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TAYLOR APPROXIMATION OF
INTEGRAL MANIFOLDS

CHRISTIAN PÖTZSCHE AND MARTIN RASMUSSEN

Abstract. Integral manifolds generalize invariant manifolds to
nonautonomous ordinary differential equations. In this paper, we
develop a method to calculate their Taylor approximation with
respect to the state space variables. This is of decisive importance,
e.g., in nonautonomous bifurcation theory or for an application of
the reduction principle in a time-dependent setting.

1. Introduction

In the local analysis of (autonomous) dynamical systems, there are
two canonical ways to simplify a given nonlinear problem: (1) elimi-
nate the nonlinearity as far as possible, and (2) reduce its dimension.
Both lines of approach are fairly classical and led to the rigorous de-
velopment of mathematical techniques like normal forms and center
manifold reduction, respectively. The normal form theory dates back
to Poincaré in the late 19th century already, while the center manifold
theorem in finite dimensions has been proved in [Pli64] (cf. also [Car81],
[CH82, pp. 317ff] and [Van89, pp. 89–169]). These techniques are the
most important, generally available methods in local investigations of
dynamical systems, and they form the basic for, e.g., a local dynamic
bifurcation theory.

Over the last decades, nonautonomous dynamical systems became
a popular and important field of research, since they frequently arise
in applications (e.g., in the development of more realistic models) and
inner-mathematical areas (e.g., to investigate the behavior of equations
close to fixed non-constant reference solutions of, e.g., almost periodic,
homoclinic and heteroclinic type). Nevertheless, until now, the two
classical approaches to simplify dynamical systems mentioned above
are still fairly underdeveloped for explicitly time-dependent problems.
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Actually, a normal form theory for such systems is of quite recent origin
(cf. [Sie02]). On the other hand, a center manifold reduction for non-
autonomous systems splits into two problems: First of all, one needs
an appropriate reduction principle, which states that the essential dy-
namics of a given system is captured by the behavior on the center
manifold. Secondly, one needs to know the center manifold or at least
a suitable approximation of it. A reduction principle for nonautono-
mous ODEs can be found in [Aul82], or see [Sel78] for a corresponding
nonautonomous center manifold theory. The paper at hand addresses
the question how to determine a Taylor approximation of the occurring
center manifolds.

More precisely, our setting is broader and not limited to center man-
ifolds: We present an approach to compute higher order local approx-
imations of pseudo-hyperbolic integral manifolds near steady states
for nonautonomous ordinary differential equations (ODEs) (see also
the so-called “branch manifolds” introduced in [Sel78]). The integral
manifolds under consideration canonically generalize invariant mani-
folds to explicitly time-dependent right-hand sides and include the full
hierarchy of strongly stable, stable, center-stable, as well as the corre-
sponding unstable manifolds as special cases. We point out that our
approach is not limited to the periodic or almost-periodic case. In
our time-dependent situation, the Taylor coefficients are determined
by bounded solutions of a linear ODE in a multilinear mapping space.
Furthermore, we provide an explicit expression for these solutions in
terms of so-called Lyapunov-Perron integrals (cf. Theorem 4.1). The
same technique has been used in [Sel85] for the purpose of a smooth
linearization for vector fields.

For autonomous ODEs, such approximations via Taylor expansions
are widely studied, e.g., in the monograph [Kuz04, pp. 172–187, Sec-
tion 5.4] or the papers [Has80, BK98, EvP04]. In this case, the situa-
tion is simpler, since the Taylor coefficients of invariant manifolds are
(uniquely) determined by algebraic equations, the so-called multilinear
Sylvester equations. In a different context, [FJ95] use Taylor series to
obtain algebraic (polynomial) approximations of global attractors.

The framework for our investigations are nonautonomous ODEs in
Banach spaces. Even though their state space is allowed to be infinite
dimensional, differing from abstract evolution equations, we make the
restriction that the operators involved are bounded and, concerning
their linear part, everywhere defined.

The outline of the paper is as follows. First, we establish our ba-
sic terminology and a crucial result on the existence of bounded so-
lutions for linear ODEs in spaces of multilinear mappings. Section 3
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sets up the necessary theoretical background on local pseudo-stable/-
unstable integral manifolds; in particular, it addresses the question of
their uniqueness. In Section 4, we derive a linear ODE for the Tay-
lor coefficients of the integral manifolds and solve it analytically. We
demonstrate our results in Section 5 by two examples. The first one is
the celebrated Lorenz equation with nonautonomously perturbed pa-
rameters. We are able to prove that a nonautonomous bifurcation of
pitchfork type occurs in the sense of pullback attractors. Secondly,
we calculate approximations of the center-stable and center-unstable
integral manifolds for a system occurring in the investigation of trav-
eling wave solutions for a modified Korteweg-de Vries equation. For
the reader’s convenience, two appendices contain a theorem on global
integral manifolds and an existence result for pullback attractors.

We close this introduction by reviewing different approaches to the
numerical computation of invariant manifolds for autonomous ODEs:
[FK94] is based on the graph transform method, [GV04] apply a PDE
approach to obtain global invariant manifolds and [HOV95] use in-
variant foliations. While differentiability of the right-hand side is es-
sential in our approach and applications, the paper [JR05] provides
a method to approximate non-smooth center manifolds based on a
discretization of the Lyapunov-Perron operator. Furthermore, [DH97]
work with subdivision techniques to obtain global approximations and
[ARS05, ARS06] generalize this to nonautonomous ODEs.

After all, we refer to [PR05] for related results and further references
in the discrete case of nonautonomous difference equations, where the
methods are partially parallel to the present paper, and consequently,
we can shorten some proofs here. Nonetheless, because of the following
reasons and distinctions, we think it is not legitimate to consider our
present ODE treatment as direct consequence of the corresponding
investigation in [PR05]:

• Due to the invertibility of transition operators for the ODEs
under consideration, the present treatment of exponential di-
chotomies appears simpler. One does not need to assume in-
vertibility of the linear part restricted to its pseudo-unstable
invariant subspace, in order to obtain a robust nonautonomous
hyperbolicity concept (in form of an exponential dichotomy).
• In addition, integral manifolds of ODEs need to satisfy certain

continuity assumptions for their partial derivatives (cf. (H4) in
Section 4) w.r.t. the time variable. By the trivial topology of
the integers, this is redundant for difference equations.
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• Finally, the invariance equation for integral manifolds is a first
order partial differential equation (see (3.4)), while the corre-
sponding theory of difference equations leads to a nonlinear
functional equation. Hence, a priori it is not clear whether the
methods developed for the discrete case simply carry over to
our setting, or if different techniques have to be employed. In-
deed, one needs supplementary tools (e.g., the Leibniz rule from
Lemma 2.1) in our analysis, yielding another homological equa-
tion (see (4.3)), which is structurally different from the related
discrete object (see [PR05, (4.4)]).

In addition, the difference equations paper [PR05] illustrates the ob-
tained results via critical problems from stability theory; more pre-
cisely, we applied a nonautonomous reduction principle to various bi-
ological models. In this paper, however, our bias is different and on a
nonautonomous bifurcation scenario in some parametrically perturbed
Lorenz system.

To conclude this introduction, we think it is useful and interesting to
show that the algebraic problems from the well-known autonomous the-
ory become tasks related to perturbation theory of ODEs in a nonau-
tonomous setting. Moreover, having a nonautonomous bifurcation the-
ory available (cf. the approaches of [Sel79, Joh89, JY94, JM03, LRS02,
LRS06, Ras06]), it is our hope that the introduced methods in connec-
tion with, for instance [Sie02], can be helpful to simplify problems.

2. Preliminaries

Above all, let us introduce some notation. N stands for the set of
positive integers, R for the real and C for the complex field. Through-
out this paper, the real (F = R) or complex (F = C) Banach spaces
X ,Y are allowed to be infinite dimensional, and their norm is denoted
by ‖·‖. In such a normed space, Bρ is the open ball with center 0 and
radius ρ > 0; beyond that, Uρ(V ) ⊆ X is the open ρ-neighborhood
of V ⊆ X . Such a subset V is called star-shaped w.r.t. 0, if one has
{hx ∈ X : h ∈ [0, 1]} ⊆ V for all x ∈ V .

We write IX for the identity mapping on X , and for an n-tuple of
the same vector x ∈ X we use the abbreviation xn := (x, . . . , x) ∈
X n. With n ∈ N, Ln(X ;Y) is the Banach space of symmetric n-linear
bounded operators from X n to Y , Ln(X ) := Ln(X ;X ) and L(X ) :=
L1(X ); all these spaces are equipped with their canonical norm. For
a mapping X ∈ Ln(X ;Y), we abbreviate Xx1 · · ·xn := X(x1, . . . , xn).
With a closed subspace X1 ⊆ X and T ∈ L1(X1;X ), we define XT ∈
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Ln(X1;Y) by

XTx1 · · ·xn := X(Tx1, . . . , Txn) for all x1, . . . , xn ∈ X1

and obtain the norm estimate (cf. [AMR88, p. 62])

(2.1) ‖XT‖ ≤ ‖T‖n ‖X‖ for all n ∈ N .

The range of T is denoted by R(T ) := T (X1).
During the rest of the paper, I denotes a real interval unbounded

above.
Let U ⊆ X be nonempty and open. We say a mapping F : U×I→Y

is uniformly bounded if it maps bounded subsets of U into bounded sets
(uniformly in I), i.e., if for any bounded Ω ⊆ U , there exists an M ≥ 0
such that ‖F (x, t)‖ ≤ M for all x ∈ Ω, t ∈ I. We write DF̄ for the
Fréchet derivative of a mapping F̄ : U→Y , and if F : U×I→Y depends
differentiably on the first variable, then its partial derivative is denoted
by D1F . For integers m ≥ 0, the higher order derivatives DmF̄ or Dm

1 F
are defined inductively, and F is said to be uniformly Cm-bounded, if
Dm

1 F is uniformly bounded and the functions Dn
1F (0, ·) : I→Ln(X ;Y)

are bounded for n ∈ {1, . . . ,m− 1}. Thus, for a set U star-shaped
w.r.t. 0, the mean value theorem implies the uniform boundedness of
Dn

1F for n ∈ {1, . . . ,m}.
Now we quote a version of the Leibniz (product) rule and the chain

rule for higher order Fréchet derivatives. To achieve a compact and
convenient notation, we use (ordered) partitions of finite sets. These
partitions consist of tuples of subsets of a given finite set. More pre-
cisely, with j, l ∈ N, we write

Pj(l) :=

(N1, . . . , Nj)

∣∣∣∣∣∣
Ni ⊆ {1, . . . , l} for i ∈ {1, . . . , j} ,
N1 ∪ . . . ∪Nj = {1, . . . , l} ,
Ni ∩Nk = ∅ for i 6= k, i, k ∈ {1, . . . , j}


for the partitions of {1, . . . , l} with length j. Moreover, the ordered
partitions of {1, . . . , l} with length j are given by

P<
j (l) :=

{
(N1, . . . , Nj) ∈ Pj(l)

∣∣∣∣ Ni 6= ∅ for i ∈ {1, . . . , j} ,
maxNi < maxNi+1 for 1 ≤ i < j

}
.

In case of a set N = {n1, . . . , nk} ⊆ {1, . . . , l} for k ∈ N, k ≤ l, we
abbreviate DkF̄ (x)xN := DkF̄ (x)xn1 · · · xnk for x ∈ U , x1, . . . , xl ∈ X ,
where F̄ : U→Y is assumed to be k-times differentiable. At last, #N
is the cardinality of a finite set N ⊂ N.

Lemma 2.1 (Leibniz rule). Given m,n ∈ N, an open set U ⊆ X ,
x ∈ U , Banach spaces Y1, . . . ,Yn,Z and mappings fi : U→Yi, i ∈
{1, . . . , n}, which are m-times differentiable. Then for any bounded
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multilinear mapping M : Y1× . . .×Yn→Z, also the mapping g : U→Z,
g(x) := M(f1(x), . . . , fn(x)) is m-times differentiable, and for l ∈
{1, . . . ,m}, the derivatives possess the representation

Dlg(x)x1 · · ·xl =
∑

(N1,...,Nn)∈Pn(l)

M(D#N1f1(x)xN1 , . . . , D
#Nnfn(x)xNn)

for any x1, . . . , xl ∈ X .

Proof. See [AMR88, pp. 95–96 and p. 112, Ex. 2.4C]. �

To reveal the efficiency of this notation, we consider the following
simple example, as well as Example 2.4 below.

Example 2.2. For l = 2 and n = 3, we obtain the partition

P3(2) =
{

(∅, ∅, {1, 2}), (∅, {1, 2} , ∅), ({1, 2} , ∅, ∅), (∅, {1} , {2}),
(∅, {2} , {1}), ({1} , ∅, {2}), ({1} , {2} , ∅), ({2} , {1} , ∅),
({2} , ∅, {1})

}
,

and in case of a bounded 3-linear mapping M , the above Lemma 2.1
yields

D2g(x)x1x2x3

=M(f1(x), f2(x), D2f3(x)x1x2) +M(f1(x), D2f2(x)x1x2, f3(x))

+M(D2f1(x)x1x2, f2(x), f3(x)) +M(f1(x), Df2(x)x1, Df3(x)x2)

+M(f1(x), Df2(x)x2, Df3(x)x1) +M(Df1(x)x1, f2(x), Df3(x)x2)

+M(Df1(x)x1, Df2(x)x2, f3(x)) +M(Df1(x)x2, Df2(x)x1, f3(x))

+M(Df1(x)x2, f2(x), Df3(x)x1) .

Lemma 2.3 (chain rule). Given m ∈ N, open sets U, V ⊆ X , x ∈ U
and mappings f : V→X , g : U→X , which are m-times differentiable
and satisfy g(U) ⊆ V . Then the composition f ◦ g : U→X is m-
times differentiable, and for l ∈ {1, . . . ,m}, the derivatives possess the
representation

Dl(f◦g)(x)x1 · · ·xl =
l∑

j=1

∑
(N1,...,Nj)∈P<j (l)

Djf(g(x))D#N1g(x)xN1 · · ·D#Njg(x)xNj

for any x1, . . . , xl ∈ X .

Proof. See [Ryb91, Theorem 2]. �

Example 2.4. To clarify Lemma 2.3 in case, e.g., l = 3, we obtain the
ordered partitions

P<
1 (3) = {({1, 2, 3})} ,
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P<
2 (3) = {({1} , {2, 3}), ({1, 2} , {3}), ({2} , {1, 3})} ,
P<

3 (3) = {({1} , {2} , {3})} ,

and therefore, the third order derivative of the composition f ◦ g reads
as

D3(f ◦ g)(x)

=Df(g(x))D3g(x)x1x2x3 +D2f(g(x))Dg(x)x1D
2g(x)x2x3

+D2f(g(x))D2g(x)x1x2Dg(x)x3 +D2f(g(x))Dg(x)x2D
2g(x)x1x3

+D3f(g(x))Dg(x)x1Dg(x)x2Dg(x)x3 .

Since we are dealing with nonautonomous differential equations, it
is advantageous to have some further notions available. Any subset
S ⊆ I×X is called a nonautonomous set, and the sets S(t) := {x ∈ X :
(t, x) ∈ S} for t ∈ I are its t-fibers.

For a differentiable function φ : I→X , I ⊆ I is an interval, its
derivative is denoted by φ̇ : I→X . We use the notation

(2.2) ẋ = f(x, t)

to denote the ordinary differential equation (ODE) ẋ(t) = f(x(t), t)
with right-hand side f : U×I→X , where U is an open subset of the
Banach space X and f satisfies conditions guaranteeing existence and
uniqueness of solutions. A differentiable function φ : I→X is said to
solve (2.2) on I ⊆ I if φ(t) ∈ U and φ̇(t) ≡ f(φ(t), t) holds for all t ∈ I.
Let ϕ stand for the general solution of (2.2), i.e., ϕ(·; t0, x0) is the
unique non-continuable solution of (2.2) satisfying the initial condition
ϕ(t0; t0, x0) = x0 for t0 ∈ I, x0 ∈ U .

Given a continuous coefficient function A : I→L(X ), we define the
transition operator Φ(t, τ) ∈ L(X ), τ, t ∈ I, of the linear ODE

(2.3) ẋ = A(t)x

in X as solution of the L(X )-valued initial value problem Ẋ = A(t)X,
X(τ) = IX (cf. [DK74, p. 101]). A projection-valued function P− :
I→L(X ) is said to be an invariant projector of (2.3) supposed that

(2.4) Φ(t, τ)P−(τ) = P−(t)Φ(t, τ) for all t, τ ∈ I .

The complementary projector P+ : I→L(X ), defined by P+(t) := IX −
P−(t) for all t ∈ I, is also an invariant projector. One can show that
invariant projectors are continuously differentiable, and they satisfy the
linear ODE

(2.5) Ṗ±(t) = A(t)P±(t)− P±(t)A(t) for all t ∈ I ;
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here the symbol P± simultaneously stands for P+ or P−, respectively.
We proceed similarly with our further notation throughout the paper.

As mentioned in the introduction, a crucial tool in our analysis will
be a particular class of linear ODEs in spaces of n-linear mappings.
The remaining section features some preliminaries on this aspect. More
precisely, we are interested in linear differential equations in Ln(X ) of
the form

(2.6) ẊP±(t) = LA(t)XP±(t)

with a coefficient function LT ∈ L(Ln(X )) given by (cf. [Sel85, p. 1066])

(LTX)x1 · · ·xn := TXx1 · · ·xn −
n∑
j=1

Xx1 · · ·xj−1Txjxj+1 · · ·xn

for T ∈ L(X ) and vectors x1, . . . , xn ∈ X . It is worth mentioning that
these equations are not ODEs of the form (2.2), since the projectors
P±(t) are noninvertible in general. It is easy to see that, given τ ∈ I
and initial state Ξ ∈ Ln

(
X ;R(P∓(τ))

)
with ΞP±(τ) ≡ Ξ ,

(2.7) Λ±(t, τ)Ξ := Φ(t, τ)ΞΦ(τ,t)P±(t) for all t ∈ I

defines the uniquely determined solution Λ±(·, τ)Ξ of equation (2.6)
satisfying the relation (Λ±(t, τ)Ξ)P±(t) = Λ±(t, τ)Ξ for t ∈ I .

In order to discuss integral manifolds of nonautonomous ODEs, we
need an appropriate, i.e., robust hyperbolicity notion for their linear
part.

Hypothesis. Assume the continuous function A : I→L(X ) satisfies:

(H1) Hypothesis on linear part: The linear ODE (2.3) possesses an
exponential dichotomy, i.e., there exists an invariant projector
P− : I→L(X ) such that for all t, τ ∈ I, the estimates

‖Φ(t, τ)P+(τ)‖ ≤ K+e
α(t−τ) , ‖Φ(τ, t)P−(t)‖ ≤ K−e

β(τ−t)(2.8)

for all τ ≤ t hold with real constants K+, K− ≥ 1, α < β.

Remark 2.5.

(1) In the autonomous case, i.e., if A0 := A(t) does not depend on
t ∈ I, it is sufficient to assume that the spectrum σ(A0) ⊆ C
of A0 ∈ L(X ) can be separated into a “pseudo-stable” spectral
part σ+ with <σ+ < α, and a disjoint “pseudo-unstable” part
σ− with β < <σ+. Then P± are constant (in t ∈ I) and given
by the spectral projectors related to σ±, respectively (cf. [DK74,
pp. 72–73]).
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(2) For a T -periodic differential equation (2.3), T > 0, an expo-
nential dichotomy is implied by the fact that σ(Φ(τ + T, τ)),
τ ∈ I fixed, can be separated into a “pseudo-stable” spectral
part σ+ with |σ+| < α, and a disjoint “pseudo-unstable” part
σ− satisfying β < |σ−| (cf. [DK74, p. 203, Theorem 2.1]).

(3) Further sufficient conditions for an exponential dichotomy can
be found in [Cop78].

Our first result deals with perturbations of linear systems (2.6) in
Ln(X ). For this, the notion of quasiboundedness is convenient. With
reals γ and a fixed τ ∈ I, we say a function φ : I→X is γ-quasibounded
if

‖φ‖τ,γ := sup
t∈I
‖φ(t)‖ eγ(τ−t) <∞

holds. Obviously, 0-quasiboundedness coincides with the classical no-
tion of boundedness.

Lemma 2.6 (quasibounded solutions). Suppose that (H1) is satisfied,
let n ∈ N, τ ∈ I, γ ∈ R, and assume H± : I→ Ln(X ) is γ-quasibounded
with H±(t) ∈ Ln

(
X ;R(P∓(t))

)
for t ∈ I. Then for the ODE

(2.9) ẊP±(t) = LA(t)XP±(t) +H±(t)P±(t)

in Ln(X ), the following holds:

(a) In case γ < β−nα, there exists a unique γ-quasibounded solution
Γ+ : I→Ln(X ) of (2.9) with

(2.10) Γ+(t) = Γ+(t)P+(t) ∈ Ln
(
X ;R(P−(t))

)
for all t ∈ I ,

given by

(2.11) Γ+(t) := −
∫ ∞
t

Φ(t, s)H+(s)Φ(s,t)P+(t) ds

and satisfying the estimate ‖Γ+‖τ,γ ≤
K−Kn

+

β−γ+nα
‖H+‖τ,γ .

(b) In case I = R and γ > α − nβ, there exists a unique γ-
quasibounded solution Γ− : R→Ln(X ) of (2.9) with Γ−(t) =
Γ−(t)P−(t) ∈ Ln

(
X ;R(P+(t))

)
for all t ∈ R, given by

Γ−(t) :=

∫ t

−∞
Φ(t, s)H−(s)Φ(s,t)P−(t) ds

and satisfying the estimate ‖Γ−‖τ,γ ≤
K+Kn

−
γ+α−nβ ‖H

−‖τ,γ .

Proof. Let τ ∈ I. We only prove the assertion (a), since (b) can be
shown similarly.

(I) We first consider the special case H+(t) ≡ 0 on I. Then equation
(2.9) coincides with (2.6). Let Γ+ : I→Ln(X ) be a γ-quasibounded
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solution of (2.9) satisfying (2.10). Taking the limit t → ∞ in the
inequality

‖Γ+(τ)‖ (2.7)
=

∥∥Φ(τ, t)Γ+(t)Φ(t,τ)P+(τ)

∥∥
(2.10)

≤ ‖Φ(τ, t)P−(t)‖
∥∥Γ+(t)Φ(t,τ)P+(τ)

∥∥
(2.1)

≤ ‖Φ(τ, t)P−(t)‖ ‖Γ+(t)‖ ‖Φ(t, τ)P+(τ)‖n

(2.8)

≤ K−K
n
+e

(nα+γ−β)(t−τ) ‖Γ+‖τ,γ
for all t ≥ τ yields Γ+(τ) = 0. Since τ ∈ I was arbitrary, the zero
solution of (2.9) is the only γ-quasibounded solution satisfying (2.10).

(II) We now omit the restriction on H+ and note that the function
Γ+ from (2.11) is well-defined, since the estimate

‖Γ+(t)‖
(2.11)

≤
∫ ∞
t

∥∥Φ(t, s)P−(s)H+(s)Φ(s,t)P+(t)

∥∥ ds
(2.1)

≤
∫ ∞
t

‖Φ(t, s)P−(s)‖
∥∥H+(s)

∥∥ ‖Φ(s, t)P+(t)‖n ds

(2.8)

≤ K−K
n
+e

γ(t−τ)
∥∥H+

∥∥
τ,γ

∫ ∞
t

e(s−t)(γ+nα−β) ds

=
K−K

n
+

β − nα− γ
∥∥H+

∥∥
τ,γ
eγ(t−τ) for all t ∈ I

holds, which in turn yields the claimed estimate for ‖Γ+‖τ,γ. Moreover,

it is easy to see that Γ+ satisfies (2.10). Γ+ is a solution of (2.9), since
the Leibniz rule (Lemma 2.1) yields

Γ̇+(t)P+(t) ≡ Φ(t, t)H+(t)Φ(t,t)P+(t) − A(t)

∫ ∞
t

Φ(t, s)H+(s)Φ(s,t)P+(t) ds

−
n∑
j=1

∫ ∞
t

Φ(t, s)H+(s)
(
Φ(s, t)P+(t), . . . ,

d

dt
(Φ(s, t)P+(t))︸ ︷︷ ︸
jth position

, . . . ,Φ(s, t)P+(t)
)

(2.5)
≡ H+(t)P+(t) + A(t)Γ+(t)−

n∑
j=1

Γ+(t)
(
IX , . . . , A(t)︸︷︷︸

jth position

, . . . , IX
)

≡ LA(t)Γ+(t)P+(t) +H+(t)P+(t) on I .

Finally, the uniqueness statement results from step (I), because the dif-
ference of any two γ-quasibounded solutions of (2.9) is a γ-quasibounded
solution of (2.6) and therefore identically vanishing. �
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3. Properties of Integral Manifolds

In the following, we introduce and summarize some fundamental
facts on integral manifolds of ODEs. For the autonomous and cen-
ter manifold situation, e.g., [CLW94, pp. 1–48, Chapter 1], [Van89,
pp. 89–169] or [Car81] are good references, whereas the general nonau-
tonomous setting is treated in [Sel78] or [AW96]. We consider nonau-
tonomous ODEs of the form

(∗)F ẋ = A(t)x+ F (x, t)

with a mapping F : U0×I→X , where U0 ⊆ X is open and star-shaped
w.r.t. 0 ∈ X .

Hypothesis. Let m ∈ N. Assume the continuous mapping F : U0×I→X
satisfies:

(H2) Hypothesis on nonlinearity: F is m-times continuously Fréchet
differentiable in the first argument, F (0, t) ≡ 0 on I, we have
the limit relation

(3.1) lim
x→0
‖D1F (x, t)‖ = 0 uniformly in t ∈ I

and F is uniformly Cm-bounded.

Remark 3.1. One typically obtains (∗)F from (2.2) as equation of per-
turbed motion. Thereto, let φ : I→X be a fixed reference solution of
(2.2), and one is interested in the behavior close to φ. Hence, instead
of (2.2), one investigates (∗)F with

A(t) := D1f(φ(t), t),

F (x, t) := f(x+ φ(t), t)− f(φ(t), t)−D1f(φ(t), t)x

and assumes that the partial derivatives Dn
1f exist, are continuous and

uniformly bounded for n ∈ {0, . . . ,m}, and that one has

lim
x→0
‖D1f(x+ φ(t), t)−D1f(φ(t), t)‖ = 0 uniformly in t ∈ I .

Next, we introduce a nonautonomous version of an invariant man-
ifold for (∗)F . Let P± : I→L(X ) be the invariant projector of (2.3)
from (H1), U ⊆ U0 is open star-shaped w.r.t. 0 and ϕ denotes the gen-
eral solution to (∗)F . Assume s± : U×I→X is a mapping continuously
Fréchet differentiable and satisfying

s±(0, t) ≡ 0 on I , lim
x→0

∥∥D1s
±(x, t)

∥∥ = 0 uniformly in t ∈ I ,(3.2)

s±(x, t) = s±(P±(t)x, t) ∈ R(P∓(t))(3.3)

for all t ∈ I, x ∈ X . Then the nonautonomous set given by the graph

S± :=
{

(τ, ξ + s±(ξ, τ)) ∈ I×X : ξ ∈ R(P±(τ)) ∩ U
}
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is called a local integral manifold of the nonlinear ODE (∗)F if

(t0, x0) ∈ S± ⇒ (t, ϕ(t; t0, x0)) ∈ S± for all t ∈ JU(t0, x0)

holds, where JU(t0, x0) ⊆ I is the maximal interval of existence for
ϕ(·; t0, x0) w.r.t. U . One speaks of a Cm-integral manifold of (∗)F if the
partial derivatives Dn

1 s
± exist and are continuous for n ∈ {1, . . . ,m}.

In case U = X , we say that S± is a global integral manifold of (∗)F .
Geometrically, the conditions (3.2)–(3.3) imply that S± contains the
zero solution of (∗)F , and S± is fiber-wise tangent to the vector bundle
{(τ, ξ) ∈ I×X : ξ ∈ R(P±(τ))}, while (3.3) yields that each t-fiber
S±(t) is a graph over R(P±(t)) ∩ U .

Local integral manifolds satisfy the following nonlinear first order
partial differential equation, named as invariance equation

A(t)s±(ξ, t)+P∓(t)F (ξ + s±(ξ, t), t)

=D1s
±(ξ, t)

(
A(t)ξ + P±(t)F (ξ + s±(ξ, t), t)

)
+D2s

±(ξ, t)(3.4)

for all t ∈ I, ξ ∈ R(P±(t)) ∩ U such that ξ + s±(ξ, t) ∈ U0.
S+ and S− are denoted as pseudo-stable and pseudo-unstable integral

manifolds of (∗)F , respectively. To be more specific, S+ describes a
center-stable integral manifold in case β > 0, a stable integral manifold
in the hyperbolic situation α < 0 < β and a strongly stable integral
manifold in case β < 0. Under the additional assumption I = R, S−
describes a center-unstable integral manifold in case α < 0, an unstable
integral manifold in the hyperbolic situation α < 0 < β and a strongly
unstable integral manifold in case α > 0. In the light of Remark 2.5,
this terminology corresponds to the autonomous situation of invariant
manifolds considered, e.g., in [CLW94].

Concerning the existence of smooth local integral manifolds, due to
our general Banach space setting, we have to impose the assumption
that X is a Cm-Banach space; that is, the norm on X is of class Cm

away from 0. A characterization of such spaces, as well as concrete ex-
amples, can be found in [KM97, pp. 127–152, Section 13]; e.g., Hilbert
spaces are C∞-Banach spaces. Then, on X , there exists a Cm-cut-off
function (or bump function) χ : X→ [0, 1] with the properties

χ(x) ≡ 1 on x ∈ B1, χ(x) ≡ 0 on x ∈ X \B2(3.5)

(cf. [AMR88, p. 473, Lemma 4.2.13]). This is of crucial importance for
the proof of

Theorem 3.2 (existence of local integral manifolds). Suppose (H1)–
(H2) hold and that X is a Cm-Banach space. Then there exists a ρ0 > 0
such that one has with U = Bρ0:
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(a) Under the gap condition

(3.6) mα < β ,

the ODE (∗)F possesses a local pseudo-stable Cm-integral man-
ifold S+,

(b) for I = R and under the gap condition

(3.7) α < mβ ,

the ODE (∗)F possesses a local pseudo-unstable Cm-integral man-
ifold S−,

(c) for the corresponding mapping s± : U×I→X , there exist reals
γ0, . . . , γm ≥ 0 such that

(3.8)
∥∥Dn

1 s
±(x, t)

∥∥ ≤ γn for all x ∈ U, t ∈ I, n ∈ {0, . . . ,m} ,
(d) if the mappings A and F are periodic in t with period θ > 0,

then

s±(x, t+ θ) = s±(x, t) for all x ∈ X , t ∈ I ,
and if (∗)F is autonomous, then the mapping s± is independent
of t ∈ I, i.e., the set {ξ + s±(ξ) ∈ X : ξ ∈ R(P±) ∩ U} is a lo-
cally invariant manifold of (∗)F .

Proof. One obtains the local integral manifolds as restriction of global
integral manifolds by suitably modifying the ODE (∗)F outside a small
neighborhood of 0 with a Cm-cut-off function. Using this fairly stan-
dard cut-off technique, one can apply Theorem A.1 to the modified
equation (∗)F and deduce the assertions of the present Theorem 3.2.

�

The integral manifolds defined above are constructed as perturba-
tions of the invariant vector bundles for the corresponding linear system
(2.3), which are global objects. Therefore, it is reasonable that solu-
tions of (∗)F lying in the corresponding integral manifolds inherit the
dynamical properties of the linearization at least locally. For instance,
interpreting the stable integral manifold S+ as domain of attraction for
the zero solution of (∗)F , it is desirable that the domain of definition
for s+(·, t) does not shrink to 0 for t → ∞. Moreover, referring to an
application of the reduction principle in critical stability problems, one
needs the existence of a center-unstable integral manifold S− on a set
of the form R×Bρ0 . However, one cannot expect that this uniformity
in time persists if one weakens the limit relation (3.1) in assumption
(H2) to uniform convergence on compact sets, i.e.,

(3.9) lim
x→0
‖D1F (x, t)‖ = 0 uniformly in t ∈ K



14 CHRISTIAN PÖTZSCHE AND MARTIN RASMUSSEN

for every compact subset K ⊂ I. This is demonstrated by the following
example.

Example 3.3. Let I := [1,∞), and consider the nonautonomous ODE
(2.2) with scalar right hand side f : R×I→ R, given by

f(x, t) := −1
2
x+ F (x, t), F (x, t) :=

∫ x

0

ψ(u, t) du ,

where ψ : R×I→ R is a bounded C1-function, defined by

ψ(u, t) :=


1 for |u| ≥ 1

t

exp

(
−
(

1
|u| − t

)2
)

for 0 < |u| < 1
t

0 for u = 0

.

The nonlinearity F does not fulfill (3.1) in assumption (H2), whereas
(3.9) holds, since one has D1F (x, t) = ψ(x, t). Assume, there exists an
η > 0 so that

(3.10) lim
t→∞

ϕ(t+ τ ; τ, η) = 0 for all τ ∈ I .

Due to limt→∞
∫ η

0
ψ(u, t) du = η, there exists a t0 = t0(η) > 1 with∫ η

0
ψ(u, t) du ≥ 2

3
η for all t ≥ t0. This implies

f(t, η) ≥ −1

2
η +

2

3
η > 0 for all t ≥ t0 .

Hence, one has ϕ(t; τ, η) ≥ η for all t ≥ τ ≥ t0, which contradicts
(3.10). Therefore, the trivial solution of (2.2) is not uniformly attrac-
tive, thus not even uniformly asymptotically stable in the sense of Lya-
punov (see, e.g., [DK74, p. 279]), although the linearization ẋ = −1

2
x

is actually exponentially stable. This example shows that notions of
uniform stability do not persist under nonlinearities F satisfying only
(3.9).

Remark 3.4. We point out that it is straight forward to set up a theory
of integral manifolds for (∗)F , where the uniformity in limit relation
(3.1) is relaxed to the fact for all ε > 0, there exists a continuous
∆ : I→(0,∞) such that x ∈ B∆(t) implies ‖D1F (x, t)‖ < ε for all t ∈ I.
Using a time-dependent cut-off technique in the proof of Theorem 3.2,
the fibers of the resulting integral manifolds are given as graphs of func-
tions s±(·, t) defined on open neighborhoods U(t) ⊆ X of 0, whereupon
U(t) is allowed to shrink to {0} for t → ∞. However, for the above
reasons, we do not follow this approach.

It is well-known that, even under Hypotheses (H1)–(H2), e.g., center-
unstable integral manifolds are not unique in general (cf. [CLW94,
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pp. 30–31, Example 3.5] for instance). Still, they can be obtained
as restrictions of uniquely determined global integral manifolds of ap-
propriately modified ODEs and calculated using Taylor expansions.
Technically, this is guaranteed under our

Hypothesis. Let X be a Cm+1-Banach space and assume

(H3) A : I→L(X ) is bounded.

Proposition 3.5 (global integral manifolds). Suppose (H1)–(H3) hold,
and let S± denote a Cm+1-integral manifold, where the corresponding
mapping s± : U×I→X is uniformly Cm+1-bounded. In case S+ is
considered, assume (3.6) holds, and in case of S−, assume I = R and
(3.7). Then there exist a real ρ > 0, as well as mappings Fρ : X×I→X
and s±ρ : X×I→X such that the following holds:

(a) The graph S±ρ :=
{

(τ, ξ + s±ρ (ξ, τ)) ∈ I×X : ξ ∈ R(P±(τ))
}

de-
fines a global Cm-integral manifold of (∗)Fρ ,

(b) Fρ(x, t) ≡ F (x, t) on Bρ×I ,
(c) s±ρ (x, t) ≡ s±(x, t) on Bρ×I, and S±ρ ∩ (I×Bρ) = S± ∩ (I×Bρ) .

Proof. First of all, for an arbitrary subset V ⊆ X we define

V±(V ) := {(τ, ξ) ∈ I×X : ξ ∈ R(P±(τ)) ∩ V } ,
assume Ω ⊆ U0 is a neighborhood of zero and fix a Cm+1-cut-off func-
tion χ : X→ [0, 1] satisfying (3.5) as introduced above. Choose a real
number r > 0 so small that B2r ⊆ Ω and B3r ⊆ U0. The following
proof is divided into two parts:

(I) We start by proving a special case and suppose that V±(Ω) is a
local integral manifold of (∗)F ; that is, V±(Ω) is represented as graph of
the mapping s± : Ω×I→X , s±(x, t) ≡ 0. Then the invariance equation
(3.4) for (∗)F boils down to

P∓(t)F (ξ, t) = 0 for all t ∈ I, ξ ∈ R(P±(t)) ∩ Ω .

We define the extended mapping Fr : X×I→X by

(3.11) Fr(x, t) :=

{
χ
(
x
r

)
F (x, t) for x ∈ B2r

0 else

and obtain

(3.12) P∓(t)Fr(ξ, t) = 0 for all t ∈ I, ξ ∈ R(P±(t)) ,

since P∓(t)F (ξ, t) = 0 for ξ ∈ R(P±(t)) ∩ B2r and χ
(
x
r

)
= 0 for

‖x‖ ≥ 2r (cf. (3.5)). Since (3.12) coincides with the invariance equation
for s±(x, t) ≡ 0, the set V±(X ) is invariant under the modified ODE
(∗)Fr . Moreover, due to (3.1), we are able to diminish r > 0 such
that sup(x,t)∈X×I ‖D1Fr(x, t)‖ is sufficiently small to satisfy Hypothesis
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(ii) of Theorem A.1. This yields a unique global integral manifold S±r
for (∗)Fr , representable as graph over the nonautonomous set V±(X ).
Hence, S±r = V±(X ), and furthermore, the assertions of Proposition 3.5
are evidently satisfied with s±r (x, t) ≡ 0 and ρ = r.

(II) Now consider the general situation, when S± is a local integral
manifold for (∗)F given by a C1-mapping s± : U×I→X satisfying (3.2)–
(3.3). We first define the extended mapping s±r : X×I→X by

(3.13) s±r (x, t) :=

{
χ
(
x
r

)
s±(x, t) for x ∈ B2r

0 else
,

which, by assumption, possesses continuous globally bounded partial
derivatives Dn

1 s
±
r for n ∈ {1, . . . ,m+ 1}; from (3.2) we obtain the limit

relation

(3.14) lim
r↘0

sup
(x,t)∈X×I

∥∥D1s
±
r (x, t)

∥∥ = 0 .

Particularly, it is possible to choose r > 0 sufficiently small that

(3.15)
∥∥D1s

±
r (x, t)

∥∥ < 1
2

for all x ∈ X , t ∈ I

holds. Next, we define a Cm+1-diffeomorphism Ψt : X→X by

Ψt(x) := x− s±r (x, t) for all t ∈ I,
whose inverse Ψ−1

t : X→X is given by Ψ−1
t (x) = x + s±r (x, t). Under

the change of variables x 7→ Ψt(x), the ODE (∗)F takes the form (∗)G
with a continuous function G : B2r×I→X which is of class Cm in the
first argument and given by

G(x, t) :=A(t)s±r (x, t) + F (x+ s±r (x, t), t)

−D1s
±
r (x, t)

(
A(t)(x+ s±r (x, t)) + F (x+ s±r (x, t), t)

)
(3.16)

−D2s
±
r (x, t).

Please note that G(·, t) is defined on B2r, since the mean value inequal-
ity implies∥∥x+ s±r (x, t)

∥∥ (3.2)

≤ ‖x‖+
∥∥s±r (x, t)− s±r (0, t)

∥∥
(3.15)

≤ 3
2
‖x‖ < 3r for all x ∈ B2r, t ∈ I ,

and therefore, the inclusion x + s±r (x, t) ∈ U0 is fulfilled. Moreover,
from the invariance equation (3.4) we have

G(x, t) =F (x+ s±(x, t), t)− P∓(t)F (P±(t)x+ s±(x, t), t)

−D1s
±(x, t)A(t)

(
P∓(t)x+ s±(x, t)

)(3.17)
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−D1s
±(x, t)

(
F (x+ s±(x, t), t)− P±(t)F (P±(t)x+ s±(x, t), t)

)
for all x ∈ Br and t ∈ I. Accordingly, (3.2) implies G(0, t) ≡ 0 on
I. Likewise, (H3) and (3.1)–(3.2) lead to limx→0 ‖D1G(x, t)‖ = 0
uniformly in t ∈ I. It is easy to see that in each t-fiber, we have
Ψt(S±(t))∩B2r = V±(B2r)(t), and consequently, V±(B2r) is a local in-
tegral manifold of (∗)G, and the results from Step (I) imply that V±(X )
is the unique global integral manifold of (∗)Gr with Gr : X×I→X given
by

Gr(x, t) :=

{
χ
(
x
r

)
G(x, t) for x ∈ B2r

0 else
.

If we now apply the inverse transformation x 7→ Ψ−1
t (x) to (∗)Gr , one

gets an ODE of the form (∗)F̄r with F̄r : X×I→X ,

F̄r(x, t) :=− A(t)s±r (x, t) +Gr(x− s±r (x, t), t)

+D1s
±
r (x, t)

(
A(t)(x− s±r (x, t)) +Gr(x− s±r (x, t), t)

)
(3.18)

+D2s
±
r (x, t).

Due to the properties of Gr and s±r , we obtain from (H3) that the
partial derivatives Dn

1 F̄r, n ∈ {1, . . . ,m}, are continuous and globally
bounded. Using (3.4) in order to rewrite (3.18) as in (3.17), we see that
sup(x,t)∈X×I ‖D1Gr(x, t)‖ can be made smaller than any given positive
number and it is possible to diminish r > 0 such that Hypothesis (ii)
of Theorem A.1 is fulfilled w.r.t. (∗)F̄r .

Finally, choose a real ρ ∈ (0, r) so small that the inclusion Bρ ⊆
Ψ−1
t (Br) holds for all t ∈ I, which is possible due to (3.2) and the

uniformity in t ∈ I. Substituting (3.16) into (3.18) gives us the identity
F̄ρ(x, t) ≡ F (x, t) on Bρ×I. From (3.13), it is obvious that s±ρ (x, t) ≡
s±(x, t) on Bρ×I. Hence, S±ρ ∩ (I×Bρ) = S± ∩ (I×Bρ). Since V±(X )

is the unique global integral manifold of (∗)Gρ and Ψ−1
t (V±(X )(t)) =

S±ρ (t), the set S±ρ is invariant under (∗)F̄ρ . We apply Theorem A.1,
which yields that S±ρ is the unique global integral manifold of (∗)Fr .
This finishes the proof of this proposition. �

Our next proposition states that all integral manifolds S± of (∗)F
possess the same Taylor series w.r.t. their state space variable up to
order m. Moreover, it enables us in the following Section 4 to calcu-
late integral manifolds using approximate solutions of the invariance
equation (3.4).

Proposition 3.6 (Taylor expansion). Suppose that (H1)–(H3) hold and
let S± denote a Cm-integral manifold with corresponding uniformly Cm-
bounded mapping s± : U×I→X . In case S+ is considered, assume (3.6)
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holds, and in case of S−, assume I = R and (3.7). If a C1-function
σ : X×I→X is (m + 1)-times continuously differentiable in the first
variable, uniformly Cm+1-bounded and satisfies

(i) σ(0, t) ≡ 0 on I, limx→0 ‖D1σ(x, t)‖ = 0 uniformly in t ∈ I and
σ(x, t) = σ(P±(t)x, t) ∈ R(P∓(t)) for t ∈ I, x ∈ X ,

(ii) for reals r > 0 so small that x + σ(x, t) ∈ U0 for all x ∈ Br,
t ∈ I, the mapping Mtσ : Br→X given by

(Mtσ)(x) :=A(t)σ(x, t) + P∓(t)F (P±(t)x+ σ(x, t), t)

−D1σ(x, t)
(
A(t)P±(t)x+ P±(t)F (P±(t)x+ σ(x, t), t)

)
−D2σ(x, t)

fulfills Dn(Mtσ)(0) = 0 for all n ∈ {1, . . . ,m}, t ∈ I,

then we have Dn
1σ(0, t) = Dn

1 s
±(0, t) for all t ∈ I, n ∈ {0, . . . ,m}.

Proof. Using Proposition 3.5, the proof can be done similarly to [PR05,
Theorem 3.4]. �

4. Taylor Approximation

Since the integral manifold S± of (∗)F is graph of a function s±

smooth in its state space variable, and with the aid of Proposition 3.6,
it is natural to approximate s± by its Taylor expansion. In this section,
we derive necessary equations, the corresponding Taylor coefficients
need to satisfy, and prove that they are uniquely solvable if the gap
conditions (3.6) or (3.7) on the linear part of (∗)F are satisfied. Thanks
to our compact notation, the actual derivation will be quite short.

For this, we assume that, in addition to (H1)–(H2), the following
assumption is satisfied, which in particular holds if A : I→L(X ) is a
Cm-mapping and F : U0×I→X is of class Cm+1 (cf. Theorem A.1).

Hypothesis. Let m ≥ 2 and suppose:

(H4) The partial derivatives Dn
1 s
±(0, ·) are differentiable for every

n ∈ {2, ...,m}.
We are interested in local approximations for the mapping s±. Here

Taylor’s Theorem (cf. [AMR88, Theorem 2.6.05, p. 93]) together with
(3.2) implies the representation

(4.1) s±(x, t) =
m∑
n=2

1

n!
s±n (t)xn +R±m(x, t)

with coefficient functions s±n : I→Ln(X ) given by s±n (t) := Dn
1 s
±(0, t)

and a remainderR±m satisfying limx→0
R±m(x,t)
‖x‖m = 0. Proposition 3.6 guar-

antees that the coefficient s±n (t) is uniquely determined by the mapping
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from Theorem 3.2. Due to (3.8), the functions s±n are bounded, i.e.,
one has ‖s±n (t)‖ ≤ γn for t ∈ I and n ∈ {2, . . . ,m}. Before proceeding,
we need some handy notational preparations:

• We introduce S± : U×I→X , S±(x, t) := P±(t)x + s±(x, t) sat-
isfying

D1S
±(0, t)

(3.2)
= P±(t), Dn

1S
±(0, t) = Dn

1 s
±(0, t) for all t ∈ I

and n ∈ {2, . . . ,m}. Hence, for S±n (t) := Dn
1S
±(0, t), we have

the estimates∥∥S±1 (t)
∥∥ (2.8)

≤ K±,
∥∥S±n (t)

∥∥ (3.8)

≤ γn for all n ∈ {2, . . . ,m} .(4.2)

• We abbreviate g±(x, t) := A(t)P±(t)x+P±(t)F (S±(x, t), t), and
the chain rule from Lemma 2.3 yields that the partial derivatives
g±n (t) := Dn

1 g
±(0, t) are given by (cf. (3.1), (3.2))

g±1 (t)x1
(2.4)
= A(t)P±(t)x1,

g±n (t)x1 · · ·xn =
n∑
l=2

∑
(N1,...,Nl)∈P<l (n)

P±(t)Dl
1F (0, t)S±#N1

(t)P±(t)xN1 · · ·S±#Nl(t)P±(t)xNl

for all x1, . . . , xn ∈ X and n ∈ {2, . . . ,m}. Moreover, (H2)–
(H3) and the estimates (2.8), (4.2) imply that g±n : I→Ln(X ) is
a bounded function.

Directly from the invariance equation (3.4) and (3.3), we get

A(t)s±(x, t) + P∓(t)F (P±(t)x+ s±(x, t), t)

= D1s
±(x, t)

(
A(t)P±(t)x+ P±(t)F (P±(t)x+ s±(x, t), t)

)
+D2s

±(x, t) ,

and using the notation introduced above, this reads as

D2s
±(x, t) = A(t)s±(x, t) + P∓(t)F (S±(x, t), t)−D1s

±(x, t)g(x, t)

for all t ∈ I, x ∈ U with S±(x, t) ∈ U0. If we differentiate this identity
using Lemma 2.1 and Lemma 2.3 and set x = 0, one gets the equation

ṡ±n (t)P±(t)x1 · · ·xn = A(t)s±n (t)P±(t)x1 · · ·xn

+P∓(t)
n∑
j=2

∑
(N1,...,Nj)∈P<j (n)

Dj
1F (0, t)S±#N1

(t)P±(t)xN1 · · ·S±#Nj(t)xNj

−
∑

(N1,N2)∈P2(n)
N1,N2 6=∅

s±#N1+1(t)P±(t)xN1 · g±#N2
(t)P±(t)xN2



20 CHRISTIAN PÖTZSCHE AND MARTIN RASMUSSEN

for n ∈ {2, . . . ,m} and x1, . . . , xn ∈ X . Therefore, the function s±n :
I→Ln(X ) is a solution of the linear ODE

(4.3) ẊP±(t) = LA(t)XP±(t) +H±n (t)P±(t)

in Ln(X ), denoted as homological equation for S± with inhomogeneities
H±n : I→Ln(X ),

H±n (t)x1 · · ·xn := P±(t)Dn
1F (0, t)x1 · · ·xn

+P∓(t)
n−1∑
j=2

∑
(N1,...,Nj)∈P<j (n)

Dj
1F (0, t)S±#N1

(t)xN1 · · ·S±#Nj(t)xNj(4.4)

−
∑

(N1,N2)∈P2(n)
0<#N1<n−1

N2 6=∅

s±#N1+1(t)xN1 · g±#N2
(t)xN2 .

Obviously, one has H±2 (t) = P∓(t)D2
1F (0, t), and for n ∈ {3, . . . ,m},

the values H±n (t) only depend on s±2 , . . . , s
±
n−1. Therefore, (4.3) repre-

sents a hierarchy of linear differential equations for the coefficients s±n .
These equations have to be solved step by step, starting with n = 2,
and increasing n by 1 at each step. The solutions are given by the
following

Theorem 4.1. Suppose (H1)–(H4) hold, and consider a mapping s± :
U×I→X from Theorem 3.2. Then the following holds:

(a) The coefficients s+
n : I→Ln(X ), n ∈ {2, . . . ,m}, in the Taylor

expansion (4.1) of the mapping s+ : U×I→X can be determined
recursively from the Lyapunov-Perron integrals

(4.5)

s+
n (t) = −

∫ ∞
t

Φ(t, s)H+
n (s)Φ(s,t)P+(t) ds for all n ∈ {2, . . . ,m} .

(b) In case I = R, the coefficients s−n : R→Ln(X ), n ∈ {2, . . . ,m},
in the Taylor expansion (4.1) of the mapping s− : U×R→X can
be determined recursively from the Lyapunov-Perron integrals

(4.6) s−n (t) =

∫ t

−∞
Φ(t, s)H−n (s)Φ(s,t)P−(t) ds for all n ∈ {2, . . . ,m} .

Proof. In the explanations preceding Theorem 4.1, we have seen that
s±n : I→Ln(X ) is a bounded solution of the homological equation (4.3).
Moreover, it follows from (4.4), (2.8), (H2) and (4.2) that each inho-
mogeneity H±n is bounded, i.e., 0-quasibounded. Consequently, due to
the gap conditions (3.6) and (3.7), it follows from Lemma 2.6 that s±n
possesses the claimed appearance. �
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Remark 4.2.

(1) For an autonomous ODE (∗)F , the functions (4.5), (4.6) are
constant and given as stationary solutions of the homological
equation (4.3). Then (4.3) reduces to the algebraic problem
discussed, e.g., in [BK98].

(2) In general, the Lyapunov-Perron integrals from Theorem 4.1
can be evaluated only numerically. In order to achieve this, we
briefly sketch the appropriate procedure:
(i) It suffices to represent the mappingsH±n (t) as n-linear forms

in the space Ln(R(P±(t));X ). Under the assumption N :=
dimX < ∞ and k± := dimR(P±(t)) ≤ N (referring to
(2.4), note that k± is constant in time) we know that the
space Ln(R(P±(t));X ) has dimension K± := N

(
k±+n−1

n

)
and is canonically isomorphic to FK± (cf. [PR05] for de-
tails). Using this representation, instead of working with
the sum over (ordered) partitions in (4.4), we recommend
to derive the homological equation (4.3) for sn directly from
the invariance equation (3.4) by means of computer algebra
to calculate the necessary derivatives.

(ii) Since the integrands in (4.5) and (4.6) are exponentially
decaying, at least in principle, it is not difficult to obtain
error estimates for their finite-interval approximations.

However, in concrete examples, the crucial problem is to ob-
tain the invariant projectors P± from Hypothesis (H1). Pro-
vided they are known, as well as the transition operator Φ(t, s)
of (2.3), a recursive scheme to approximate s±n (t) can be im-
plemented on a computer, according to the suggestions made
above.

5. Examples

In this section, we illuminate our results using two examples. The
first is a nonautonomous bifurcation problem to illustrate a reduction
on a center-unstable integral manifold.

Example 5.1. We consider a nonautonomous version of the well-known
Lorenz equations (cf., e.g., [Lor63] or [Kuz04, pp. 188, 291]), given by
a 3-dimensional system

(5.1)

 ẋ1 = σε(t)(x2 − x1)
ẋ2 = ρε(t)x1 − x2 − x1x3

ẋ3 = −βε(t)x3 + x1x2

,
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which obviously can be written in the form (2.2) with right hand side

fε(x, t) =

 σε(t)(x2 − x1)
ρε(t)x1 − x2 − x1x3

−βε(t)x3 + x1x2

 .

As discussed in [Lor63], the Lorenz equations are a simplified toy model
of Raleigh-Bernard thermal convection. To incorporate an external
forcing into this model, it is interesting when all three parameters
σε, ρε, βε are perturbed nonautonomously, i.e., we assume the functions
σε, ρε, βε : R→(0,∞) are given by

σε(t) = σ0 + εσ(t), ρε(t) = 1 + ρ0 + ερ(t), βε(t) = β0 + εβ(t)

with real constants σ0, β0 > 0, ρ0 ∈ R, bounded C3-functions σ, ρ, β
and ε ∈ R, which will serve as bifurcation parameter. It is our goal to
study the stability of the equilibrium x = 0 of (5.1) for different values
of ε. From the linearization

D1f0(0, t) =

 −σ0 σ0 0
1 + ρ0 −1 0

0 0 −β0

 ,

we see that in case ε = 0 the origin is asymptotically stable for ρ0 ∈[
−
(
σ0+1
2σ0

)2

, 0
)

and unstable for ρ0 > 0. More interesting is the nonhy-

perbolic case ρ0 = 0, where a pitchfork bifurcation occurs as ρ0 passes
through 0. To mimic this situation, we assume ρ0 = 0 from now on.
Before proceeding, we augment the original system (5.1) by considering
the parameter ε as an additional state space variable satisfying ε̇ = 0
and — to simplify our calculations — apply the linear transformation

y1

y2

y3

y4

 :=


−σ0 0 1 0

1 0 1 0
0 1 0 0
0 0 0 1



x1

x2

x3

ε


to the resulting equation ẋ = fε(x, t), ε̇ = 0. This implies the 4-
dimensional system

(5.2) ẏ = Ay + F (y, t)

with A := diag(−σ0 − 1,−β0, 0, 0) and the nonlinearity

F (y, t) :=


σ0

σ0+1
y1y2 − σ(t)+σ0(σ(t)+ρ(t))

σ0+1
y1y4 − 1

σ0+1
y2y3 + ρ(t)

σ0+1
y3y4

−σ0y
2
1 + (1− σ0)y1y3 − β(t)y2y4 + y2

3
σ2
0

σ0+1
y1y2 + σ(t)+σ0(σ(t)−σ0ρ(t))

σ0+1
y1y4 − σ0

σ0+1
y2y3 + σ0ρ(t)

σ0+1
y3y4

0

 .
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Thus, we can apply Theorem 3.2 to (5.2) to show that there exists a
center-unstable manifold S− ⊆ R×R3 with 2-dimensional fibers. The
ansatz

s−(y3, y4, t) =
2∑
i=0

y2−i
3 yi4

(
s1

2−i,i(t)
s2

2−i,i(t)

)
+O

(√
y2

3 + y2
4

3
)

yields that the equation (5.2) reduced to the center-unstable manifold
S− is given by

ẏ3 =
σ0

σ0 + 1

(
ερ(t)y3 − s2

2,0(t)y3
3

)
+O(εy2

3, ε
2y3, y

4
3) .

Using Theorem 4.1, we obtain s2
2,0(t) ≡ 1

β0
, and consequently, the bi-

furcation equation is

(5.3) ẏ3 =
σ0

σ0 + 1

(
ερ(t)y3 − 1

β0
y3

3

)
+ r(y3, t, ε) ,

where the remainder r satisfies the three limit relations

lim
y3→0

sup
ε∈(−|y3|3,|y3|3)

sup
t∈R

|r(y3, t, ε)|
|y3|3

= 0 ,(5.4)

lim
ε→0

sup
y3∈(−|ε|,|ε|)

sup
t∈R

|r(y3, t, ε)|
|ε|2

= 0 ,(5.5)

lim
ε→0

1

ε
lim sup
y3→0

sup
t∈R

|r(y3, t, ε)|
|y3|

= 0 .(5.6)

To motivate our nonautonomous bifurcation result, we again recapit-
ulate the autonomous situation. Assuming the functions ρ, σ, β are
constant and ρ(t) ≡ ρ̄ for some ρ̄ > 0, we get that (5.3) has the form

(5.7) ẏ3 =
σ0

σ0 + 1

(
ερ̄y3 − 1

β0
y3

3

)
+O(εy2

3, ε
2y3, y

4
3) .

It is easy to check that this equation admits a pitchfork bifurcation,
i.e., the equilibrium 0 is stable for ε ≤ 0 and unstable for ε > 0 .
For small ε > 0, there are two additional stable equilibria branching
from the origin, denoted by y−ε < 0 < y+

ε . The compact interval
enclosed by these two equilibria forms an attractor of (5.7): let φε
denote the local flow generated by (5.7). Then [y−ε , y

+
ε ] is invariant,

and there exists a γε > 0 such that [y−ε , y
+
ε ] =

⋂
t≥0 φε(t, Uγε([y

−
ε , y

+
ε ])).

Thus, in addition to the pitchfork bifurcation, the autonomous system
undergoes an attractor transition from a nontrivial attractor to a trivial
attractor in the limit ε↘0.

To establish a nonautonomous generalization of this scenario, we
omit the autonomous restriction on σ, ρ, β, i.e., they are allowed to be
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bounded C3-functions, and we suppose

(5.8) lim inf
t→−∞

|ρ(t)| > 0.

We will show that under this assumption, the nonautonomous equation
(5.3) admits a bifurcation of pullback attractors (see also Appendix
B). For our purpose, we make use of a local version of such a pullback
attractor. A local pullback attractor of (2.2) is given by a nonempty
nonautonomous set A ⊆ R×X fulfilling the following three properties:

• A is invariant, i.e., its fibers satisfy ϕ(t; τ, A(τ)) = A(t) for all
t, τ ∈ R .
• A is compact, i.e., A(t) is compact for all t ∈ R .
• A is locally pullback attracting, i.e., there exists a γ > 0 with

lim
t→−∞

d
(
ϕ
(
τ ; t, Uγ(A(t))

)
, A(τ)

)
= 0 for all τ ∈ R .

Here, d means the Hausdorff semi-distance, which for nonempty
sets A,B ⊆ X is defined by d(A,B) := supx∈A infy∈B ‖x− y‖.

We obtain the subsequent nonautonomous bifurcation result.

Proposition 5.2. For the bifurcation equation (5.3), the following
statements hold:

(a) In case lim inft→−∞ ρ(t) > 0, there exists an ε̂ > 0 such that for
all ε ∈ (0, ε̂) there exists a nontrivial local pullback attractor Aε
of (5.3), and we have

(5.9) lim
ε↘0

d(Aε(t), {0}) = 0 for all t ∈ R .

Furthermore, R×{0} is a local pullback attractor of (5.3) for
ε ∈ (−ε̂, 0].

(b) In case lim supt→−∞ ρ(t) < 0, there exists an ε̂ > 0 such that for
all ε ∈ (−ε̂, 0) there exists a nontrivial local pullback attractor
Aε of (5.3), and we have

lim
ε↗0

d(Aε(t), {0}) = 0 for all t ∈ R .

Furthermore, R×{0} is a local pullback attractor of (5.3) for
ε ∈ [0, ε̂).

Proof. We only treat case (a), since (b) can be shown analogously. Let
ϕε denote the general solution of the bifurcation equation (5.3). Due
to (5.4) and the boundedness of ρ, there exists an s1 > 0 such that∣∣∣∣σ0ερ(t)y3

σ0 + 1
+ r(y3, t, ε)

∣∣∣∣ ≤ σ0

2β0(σ0 + 1)
|y3|3 for all t ∈ R, |y3| ≤ s1



TAYLOR APPROXIMATION OF INTEGRAL MANIFOLDS 25

and |ε| < |y3|3. This implies

(5.10) g
(
− 3
√
ε, t,

ε

2

)
> 0 > g

(
3
√
ε, t,

ε

2

)
for all t ∈ R, ε ∈ (0, s3

1) ,

where g denotes the right hand side of (5.3). In the following, we fix
ε ∈ (0, 1

2
s3

1) and define a nonautonomous set Nε by its fibers

Nε(t) :=
[
−2 3
√
ε, 2 3
√
ε
]

for all t ∈ R .

Due to (5.10), the relation ϕε(τ ; τ − t, Nε(τ − t)) ⊆ Nε(τ) for all τ ∈ R,
t ≥ 0 holds. Hence, Theorem B.1 implies the existence of a pullback
attractor Aε with attraction universe {Nε}. It is easy to check that
Aε is also a local pullback attractor. Please note that Aε ⊆ Nε . In
connection with the continuity of ϕε, this guarantees the limit relation
(5.9). We show now that the sets Aε are nontrivial for sufficiently small
ε > 0. Due to (5.8), there exist ρ− > 0 and t− ∈ R such that

ρ(t) > ρ− for all t ≤ t− .

Furthermore, due to (5.5), there exists an ε̃ ∈ (0, 1
2
s3

1) such that∣∣∣∣− σ0y
3
3

β0(σ0 + 1)
+ r(y3, t, ε)

∣∣∣∣ ≤ σ0ρ
−

2(σ0 + 1)
|ε|2 for all t ∈ R, |ε| ≤ ε̃

and |y3| < |ε|. This implies

g
(
−ε

2
, t, ε

)
< 0 < g

(ε
2
, t, ε

)
for all t ≤ t−, ε ∈ (0, ε̃) .

Hence, we have Aε(t) ⊇
[
− ε

2
, ε

2

]
for all t ≤ t−. Now we consider

negative values of ε. Due to (5.6), there exist ε̂ ∈ (0, ε̃) such that for
all ε ∈ (−ε̂, 0), there exists an s2 > 0 with

|r(y3, t, ε)| ≤ −
σ0ρ

−ε

2(σ0 + 1)
|y3| for all |y3| ≤ s2 .

Therefore, we have

g(y3, t, ε) <
σ0ρ

−ε

2(σ0 + 1)
y3 for all y3 ∈ (0, s2), t ≤ t−

and

g(y3, t, ε) >
σ0ρ

−ε

2(σ0 + 1)
y3 for all y3 ∈ (−s2, 0), t ≤ t− .

This implies that R× {0} is a local pullback attractor for ε ∈ (−ε̂, 0).
With similar arguments, one can see that also in case ε = 0, this set is
a local pullback attractor (note that this is the autonomous case and
the origin of (5.1) is asymptotically stable as discussed earlier). This
finishes the proof. �
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Remark 5.3. Not only the reduced equation (5.3) admits a nonautono-
mous bifurcation of this type but also the Lorenz equation (5.1) itself.
This is due to an asymptotic phase property of the center-unstable
manifold (cf. [Aul82, Theorem 4] for a global version), i.e., every so-
lution of (5.1) in a neighborhood of the manifold approaches expo-
nentially a solution on the center-unstable manifold in forward time.
Therefore, for small ε > 0, there also exists a local pullback attractor
of (5.1) shrinking down to {0} for ε↘0 .

Our second, relatively simple example is primarily of an illustrative
nature.

Example 5.4. Consider the following modified Korteweg-de Vries equa-
tion

ut + uxxx + a(t)u2ux = 0 ,

where we assume the coefficient a : R→ R is a smooth bounded func-
tion. The investigation of traveling wave solutions having the structure
U(x− c2t) = u(x, t), c > 0, leads to the 3-dimensional nonautonomous
ODE

ẋ1 = x2 , ẋ2 = x3 , ẋ3 = c2x2 − a(t)x2
1x2 .(5.11)

Then its linearization along the trivial solution does not depend on t
and has the eigenvalues −c, 0, c. Thus, (5.11) can be transformed into
a system with decoupled linear part via a constant linear transforma-
tion. For simplicity, we consider this transformed system from now on.
Theorem 3.2 is applicable, yielding center-stable and center-unstable
manifolds S+ and S− with 2-dimensional fibers, respectively. If we
assume their representation

Dn
(1,2)s

±(0, 0, t)

(
h1

h2

)n
=

n∑
i=0

s±j−i,i(t)h
j−i
1 hi2 for all h1, h2 ∈ R ,

then Theorem 4.1 yields D2
(1,2)s

±(0, 0, t) ≡ 0 and the following expres-
sions

s+
30(t) = − 1

2c

∫ ∞
t

e4c(t−s)a(s)ds , s−30(t) = 0 ,

s+
21(t) = − 1

2c

∫ ∞
t

e3c(t−s)a(s)ds , s−21(t) = − 1
2c

∫ t

−∞
e−2c(t−s)a(s)ds ,

s+
12(t) = − 1

2c

∫ ∞
t

e2c(t−s)a(s)ds , s−12(t) = − 1
2c

∫ t

−∞
e−3c(t−s)a(s)ds ,

s+
03(t) = 0 , s−03(t) = − 1

2c

∫ t

−∞
e−4c(t−s)a(s)ds
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for the third-order Taylor coefficients of s+ and s−. Higher-order Tay-
lor coefficients can be obtained successively. Choosing c = 1 and an
oscillatory damping a(t) = e−|t| sin(t) — purely to avoid numerical
integrations — we have computed a 6th-order approximation of the
center-stable manifold S+ and center-unstable manifold S− for the sys-
tem (5.11). Note, that the special structure of (5.11) allows to apply
our results for only continuous functions a. The following figure visu-
alizes the fibers S±(t) for t ∈

{
0, π

4
, π

2
, π
}

in the box [−2, 2]3.

t = 0

S+(0)

S−(0)

t = π
4

S+
(
π
4

)
S−
(
π
4

)

t = π
2

S+
(
π
2

)
S−
(
π
2

)
t = π

S+(π)

S−(π)

It is apparent that S±(t) becomes smoother as t evolves. This is due to
our particular choice for the function a to be exponentially decaying.
Therefore, (5.11) is asymptotically autonomous and asymptotically lin-
ear. The fibers S±(t) approach the center-unstable and center-stable
subspaces for the linearization of (5.11) as t→ ±∞.

Appendix A. Global Integral Manifolds

To make our approach more accessible to readers not familiar with
the nonautonomous theory, we state our global existence theorem for
integral manifolds in this appendix. It can be considered as abstraction
of the classical Hadamard-Perron theorem and is quoted often in the
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main text. We remark that its general assumptions make it a quite
flexible tool.

Theorem A.1 (global existence of integral manifolds). Let m ∈ N
and I ⊆ R be an interval unbounded above. Assume the continuous
functions A : I→L(X ) and F : X×I→X satisfy:

(i) The linear ODE ẋ = A(t)x possesses an exponential dichotomy,
i.e., there exists an invariant projector P− : I→L(X ) such that
for all t, τ ∈ I the estimates

‖Φ(t, τ)P+(τ)‖ ≤ K+e
α(t−τ) , ‖Φ(τ, t)P−(t)‖ ≤ K−e

β(τ−t)

for all τ ≤ t hold with real constants K+, K− ≥ 1, α < β.
(ii) We have the identity F (0, t) ≡ 0 on I and the partial derivatives

Dn
1F exist and are continuous for n ∈ {1, . . . ,m} with globally

bounded partial derivatives

|F |n := sup
(x,t)∈X×I

‖Dn
1F (x, t)‖ <∞.

Moreover, with K := K+ + K− + K+K−max {K+, K−} we re-
quire

|F |1 <
β − α
4K

,

choose a fixed δ ∈
(
2K |F |1 ,

β−α
2

)
and define Γ := (α + δ, β − δ).

Then, denoting the general solution of the ODE

(A.1) ẋ = A(t)x+ F (x, t)

by ϕ, the following holds for all γ ∈ Γ:

(a) The global pseudo-stable manifold of (A.1), given by

S+ :=

{
(τ, x0) ∈ I×X : sup

τ≤t
‖ϕ(t; τ, x0)‖ eγ(τ−t) <∞

}
is independent of γ ∈ Γ and possesses the representation

S+ =
{

(τ, ξ + s+(ξ, τ)) ∈ I×X : τ ∈ I, ξ ∈ R(P+(τ))
}

with a C1-mapping s+ : X×I→X . It satisfies:
(a1) Under the gap condition

mα < β,

the partial derivatives Dn
1 s

+ : X×I→X exist and are con-
tinuous with

sup
(x,t)∈X×I

∥∥Dn
1 s

+(x, t)
∥∥ <∞ for all n ∈ {1, . . . ,m} ;
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if furthermore the derivatives Dm−1A, Dk
2D

n
1F exist and

are continuous for 0 ≤ k < m, 0 ≤ k + n ≤ m, then s+ is
m-times continuously differentiable,

(a2) in case I = R, the nonautonomous set S+ possesses an
asymptotic (backward) phase, i.e., there exists a contin-
uous mapping π+ : X×R→X such that for all τ ∈ R,
π+(·, τ) : X→S+(τ) is a retraction onto S+(τ) with∥∥ϕ(t; τ, x0)− ϕ(t; τ, π+(x0, τ))

∥∥ ≤ C+ ‖x0‖ eγ(t−τ) for all t ≤ τ, x0 ∈ X

and some real C+ ≥ 0.
(b) In case I = R, the global pseudo-unstable manifold of (A.1),

given by

S− :=

{
(τ, x0) ∈ I×X : sup

t≤τ
‖ϕ(t; τ, x0)‖ eγ(τ−t) <∞

}
is independent of γ ∈ Γ and possesses the representation

S− =
{

(τ, ξ + s−(ξ, τ)) ∈ I×X : τ ∈ I, ξ ∈ R(P−(τ))
}

with a C1-mapping s− : X×I→X . It satisfies:
(b1) Under the gap condition

α < mβ,

the partial derivatives Dn
1 s
− : X×I→X exist and are con-

tinuous with

sup
(x,t)∈X×I

∥∥Dn
1 s
−(x, t)

∥∥ <∞ for all n ∈ {1, . . . ,m} ;

if furthermore the derivatives Dm−1A, Dk
2D

n
1F exist and

are continuous for 0 ≤ k < m, 0 ≤ k + n ≤ m, then s− is
m-times continuously differentiable,

(b2) the nonautonomous set S− possesses an asymptotic (for-
ward) phase, i.e., there exists a continuous mapping π− :
X×R→X such that for all τ ∈ R, π−(·, τ) : X→S−(τ) is
a retraction onto S−(τ) with∥∥ϕ(t; τ, x0)− ϕ(t; τ, π−(x0, τ))

∥∥ ≤ C− ‖x0‖ eγ(t−τ) for all τ ≤ t, x0 ∈ X

and some real C− ≥ 0.
(c) The nonautonomous set S± is invariant in the sense that its

fibers satisfy S±(t) = ϕ(t; τ,S±(τ)) for all t, τ ∈ R, one has the
representation

s±(x0, τ) = s±(P±(τ)x0, τ) ∈ R(P∓(τ)) for all τ ∈ I, x0 ∈ X
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and the invariance equation

P∓(t)ϕ(t; τ, x0) = s±(P±(t)ϕ(t; τ, x0), t) for all t ∈ I, (τ, x0) ∈ S±.

(d) One has the identity s±(0, τ) ≡ 0 on I, and in case I = R, only
the zero solution of (A.1) is contained both in S+ and S−, i.e.,

S+ ∩ S− = R×{0} ;

hence, the zero solution is the only γ-quasibounded solution of
(A.1).

(e) If the ODE (A.1) and P− are T -periodic for some T > 0, then
also s±(·, x0) and the fibers S±(·) are T -periodic for all x0 ∈
X . In particular, for an autonomous equation (A.1), the fibers
S±(t) are constant in t ∈ I and each S±(t) is an invariant
manifold of (A.1).

Proof. The verification of Theorem A.1 is technically involved, in par-
ticular concerning the smoothness assertions. We therefore give only
a sketch how the main ingredients can be assembled. In addition, we
restrict to the literature on nonautonomous equations. Prototypes of
Theorem A.1 can be found in [Sel78] for almost periodic equations and
[AW96] for measurable time-dependence. Concerning the asymptotic
phase of S±, we refer to the work of [Aul82, Theorem 4]. A com-
prehensive account to the differentiability properties can is given in
[Sie99]; smoothness in the state space is also considered by [CL97].
Both [AW96, Sie99] suppose the linear part of (A.1) is in block diag-
onal form, whereas we — similarly to [CL97] — make the exponential
dichotomy assumption (i). Hence, the smoothness claims, as well as
the asymptotic phase properties, can be obtained by combining the
methods in [Sie99] and [CL97]. �

Appendix B. Pullback Attractors

Since the 1990s, the attractivity of nonautonomous sets is inten-
sively discussed. In particular, the notion of pullback attractor has
been introduced (see, e.g., [CKS01]). Please note that the so-called
random attractors are closely related to pullback attractors (see, e.g.,
[Arn98, FS96]).

In Example 5.1, we used the notion of a local pullback attractor,
which has been developed in [Ras06]. Local pullback attractors are
special cases of pullback attractors with an attraction universe. For
the reader’s convenience, the definition and an existence result for such
pullback attractors are presented.
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Let D be a collection of nonautonomous sets (often, D consists of
fiberwise-constant bounded nonautonomous sets). Then a pullback at-
tractor of (2.2) with attraction universe D is given by a nonempty
nonautonomous set A ⊆ R×X fulfilling the three properties:

• A is invariant, i.e., its fibers satisfy ϕ(t; τ, A(τ)) = A(t) for all
t, τ ∈ R.
• A is compact, i.e., A(t) is compact for all t ∈ R.
• A is pullback attracting w.r.t. D, i.e., for all D ∈ D, we have

lim
t→−∞

d
(
ϕ(τ ; t,D(t)), A(τ)

)
= 0 for all τ ∈ R .

Here, d means the Hausdorff semi-distance.

It is easy to see that a nonempty nonautonomous set A is a local
pullback attractor if and only if there exists a γ > 0 such that with
the nonautonomous set D, defined by its t-fibers D(t) := Uγ(A(t)), A
is pullback attractor with attraction universe {D}.

The following existence result for pullback attractors plays a crucial
role in the proof of Proposition 5.2.

Theorem B.1. Consider a collection of nonautonomous sets D, and
let B ⊂ R×X be a compact pullback absorbing set, i.e., all fibers of B
are compact and for all D ∈ D and τ ∈ R, there exists a t∗ < τ such
that ϕ(τ ; t,D(t)) ⊆ B(τ) for all t ≤ t∗. Then, there exists a pullback
attractor A with attraction universe D, which fulfills the representation

A(τ) =
⋂
t∗≤τ

⋃
t≤t∗

ϕ(τ ; t, B(t)) for all τ ∈ R .

If, in addition, A ∈ D, then A is uniquely determined. In case B ∈ D,
the relation A ⊆ B is fulfilled.

Proof. See [FS96, Theorem 3.5]. �
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Christian Pötzsche, School of Mathematics, University of Minnesota,
Minneapolis, MN 55455, USA

E-mail address: poetzsch@umn.edu

Martin Rasmussen, Department of Mathematics, University of Augs-
burg, D-86135 Augsburg, Germany

E-mail address: rasmussen@math.uni-augsburg.de


