} there exist reals Kn ≥ 0 and points xn ∈ Ũ such

that ‖Dn
1f(xn, k)‖ ≤ Kn and for each bounded set Ω ⊆ Ũ there exists a

real K ≥ 0 with ‖Dm
1 f(x, k)‖ ≤ K for all x ∈ Ω and k ∈ Z.

It is a consequence of these assumptions that the nonlinear difference equation
(1.6) possesses two locally invariant sets S+

ν and S−ν , which are graphs of func-
tions s±ν (·, k) over the affine subspaces ν(k) + V±(k). To see this, apply [PR05,
Theorem 3.2] to (3.1). More precisely, there exist ρ > 0 and mappings

s±ν :
{

(x, k) ∈ RN×Z : x ∈ (ν(k) + V±(k)) ∩BN
ρ (ν(k))

}
→ RN
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satisfying s±ν (ν(k), k) ≡ 0 on Z, limx→0D1sν(x+ ν(k), k) = 0 uniformly in k ∈ Z,

s±ν (ν(k) + P±(k)x, k) ∈ V∓(k) for k ∈ Z, x ∈ BN
ρ ,

such that the graphs S±ν :=
{

(k, ξ + s±ν (ξ, k)) : ξ ∈ (ν(k) + V±(k)) ∩BN
ρ (ν(k))

}
are locally invariant fiber bundles (IFBs for short) of (1.6). This means,

(1.8) (k0, x0) ∈ S±ν ⇒ (k, ϕ(k; k0, x0)) ∈ S±ν
holds for k ≥ k0 as long as ϕ(k; k0, x0) remains in the domain of definition for
s±ν (·, k). Moreover, we have

S+
ν ∩ S−ν =

{
(k, ν(k)) ∈ Z×RN : k ∈ Z

}
.

In this context, S+
ν and S−ν are denoted as pseudo-stable and pseudo-unstable

fiber bundle of ν, respectively.
To illuminate this rather general framework, we close the section with a dy-

namic description of the sets S+
ν and S−ν (cf. [Pöt98, p. 87, Satz 2.4.8]).

Remark 1.1.
(1) Under the assumption that the variational equation (1.7) possesses an ED
with α+ < α− = 1 we have:

• if a solution µ of (1.6) is exponentially decaying to ν on Z+
κ , then there

exists a κ∗ ∈ Z+
κ with (k, µ(k)) ∈ S+

ν for all k ∈ Z+
κ∗ ,

• on the other hand, there exists a ρ1 ∈ (0, ρ) such that every solution µ
with µ(κ) ∈ S+

ν (κ) ∩BN
ρ1

(ν(κ)) decays exponentially to ν on Z+
κ ,

• if a solution µ exists on Z−κ and satisfies µ(k) ∈ BN
ρ (ν(k)) for all k ∈ Z−κ ,

then ((k, µ(k)) ∈ S−ν for all k ∈ Z−κ ,

and S+
ν is denoted the stable and S−ν the center-unstable fiber bundle of ν.

(2) Under the assumption that (1.7) has an ED with 1 = α+ < α− we have:

• if a solution µ of (1.6) is exponentially decaying to ν on Z−κ , then there
exists a κ∗ ∈ Z−κ with (k, µ(k)) ∈ S−ν for all k ∈ Z−κ∗ ,
• on the other hand, there exists a ρ1 ∈ (0, ρ) such that every solution µ

with µ(κ) ∈ S−ν (κ) ∩BN
ρ1

(ν(κ)) decays exponentially to ν on Z−κ ,

• if a solution µ exists on Z+
κ and satisfies µ(k) ∈ BN

ρ (ν(k)) for all k ∈ Z+
κ ,

then ((k, µ(k)) ∈ S+
ν for all k ∈ Z+

κ ,

and S+
ν is denoted the center-stable and S−ν the unstable fiber bundle of ν.

This terminology corresponds to the autonomous situation of invariant man-
ifolds considered, e.g., in [Shu87]. It is the aim of this paper to obtain local
approximations of these sets in form of Taylor expansions.

2. Sufficient Criteria for an Exponential Dichotomy

Even though an ED is a generic property in the class of linear systems with
bounded coefficient sequences (cf. [AM96]), it is difficult to verify an assumption
like (H1) for a given nonautonomous equation. This section, however, contains
sufficient criteria for exponential dichotomies in certain special cases.
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We need some preparations from linear algebra (cf. [HS74, pp. 109–133]). Let
T ∈ L(RN) and 0 < α+ < α−. We say that T possesses an (α+, α−)-spectral
decomposition if the sets

σ+ := {λ ∈ σ(T ) : |λ| ≤ α+} , σ− := {λ ∈ σ(T ) : α− ≤ |λ|}

are nonempty with σ(T ) = σ+ ∪ σ−, i.e., σ(T ) can be separated by an annulus
with center 0 and radii α+ < α−. Having this at hand, we define

V ±T :=
⊕
λ∈σ±,
=λ=0

ker (T − λ1N)N ⊕
⊕
λ∈σ±,
=λ>0

ker
(
T 2 − 2<λT + |λ|2 1N

)N
and n± := dimV ±T . Let

{
x±1 , . . . , x

±
n±

}
be a basis of V ±T . Using the regular matrix

C := (x+
1 , . . . , x

+
n+
, x−1 , . . . , x

−
n−) ∈ L(RN) we introduce the projections

Q+
T := C

(
1n+

0n−

)
C−1, Q−T := C

(
0n+

1n−

)
C−1,

which are complementary and fulfill kerQ±T = V ∓T , imQ±T = V ±T .

2.1. Autonomous equations. In this subsection we assume that the mapping
A in (1.1) does not depend on k ∈ Z, i.e., we consider an autonomous linear
difference equation of the form

(2.1) x′ = Ax.

Here, an eigenvalue λ of A ∈ L(RN) is said to be semisimple if its algebraic and
geometric multiplicities coincide.

Proposition 2.1. Let 0 < α+ < α− be reals, assume the coefficient matrix
A possesses an (α+, α−)-spectral decomposition and the eigenvalues of A with
modulus α+ and α− are semisimple. Then (1.1) possesses an ED on Z with rates
α+, α− and constant invariant projector Q+

A.

Proof. See [Pöt98, p. 25, Satz 1.4.11] and [Kal92, p. 105, Satz 2.1.3.2]. �

2.2. Periodic equations. Let ω ∈ N. The difference equation (1.1) is said to
be ω-periodic if A(k) = A(k + ω) for all k ∈ Z. A 1-periodic equation (1.1)
corresponds to the autonomous case (2.1).

Before stating the subsequent proposition, we note that for all k ∈ Z the matrix
Mω(k) := Φ(k+ω, k) has the same eigenvalues as the so-called monodromy matrix
Mω(0) (cf., e.g., [Zha99, p. 51, Theorem 2.8]). They are denoted as Floquet
multipliers of (1.1). A Floquet theory for periodic difference equations can be
found in [Aga92, Section 2.9, pp. 68–71].

Proposition 2.2. Let 0 < α+ < α− be reals, assume the monodromy matrix
Mω(0) possesses an (αω+, α

ω
−)-spectral decomposition and the Floquet multipliers

with modulus αω+ and αω− are semisimple. Then (1.1) possesses an ED on Z with
α+, α− and an ω-periodic invariant projector P+(k) := Q+

Mω(k) for all k ∈ Z.
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Proof. We first prove that the projector defined by P+(k) := Q+
Mω(k) for k ∈ Z is

invariant, i.e., satisfies (1.2). Thereto, choose k ∈ Z and x ∈ RN . We decompose
x = x1 + x2 with x1 ∈ kerP+(k) and x2 ∈ imP+(k); thus x1 ∈ V −Mω(k). Since

the asserted equation is linear we assume w.l.o.g. that there exists a λ ∈ σ+ such

that x1 ∈ ker
(
(Mω(k)2 − 2<λMω(k) + |λ|2 1N

)N
. The periodicity of A yields(

Mω(k)2 − 2<λMω(k) + |λ|2 1N
)N

x1 = 0

⇒ A(k + ω)
(
Mω(k)2 − 2<λMω(k) + |λ|2 1N

)N
x1 = 0

⇒
(
M ′

ω(k)2 − 2<λM ′
ω(k) + |λ|2 1N

)N
A(k)x1 = 0,

hence A(k)x1 ∈ V −M ′ω(k) = kerP ′+(k) and we have P ′+(k)A(k)x1 = A(k)P+(k)x1.

Analogously, P ′+(k)A(k)x2 = A(k)P+(k)x2 follows. This shows the invariance of
P+. Using Proposition 2.1 we have

‖Φ(kω, κω)P+(κω)‖ ≤ K̃+α
kω−κω
+ , ‖Φ(κω, kω)P−(kω)‖ ≤ K̃−α

κω−kω
−

for k ≥ κ and certain K̃± ≥ 1. We define

K̂+ :=
k

max
i=1

i−1
max
j=0
‖Φ(i, j)P+(j)‖αj−i+ , K̂− :=

k
max
i=1

i−1
max
j=0
‖Φ(j, i)P−(i)‖αi−j− ,

and it follows directly that (1.1) possess an ED on Z with rates α+, α−, bounds

K̃+K̂+, K̃−K̂− (cf. (1.4)) and invariant projector P+. �

2.3. Further criteria. The next result is motivated by [Cop78, p. 70, Lemma 1].

Proposition 2.3. Let κ ∈ Z, B : Z→ L(RN) and P+ denote a regular invariant
projector for (1.1). Moreover, assume (1.1) possesses an ED on Z+

κ with α−, α+,
P+ and that there exists a sequence (kn)n∈N in Z, limn→∞ kn =∞ such that

lim
n→∞

sup
k∈J
‖A(k + kn)−B(k)‖ = 0 for J ⊂ Z finite.

Then the linear difference equation x′ = B(k)x possesses an ED on Z with α+, α−
and the invariant projector Q+(k) := limn→∞ P+(k + kn).

Proof. For all n ∈ N, the translated equation x′ = A(k + kn)x possesses the
transition matrix Φn(k, κ) = Φ(k + kn, κ + kn). Furthermore, it satisfies (1.3)
with the invariant projector P n

+(k) := P+(k + kn), and due to the dichotomy
assumptions there exist constants K+, K− ≥ 1 with∥∥Φn(k, l)P n

+(l)
∥∥ ≤ K+α

k−l
+ ,

∥∥Φ̄n(l, k)P n
−(k)

∥∥ ≤ K−α
l−k
−(2.2)

for k ≥ l ≥ κ − kn. Since
∥∥P n

+(k)
∥∥ ≤ K+ for all k ≥ κ − kn, passing over to

a subsequence of (kn)n∈N yields the existence of Q+(k) := limn→∞ P
n
+(k) for all

k ∈ Z. On the other hand, Ψ(k, l) := limn→∞Φn(k, l) is the transition matrix of
x′ = B(k)x and taking the limit n→∞ in (2.2) leads to

‖Ψ(k, l)Q+(l)‖ ≤ K+α
k−l
+ ,

∥∥Ψ̄(l, k)Q−(k)
∥∥ ≤ K−α

l−k
− for k ≥ l > −∞.

Since invariant projectors for ED on Z are uniquely determined (cf. [Kal94, p. 12]),
one sees that Q+ does not depend on the chosen subsequence. �
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Beyond the above, there exist certain other conditions leading to an ED of
equation (1.1) or (1.7). They can be subdivided into three classes using the key
words: Slowly varying coefficients (cf. [Pöt04b, Corollary 3.6]); Diagonal domi-
nance (cf. [Cop78, p. 55–56, Proposition 3] and [Pal77] for ODEs) and Lyapunov
functions (cf. [Cop78, p. 61, Proposition 2] for ODEs).

3. Transformation of Difference Equations

In this section we describe how a nonautonomous difference equation (1.6)
can be brought into a (decoupled) form, such that it is comparatively simple to
calculate its IFBs, instead of working with the original system. Precisely, one has
to proceed in two steps:

3.1. Equation of perturbed motion. Under the transformation T 1
k : x 7→

x− ν(k) the difference equation (1.6) becomes

(3.1) x′ = D1f(ν(k), k)x+ fν(x, k)

with fν(x, k) := f(x + ν(k), k) − f(ν(k), k) − D1f(ν(k), k)x defined on BN
ρ ×Z.

Note that (3.1) possesses the trivial solution.

3.2. Lyapunov transformation. Now it is our aim to decouple (1.7) without
destroying the dynamical features of (3.1). We make use of a Lyapunov trans-
formation (cf. [Pöt98, p. 166, Lemma A.6.1]). Thereto, let P+ : Z → L(RN) be
the invariant projector from (H1) associated with the ED of (1.7). Then, due
to the regularity condition (1.3), the fibers V±(k), k ∈ Z, possess constant di-
mensions n± with n+ + n− = N . For each k ∈ Z, let

{
x1(k), . . . , xn+(k)

}
be an

orthonormal basis of imP+(k) and
{
y1(k), . . . , yn−(k)

}
be an orthonormal basis

of (imP+(k))⊥. Such orthonormal basis can be obtained using a Gram-Schmidt
procedure (cf. [Hig96, pp. 376ff]) in lower dimensions.

Setting C(k) := (x1(k), . . . , xn+(k), y1(k), . . . , yn−(k)) ∈ GL(RN) yields

C(k)−1P+(k)C(k) =

(
1n− R(k)

0n+

)
,

and the mapping Λ(k) := C(k)
(
1n− −R(k)

1n+

)
is indeed a Lyapunov transformation,

since we have

‖Λ(k)‖ ≤ 2 + ‖P+(k)‖ ,
∥∥Λ(k)−1

∥∥ ≤ 1 + ‖P+(k)‖ for k ∈ Z

(see [Pöt98, p. 28, Definition 1.5.1] for details); note that P+ : Z → L(RN) is
bounded due to (1.4). Thus, applying the transformation T 2

k : x 7→ Λ(k)x to
(3.1) yields a nonautonomous difference equation of the form

(3.2)
x′+=A+(k)x+ + F+(x+, x−, k)
x′−=A−(k)x− + F−(x+, x−, k)

(see [Pöt98, pp. 29–30, Lemma 1.5.4]) with A+ : Z→ L(Rn+), A− : Z→ GL(Rn−)
given by (

A+(k)
A−(k)

)
:= Λ′(k)−1D1f(ν(k), k)Λ(k) for k ∈ Z
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and maps F+ : Bn+
ρ+
×Bn−

ρ−×Z → Rn+ , F− : Bn+
ρ+
×Bn−

ρ−×Z → Rn− being m-times
continuously differentiable w.r.t. (x+, x−) for some ρ+, ρ− > 0, and defined by(

F+(x+, x−, k)
F−(x+, x−, k)

)
:= Λ′(k)fν

(
Λ(k)−1

(
x+

x−

)
, k

)
.

Then the assumptions (H1) and (H2) guarantee:

(i) The transition matrices Φ+ and Φ− of x′+ = A+(k)x+ and x′− = A−(k)x−,
respectively, satisfy for all k, l ∈ Z the estimates

‖Φ+(k, l)‖ ≤ K+α
k−l
+ , ‖Φ−(l, k)‖ ≤ K−α

l−k
− for k ≥ l.(3.3)

(ii) We have (F+, F−)(0, 0, k) ≡ (0, 0) on Z and the partial derivatives satisfy

lim
(x+,x−)→(0,0)

D(1,2)(F+, F−)(x+, x−, k) = 0 uniformly in k ∈ Z.

Remark 3.1. Let P+ be ω-periodic. Then it is obvious from the above construction
that the mapping Λ inherits the periodicity of P+ if one chooses the basis of
imP+(k) and of (imP+(k))⊥ accordingly.

4. Invariant Fiber Bundles

In this section we state an existence result for IFBs of the difference equation
(3.2) and describe a method to compute Taylor approximations of them.

Proposition 4.1. Assume (H1) and (H2) hold. Then there exist neighborhoods
U+ ⊆ Rn+, U− ⊆ Rn− of zero such that:

(a) There exists a continuous mapping s+ : U+×Z→ Rn− satisfying:
(a1) Under the gap condition

(4.1) αm+ < α−,

s+ is m-times continuously differentiable in the first argument, with
limξ→0D1s

+(ξ, k) = 0 uniformly in k ∈ Z,
(a2) the invariance equation

s+(A+(κ)ξ + F+(κ, ξ, s+(ξ, κ)), κ+ 1) = A−(κ)s+(ξ, κ) + F−(ξ, s+(ξ, κ), κ)

holds for (ξ, κ) ∈ U+×Z with A+(κ)ξ + F+(κ, ξ, s+(ξ, κ) ∈ U+,
(a3) s+ is ω-periodic in the second argument if (3.1) is ω-periodic,
(a4) its graph S+ := {(κ, ξ, s+(ξ, κ)) : κ ∈ Z, ξ ∈ U+} is a pseudo-stable

fiber bundle of (3.2) corresponding to its zero solution.
(b) There exists a continuous mapping s− : U−×Z→ Rn+ satisfying:

(b1) Under the gap condition

(4.2) α+ < αm− ,

s− is m-times continuously differentiable in the first argument, with
limξ→0D1s

−(ξ, k) = 0 uniformly in k ∈ Z,
(b2) the invariance equation

s−(A−(κ)ξ + F−(κ, ξ, s−(ξ, κ)), κ+ 1) = A+(κ)s−(ξ, κ) + F+(ξ, s−(ξ, κ), κ)

holds for (ξ, κ) ∈ U−×Z with A−(κ)ξ + F−(κ, ξ, s−(ξ, κ) ∈ U−,
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(b3) s− is ω-periodic in the second argument if (3.1) is ω-periodic,
(b4) its graph S− := {(κ, s−(ξ, κ), ξ) : κ ∈ Z, ξ ∈ U−} is a pseudo-unstable

fiber bundle of (3.2) corresponding to its zero solution.

Proof. Using a standard cut-off technique one modifies (3.2) appropriately and
applies [PS04, Theorem 4.1]. The periodicity assertion follows from [Aul98, Corol-
lary 4.2] (see also [Pöt04a, Theorem 2.4]). �

Proposition 4.2. Assume (H1) and (H2) hold. Then the IFBs S± of (3.2)
(cf. Proposition 4.1) and S±ν of (1.6) are related by

S±ν (k) = ν(k) + Λ(k)−1S±(k) for k ∈ Z.

Proof. This is obvious from the transformations T 1
k , T 2

k applied to (1.6) to obtain
(3.2) given in Section 3. �

Our final goal is to obtain Taylor approximations of the IFB S±ν for (1.6). It
is sufficient to concentrate on the IFB S± for (3.2), since S±ν and S± are related
by Proposition 4.2.

To deduce such a result, we present a formal approach using Fréchet derivatives
(cf. [Lan93, Chapter XIII]) leading to a compact convenient notation. Although
partial derivatives have the advantage that our formulas could be implemented
instantly on a computer, the resulting expressions turn out to be immense — in
particular for higher order derivatives. Yet, some further notation is needed:

Let k,N,M ∈ N. For an k-tuple of the same vector x ∈ RN we write x(k) :=
(x, . . . , x). The linear space of symmetric k-linear mappings from (RN)k to RM is
denoted by Lk(RN ,RM). With T ∈ L(RN) and X ∈ Lk(RN ,RM) we abbreviate

Xx1 · · ·xk := X(x1, . . . , xk), XTx1 · · ·xk := X(Tx1, . . . , Txk).

Moreover, with given j, l ∈ N, we write

P<
j (l) :=

(M1, . . . ,Mj)

∣∣∣∣∣∣∣∣
Mi ⊆ {1, . . . , l} and Mi 6= ∅ for i ∈ {1, . . . , j} ,
M1 ∪ . . . ∪Mj = {1, . . . , l} ,
Mi ∩Mk = ∅ for i 6= k, i, k ∈ {1, . . . , j} ,
maxMi < maxMi+1 for i ∈ {1, . . . , j − 1}


for the set of ordered partitions of {1, . . . , l} with length j and #M for the
cardinality of a finite set M ⊂ N. For a set M = {m1, . . . ,mk} ⊆ {1, . . . , l} we
write XxM := Xxm1 · · ·xmk for k ≤ l and vectors x1, . . . , xl ∈ RN .

We are interested in local approximations for the mapping s± from Proposi-
tion 4.1. The latter one guarantees under the gap conditions (4.1), (4.2) that
s±(·, k) : U± → Rn∓ , k ∈ Z, is m-times continuously differentiable and Taylor’s
theorem (cf. [Lan93, p. 350]) implies the representation

s±(x, k) =
m∑
n=2

1

n!
s±n (k)x(n) +R±(x, k)

with coefficient functions s±n : Z → Ln(Rn± ,Rn∓) given by s±n (k) := Dn
1 s
±(0, k)

and a remainder R± satisfying limx→0
R±(x,k)
‖x‖m = 0.
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• It is convenient to introduce the function S± : U±×Z→ RN ,

S+(x, k) :=

(
x

s+(x, k)

)
, S−(x, k) :=

(
s−(x, k)

x

)
and its partial derivatives S±n (k) := Dn

1S
±(0, k).

• We also introduce the function g±(x, k) := A±(k)x+F±(S±(x, k), k) with
partial derivatives

g±1 (k)x1 = A±(k)x1,

g±n (k)x1 · · ·xn =
n∑
l=2

∑
(M1,...,Ml)∈P<l (n)

Dl
1F±(0, 0, k)S±#M1

(k)xM1 · · ·S±#Ml
(k)xMl

for n ∈ {2, . . . ,m}.
Now it is a consequence of [PR05] that the sequence s±n : Z → Ln(Rn± ,Rn∓) is
the unique bounded solution of the so-called homological equation

(4.3) X ′A±(k) = A∓(k)X +H±n (k)

with the inhomogeneity H±2 (k) := D2
1F∓(0, 0, k) and

H±n (k)x1 · · ·xn := Dn
1F∓(0, 0, k)x1 · · ·xn

+
n−1∑
l=2

∑
(M1,...,Ml)∈P<l (n)

(
Dl

1F∓(0, 0, k)S±#M1
(k)xM1 · · ·S±#Ml

(k)xMl

− s±l (k + 1)g±#M1
(k)xM1 · · · g±#Ml

(k)xMl

)
for x1, . . . , xn ∈ Rn± .

This yields the following

Theorem 4.3. Assume (H1), (H2) and

sup
k∈Z
‖Dn

1f(ν(k), k)‖ <∞ for n ∈ {2, . . . ,m}

hold. Then one has:

(a) Under the gap condition (4.1) the mapping s+ : U+×Z→ Rn− from Propo-
sition 4.1(a) possesses the derivatives

(4.4) Dn
1 s

+(0, k) = −
∞∑
j=k

Φ−(k, j + 1)H+
n (j)Φ+(j+1,k) for n ∈ {2, . . . ,m} ,

(b) under the gap condition (4.2) the mapping s− : U−×Z→ Rn+ from Propo-
sition 4.1(b) possesses the derivatives

(4.5) Dn
1 s
−(0, k) =

k−1∑
j=−∞

Φ+(k, j + 1)H−n (j)Φ−(j+1,k) for n ∈ {2, . . . ,m} .

Proof. See [PR05, Theorem 4.2]. �
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Remark 4.4.
(1) To avoid a repetitive computation of the infinite series in (4.4) and (4.5),
we recommend to calculate s±n (κ) for some fixed time κ ∈ Z and then use the
homological equation (4.3) to determine subsequent values s±n (k) recursively for
k > κ.
(2) In case the difference equation (3.1) is ω-periodic for some ω ∈ N, the Taylor
coefficients s±n (k) inherit this periodicity for n ∈ {2, . . . ,m}. Consequently, due
to the variation of constants formula applied to the homological equation (4.3)
and using s±n (k + ω) = s±n (k), one gets the relations

s+
n (k) = Φ−(k, ω + k)s+

n (k)Φ+(ω+k,k) −
ω+k−1∑
i=k

Φ−(k, i+ 1)H+
n (i)Φ+(i,k),

s−n (k) = Φ+(ω + k, k)s−n (k)Φ−(k,ω+k) +
ω+k−1∑
i=k

Φ+(ω + k, i+ 1)H−n (i)Φ−(i,ω+k).

For 0 ≤ k < ω they yield algebraic equations to determine s±n (0), . . . , s±n (ω−1). In
addition, these formulas are generalizations of the multilinear Sylvester equations
obtained in the autonomous case (see, e.g., [BK98, Theorem 2.4]).

While the infinite series (4.4), (4.5) to determine the partial derivatives in
Proposition 4.1 provide an analytical solution of our problem, they seem to be of
restricted practical use due to the limit process involved. However, it is possible
to obtain an a priori error estimate:

Corollary 4.1 (error estimates). Choose a real γ±n > supk∈Z ‖H±n (k)‖, let ε > 0
be arbitrary and k,K ∈ Z. Then, for finite approximations to the series (4.4)
and (4.5), the following holds:

(a) In case K − k > logα−
αn+

(
Kn

+K−γ
+
n

ε(α−−αn+)

)
one has∥∥∥−∑K

j=k Φ−(k, j + 1)H+
n (j)Φ+(j,k) −Dn

1 s
+(0, k)

∥∥∥ < ε,

(b) in case k −K > logαn−
α+

(
K+Kn

−γ
−
n

ε(αn−−α+)

)
one has∥∥∥∑k−1

j=K Φ+(k, j + 1)H−n (j)Φ−(j,k) −Dn
1 s
−(0, k)

∥∥∥ < ε,

with

K+ := sup
l≤k
‖Φ(k, l)P+(l)‖αl−k+ , K− := sup

l≤k

∥∥Φ̄(l, k)P−(k)
∥∥αk−l− .

Proof. See [PR05, Corollary 4.1]. �

5. Examples

This section contains two examples how to apply the results above. While
the first example is more on a demonstration level, the second one deals with a
periodic problem. Precisely, we calculate a 4th order Taylor approximation for
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the stable and unstable manifolds corresponding to a hyperbolic 2-periodic orbit
of the Henon map.

Example 5.1. Consider the following nonautonomous difference equation de-
scribing a Flour beetle population (cf., e.g., [CD95])

(5.1)
x′1 = bx3e

−c1(k)x3−c2(k)x1

x′2 = (1− µ1)x1

x′3 = x2e
−c3(k)x3 + (1− µ2)x3

with parameters b > 0, µ1, µ2 ∈ (0, 1) and bounded sequences c1, c2, c3 : Z →
(0,∞). The linearization in (0, 0, 0) has a real eigenvalue ρ ∈ (1 − µ2,∞)
and a complex-conjugated pair λ1/2 satisfying

∣∣λ1/2

∣∣ < ρ. Hence, we have a
2-dimensional pseudo-stable and a 1-dimensional pseudo-unstable fiber bundle.

Figure 1. Stable and center-unstable fiber bundle corresponding to the zero
solution for the flour beetle model (5.1), k ∈ {−4, . . . , 4}
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For our numerical calculations we fix the parameters b := 0.65, µ1 := 0.11,
µ2 := 0.58 and set c1(k) := 0.92 + 0.45 arctan(k), c2(k) := 0.9 + 0.13 arctan(k),
c3(k) := 0.18 + 0.06 arctan(k). This yields the eigenvalues −0.26 ± 0.67i, 1. If
we apply the transformation T 2

k to (5.1), then the corresponding IFBs of the
transformed system can be found in Figure 1.

Example 5.2. Consider the Henon map

(5.2)
x′1 = 1 + x2 − ax2

1

x′2 = bx1

with parameters a := 7
5
, b := 3

10
. We are going to study its behavior close to the

2-periodic solution ν(k) = (1
4

+ (−1)k
√

413
28

, 3
40
− 3(−1)k

√
413

280
). The corresponding

equation of perturbed motion is given by

(5.3) x′ =

(
− 7

10
− (−1)k

√
413
10

1
3
10

0

)
x+

(
−7

5
x2

1

0

)
with a 2-periodic linear part. Then its monodromy matrix reads as Φ(2, 0) =(

− 167
50

− 7
10

+
√

413
10

− 21
100
− 3
√

413
100

3
10

)
and the Floquet multipliers turn out to be −38

25
±
√

5551
50

.

Due to Proposition 2.2 we obtain an ED on Z for the linear part of equation (5.3)

with α+ = 1
5

√√
5551
2
− 38, α− = 1

5

√
38 +

√
5551
2

and invariant projector

P+(k) =

(
1
2

+
√

5551
122

5
√

5551(7−(−1)k
√

413)
11102

3
√

5551(7+(−1)k
√

413)
22204

1
2
−
√

5551
122

)
.

This leads to the Lyapunov transformation

Λ(k) =
1

µ(k)

(
λ11(k) 1
λ21(k) λ22(k)

)
with µ(k) := 1

5

√
952
13
− 33

√
5551

52
+ (−1)k

√
59(19

√
7

13
− 7

√
793

52
) and

λ11(k) = 82176625
√

5551
413557573106

− 575236375
13559264692

+ (−1)k(5177127375
√

46787
5376248450378

− 82176625
√

413
13559264692

),

λ21(k) = 29501408375
√

7
√

793
21504993801512

+ 13230436625
352540881992

+ (−1)k(1725709125
√

46787
21504993801512

− 246529875
√

413
352540881992

)

λ22(k) = 7
20
−
√

5551
260

+ (−1)k(
√

413
20
−
√

46787
260

)

To avoid such extensive expressions we switch to a floating point notation from
now on, which is sufficient for our numerical purposes. Then the transformed
equation (5.3) is given by

y′1 =− (0.0593− (−1)k0.1828)y1 + (0.1256− (−1)k0.1612)y2
1

− (0.3835− (−1)k0.2334)y1y2 + (0.0867− (−1)k0.2449)y2
2

y′2 =− (0.5950 + (−1)k1.8341)y2 − (0.8491− (−1)k0.5169)y2
1

+ (0.7684− (−1)k2.1688)y1y2 − (1.5273− (−1)k0.0515)y2
2
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and the invariant fiber bundles read as

s(x, k) = s0(x) + (−1)ks1(x), r(x, k) = r0(x)− (−1)kr1(x)

with

s0(x) = 0.4760x2 − 1.2467x3 + 3.7690x4 − 12.5193x5 +O(x5),

s1(x) = 0.6196x2 − 1.3355x3 + 3.8381x4 − 12.5799x5 +O(x5),

r0(y) = 0.0031y2 + 0.0184y3 + 0.0106y4 + 0.0031y5 +O(y5),

r1(y) = 0.0088y2 + 0.0623y3 + 0.0231y4 + 0.0088y5 +O(y5).

The following figure visualizes these invariant fiber bundles.

1,41,210,80,6

0,6

0,4

0,2

0

-0,2

-0,4

-0,6

Figure 2. Locally stable and unstable fiber bundle corresponding to the
2-periodic orbit {ν(0), ν(1)} the Henon map (5.2)

Appendix: A Manual to IFB Comp

To approximate the infinite sums (4.4) and (4.5) in Theorem 4.3 we have writ-
ten the Maple program IFB Comp, which can be downloaded from the URL

http://www.math.uni-augsburg.de/ana/dyn sys/visual e.hmtl

In this appendix we present a few remarks on the usage of IFB Comp assuming
the reader is familiar with the computer algebra system Maple. One essentially
has to proceed in two steps:

(1) Input the system data (dimensions, linear and nonlinear part) as explained
in the program.
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(2) Then execute the procedures Main and Output.
– Main = Main(k−,k+,p,o,b) is the procedure to compute the Tay-

lor approximation of order o for the k-fibers of the pseudo-stable or
pseudo-unstable bundle for k = k−, . . . , k+. The argument p (stan-
dard value: 10) describes how many terms of the infinite sums in (4.4)
and (4.5) are computed. To compute the pseudo-stable bundle choose
b := 0, for the pseudo-unstable bundle set b := 1.

– Output=Output(b, k, x−, x+, p) is the procedure to plot the k-
fiber of the corresponding bundle. As in the procedure Main, b stands
for type of the bundle. x− and x+ determine the area of output
which is given by [x−, x+]

N
. The argument p (standard value: 1000)

describes the accuracy of the output.
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Christian Pötzsche, School of Mathematics, Univ. of Minnesota, Minneapolis,
MN 55455, USA

E-mail address: poetzsch@math.umn.edu

Martin Rasmussen, Department of Mathematics, Univ. of Augsburg, D-86135
Augsburg, Germany

E-mail address: martin.rasmussen@math.uni-augsburg.de


