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Abstract. Invariant fiber bundles generalize invariant manifolds to nonautonomous differ-

ence equations. In this paper we develop a method to calculate their Taylor approximation,

which is of crucial importance, e.g., for an application of the reduction principle in a nonau-
tonomous setting.

1. Introduction

Many processes in physics, biology or other sciences are modeled by nonlinear autonomous
difference equations (maps). To understand their often complicated dynamical behavior it is a
well-established and powerful tool to use the concept of invariant manifolds. By doing so, e.g.,
in dynamical bifurcation theory, it is often possible to reduce the dimension of the equations
considerably, since bounded bifurcating objects like stationary (periodic, homoclinic, . . . ) so-
lutions or invariant curves typically lay on an invariant manifold, the center manifold. Another
more classical application comes from stability theory in critical cases: If the linearization of a
difference equation in an equilibrium possesses eigenvalues inside and on the unit circle of the
complex plane, then stability properties depend on the equation reduced to its center-unstable
manifold. In any case, to carry out this reduction, one needs to know the invariant manifolds
quantitatively, or at least an approximation of them.

The paper at hand provides an important necessary tool to apply such a reduction in
a nonautonomous framework, which can be motivated from an applied, as well as from a
purely mathematical perspective: Concerning the applications, many models become more
realistic if their intrinsic parameters are assumed to be time-dependent. On the other inner-
mathematical side, the investigation of the dynamical behavior close to a non-constant so-
lution canonically leads to a nonautonomous problem in form of the equation of perturbed
motion (see Remark 3.1(1)). Having, for instance, a nonautonomous bifurcation theory avail-
able (cf. [Joh89, JY94, JM03, LRS02]), it is our hope that the introduced procedures can be
helpful to simplify and reduce problems.

More precisely, we present a formal approach to compute higher order local approximations
of invariant fiber bundles near steady states for nonautonomous difference equations. The
invariant fiber bundles under consideration canonically generalize invariant manifolds to ex-
plicitly time-depended right-hand sides and include general pseudo-stable/-unstable manifolds,
like, e.g., the classical stable/unstable, the above mentioned center-stable/-unstable, as well as
strongly stable/unstable manifolds. The desired Taylor coefficients are determined by bounded
solutions of a linear difference equation in the space of multilinear mappings. Furthermore, we
provide an explicit expression for these solutions in terms of so-called Lyapunov-Perron sums
(cf. Theorem 4.2) and indicate how to compute them numerically.

For autonomous difference equations, such approximations via Taylor expansions have been
studied, e.g., in the monograph [Kuz95, pp. 151–165, Section 5.4] or the papers [Has80, Sim89,
BK98, EvP04]. There the situation is simpler, since Taylor coefficients of invariant manifolds

Date: August 14, 2007.
2000 Mathematics Subject Classification. Primary 37D10, 39A11; Secondary 37C60.
Research supported by the “Graduiertenkolleg: Nichtlineare Probleme in Analysis, Geometrie und Physik”

(GK 283) and by the DFG.

1
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are (uniquely) determined by algebraic equations, i.e., so-called multilinear Sylvester equations.
Hence, our overall approach is not completely new, since it canonically generalizes results from
[BK98, EvP04] or explicit analytical computations (see, e.g., the projection method in [Kuz95]).
Nevertheless, beyond the importance of nonautonomous techniques, we think it is useful and
interesting to show that the algebraic problems from the well-established autonomous theory
become problems related to perturbation theory of difference equations in a nonautonomous
setting.

The outline of the paper is as follows. First, in Section 2, we establish our basic terminology
and a crucial result on the existence of bounded solutions for linear difference equations in
spaces of multilinear mappings. Section 3 sets up the necessary theoretical background on
invariant fiber bundles; in particular it addresses the question of their uniqueness. In Section 4
we derive a linear difference equation for the Taylor coefficients of the invariant fiber bundles
and solve it analytically. We demonstrate our results in Section 5 by some numerical and
analytical examples. The latter ones make use of the reduction principle for nonautonomous
difference equations, i.e., the fact that stability properties are completely determined by the
behavior on the center-unstable fiber bundle (cf. [Pöt04]).

We close this introduction by pointing out different approaches to the numerical computa-
tion of invariant manifolds for difference equations: [Omb95] is based on the Lyapunov-Perron
method, while [FK94] uses the graph transform method and the results of [HOV95] are based
on invariant foliations. [DH97] use subdivision techniques to obtain global approximations and
[ARS04a, ARS04b] generalize the corresponding results to nonautonomous difference equations.
These approaches are based on the approximation of pullback attractors as considered, e.g., in
[Kl00, CKS01].

Finally, for related results and further references in the continuous case of ordinary differential
equations we refer to [PR04]. There, the methods are partially parallel to the present paper;
yet, some differences need to be pointed out:

• In case of nonautonomous ODEs, the invariant fiber bundles are typically denoted as
integral manifolds. Then the invariance equation for such manifolds is a first order
partial differential equation and not a functional equation as in our discrete setting
(see (3.6)). Hence, one needs different tools to analyze it, yielding another homological
equation (see (4.4)).

• Moreover, the integral manifolds of ODEs need to satisfy certain continuity assumptions
for their partial derivatives, which — due to the trivial topology on the integers — are
redundant for difference equations.

• On the other hand, in contrast to the continuous case, we do not assume invertibility.
We only require a regularity condition for the linearization (see (2.6)), which is crucial
also for the existence of the invariant fiber bundles.

2. Preliminaries

Above all, let us introduce our notation. A discrete interval is the intersection of a (real)
interval with the integers Z, Z+

κ := {k ∈ Z : κ ≤ k} for some κ ∈ Z, and N are the positive
integers. We write R for the real and C for the complex field; F denotes either R or C.

The Banach spaces X ,Y are real (F = R) or complex (F = C) throughout this paper and
their norm is denoted by ‖·‖ . We write IX for the identity map on X and X ∗ for the dual
space of X . With n ∈ N, Ln(X ;Y) is the Banach space of symmetric n-linear continuous
operators from Xn to Y, Ln(X ) := Ln(X ;X ), L(X ;Y) := L1(X ;Y) is the space of continuous
homomorphisms from X to Y and L(X ) := L(X ;X ) is the space of continuous endomorphisms
on X . For a mapping X ∈ Ln(X ;Y) we abbreviate Xx1 · · ·xn := X(x1, . . . , xn). With a closed
subspace X1 ⊆ X and T ∈ L(X1;X ), we define XT ∈ Ln(X1;Y) by

XTx1 · · ·xn := X(Tx1, . . . , Txn) for x1, . . . , xn ∈ X1
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and obtain (cf. [Lan93, p. 68]) the norm estimate

(2.1) ‖XT ‖ ≤ ‖T‖n ‖X‖ for n ∈ N .

The range of T is denoted by R(T ) := T (X1).
For the rest of the paper, I denotes a discrete interval unbounded above. For an n-tuple of

the same vector x ∈ X we use the abbreviation xn := (x, . . . , x) ∈ Xn. In a normed space,
Bρ(x0) is the ball with center x0 and radius ρ > 0. Let Ũ ⊆ X be nonempty and open. We say
a mapping F : Ũ×I→Y is uniformly bounded if it maps bounded subsets of Ũ into bounded
sets (uniformly w.r.t. I); that is, if for any bounded Ω ⊆ Ũ there exists an M ≥ 0 such that
‖F (x, t)‖ ≤ M for all x ∈ Ω, t ∈ I. We write DF̄ for the Fréchet derivative of a differentiable
mapping F̄ : Ũ → Y, and in case F : Ũ×I→Y depends differentiably on the first variable, then
its partial derivative is denoted by D1F . Higher order derivatives DnF̄ or Dn

1F are defined
inductively.

We use the notation

(2.2) x(k + 1) = f(x(k), k)

to denote ordinary difference equations (O∆Es) with a right-hand side f : Ũ×I→X . A sequence
ν : I→X , I ⊆ I is a discrete interval, is said to solve (2.2) on I ⊆ I if ν(k + 1) = f(ν(k), k)
as long as ν exists, i.e., as long as k + 1 ∈ I and ν(k) ∈ Ũ holds for k ∈ I. Let λ denote the
general solution of equation (2.2), i.e., λ(·; k0, x0) solves (2.2) and satisfies the initial condition
λ(k0; k0, x0) = x0 for k0 ∈ I, x0 ∈ Ũ . In forward time, λ(·; k0, x0) can be defined recursively

(2.3) λ(k; k0, x0) :=
{

x0 for k = k0

f(λ(k − 1; k0, x0), k − 1) for k > k0
,

as long as λ(k − 1; k0, x0) ∈ Ũ , while solutions of (2.2) need not to exist or need not to be
unique in backward time without further assumptions.

Given an operator sequence A : I→L(X ) we define the transition operator Φ(k, κ) ∈ L(X )
of the linear O∆E

(2.4) x(k + 1) = A(k)x(k)

in X as the mapping

Φ(k, κ) :=
{

IX for k = κ
A(k − 1) · · ·A(κ) for k > κ

.

A projection-valued sequence P− : I→L(X ) is said to be an invariant projector if

(2.5) P−(k + 1)A(k) = A(k)P−(k) for k ∈ I

holds. The complementary projector P+ : I→L(X ), defined by P+(k) := IX − P−(k) for all
k ∈ I, is also an invariant projector. In case

(2.6) Ā(k) := A(k)|R(P−(k)) : R(P−(k))→R(P−(k + 1)) is invertible for all k ∈ I ,

we say that P− is regular. Then the so-called extended transition operator

Φ−(k, κ) :=

 Ā(k − 1) · · · Ā(κ) for κ < k
IR(P−(κ)) for k = κ

Ā(k)−1 · · · Ā(κ− 1)−1 for k < κ

is well-defined. Particularly in Section 4 we are interested in linear O∆Es in Ln(X ) of the form

(2.7) X(k + 1)A(k)P+(k) = A(k)X(k)P+(k) and X(k + 1)A(k)P−(k) = A(k)X(k)P−(k) ,

where P− is a regular invariant projector. It is worth mentioning that these equations are not
O∆Es of the form (2.2) since the projectors P±(k) are noninvertible in general. (Henceforth
the symbol P± simultaneously stands for P+ or P−, respectively. We proceed similarly with
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our further notation.) It is easy to see that, given κ ∈ I and initial state Ξ ∈ Ln
(
X ;R(P−(κ))

)
with ΞP+(κ) = Ξ ,

(2.8) Λ+(k, κ)Ξ := Φ−(k, κ)ΞΦ(κ,k)P+(k) for k ≤ κ

defines the uniquely determined backward solution Λ+(·, κ)Ξ of the first equation (in (2.7))
satisfying (Λ+(k, κ)Ξ)P+(k) = Λ+(k, κ)Ξ for all k ≤ κ. In the same way, given initial time κ ∈ I
and initial state Ξ ∈ Ln

(
X ;R(P+(κ))

)
with ΞP−(κ) = Ξ ,

(2.9) Λ−(k, κ)Ξ := Φ(k, κ)ΞΦ−(κ,k)P−(k) for k ≥ κ

defines the uniquely determined forward solution Λ−(·, κ)Ξ of the second equation (in (2.7))
which fulfills (Λ−(k, κ)Ξ)P−(k) = Λ−(k, κ)Ξ for all k ≥ κ.

In order to construct invariant fiber bundles (see Section 3) of nonautonomous O∆Es we
need an appropriate hyperbolicity notion for their linear part.

Hypothesis. Assume the mapping A : I→L(X ) satisfies:
(H1) Hypothesis on linear part: The linear difference equation (2.4) possesses an exponential

dichotomy, i.e., there exists a regular invariant projector P− : I→L(X ) such that for all
k, κ ∈ I the estimates

‖Φ(k, κ)P+(κ)‖ ≤ K+α
k−κ , ‖Φ−(κ, k)P−(k)‖ ≤ K−βκ−k for κ ≤ k ,(2.10)

hold with real constants K+,K− ≥ 1, 0 < α < β .

Remark 2.1. (H1) means that the dichotomy spectrum (cf. [AS01]) of (2.4) is disjoint from
(α, β). In the autonomous case, i.e., if A0 := A(k) does not depend on k ∈ I, it is sufficient
to assume that the spectrum σ(A0) ⊆ C of the operator A0 ∈ L(X ) can be separated into a
“pseudo-stable” spectral part σ+ ⊆ Bα(0), 0 < α, and a disjoint “pseudo-unstable” spectral
part σ− outside a circle with center 0 and radius β > α in the complex plane. Then P± are
constant (in k ∈ I) and given by the spectral projectors related to σ±, respectively (cf. [Kat80]).

Our first result deals with perturbations of such linear systems (2.7) in multilinear spaces
Ln(X ). For this, we need the notion of quasiboundedness. With reals γ > 0 and a fixed integer
κ ∈ I, we say a sequence ν : I→X is γ-quasibounded if ‖ν‖κ,γ := supk∈I ‖ν(k)‖ γκ−k <∞ holds.
Obviously 1-quasiboundedness coincides with the classical notion of boundedness.

Lemma 2.2 (quasibounded solutions). Suppose (H1) holds, let n ∈ N, κ ∈ I, γ > 0 and assume
H± : I → Ln(X ) is γ-quasibounded with H±(k) ∈ Ln

(
X ;R(P∓(k + 1))

)
for k ∈ I. Then for

the O∆E

(2.11) X(k + 1)A(k)P±(k) = A(k)X(k)P±(k) +H±(k)P±(k)

in Ln(X ) the following holds:

(a) In case γ < β
αn , there exists a unique γ-quasibounded solution Γ+ : I→Ln(X ) of (2.11)

with

(2.12) Γ+(k) = Γ+(k)P+(k) ∈ Ln
(
X ;R(P−(k))

)
for k ∈ I ,

given by

(2.13) Γ+(k) := −
∞∑
j=k

Φ−(k, j + 1)H+(j)Φ(j,k)P+(k)

and satisfying the estimate ‖Γ+‖κ,γ ≤
K−K

n
+

β−γαn ‖H
+‖κ,γ ,

(b) in case I = Z and γ > α
βn , there exists a unique γ-quasibounded solution Γ− : I→Ln(X )

of (2.11) with

Γ−(k) = Γ−(k)P−(k) ∈ Ln
(
X ;R(P+(k))

)
for k ∈ I ,



TAYLOR APPROXIMATION OF INVARIANT FIBER BUNDLES 5

given by

Γ−(k) :=
k−1∑
j=−∞

Φ(k, j + 1)H−(j)Φ−(j,k)P−(k)

and satisfying the estimate ‖Γ−‖κ,γ ≤
K+K

n
−

γβn−α ‖H
−‖κ,γ .

Proof. (a) We subdivide the proof into two steps:
(I) We first consider H+(k) ≡ 0 on I. Then equation (2.11) coincides with (2.7). Let

Γ+ : I→Ln(X ) be a γ-quasibounded solution of (2.11) satisfying (2.12). Then taking the limit
k →∞ in the inequality

‖Γ+(κ)‖ (2.8)
=

∥∥Φ−(κ, k)Γ+(k)Φ(k,κ)P+(κ)

∥∥
(2.12)

≤ ‖Φ−(κ, k)P−(k)‖
∥∥Γ+(k)Φ(k,κ)P+(κ)

∥∥
(2.1)

≤ ‖Φ−(κ, k)P−(k)‖ ‖Γ+(k)‖ ‖Φ(k, κ)P+(κ)‖n

(2.10)

≤ K−K
n
+

(
γαn

β

)k−κ
‖Γ+‖κ,γ for k ≥ κ

yields Γ+(κ) = 0. Since κ ∈ I was arbitrary, the zero solution of (2.11) is the only γ-
quasibounded solution satisfying (2.12).

(II) We now omit the restriction on H+ and note that the sequence Γ+ from (2.13) is well-
defined, since the estimate

‖Γ+(k)‖
(2.13)

≤
∞∑
j=k

∥∥Φ−(k, j + 1)P−(j + 1)H+(j)Φ(j,k)P+(k)

∥∥
(2.1)

≤
∞∑
j=k

‖Φ−(k, j + 1)P−(j + 1)‖
∥∥H+(j)

∥∥ ‖Φ(j, k)P+(k)‖n

(2.10)

≤
K−K

n
+γ

k−κ

β

∞∑
j=k

(
γαn

β

)j−k ∥∥H+
∥∥
κ,γ

=
K−K

n
+

β − γαn
∥∥H+

∥∥
κ,γ

γk−κ for k ∈ I

holds, which in turn yields the claimed estimate for ‖Γ+‖κ,γ . Moreover, it is easy to see from
(2.5) that Γ+ satisfies (2.12). Γ+ is a solution of (2.11) since

Γ+(k + 1)A(k)P+(k)

(2.13)
≡ −

∞∑
j=k+1

Φ−(k + 1, j + 1)H+(j)Φ(j,k+1)P+(k+1)A(k)P+(k)

(2.5)
≡ −

∞∑
j=k

Ā(k)Φ−(k, j + 1)H+(j)Φ(j,k)P+(k) +H+(k)P+(k)

(2.13)
≡ A(k)Γ+(k)P+(k) +H+(k)P+(k) on I .

Finally, the uniqueness statement results from step (I), because the difference of any two γ-
quasibounded solutions of (2.11) is a γ-quasibounded solution of (2.7) and therefore identically
vanishing.

(b) This can be shown similarly. �

3. Invariant Fiber Bundles

In this section we introduce and summarize some fundamental facts concerning invariant
fiber bundles of O∆Es. For the autonomous and center manifold situation, [Car81, pp. 33–36,
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Section 2.8] or [Shu87, Chapter 5, pp. 33–70] are good references. We, nevertheless, consider
nonautonomous O∆Es of the form

(3.1)F x(k + 1) = A(k)x(k) + F (x(k), k)

with a mapping F : U0×I→X , where U0 ⊆ X is an open convex neighborhood of 0 ∈ X .

Hypothesis. Let m ∈ N and assume the mapping F : U0×I→X satisfies:
(H2) Hypothesis on nonlinearity: F is m-times continuously Fréchet differentiable in the first

argument, F (0, k) ≡ 0 on I, for the partial derivative of F we have the limit relation

(3.2) lim
x→0

D1F (x, k) = 0 uniformly in k ∈ I

and Dm
1 F is uniformly bounded.

Remark 3.1. (1) In applications one typically obtains (3.1)F from (2.2) as equation of perturbed
motion. Thereto, let ν : I→Ũ be a fixed reference solution of (2.2) satisfying Br(ν(k)) ⊆ Ũ for
all k ∈ I with some r > 0. To investigate the local behavior of (2.2) close to ν, one considers
the O∆E (3.1)F with

A(k) := D1f(ν(k), k) , F (x, k) := f(x+ ν(k), k)− f(ν(k), k)−D1f(ν(k), k)x

and U0 = Br(0), under the assumptions that f(·, k) is m-times continuously differentiable with
a uniformly bounded partial derivative Dm

1 f and that

lim
x→0

[D1f(x+ ν(k), k)−D1f(ν(k), k)] = 0 uniformly in k ∈ I ,

holds to guarantee the limit relation (3.2).
(2) It is a consequence of the mean value inequality (cf. [Lan93, p. 342, Corollary 4.3]) that

under (H2) also F and its partial derivativesDn
1F are uniformly bounded for n ∈ {1, . . . ,m− 1}.

Our next aim is to introduce a nonautonomous counterpart of an invariant manifold for
(3.1)F . To that end, let P± : I→L(X ) be the invariant projector of (2.4) introduced in (H1),
λ denotes the general solution to (3.1)F and U ⊆ U0 is an open convex neighborhood of 0.
Assume s± : U×I→X is a mapping, continuously Fréchet differentiable in the first argument
and satisfying

s±(0, k) ≡ 0 on I , lim
x→0

D1s
±(x, k) = 0 uniformly in k ∈ I ,(3.3)

s±(x, k) = s±(P±(k)x, k) ∈ R(P∓(k)) for k ∈ I, x ∈ U .(3.4)

Then the graph
S± :=

{
(κ, ξ + s±(ξ, κ)) ∈ I×X : ξ ∈ R(P±(κ)) ∩ U

}
is called a locally invariant fiber bundle (IFB for short) of the nonlinear O∆E (3.1)F if the
implication

(3.5) (k0, x0) ∈ S± ⇒ (k, λ(k; k0, x0)) ∈ S±

holds for all k ≥ k0 as long as λ(k; k0, x0) ∈ U . The k-fiber of S± is given by the set

S±(k) :=
{
x ∈ X : (k, x) ∈ S±

}
.

One speaks of a Cm-fiber bundle of (3.1)F if the partial derivatives Dn
1 s
± exist and are con-

tinuous for n ∈ {1, . . . ,m}. In case U0 = X we say S± is a globally IFB of (3.1)F if the
implication (3.5) holds for all k ≥ k0. Geometrically, the conditions (3.3) imply that the
IFB S± contains the zero solution of (3.1)F , and S± is fiber-wise tangent to the vector bun-
dle {(κ, ξ) ∈ I×X : ξ ∈ R(P±(κ))}, while (3.4) yields that each fiber S±(k) is a graph over
R(P±(k)) ∩ U .

Locally IFBs satisfy the following nonlinear functional equation, named as invariance equa-
tion

A(k)s±(ξ, k) + P∓(k + 1)F (ξ + s±(ξ, k), k)

= s±(A(k)ξ + P±(k + 1)F (ξ + s±(ξ, k), k), k + 1)
(3.6)
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for all k ∈ I, ξ ∈ R(P±(k)) ∩ U such that A(k)ξ + P±(k + 1)F (ξ + s±(ξ, k), k) ∈ U . Moreover,
by passing over to a sufficiently small neighborhood U of 0 it is easy to see (cf. (3.3)–(3.4)) that

S+ ∩ S− = I×{0}

holds, i.e., S+ and S− intersect only along the trivial solution of (3.1)F .
S+ and S− are denoted as pseudo-stable and pseudo-unstable fiber bundle of (3.1)F , respec-

tively. To be more specific, S+ is called center-stable fiber bundle in case β > 1, stable fiber
bundle in the hyperbolic situation α < 1 < β and strongly stable fiber bundle in case β < 1.
Under the additional assumption I = Z, S− is called center-unstable fiber bundle in case α < 1,
unstable fiber bundle in the hyperbolic situation α < 1 < β and strongly unstable fiber bundle
in case 1 < α. In the light of Remark 2.1 this terminology corresponds to the autonomous
situation of invariant manifolds considered, e.g., in [Shu87].

Concerning the existence of locally IFBs, due to our general Banach space setting we have
to impose the assumption that X is a Cm-Banach space; that is, the norm on X is of class Cm

away from 0. A characterization of such spaces, as well as examples, are contained in [KM97,
pp. 127–152, Section 13]. Then, on X , there exists a Cm-cut-off function χ : X→ [0, 1] with the
properties

χ(x) ≡ 1 on x ∈ B1(0), χ(x) ≡ 0 on x ∈ X \B2(0)(3.7)

(cf. [AMR88, p. 473, Lemma 4.2.13]). It is possible to choose r > 0 so that B2r(0) ⊆ U0, and
define the mapping Fr : X×I→X ,

(3.8) Fr(x, k) :=
{
χ
(
x
r

)
F (x, k) for x ∈ B2r(0)
0 else .

Hence, Fr satisfies Fr(x, k) = F (x, k) for x ∈ Br(0), k ∈ I, due to (H2) it has globally bounded
partial derivatives Dn

1Fr for n ∈ {1, . . . ,m} (uniformly in k ∈ I), and by [Pöt98, p. 73, Lemma
2.3.2] the following limit relation holds true (cf. (3.2)):

lim
r↘0
|Fr|1 = 0 with |Fr|1 := sup

(x,k)∈X×I
‖D1Fr(x, k)‖ .(3.9)

Consequently, one can choose r > 0 so small that

(3.10) |Fr|1 <


min


β−α

2 ,α

„
m
q

α+β
α+αm−1

«ff
2(K++K−) if αm < β

min
n
β−α

2 ,β
“

1− m
q

α+β
β+βm

”o
2(K++K−) if α < βm

holds and we arrive at

Theorem 3.2 (existence of locally IFBs). Suppose (H1)–(H2) hold and that X is a Cm-Banach
space. Then there exist reals ρ0 > 0, γ0, . . . , γm ≥ 0 such that the following holds with U =
Bρ0(0):

(a) Under the gap condition

(3.11) αm < β

the O∆E (3.1)F possesses a local pseudo-stable Cm-IFB S+,
(b) for I = Z and under the gap condition

(3.12) α < βm

the O∆E (3.1)F possesses a local pseudo-unstable Cm-IFB S−,
(c) the corresponding mapping s± : U×I→X satisfies

(3.13)
∥∥Dn

1 s
±(x, k)

∥∥ ≤ γn for x ∈ U, k ∈ I, n ∈ {0, . . . ,m} ,



8 CHRISTIAN PÖTZSCHE AND MARTIN RASMUSSEN

(d) if the mappings A and F are periodic in k with period θ ∈ N, then

s±(x, k + θ) = s±(x, k) for x ∈ X , k ∈ I ,

and if the O∆E (3.1)F is autonomous, then the mapping s± is independent of k ∈ I,
i.e., the set {ξ + s±(ξ) ∈ X : ξ ∈ R(P±) ∩ U} is a locally invariant manifold of (3.1)F .

Proof. One shows the existence of the mapping s± : U×I→X by applying a general theorem
on IFBs (cf. [PS04, Theorem 3.5]) to the modified O∆E (3.1)Fr , where r > 0 is chosen so small
that (3.10) holds. The smoothness assertion follows from [PS04, Theorem 4.1], and the fact
that s± satisfies the limit relation in (3.3) can be seen as in [Pöt98, p. 64, Korollar 2.2.15].
After all, the assertion (d) follows from [Aul98, Corollary 4.2]. �

It is well-known that, even under Hypotheses (H1)–(H2), e.g., center-unstable fiber bundles
are not unique in general (cf. [Pöt04, Example 2.3]). However, they can be obtained as restric-
tions of uniquely determined globally IFBs of appropriately modified O∆Es, and calculated
using Taylor expansions. We will show this under

Hypothesis. Let X be a Cm-Banach space and assume:
(H3) A : I→L(X ) is bounded.

Proposition 3.3 (globally IFBs). Suppose (H1)–(H3) hold and let S± denote a Cm-IFB of
(3.1)F , where the corresponding mapping s± : U×I→X possesses a uniformly bounded derivative
Dm

1 s
±. In case S+ is considered, assume (3.11) holds, and in case of S−, assume I = R and

(3.12). Then there exists a ρ > 0 and mappings F̄ρ : X×I→X , s±ρ : X×I→X such that the
following holds:

(a) The graph

(3.14) S±ρ :=
{

(κ, ξ + s±ρ (ξ, κ)) ∈ I×X : ξ ∈ R(P±(κ))
}

is a globally Cm-IFB of (3.1)F̄ρ ,
(b) F̄ρ(x, k) = F (x, k) for all x ∈ Bρ(0), k ∈ I ,
(c) s±ρ (x, k) = s±(x, k) for all x ∈ Bρ(0), k ∈ I, and S±ρ ∩ (I×Bρ(0)) = S± ∩ (I×Bρ(0)) .

Proof. First of all, let Ω ⊆ U0 be a neighborhood of 0 in X , we fix a Cm-cut-off function
χ : X→ [0, 1] satisfying (3.7) as introduced above. Choose a real number r > 0 so small that
B2r(0) ⊆ Ω and B3r(0) ⊆ U0. Now the proof is subdivided into two parts.

(I) We start by proving a special case and suppose that

V±(Ω) := {(κ, ξ) ∈ I×X : ξ ∈ R(P±(κ)) ∩ Ω}

is a locally IFB of (3.1)F ; that is, we can represent V±(Ω) as graph of the mapping s± : Ω×I→X ,
s±(x, k) ≡ 0. Then the invariance equation (3.6) for (3.1)F boils down to

P∓(k + 1)F (ξ, k) = 0 for k ∈ I, ξ ∈ R(P±(k)) ∩ Ω .

We define Fr as in (3.8) and obtain

(3.15) P∓(k + 1)Fr(ξ, k) = 0 for k ∈ I, ξ ∈ R(P±(k)) ,

since P∓(k+1)F (ξ, k) = 0 for ξ ∈ R(P±(k))∩B2r(0) and χ
(
x
r

)
= 0 for ‖x‖ ≥ 2r (cf. (3.7)). To

verify the (forward) invariance of V±(X ) under the modified O∆E (3.1)Fr , we pick an arbitrary
k ∈ I and get for the general solution λ̄ of (3.1)Fr ,

P∓(k + 1)λ̄(k + 1; k, ξ)
(2.3)
= P∓(k + 1) (A(k)ξ + Fr(ξ, k))

(3.15)
= P∓(k + 1)A(k)P±(k)ξ

(2.5)
= 0 for ξ ∈ R(P±(k)) ,

i.e., λ̄(k + 1; k, ξ) ∈ R(P±(k + 1)). Choosing r > 0 so small that (3.10) holds, we can apply
a general result on the existence of IFBs (cf. [PS04, Theorem 3.5, 4.1]), which yields a unique
globally IFB S±r for (3.1)Fr , representable as graph over V±(X ). Hence, S±r = V±(X ) and,
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moreover, the assertions of Proposition 3.3 are evidently satisfied with s±r (x, k) ≡ 0, ρ = r and
F̄ρ = Fr.

(II) Now consider the general situation, when S± is a locally IFB for (3.1)F given by a
mapping s± : U×I→X . We first define the Cm-mapping s±r (·, k) : X→X , k ∈ I , by

(3.16) s±r (x, k) :=
{
χ
(
x
r

)
s±(x, k) for x ∈ B2r(0)
0 else .

Then the partial derivatives Dn
1 s
±
r (·, k), n ∈ {1, . . . ,m}, are globally bounded (uniformly in

k ∈ I) and from (3.3) we obtain the limit relation (cf. [Pöt98, p. 73, Lemma 2.3.2])

(3.17) lim
r↘0

∣∣s±r ∣∣1 = 0 .

Particularly it is possible to choose r > 0 so small that

(3.18)
∥∥D1s

±
r (x, k)

∥∥ < 1
2 for x ∈ X , k ∈ I

holds. Next we define a Cm-diffeomorphism Ψk : X→X by

Ψk(x) := x− s±r (x, k) ;

the inverse Ψ−1
k : X→X is given by Ψ−1

k (x) = x + s±r (x, k). Under the change of variables
x 7→ Ψk(x) the O∆E (3.1)F takes the form (3.1)G with G : B2r(0)×I→X of class Cm in the
first variable and given by

G(x, k) := A(k)s±r (x, k) + F (x+ s±r (x, k), k)

− s±r
(
A(k)x+ F (x+ s±r (x, k), k), k + 1

)
.(3.19)

Note that G(·, k) is defined on B2r(0), since we have from the mean value inequality∥∥x+ s±r (x, k)
∥∥ (3.3)

≤ ‖x‖+
∥∥s±r (x, k)− s±r (0, k)

∥∥ (3.18)

≤ 3
2 ‖x‖ < 3r for x ∈ B2r(0), k ∈ I

and therefore the inclusion x + s±r (x, k) ∈ U0. Due to (3.3) we have G(0, k) ≡ 0 on I; (H3)
and (3.2)–(3.3) leads to limx→0D1G(x, k) = 0 uniformly in k ∈ I. Also the invariance equation
(3.6) implies that

(3.20) P∓(k + 1)G(ξ, k)
(2.5)
= 0 for k ∈ I, ξ ∈ R(P±(k)) ∩B2r(0) .

Consequently, V±(B2r(0)) is a locally IFB of (3.1)G, and the results from step (I) imply that
V±(X ) is the unique globally IFB of (3.1)Gr with Gr : X×I→X given by

Gr(x, k) :=
{
χ
(
x
r

)
G(x, k) for x ∈ B2r(0)
0 else .

Furthermore, |Gr|1 := sup(x,k)∈X×I ‖D1Gr(x, k)‖ can be made smaller than any given positive
number. Now, if we apply the inverse transformation x 7→ Ψ−1

k (x) to (3.1)Gr , one gets an O∆E
of the form (3.1)F̄r with F̄r : X×I→X ,

F̄r(x, k) := −A(k)s±r (x, k) +Gr(x− s±r (x, k), k)

+ s±r
(
A(k)x+Gr(x− s±r (x, k), k)), k + 1

)
.(3.21)

Since Gr(·, k), s±r (·, k) are of class Cm with globally bounded derivatives, we obtain from (H3)
that also F̄r(·, k) is of class Cm with globally bounded partial derivatives. The product rule
(cf. [Lan93, p. 336]) yields the estimate∥∥D1F̄r(x, k)

∥∥ ≤ 2 sup
k∈I
‖A(k)‖

∣∣s±r ∣∣1 + |Gr|1
(
1 +

∣∣s±r ∣∣1)2
for all x ∈ X , k ∈ I, and consequently, for sufficiently small r > 0, it is possible to fulfill (3.10).

Finally, choose a real ρ ∈ (0, r) so small that the inclusion Bρ(0) ⊆ Ψ−1
k (Br(0)) holds for all

k ∈ I, which is possible due to [Pöt98, p. 160, Lemma A.5.1]. Substituting (3.19) into (3.21)
gives us the identity F̄ρ(x, k) = F (x, k) for x ∈ Bρ(0), k ∈ I. From (3.16) it is obvious that
s±ρ (x, k) = s(x, k) if x ∈ Bρ(0). Hence, S±ρ ∩ (I×Bρ(0)) = S± ∩ (I×Bρ(0)). Since V±(X ) is
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the unique globally IFB of (3.1)Gρ and Ψ−1
k (V±(X )(k)) = S±ρ (k), the set S±ρ is invariant under

(3.1)F̄ρ . But we have (3.10), so by [PS04, Theorem 3.5, 4.1], S±ρ is the unique globally IFB of
(3.1)Fr . �

Our next theorem states that all IFBs S± of (3.1)F possess the same Taylor series up to
order m. Moreover, it enables us to calculate IFBs using approximate solutions of the invariance
equation (3.6).

Theorem 3.4 (Taylor expansion). Suppose (H1)–(H3) hold and let S± denote a Cm-IFB of
(3.1)F , where the corresponding mapping s± : U×I→X possesses a uniformly bounded derivative
Dm

1 s
±. In case S+ is considered, assume (3.11) holds, and in case of S−, assume I = R and

(3.12). If a mapping σ : X×I→X is m-times continuously differentiable in the first variable
and satisfies

(i) σ(0, k) ≡ 0 on I, limx→0D1σ(x, k) = 0 uniformly in k ∈ I, Dm
1 σ is uniformly bounded

and σ(x, k) = σ(P±(k)x, k) ∈ R(P∓(k)) for all k ∈ I, x ∈ X ,
(ii) with a real r > 0 so small that x + σ(x, k) ∈ U0 holds for all k ∈ I, x ∈ Br(0), the

mapping Mkσ : Br(0)→X ,

(Mkσ)(x) := A(k)σ(x, k) + P∓(k + 1)F (x+ σ(x, k), k)

− σ(A(k)P±(k)x+ P±(k + 1)F (x+ σ(x, k), k), k + 1)

satisfies

(3.22) Dn(Mkσ)(0) = 0 for n ∈ {1, . . . ,m} , k ∈ I ,

then we have Dn
1 σ(0, k) = Dn

1 s
±(0, k) for all k ∈ I, n ∈ {1, . . . ,m} .

Remark 3.5. The assumption (i) of Theorem 3.4 is satisfied by polynomials of the form

σ(x, k) =
m∑
n=2

σn(k)P±(k)x
n

with bounded coefficient sequences σn : I→Ln(X ) satisfying σn(k) ∈ Ln
(
X ;R(P∓(k))

)
for all

n ∈ {2, . . . ,m}, k ∈ I.

Proof. Define a Cm-diffeomorphism Ψk : X→X , k ∈ I, by Ψk(x) := x − σ(x, k). Then the
change of variables x 7→ Ψk(x) transforms the O∆E (3.1)F into (3.1)G with

G(x, k) := A(k)σ(x, k) + F (x+ σ(x, k), k)

− σ(A(k)P±(k)x+ P±(k + 1)F (x+ σ(x, k), k), k + 1) .

From our assumption (i) we have G(0, k) ≡ 0 on I , and a consequence of (3.2) together with
(H3) is limx→0D1G(x, k) = 0 uniformly in k ∈ I. Moreover, it follows from (2.5) that P∓(k +
1)G(x, k)P±(k) = (Mkσ)(x) and (3.22) yields the identity

(3.23) P∓(k + 1)Dn
1G(0, k) ≡ 0 on I

for n ∈ {1, . . . ,m}. Also the graph {(κ, ξ + (s± − σ)(ξ, κ)) ∈ I×X : ξ ∈ R(P±(κ))} is a locally
IFB for (3.1)G. An application of Proposition 3.3 to (3.1)G then guarantees the existence of a
ρ > 0 and a mapping s±ρ : X×I→X with s±ρ (x, k) ≡ (s±−σ)(x, k) on Bρ(0)×I. The construction
of the mapping s±ρ in [PS04, Theorem 4.1] in connection with (3.23) implies

Dn
1 (s± − σ)(0, k) ≡ Dn

1 s
±
ρ (0, k) ≡ 0 on I

for n ∈ {2, . . . ,m}. This proves the assertion. �
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4. Taylor Expansion of Invariant Fiber Bundles

In the situation that the O∆E (3.1)F possesses a Cm-IFB S± with m ≥ 2, it is natural to
approximate the corresponding mapping s± by Taylor expansion. In this section we derive the
equations that the corresponding Taylor coefficients need to satisfy, and prove that they are
uniquely solvable if certain gap conditions on the linear part of (3.1)F are satisfied.

Above all, we quote a version of the higher order chain rule for Fréchet derivatives in order
to express higher derivatives of the invariance equation (3.6). With given j, l ∈ N we write

P<j (l) :=

(N1, . . . , Nj)

∣∣∣∣∣∣∣∣
Ni ⊆ {1, . . . , l} and Ni 6= ∅ for i ∈ {1, . . . , j} ,
N1 ∪ . . . ∪Nj = {1, . . . , l} ,
Ni ∩Nk = ∅ for i 6= k, i, k ∈ {1, . . . , j} ,
maxNi < maxNi+1 for i ∈ {1, . . . , j − 1}


for the set of ordered partitions of {1, . . . , l} with length j and #N for the cardinality of a
finite set N ⊂ N. In case N = {n1, . . . , nk} ⊆ {1, . . . , l} for k ∈ N, k ≤ l, we abbreviate
Dkg(x)xN := Dkg(x)xn1 · · ·xnk for vectors x, x1, . . . , xl ∈ X , where g : X→X is assumed to be
l-times continuously differentiable.

Lemma 4.1 (chain rule). Given m ∈ N, open sets U, V ⊆ X and mappings g : U→X , f : V→X
of class Cm with g(U) ⊆ V . Then the composition f ◦ g : U→X is m-times continuously
differentiable and for l ∈ {1, . . . ,m}, x ∈ U the derivatives are given by

Dl(f ◦ g)(x)x1 · · ·xl =
l∑

j=1

∑
(N1,...,Nj)∈P<j (l)

Djf(g(x))D#N1g(x)xN1 · · ·D#Njg(x)xNj

for any x1, . . . , xl ∈ X .

Proof. See [Ryb91, Theorem 2]. �

We are interested in local approximations of a mapping s± : U×I→X defining a Cm-IFB of
(3.1)F . Taylor’s Theorem (cf. [Lan93, p. 350]) together with (3.3) implies the representation

(4.1) s±(x, k) =
m∑
n=2

1
n!
s±n (k)xn +R±m(x, k)

with coefficient functions s±n : I→Ln(X ) given by s±n (k) := Dn
1 s
±(0, k) and a remainder R±m

satisfying limx→0
R±m(x,k)
‖x‖m = 0. Theorem 3.4 guarantees that s±n (k) is uniquely determined

by the mapping from Theorem 3.2. Due to (3.13) the sequences s±n are bounded, i.e., one
has ‖s±n (k)‖ ≤ γn for k ∈ I, n ∈ {2, . . . ,m} with reals γ2, . . . , γm ≥ 0. We need notational
preparations:

• It is convenient to introduce S± : U×I→X , S±(x, k) := P±(k)x+ s±(x, k), satisfying

D1S
±(0, k)

(3.3)
= P±(k) , Dn

1S
±(0, k) = Dn

1 s
±(0, k) for k ∈ I(4.2)

and n ∈ {2, . . . ,m}. Hence, for the derivatives S±n (k) := Dn
1S
±(0, k) we have the

estimates∥∥S±1 (k)
∥∥ (2.10)

≤ K± ,
∥∥S±n (k)

∥∥ (3.13)

≤ γn for n ∈ {2, . . . ,m} .(4.3)

• We abbreviate g±(x, k) := P±(k + 1) [A(k)x+ F (P±(k)x+ s±(x, k), k)] and the chain
rule from Lemma 4.1 yields that the corresponding partial derivatives g±n (k) := Dn

1 g
±(0, k)

are given by (cf. (3.2)–(3.3))

g±1 (k)x1
(2.5)
= A(k)P±(k)x1,

g±n (k)x1 · · ·xn =
n∑
l=2

∑
(N1,...,Nl)∈P<l (n)

P±(k + 1)Dl
1F (0, k)S±#N1

(k)P±(k)xN1 · · ·S±#Nl(k)P±(k)xNl
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for all x1, . . . , xn ∈ X and n ∈ {2, . . . ,m}. Moreover, the uniform boundedness of Dl
1F

(cf. (H2)) and the estimates (2.1), (2.10), (4.3) imply that g±n : I→Ln(X ) are bounded
sequences for n ∈ {2, . . . ,m}.

Note that the mappings S± and g± satisfy (cf. (3.4))

S±(x, k) = S±(P±(k)x, k), g±(x, k) = g±(P±(k)x, k) for x ∈ Br(0), k ∈ I ,

where r > 0 is chosen so small that S±(x, k) ∈ U0, g±(x, k) ∈ U for x ∈ Br(0), k ∈ I. Directly
from the invariance equation (3.6) and (3.4) we get

A(k)s±(x, k) + P∓(k + 1)F (P±(k)x+ s±(x, k), k)

= s±(A(k)P±(k)x+ P±(k + 1)F (P±(k)x+ s±(x, k), k), k + 1)

and using the notation introduced above, this reads as

A(k)s±(x, k) + P∓(k + 1)F (S±(x, k), k) = s±(g±(x, k), k + 1)

for all k ∈ I, x ∈ Br(0). If we differentiate this identity using Lemma 4.1 and set x = 0, one
gets

s±n (k + 1)A(k)P±(k)x1 · · ·xn

+
n−1∑
l=2

∑
(N1,...,Nl)∈P<l (n)

s±l (k + 1)g±#N1
(k)P±(k)xN1 · · · g±#Nl(k)P±(k)xNl

= A(k)s±n (k)P±(k)x1 · · ·xn + P∓(k + 1)
[
Dn

1F (0, k)P±(k)x1 · · ·xn

+
n−1∑
l=2

∑
(N1,...,Nl)∈P<l (n)

Dl
1F (0, k)S±#N1

(k)P±(k)xN1 · · ·S±#Nl(k)P±(k)xNl
]

for n ∈ {2, . . . ,m} and x1, . . . , xn ∈ X . Therefore, s±n : I→Ln(X ) is a solution of the linear
O∆E

(4.4) X(k + 1)A(k)P±(k) = A(k)X(k)P±(k) +H±n (k)P±(k) ,

denoted as homological equation for S± with inhomogeneities H±n : I→Ln(X ) defined by

H±n (k)x1 · · ·xn :=P∓(k + 1)
[
Dn

1F (0, k)P±(k)x1 · · ·xn

+
n−1∑
l=2

∑
(N1,...,Nl)∈P<l (n)

(
Dl

1F (0, k)S±#N1
(k)P±(k)xN1 · · ·S±#Nl(k)P±(k)xNl(4.5)

− s±l (k + 1)g±#N1
(k)P±(k)xN1 · · · g±#Nl(k)P±(k)xNl

)]
.

Obviously, one has H±2 (k) = P∓(k+1)D2
1F (0, k)P±(k) and for n ∈ {3, . . . ,m} the values H±n (k)

only depend on s±2 , . . . , s
±
n−1. This leads to the following

Theorem 4.2. Suppose (H1)–(H3) are satisfied and consider a mapping s± : U×I→X from
Theorem 3.2. Then the following holds:

(a) The coefficients s+
n : I→Ln(X ), n ∈ {2, . . . ,m}, in the Taylor expansion (4.1) of the

mapping s+ : U×I→X can be determined recursively from the Lyapunov-Perron sums

(4.6) s+
n (k) = −

∞∑
j=k

Φ−(k, j + 1)H+
n (j)Φ(j,k)P+(k) for n ∈ {2, . . . ,m} ,
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(b) in case I = Z the coefficients s−n : I→Ln(X ), n ∈ {2, . . . ,m}, in the Taylor expansion
(4.1) of the mapping s− : U×I→X can be determined recursively from the Lyapunov-
Perron sums

(4.7) s−n (k) =
k−1∑
j=−∞

Φ(k, j + 1)H−n (j)Φ−(j,k)P−(k) for n ∈ {2, . . . ,m} .

Remark 4.3. For an autonomous O∆E (3.1)F , the sequences (4.6), (4.7) are constant and
exactly the stationary solutions of the homological equation (4.4). Then (4.4) reduces to the
algebraic problem discussed in [BK98].

Proof. In the explanations preceding Theorem 4.2 we have seen that the sequence s±n : I→Ln(X )
is a bounded solution of the homological equation (4.4). Moreover, it follows recursively from
(H2), (4.3), (2.10) and (4.5) that each inhomogeneity H±n is bounded, i.e., 1-quasibounded.
Consequently, due to the gap conditions (3.11) and (3.12), it yields from Lemma 2.2 that s±n
has the claimed appearance. �

While the infinite series (4.6), (4.7) to determine the Taylor coefficients in Theorem 4.2
provide an analytical solution of our problem, they seem to be of little practical use due to the
limit process involved and due to their abstract formulation using multilinear mappings. In the
remaining section we try to overcome this deficit:

Corollary 4.1 (error estimates). Choose a real γ±n > supk∈I ‖H±n (k)‖ and let ε > 0 be arbitrary.
Then, for finite approximations to the series (4.6) and (4.7), the following holds:

(a) One has
∥∥∥−∑K

j=k Φ−(k, j + 1)H+
n (j)Φ(j,k)P+(k) − s+

n (k)
∥∥∥ < ε for all k,K ∈ I satisfying

K − k > log β
αn

(
Kn

+K−γ
+
n

ε(β − αn)

)
,

(b) one has
∥∥∥∑k−1

j=K Φ(k, j + 1)H−n (j)Φ−(j,k)P−(k) − s−n (k)
∥∥∥ < ε for all k,K ∈ I satisfying

k −K > log βn
α

(
K+K

n
−γ
−
n

ε(βn − α)

)
.

Proof. The assertions yield by easy estimates for the remainder of the geometric series. �

Finally, we present notions from multilinear and tensor algebra (cf., e.g., [Gre78]) to obtain
explicit matrix representations of the sequences s±n . Thereto, let Y and Z be Banach spaces
over F. Given y∗1 , . . . , y

∗
n ∈ Y∗ and z ∈ Z, we define the element (y∗1 ∨ · · · ∨ y∗n)⊗ z ∈ Ln(Y;Z)

by

((y∗1 ∨ · · · ∨ y∗n)⊗ z)u1 · · ·un := z ·
n∏
ν=1

y∗νuν for u1, . . . , un ∈ Y .

It is worth mentioning that not every element in Ln(Y;Z) possesses such a representation.
Let Y1,Y2,Z1 and Z2 be finite-dimensional Banach spaces over F with N := dimY1 = dimY2

andM := dimZ1 = dimZ2. We choose S ∈ L(Y2;Y1) and T ∈ L(Z1;Z2) arbitrarily and denote
by S∗ ∈ L(Y∗1 ;Y∗2 ) the dual linear mapping of S, i.e., (S∗y∗)u := y∗(Su) for all y∗ ∈ Y∗1 and
u ∈ Y2. Then (S∗ ∨ · · · ∨ S∗)⊗ T ∈ L(Ln(Y1;Z1);Ln(Y2;Z2)) is defined by(

((S∗ ∨ · · · ∨ S∗)⊗ T )((y∗1 ∨ · · · ∨ y∗n)⊗ z)
)
u1 · · ·un

:= ((S∗y∗1 ∨ · · · ∨ S∗y∗n)⊗ Tz)u1 · · ·un = Tz ·
n∏
ν=1

(S∗y∗ν)uν

= Tz ·
n∏
ν=1

y∗ν(Suν) = T ((y∗1 ∨ · · · ∨ y∗n)⊗ z)(Su1, . . . , Sun)
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for any (y∗1 ∨ · · · ∨ y∗n)⊗ z ∈ Ln(Y1;Z1) and u1, . . . , un ∈ Y2. This implies

((S∗ ∨ · · · ∨ S∗)⊗ T )(X) = TXS for X ∈ Ln(Y1;Z1) .(4.8)

Let
{
yi1, . . . , y

i
N

}
and

{
zi1, . . . , z

i
M

}
be ordered bases of Yi and Zi, respectively (i ∈ {1, 2}). We

denote by
{
yi∗1 , . . . , y

i∗
N

}
the corresponding dual basis of Y∗i . Then the set{

(yi∗r1 ∨ · · · ∨ y
i∗
rn)⊗ zir : 1 ≤ r1 ≤ . . . ≤ rn ≤ N, r ∈ {1, . . . ,M}

}
(4.9)

is a basis of Ln(Yi;Zi). This basis contains K := Md(N,n) elements, where d(j, l) :=
(
j+l−1
l

)
for j, l ∈ N. We order this basis lexicographically with priority to the first components of
(r1, . . . , rn, r). Let Ŝ ∈ FN×N and T̂ ∈ FM×M be the matrix representations of S and T ,
respectively. Then ŜT is the matrix representation for S∗, and it is possible to show that the
matrix representation for the product (S∗ ∨ · · · ∨ S∗)⊗ T ∈ L(Ln(Y1;Z1);Ln(Y2;Z2)) is given
by

(ŜT ∨ · · · ∨ ŜT )⊗ T̂ ∈ FK×K ,

where ⊗ is the Kronecker product, and we define Qm :=
∨m
j=1Q ∈ Fd(N,m)×d(N,m) for a matrix

Q ∈ FN×N recursively by

Q1 := Q , Qm+1 :=


q11Q

(N,N)
m q12Q

(N,N−1)
m · · · q1NQ

(N,1)
m

q21Q
(N−1,N)
m q22Q

(N−1,N−1)
m · · · q2NQ

(N−1,1)
m

...
...

...
qN1Q

(1,N)
m qN2Q

(1,N−1)
m · · · qNNQ

(1,1)
m


with the matrices Q(j,l)

m consisting of the last d(j,m) rows and last d(l,m) columns of the matrix
Qm for l, j ∈ {1, . . . , N}.

We now define Yk := R(P±(k)) and Zk := R(P∓(k)) for all k ∈ I and consider the linear
mappings Φ(k, κ) : R(P+(κ)) → R(P+(k)) and Φ−(k, κ) : R(P−(κ)) → R(P−(k)) and the
multilinear mappings s±n (k) ∈ Ln(Yk;Zk) and H±n (k) ∈ Ln(Yk;Zk+1). Due to (4.8), the
formulas of Theorem 4.2 can then be written as

s+
n (k) = −

∞∑
j=k

((Φ(j, k)∗ ∨ · · · ∨ Φ(j, k)∗)⊗ Φ−(k, j + 1))(H+
n (j)) ,

s−n (k) =
k−1∑
j=−∞

((Φ−(j, k)∗ ∨ · · · ∨ Φ−(j, k)∗)⊗ Φ(k, j + 1))(H−n (j)) .

For k ∈ I let {yk1 , . . . , ykN} and {zk1 , . . . , zkM} be ordered bases of Yk and Zk, respectively, and
let (4.9) be an ordered basis of Ln(Yk;Zk). Finally, let veck : Ln(Yk;Zk) → FK×K be the
isomorphism which assigns to each multilinear form its coordinate vector with respect to the
basis (4.9). If we write Φ̂(k, κ) and Φ̂−(k, κ) for the matrix representations of the mappings
Φ(k, κ) and Φ−(k, κ), respectively, then the corresponding matrix equations for the formulas of
Theorem 4.2 are given by

veck(s+
n (k)) = −

∞∑
j=k

((Φ̂(j, k)T ∨ · · · ∨ Φ̂(j, k)T )⊗ Φ̂−(k, j + 1)) vecj(H+
n (j)) ,

veck(s−n (k)) =
k−1∑
j=−∞

((Φ̂−(j, k)T ∨ · · · ∨ Φ̂−(j, k)T )⊗ Φ̂(k, j + 1)) vecj(H−n (j)) .

5. Examples

In this section we present several examples — basically from mathematical biology — to
illustrate our results. We, however, disclaim a biological interpretation of the variables involved
and refer to the corresponding references.
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Example 5.1 (discrete epidemic model, cf. [CCL77]). Let (αk)k∈I, (βk)k∈I denote bounded
real sequences and γ > 0. Consider the 1-dimensional second-order nonautonomous O∆E

(5.1) y(k + 2) = (1− αky(k + 1)− βky(k))
(

1− e−γy(k+1)
)
,

which is equivalent to the 2-dimensional first-order system (2.2) with

f(x1, x2, k) :=
(

x2

(1− αkx2 − βkx1) (1− e−γx2)

)
.

The linear transformation x 7→ Tx with T :=
(

1 1
0 γ

)
, T−1 =

( 1 − 1
γ

0 1
γ

)
applied to (2.2) yields the

O∆E

(5.2) x(k + 1) =
(

0 0
0 γ

)
x(k) + F (x(k), k) ,

where we have abbreviated

F (x1, x2, k) :=
[
γx2 −

1− αkγx2 − βk(x1 + x2)
γ

(
1− e−γ

2x2

)]( 1
−1

)
.

Evidently, (5.2) satisfies (H1)–(H3) with an arbitrary m ∈ N, where the dichotomy data is
given by α ∈ (0, γ), β = γ, K± = 1 and P+ =

(
1

0

)
; consequently, Theorem 3.2 applies.

Concerning the pseudo-stable fiber bundle S+ of (5.2) it is easy to see that S+ = I×R×{0}
and s+(x1, k) ≡ 0 holds. On the other hand, in case I = Z, formula (4.7) from Theorem 4.2
implies that the coefficients s−n of the pseudo-unstable fiber bundle S− of (5.2) can be computed
explicitly; the first three are given by

s−2 (k) = 1
γ

(
γ2 + 2αk−1γ + 2βk−1

)
,(5.3)

s−3 (k) = 3βk−1
γ2 s−2 (k − 1) + 3γ3+6αk−1γ

2+6γβk−1
γ2 s−2 (k)− 3αk−1γ − 3βk−1 − γ2 ,

s−4 (k) = 12βk−1
γ2 s−2 (k − 1)s−2 (k)− 6βk−1

γ s−2 (k − 1)

− 24γ3βk−1+12γβ2
k−1+7γ5+24γ4αk−1+12γ3αk−1

2+24γ2αk−1βk−1

γ3 s−2 (k)

+ 4βk−1
γ3 s−3 (k − 1) + 12βk−1γ

2+6γ4+12αk−1γ
3

γ3 s−3 (k) + γ3 + 4αk−1γ
2 + 4βk−1γ .

The stability properties of the zero solution of (5.2) (or (5.1)) depend on the parameter γ. We
have asymptotic stability in case γ ∈ (0, 1) (cf. [Aga92, p. 256, Corollary 5.6.3]), instability
for γ ∈ (1,∞) (cf. [Aga92, p. 256, Theorem 5.6.4]), and the critical situation γ = 1 will be
considered in Example 5.5.

Example 5.2 (flour beetle model, cf. [KC96]). Let a ∈ (0, 1), b > 0 be reals and (βk)k∈I, (δk)k∈I
denote bounded sequences in [0,∞). We consider the 1-dimensional third-order nonautonomous
O∆E

(5.4) y(k + 3) = ay(k + 2) + by(k)e−βky(k+2)−δky(k) ,

which is equivalent to the 3-dimensional first-order system (2.2) with

f(x1, x2, x3, k) :=

 x2

x3

ax3 + bx1e
−βkx3−δkx1

 .

The time-varying coefficients βk, δk describe the only significant source of pupal mortality in
(5.4), the adult cannibalism (cf. [KC96]). For the sake of our analysis we retreat to the situation
a = b2−γ6

bγ2 , where γ > 0 is a real number. This implies that D1f(0, k) possesses a pair of
complex-conjugated eigenvalues with modulus γ. To guarantee a ∈ (0, 1) we additionally assume

γ ∈
(√

ω − b
3ω ,

3
√
b

)
with ω :=

3

√
b2

2
+

√
3b3(4 + 27b)

18
.
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The linear transformation x 7→ Tx with

T :=


γ6−2b2

2b2γ2
γ
√

4b2−γ6

2b2 1

−γ
2

2b −
√

4b2−γ6

2bγ
b
γ2

1 0 b2

γ4


applied to (2.2) yields the O∆E

(5.5) x(k + 1) =

 σ ρ 0
−ρ σ 0
0 0 b

γ2

x(k) + F (x(k), k) ,

with σ := −γ
4

2b , ρ := γ
√

4b2−γ6

2b and we have abbreviated

F (x, k) := T−1f(Tx, k)−

 σ ρ 0
−ρ σ 0
0 0 b

γ2

x .

It is easy to see that (5.5) satisfies (H1)–(H3), where the dichotomy data is given by α = γ,
β = b

γ2 , K± = 1 and P+ :=
(

1
1

0

)
. Again, Theorem 3.2 applies, and to obtain a quadratic

approximation to the pseudo-stable fiber bundle S+ we make the ansatz

s+(x1, x2, k) = s20(k)x2
1 + s11(k)x1x2 + s02(k)x2

2 +O(3) ;

then the homological equation (4.4) for s+
2 : I→L2(R2; R) ∼= R3 reduces to the linear system

s20(k + 1)
s11(k + 1)
s02(k + 1)

 =


γ2

4b

√
4b2−γ6

4bγ
γ6−4b2

4bγ4√
4b2−γ6

2bγ
γ6−2b2

2bγ4

√
4b2−γ6

2bγ

γ6−4b2

4bγ4

√
4b2−γ6

4bγ
γ2

4b


s20(k)
s11(k)
s02(k)



+


γ4(3b2−γ6)(b2γ2βk−3b2δk+γ6δk)

4b5(2γ6+b2)
γ(γ6−4b2)(2γ2b4βk−3b4δk−γ8βkb

2+4b2γ6δk−γ12δk)
2
√

(γ6−4b2)(2γ6+b2)b5

(γ6−4b2)(b2−γ6)(−δkb2+b2γ2βk+γ6δk)
4γ2b5(2γ6+b2)

 .

On the other side, for I = Z the quadratic coefficient s−2 : I→L2(R; R2) ∼= R2 of the pseudo-
unstable fiber bundle S− is a solution of the linear O∆E

s−2 (k + 1) =
γ5

2b3

(
−γ3

√
4b2 − γ6√

4b2 − γ6 −γ3

)
s−2 (k)−

 4γ6(βkb2+γ4δk)
b(2γ6+b2)

4γ3(βkb4+δkγ
4b2−γ6βkb

2−γ10δk)
b
√

4b2−γ6(2γ6+b2)

 .

In order to approximate the IFBs S+ and S− of (5.5) numerically using Theorem 4.2, we
fix the parameters b := 11

10 , γ := 9
10 (leading to a = 678559

891000 ) and consider cannibalism rates
βk := 1− 1

π arctan k, δk := 1 + 1
π arctan k. Hence, cannibalism becomes stationary as k → ±∞.

Then the dichotomy rates for (5.5) are given by α = 9
10 , β = 110

81 . We have computed an
approximation of the stable and unstable fiber bundle of (5.5) up to order 6. The following
figure visualizes corresponding fibers S−(k),S+(k) for k ∈ {−4, . . . , 4} in the cube [−0.6, 0.6]3.
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The URL http://www.math.uni-augsburg.de/ana/dyn sys/visual e.hmtl contains an an-
imation of these fiber bundles for k ∈ {−20, . . . , 20}, as well as a Maple program to calculate
them.

Using the following theorem, one is able to maintain stability properties of solutions for
(3.1)F from the corresponding properties of the zero solution of a finite dimensional O∆E —
provided the center-unstable fiber bundles are known. For the definition of the corresponding
stability notions we refer to, e.g., [Aga92, p. 240, Definition 5.4.1].

Theorem 5.3 (reduction principle). Suppose (H1)–(H2) are satisfied with α < 1, I = Z and
a constant invariant projector P+ with finite-dimensional kernel. If the zero solution of the
reduced equation

(5.6) x(k + 1) = A(k)x(k) + P−F (x(k) + s−(x(k), k), k)

in R(P−) is stable (asymptotically stable, unstable, respectively), then also the zero solution of
(3.1)F is stable (asymptotically stable, unstable, respectively).

Proof. See [Pöt04, Theorem 3.5]. �

Consider the O∆E (2.2) with a scalar right-hand side f : Ũ×I→R such that f(0, k) ≡ 0 on
I, where Ũ ⊆ R is an open neighborhood of 0. In addition to the notions of stability mentioned
in Theorem 5.3, we define the following notions of semi-stability: the zero solution of (2.2) is
called left-stable (right-stable) if the corresponding stability definitions hold in left-sided (right-
sided) neighborhoods of 0. The next proposition provides sufficient conditions concerning the
right-hand side of (2.2) for the stability behavior of the zero solution.

Proposition 5.4 (stability of 1-dimensional nonautonomous O∆Es). Assume that f is 2-times
continuously differentiable w.r.t. the first variable. Then the following holds:
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(a) If there exists a κ ∈ I such that D1f(0, k) = 1 for all k ∈ Z+
κ and either

lim inf
x→0,k→∞

D1f(x, k)− 1
x

> 0 or lim sup
x→0,k→∞

D1f(x, k)− 1
x

< 0

holds, then the zero solution of (2.2) is unstable. If, in addition, in the first case, we
have

lim sup
x→0,k→∞

D1f(x, k)− 1
x

<∞ ,

then the zero solution of (2.2) is asymptotically left-stable. If, in the second case, also

lim inf
x→0,k→∞

D1f(x, k)− 1
x

> −∞

holds, then the zero solution of (2.2) is asymptotically right-stable,
(b) if there exists a κ ∈ I such that D1f(0, k) = 1, D2

1f(0, k) = 0 for all k ∈ Z+
κ , and

lim inf
x→0,k→∞

D2
1f(x, k)
x

> 0 ,

then the zero solution of (2.2) is unstable,
(c) if there exists a κ ∈ I such that D1f(0, k) = 1, D2

1f(0, k) = 0 for all k ∈ Z+
κ and

lim sup
x→0,k→∞

D2
1f(x, k)
x

< 0 and lim inf
x→0,k→∞

D2
1f(x, k)
x

> −∞ ,

then the zero solution of (2.2) is asymptotically stable.

Proof. (a) The relation lim infx→0,k→∞
D1f(x,k)−1

x > 0 implies that there exists a κ1 ∈ Z+
κ and

two constants δ, η > 0 such that

D1f(x, k)− 1
x

≥ η for k ∈ Z+
κ1

and x ∈ (−δ, δ) \ {0} .

Thus, the mean value theorem (cf. [Lan93, p.341, Theorem 4.2]) implies

f(x, k) =
∫ 1

0

D1f(tx, k)x dt ≥ x+
1
2
ηx2 for k ∈ Z+

κ1
and x ∈ (−δ, δ) \ {0} ,

which is obviously sufficient for the instability of the zero solution of (2.2). We now prove that
this solution is left-attractive under the additional assumption lim supx→0,k→∞

D1f(x,k)−1
x <∞.

This relation implies the existence of a κ2 ∈ Z+
κ1

and two constants 0 < δ1 < δ, γ > 0 such that

D1f(x, k) ≥ 1 + xγ for k ∈ Z+
κ2

and x ∈ (−δ1, 0) .

Hence,

f(x, k) =
∫ 1

0

D1f(tx, k)x dt ≤ x+
1
2
γx2 for k ∈ Z+

κ2
and x ∈ (−δ1, 0) .

Therefore, there exists a 0 < δ2 < δ1 such that

x+
1
2
ηx2 ≤ f(x, k) ≤ 0 for k ∈ Z+

κ2
and x ∈ (−δ2, 0) .

This means that the zero solution is left-attractive. The second assertion can be proved analo-
gously.

(b) Due to the hypotheses there exists a κ1 ∈ Z+
κ and two constants δ > 0 and η > 0 such

that
D2

1f(x, k)
x

≥ η for k ∈ Z+
κ1

and x ∈ (−δ, δ) \ {0} .

Thus, Taylor’s Theorem implies for all k ∈ Z+
κ1

f(k, x) = D1f(0, k)x+
∫ 1

0

1− t
2

D2
1f(tx, k)x2 dt ≥ x+

1
6
ηx3 for x ∈ (0, δ) .
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This relation is obviously sufficient for instability of the zero solution of (2.2).
(c) This assertion can be shown using arguments from (a) and (b). �

Example 5.5. Let I = Z. We consider the O∆E (5.1) from Example 5.1 for the critical
parameter value γ = 1. The reduced equation (5.6) corresponding to (5.2) is given by

x2(k + 1) = x2(k)− (1 + 2αk + 2βk)x2(k)2 + (1− 3βks−2 (k) + 3αk + 3βk)x2(k)3 +O(x2(k)4) .
(5.7)

Hence, due to the reduction principle from Theorem 5.3, the stability of the zero solution
depends on the behavior of the sequence (1+2αk+2βk)k∈Z. Proposition 5.4 yields that the zero
solution of (5.7) is asymptotically left-stable if lim supk→∞ (αk + βk) < − 1

2 , and asymptotically
right-stable if lim infk→∞ (αk + βk) > − 1

2 . In any case, the zero solutions of (5.2) and (5.6) are
unstable in the above situation. In the degenerate case 1 + 2αk + 2βk ≡ 0 on Z+

κ , one has to
take the center-unstable fiber bundle S− of (5.2) into account. Keeping in mind (5.3), one has

x2(k + 1) = x2(k) +
[
1− 3βk

(
−2αk−1 + 2βk−1

)
+ 3αk

]
x2(k)3 +O(x2(k)4) .

We define the sequence γk := [−βk (−2αk−1 + 2βk−1) + αk] for k ∈ Z. Then the zero solutions
of (5.1), (5.7), (5.2) and (5.6) are unstable if lim infk→∞ γk > − 1

3 , and asymptotically stable if
lim supk→∞ γk < − 1

3 holds.

The following delay-difference equation is a generalization of a model discussed, e.g., in
[KL92].

Example 5.6 (Pielou’s discrete logistic model). Let N > 1 be an integer and let γ : Z→(0,∞),
δ1, . . . , δN : Z→R be bounded sequences. Moreover, we abbreviate δ(k) :=

∑N
i=1 δi(k). Consider

the delay difference equation

(5.8) y(k + 1) =
y(k)

(
1− γ(k)y(k)2

)
1 +

∑N
i=1 δi(k)y(k − i+ 1)

,

which possesses the equilibrium 0. Setting xN−i+1(k) := y(k − i+ 1), i ∈ {1, . . . , N}, leads to
the equivalent first order O∆E (2.2) in RN with the right-hand side

f(x, k) :=


x2

...
xN

xN(1−γ(k)x2
N)

1+
PN
i=1 δN−i+1(k)xi(k)

 .

Its linearization in 0 ∈ RN is given by

D1f(0, k) =



0 1 0
0 1 0

0 1 0
. . . . . . . . .

0 1 0
0 1

1


,

does not depend on k ∈ Z, and obviously has the eigenvalues 0 (multiplicity N − 1), 1 (multi-
plicity 1). Consequently, it is possible to apply Theorem 3.2 and Theorem 5.3. Thereto, it is
advantageous to transform D1f(0, k) into Jordan canonical form, which can be done using the
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matrices

T :=


1 1

. . .
...

. . . 1
1

 , T−1 =


1 −1

. . .
...

. . . −1
1

 .

If we apply this transformation x 7→ Tx to (2.2), then the reduced equation (5.6) reads as

xN (k + 1) =
xN (k)

(
1− γ(k)xN (k)2

)
1 +

∑N−1
i=1 δN−i+1(k)(xN (k) + s−i (xN (k), k)) + δ1(k)xN (k)

where s− = (s−1 , . . . , s
−
N−1) : U×Z→RN−1, U ⊆ R an open neighborhood of 0, parameterizes the

the center-unstable fiber bundle S− of the transformed equation. Using the Taylor expansions

s−i (xN , k) =
m∑
n=2

s−i,n(k)
n!

xnN +Ri,m(x, k) for i ∈ {1, . . . , N − 1} ,

this, in turn, leads to the representation
(5.9)

xN (k+1) = xN (k)−2δ(k)xN (k)2−3

(
2γ(k)− 2δ(k)2 +

N−1∑
i=1

δN−i+1(k)si,2(k)

)
xN (k)3+O(xN (k)4) ,

where the sequence (s1,2, . . . , sN−1,2) : Z→RN−1 is the unique bounded solution of the linear
O∆E

(5.10) x(k + 1) =



0 1 0
0 1 0

0 1 0
. . . . . . . . .

0 1 0
0 1

0


x(k) + 2δ(k)


1
1
...
1
1


in RN−1. Now the factor δ(k) determines the stability of the zero solution to (5.9). We
have asymptotical left-stability if lim supk→∞ δ(k) < 0, and asymptotical right-stability if
lim infk→∞ δ(k) > 0. In the degenerate case δ(k) ≡ 0 on Z+

κ the reduced equation (5.9)
simplifies to

xN (k + 1) = xN (k)− 3

(
2γ(k) +

N−1∑
i=1

δN−i+1(k)si,2(k)

)
xN (k)3 +O(xN (k)4)

and from (5.10) one obtains si,2(k) ≡ 0 on Z+
κ for i ∈ {1, . . . , N − 1}, i.e.,

xN (k + 1) = xN (k)− 6γ(k)xN (k)3 +O(xN (k)4) .

Hence, the zero solutions of (5.9) and (5.8) are unstable if lim supk→∞ γ(k) < 0, and asymp-
totically stable if lim infk→∞ γ(k) > 0 holds.
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