
Cm-SMOOTHNESS OF INVARIANT FIBER BUNDLES

CHRISTIAN PÖTZSCHE AND STEFAN SIEGMUND

Abstract. The method of invariant manifolds, now called the “Hadamard-Perron-Theorem”, was orig-

inally developed by Lyapunov, Hadamard and Perron for time-independent maps and differential equa-
tions at a hyperbolic fixed point. It was then extended from hyperbolic to non-hyperbolic systems, from

time-independent and finite-dimensional to time-dependent and infinite-dimensional equations. The
generalization of an invariant manifold for a discrete dynamical system (mapping) to a time-variant

difference equation is called an invariant fiber bundle. While in the hyperbolic case the smoothness

of the invariant fiber bundles is easily obtained with the contraction principle, in the non-hyperbolic
situation the smoothness depends on a spectral gap condition, is subtle to prove and proofs were given

under various assumptions by basically three different approaches, so far: (1) A lemma of Henry, (2) the

fiber-contraction theorem, or (3) fixed point theorems for scales of embedded Banach spaces.
In this paper we present a new self-contained and basic proof of the smoothness of invariant fiber

bundles which relies only on Banach’s fixed point theorem. Our result extends previous versions of

the “Hadamard-Perron-Theorem” and generalizes it to the time-dependent, not necessarily hyperbolic,
infinite-dimensional, non-invertible and parameter-dependent case. Moreover, we show by an example

that our gap-condition is sharp.

1. Introduction

One of the basic tasks of the theory of dynamical systems is to study the qualitative, asymptotic and
long-term behavior of solutions or orbits. A main tool turned out to be invariant manifold theory
providing a “dynamical skeleton” of orbits converging with a certain exponential rate to a given rest
point or reference orbit. In this paper we consider time-dependent, not necessarily hyperbolic, infinite-
dimensional, non-invertible and parameter-dependent difference equations. Invariant fiber bundles are
the generalization of invariant manifolds to this situation. It is crucial to allow our difference equations
to depend on a parameter, since this allows to construct invariant foliations as in [AW03] and also to
apply our result to discretization theory of time-invariant difference equations. From the point of view
of applications it is indispensable to treat difference equations which are non-invertible. The fact that
we will consider invariant fiber bundles which contain the zero solution is no restriction, in fact, every
invariant fiber bundle through an arbitrary reference solution k 7→ z(k) of a given difference equation is
an invariant fiber bundle of the time-variant difference equation which we get from the (time-depending)
transformation x 7→ x − z(k); this allows e.g. the treatment of the invariant manifolds of an almost
periodic orbit of a map. But also discretization problems of semiflows are in the scope of applications,
since we allow the state space to be infinite-dimensional. The technical difficulties of the proof of our
main result (Theorem 3.4) are due to the fact that we allow our reference solution to be non-hyperbolic.
This flexibility turns out to be crucial in continuous time applications (see e.g. [MPW00]) when it is
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necessary not only to split into stable and unstable manifold but to have a finer decomposition at hand
which provides a more detailed picture of the dynamics. We expect the same to be true for discrete time
applications and provide a theorem which is flexible and strong enough to apply to various situations
without the need to be reproven for every explicit problem.

The existence of invariant fiber bundles in our general situation has been proven by Aulbach and the
authors in [APS01], where also the C1-smoothness of the invariant fiber bundles was showed. Although
stable and unstable fiber bundles are in the same smoothness class as the system, an arbitrary fiber
bundle is only C1 in general. However, sometimes a system restricted to one of its invariant fiber bundles
carries relevant information and therefore it is important to know the maximal smoothness class of an
invariant fiber bundle. It is known that a gap condition on the spectrum of the linearization along the
reference orbit has to be satisfied in order to get higher order smoothness of the invariant fiber bundles.
But it is also well-known from the theory of ordinary differential equations that the differentiability
of invariant manifolds is technically hard to prove. For a modern approach using sophisticated fixed
point theorems see [VvG87, Van89, Ryb93] or [Hil92]. Another approach to the smoothness of invariant
manifolds is essentially based on a lemma by Henry (cf. [CL88, Lemma 2.1]) or methods of a more
differential topological nature (cf. [HPS77, Shu87] or [Sie96]), namely the Cm-section theorem for fiber
contracting maps. In [CR94] and [Sie99] the problem of higher order smoothness is tackled directly.
Other contemporary theorems on the smoothness of invariant fiber bundles of difference equations are
contained in the articles [Hil92, ElB99] and in the monograph [KH95]. The first two papers deal only with
autonomous systems and apply a fixed point result on scales of Banach spaces and the fiber contraction
theorem, respectively. In [KH95, pp. 242–243, Theorem 6.2.8] the so-called “Hadamard-Perron-Theorem”
is proved via a graph transformation technique for a time-dependent family of Cm-diffeomorphisms
on a finite-dimensional space. Using a different method of proof, our main results Theorem 3.4 and
Theorem 4.1 generalize this version of the “Hadamard-Perron-Theorem” to not necessarily hyperbolic,
non-invertible, infinite-dimensional and parameter-dependent difference equations. We would like to point
out that the hyperbolic theory is already elegantly and didactically well presented in the survey [Yoc95]
and the exposition [Fen96].

Our contribution consists in treating also the technical non-hyperbolic case. We tried hard to give a
clear and accessible “ad hoc” proof of the maximal smoothness class of pseudo-hyperbolic invariant fiber
bundles. Moreover, we give an example that shows that our gap conditions are sharp. The smoothness
proof is basically derived from [Sie99] and needs no technical tools beyond the contraction mapping
principle, the Neumann series and Lebesgue’s theorem. Cm-smoothness of invariant fiber bundles is
proved by induction over m. The induction over the smoothness class m is the key for understanding
the structure of the problem. Our focus it not to hide the core of the proof by omitting the technical
induction argument as it is usually done in the literature. To our understanding this is one of the reasons
why the “Hadamard-Perron-Theorem” has been reproven by so many authors for similar situations over
the years. The induction argument of the proof is crucial because it is needed to rigorously compute
the higher order derivatives of compositions of maps, the so-called “derivative tree”. It turned out to
be advantageous to use two different representations of the derivative tree, namely a “totally unfolded
derivative tree” to show that a fixed point operator is well-defined and to compute explicit global bounds
for the higher order derivatives of the fiber bundles and besides a “partially unfolded derivative tree” to
elaborate the induction argument in a recursive way.

The structure of this paper is as follows: In Section 2 we present the notation and basic results.

Section 3 is devoted to the C1-smoothness of invariant fiber bundles. We will also state our main
assumptions here and prove some preparatory lemmas which will also be needed later. The C1-smoothness
follows without any gap condition from the main result of this section which is Theorem 3.4. Our proof
may seem long and intricate and in fact it would be if we would like to show only the C1-smoothness,
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but in its structure it already contains the main idea of the induction argument for the Cm-case and we
will profit then from being rather detailed in the C1-case.

Section 4 contains our main result (Theorem 4.1), stating that for every “spectral gap” (α, β) the pseudo-
stable fiber bundle (which corresponds to the “spectrum” in (−∞, α)) is of class Cms if αms < β and the
pseudo-unstable fiber bundle (which corresponds to the “spectrum” in (β,∞)) is of class Cmr if α < βmr .
Example 4.1 shows that these gap conditions are sharp.

2. Preliminaries

N denotes the positive integers and a discrete interval I is defined to be the intersection of a real interval
with the integers Z = {0,±1, . . . }. For an integer κ ∈ Z we define Z+

κ := [κ,∞) ∩ Z, Z−κ := (−∞, κ] ∩ Z.

The Banach spaces X ,Y are all real or complex throughout this paper and their norm is denoted by ‖·‖X ,
‖·‖Y or simply by ‖·‖. If X and Y are isometrically isomorphic we write X ∼= Y. Ln(X ;Y) is the Banach
space of n-linear continuous operators from Xn to Y for n ∈ N, L0(X ;Y) := Y, L(X ;Y) := L1(X ;Y),
L(X ) := L1(X ;X ), IX the identity map on X and GL(X ) the multiplicative group of bijective mappings
in L(X ). On the product space X × Y we always use the maximum norm

(2.1)
∥∥∥∥(xy

)∥∥∥∥
X×Y

:= max
{
‖x‖X , ‖y‖Y

}
.

We write DF for the Fréchet derivative of a mapping F and if F : (x, y) 7→ F (x, y) depends differentiable
on more than one variable, then the partial derivatives are denoted by ∂F

∂x and ∂F
∂y , respectively. Now

we quote the two versions of the higher order chain rule for Fréchet derivatives on which our smoothness
proof is based. Thereto let Z be a further Banach space over R or C. With given j, l ∈ N we write

P<j (l) :=

(N1, . . . , Nj) ⊂ {1, . . . , l}j
∣∣∣∣∣∣
Ni 6= ∅, N1 ∪ . . . ∪Nj = {1, . . . , l} ,
Ni ∩Nk = ∅ for i 6= k,
maxNi < maxNi+1


for the set of ordered partitions of {1, . . . , l} with length j, we write #N for the cardinality of a finite
set N ⊂ N. In case N = {n1, . . . , nk} ⊆ {1, . . . , l} for k ∈ N, k ≤ l, we abbreviate Dkg(x)xN :=
Dkg(x)xn1 · · ·xnk for vectors x, x1, . . . , xl ∈ X , where g : X → Y is l-times continuously differentiable.

Theorem 2.1 (Chain rule). Given m ∈ N and two mappings f : Y → Z, g : X → Y which are m-
times continuously differentiable. Then also the composition f ◦ g : X → Z is m-times continuously
differentiable and for l ∈ {1, . . . ,m}, x ∈ X the derivatives possess the representations as a so-called
partially unfolded derivative tree

(2.2) Dl(f ◦ g)(x) =
l−1∑
j=0

(
l − 1
j

)
Dj [Df(g(x))] ·Dl−jg(x)

and as a so-called totally unfolded derivative tree

(2.3) Dl(f ◦ g)(x)x1 · · ·xl =
l∑

j=1

∑
(N1,...,Nj)∈P<j (l)

Djf(g(x))D#N1g(x)xN1 · · ·D#Njg(x)xNj

for any x1, . . . , xl ∈ X .

Proof. A proof of (2.2) follows by an easy induction argument (cf. [Sie99, p. 266, B.3 Satz]), while (2.3)
is shown in [Ryb91, Theorem 2]. �
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We use the notation

(2.4) x′ = f(k, x, p)

to denote the parameter-dependent difference equation x(k + 1) = f(k, x(k), p), with the right-hand
side f : I × X × P → X , where I is a discrete interval and P is a topological space. Let λ(k;κ, ξ, p)
denote the general solution of equation (2.4), i.e. λ(· ;κ, ξ, p) solves (2.4) and satisfies the initial condition
λ(κ;κ, ξ, p) = ξ for κ ∈ I, ξ ∈ X , p ∈ P. In forward time λ can be defined recursively as

λ(k;κ, ξ, p) :=
{

ξ for k = κ
f(k − 1, λ(k − 1;κ, ξ, p), p) for k > κ

.

Given an operator sequence A : I → L(X ) we define the evolution operator Φ(k, κ) ∈ L(X ) of the linear
equation x′ = A(k)x as the mapping given by

Φ(k, κ) :=
{

IX for k = κ
A(k − 1) · · ·A(κ) for k > κ

and if A(k) is invertible (in L(X )) for k ≤ κ then Φ(k, κ) := A(k)−1 · · ·A(κ− 1)−1 for k < κ.

Now we introduce a notion describing exponential growth of sequences or solutions of difference equations.
For a γ > 0, a Banach space X , a discrete interval I, κ ∈ I and λ : I → X we say that

(a) λ is γ+-quasibounded if I is unbounded above and if ‖λ‖+κ,γ := supk∈Z+
κ
‖λ(k)‖ γκ−k <∞,

(b) λ is γ−-quasibounded if I is unbounded below and if ‖λ‖−κ,γ := supk∈Z−κ ‖λ(k)‖ γκ−k <∞,
(c) λ is γ±-quasibounded if I = Z and if supk∈Z ‖λ(k)‖ γκ−k <∞.

`+κ,γ(X ) and `−κ,γ(X ) denote the sets of all γ+- and γ−-quasibounded functions λ : I → X , they are
Banach spaces with the norms ‖·‖+κ,γ and ‖·‖−κ,γ , and satisfy the following properties (cp. also Lemma 3.3
in [APS01]).

Lemma 2.2. For real constants γ, δ with 0 < γ ≤ δ, m ∈ N, κ ∈ Z and Banach spaces X ,Y the following
statements are valid:

(a) The Banach spaces `+κ,γ(X )× `+κ,γ(Y) and `+κ,γ(X × Y) are isometrically isomorphic,
(b) `+κ,γ(X ) ⊆ `+κ,δ(X ) and ‖λ‖+κ,δ ≤ ‖λ‖

+
κ,γ for λ ∈ `+κ,γ(X ),

(c) with the abbreviation `0κ,γ := `+κ,γ(X × Y), `mκ,γ := `+κ,γ(Lm(X ;X × Y)), the Banach spaces `mκ,γ
and L(X ; `m−1

κ,γ ) are isometrically isomorphic.

3. C1-smoothness of invariant fiber bundles

We begin this section by stating our frequently used main assumptions.

Hypothesis 3.1. Let us consider the system of parameter-dependent difference equations

(3.1)
{
x′=A(k)x+ F (k, x, y, p)
y′ =B(k)y +G(k, x, y, p)

where X ,Y are Banach spaces, P is a topological space satisfying the first axiom of countability, the
discrete interval I is unbounded to the right, A : I → L(X ), B : I → GL(Y) and the mappings F :
I×X ×Y ×P → X , G : I×X ×Y ×P → Y are m-times, m ∈ N, continuously differentiable with respect
to (x, y). Moreover we assume:
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(i) Hypothesis on linear part: The evolution operators Φ(k, l) and Ψ(k, l) of the linear systems x′ =
A(k)x and y′ = B(k)y, respectively, satisfy for all k, l ∈ I the estimates

‖Φ(k, l)‖L(X ) ≤ K1α
k−l for k ≥ l, ‖Ψ(k, l)‖L(Y) ≤ K2β

k−l for l ≥ k,(3.2)

with real constants K1,K2 ≥ 1 and α, β with 0 < α < β.
(ii) Hypothesis on perturbation: We have

F (k, 0, 0, p) ≡ 0, G(k, 0, 0, p) ≡ 0 on I × P,(3.3)

and the partial derivatives of F and G are globally bounded, i.e. for n ∈ {1, . . . ,m} we assume

|F |n := sup
(k,x,y,p)∈I×X×Y×P

∥∥∥∥ ∂nF

∂(x, y)n
(k, x, y, p)

∥∥∥∥
Ln(X×Y;X )

<∞,

|G|n := sup
(k,x,y,p)∈I×X×Y×P

∥∥∥∥ ∂nG

∂(x, y)n
(k, x, y, p)

∥∥∥∥
Ln(X×Y;Y)

<∞
(3.4)

and additionally for some real σmax > 0 we require

(3.5) max {|F |1 , |G|1} <
σmax

max {K1,K2}
.

Furthermore we choose a fixed real number σ ∈ (max {K1,K2}max {|F |1 , |G|1} , σmax).

Remark 3.1. In [APS01] difference equations of the type (3.1) are considered without an explicit
parameter-dependence. Anyhow, every result from [APS01] remains applicable since all the above esti-
mates in Hypothesis 3.1 are uniform in p ∈ P.

Lemma 3.2. We assume Hypothesis 3.1 for m = 1, σmax = β−α
2 and choose κ ∈ I. Moreover let

(µ, ν), (µ̄, ν̄) : Z+
κ → X×Y be solutions of (3.1) such that their difference (µ, ν)−(µ̄, ν̄) is γ+-quasibounded

for any γ ∈ (α+ σ, β − σ). Then the estimate

(3.6)
∥∥∥∥(µν

)
(k)−

(
µ̄
ν̄

)
(k)
∥∥∥∥
X×Y

≤ K1
γ − α

γ − α−K1 |F |1
γk−κ ‖µ(κ)− µ̄(κ)‖X for k ∈ Z+

κ

holds.

Proof. Choose an arbitrary p ∈ P and κ ∈ I. First of all the difference µ − µ̄ ∈ `+κ,γ(X ) is a solution of
the inhomogeneous difference equation

(3.7) x′ = A(k)x+ F (k, (µ, ν)(k), p)− F (k, (µ̄, ν̄)(k), p),

where the inhomogeneity is γ+-quasibounded

‖F (·, (µ, ν)(·), p)− F (·, (µ̄, ν̄)(·), p)‖+κ,γ
(3.4)

≤ |F |1

∥∥∥∥(µν
)
−
(
µ̄
ν̄

)∥∥∥∥+

κ,γ

by Hypothesis 3.1(ii). Applying [Aul98, Lemma 3.3] to the equation (3.7) yields

(3.8) ‖µ− µ̄‖+κ,γ ≤ K1 ‖µ(κ)− µ̄(κ)‖+
K1 |F |1
γ − α

∥∥∥∥(µν
)
−
(
µ̄
ν̄

)∥∥∥∥+

κ,γ

;

note that our definition of ‖·‖+κ,γ is slightly different from [Aul98, Definition 3.1(a)]. Because of K1|F |1
γ−α < 1

(cf. (3.5)), w.l.o.g. we can assume ν 6= ν̄ from now on. Analogously the difference ν − ν̄ ∈ `+κ,γ(Y) is a
solution of the linear equation y′ = B(k)y+G(k, (µ, ν)(k), p)−G(k, (µ̄, ν̄)(k), p), where the inhomogeneity
is also γ+-quasibounded

‖G(·, (µ, ν)(·), p)−G(·, (µ̄, ν̄)(·), p)‖+κ,γ
(3.4)

≤ |G|1

∥∥∥∥(µν
)
−
(
µ̄
ν̄

)∥∥∥∥+

κ,γ
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by Hypothesis 3.1(ii). Now using the result [Aul98, Lemma 3.4(a)] yields

‖ν − ν̄‖+κ,γ ≤
K2 |G|1
β − γ

∥∥∥∥(µν
)
−
(
µ̄
ν̄

)∥∥∥∥+

κ,γ

,

and since we have K2|G|1
β−γ < 1 (cf. assumption (3.5)) as well as ν 6= ν̄ we get the inequality ‖ν − ν̄‖+κ,γ <

max
{
‖µ− µ̄‖+κ,γ , ‖ν − ν̄‖

+
κ,γ

}
by (2.1). Consequently we obtain ‖µ− µ̄‖+κ,γ = ‖(µ, ν)− (µ̄, ν̄)‖+κ,γ , which

leads to ∥∥∥∥(µν
)
−
(
µ̄
ν̄

)∥∥∥∥+

κ,γ

(3.8)

≤ K1 ‖µ(κ)− µ̄(κ)‖+
K1 |F |1
γ − α

∥∥∥∥(µν
)
−
(
µ̄
ν̄

)∥∥∥∥+

κ,γ

.

This, in turn, immediately implies the estimate (3.6). �

Now we collect some crucial results from the earlier paper [APS01]. In particular we can characterize the
quasibounded solutions of (3.1) quite easily as fixed points of an appropriate operator.

Lemma 3.3 (the operator Tκ). We assume Hypothesis 3.1 for m = 1, σmax = β−α
2 and choose κ ∈ I.

Then for arbitrary γ ∈ [α+ σ, β − σ] and ξ ∈ X , p ∈ P, the mapping Tκ : `+κ,γ(X × Y) × X × P →
`+κ,γ(X × Y),

(3.9)
(
Tκ(µ, ν; ξ, p)

)
(k) :=

(
Φ(k, κ)ξ +

∑k−1
n=κ Φ(k, n+ 1)F (n, (µ, ν)(n), p)

−
∑∞
n=k Ψ(k, n+ 1)G(n, (µ, ν)(n), p)

)
for k ∈ Z+

κ

has the following properties:

(a) Tκ(· ; ξ, p) is a uniform contraction in ξ ∈ X , p ∈ P with Lipschitz constant

(3.10) L :=
max {K1,K2}

σ
max {|F |1 , |G|1} < 1,

(b) the unique fixed point (µκ, νκ)(ξ, p) ∈ `+κ,γ(X × Y) of Tκ(· ; ξ, p) does not depend on γ ∈
[α+ σ, β − σ] and is globally Lipschitzian:

(3.11)
∥∥∥∥(µκνκ

)
(ξ, p)−

(
µκ
νκ

)
(ξ̄, p)

∥∥∥∥+

κ,γ

≤ K1

1− L
∥∥ξ − ξ̄∥∥X for ξ, ξ̄ ∈ X , p ∈ P,

(c) a function (µ, ν) ∈ `+κ,γ(X ×Y) is a solution of the difference equation (3.1) with µ(κ) = ξ, if and
only if it is a solution of the fixed point equation

(3.12)
(
µ
ν

)
= Tκ(µ, ν; ξ, p).

Proof. See [APS01], in particular the proof of Theorem 4.11 in the quoted paper for (a), (b), and Lemma
4.10 for (c). �

Having all preparatory results at hand we may now head for our main theorem in the C1-case. As
mentioned in the introduction, invariant fiber bundles are generalizations of invariant manifolds to non-
autonomous equations. In order to be more precise, for fixed parameters p ∈ P, we call a subset S(p) of
the extended state space I ×X ×Y an invariant fiber bundle of (3.1), if it is positively invariant, i.e. for
any tuple (κ, ξ, η) ∈ S(p) one has (k, λ(k;κ, ξ, η, p)) ∈ S(p) for all k ≥ κ, k ∈ I, where λ denotes the
general solution of (3.1).

Theorem 3.4 (C1-smoothness of invariant fiber bundles). We assume Hypothesis 3.1 for m = 1, σmax =
β−α

2 and let λ denote the general solution of (3.1). Then the following statements are valid:
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(a) There exists a uniquely determined mapping s : I × X × P → Y whose graph S(p) :=
{(κ, ξ, s(κ, ξ, p)) : κ ∈ I, ξ ∈ X} can be characterized dynamically for any parameter p ∈ P and
any constant γ ∈ [α+ σ, β − σ] as

S(p) =
{

(κ, ξ, η) ∈ I ×X × Y : λ(· ;κ, ξ, η, p) ∈ `+κ,γ(X × Y)
}
.

Furthermore we have
(a1) s(κ, 0, p) ≡ 0 on I × P,
(a2) the graph S(p), p ∈ P, is an invariant fiber bundle of (3.1). Additionally s is a solution of

the invariance equation

s (κ+ 1, A(κ)ξ + F (κ, ξ, s(κ, ξ, p), p), p) = B(κ)s(κ, ξ, p) +G(κ, ξ, s(κ, ξ, p), p)

for (κ, ξ, p) ∈ I ×X × P,
(a3) s : I × X × P → Y is continuous and continuously differentiable in the second argument

with globally bounded derivative∥∥∥∥∂s∂ξ (κ, ξ, p)
∥∥∥∥
L(X ;Y)

≤
K1K2 max {|F |1 , |G|1}

σ −max {K1,K2}max {|F |1 , |G|1}
for (κ, ξ, p) ∈ I ×X × P.

The graph S(p), p ∈ P, is called the pseudo-stable fiber bundle of (3.1).
(b) In case I = Z there exists a uniquely determined mapping r : I×Y×P → X whose graph R(p) :=
{(κ, r(κ, η, p), η) : κ ∈ I, η ∈ Y} can be characterized dynamically for any parameter p ∈ P and
any constant γ ∈ [α+ σ, β − σ] as

(3.13) R(p) =
{

(κ, ξ, η) ∈ I ×X × Y : λ(· ;κ, ξ, η, p) ∈ `−κ,γ(X × Y)
}
.

Furthermore we have
(b1) r(κ, 0, p) ≡ 0 on I × P,
(b2) the graph R(p), p ∈ P, is an invariant fiber bundle of (3.1). Additionally r is a solution of

the invariance equation

r (κ+ 1, B(κ)η +G(κ, r(κ, η, p), η, p), p) = A(κ)r(κ, η, p) + F (κ, r(κ, η, p), η, p)

for (κ, η, p) ∈ I × Y × P,
(b3) r : I × Y × P → X is continuous and continuously differentiable in the second argument

with globally bounded derivative∥∥∥∥∂r∂η (κ, η, p)
∥∥∥∥
L(Y;X )

≤
K1K2 max {|F |1 , |G|1}

σ −max {K1,K2}max {|F |1 , |G|1}
for (κ, η, p) ∈ I × Y × P.

The graph R(p), p ∈ P, is called the pseudo-unstable fiber bundle of (3.1).
(c) In case I = Z only the zero solution of equation (3.1) is contained both in S(p) and R(p),

i.e. S(p)∩R(p) = Z×{0}×{0} for p ∈ P and hence the zero solution is the only γ±-quasibounded
solution of (3.1) for γ ∈ [α+ σ, β − σ].

Remark 3.2. Since we did not assume invertibility of the difference equation (3.1) one has to interpret
the dynamical characterization (3.13) of the pseudo-unstable fiber bundle R(p), p ∈ P, as follows. A
point (κ, ξ, η) ∈ I × X × Y is contained in R(p) if and only if there exists a γ−-quasibounded solution
λ(· ;κ, ξ, η, p) : I → X × Y of (3.1) satisfying the initial condition x(κ) = ξ, y(κ) = η. In this case the
solution λ(· ;κ, ξ, η, p) is uniquely determined.

Proof. (a) Our main intention in the current proof is to show the continuity and the partial differentiability
assertion (a3) for the mapping s : I ×X × P → Y. Any other statement of Theorem 3.4(a) follows from
[APS01, Proof of Theorem 4.11]. Nevertheless we reconsider the main ingredients in our argumentation.
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Using [APS01, Proof of Theorem 4.11] we know that for any triple (κ, ξ, p) ∈ I × X × P there exists
exactly one s(κ, ξ, p) ∈ Y such that λ(· ;κ, ξ, s(κ, ξ, p), p) ∈ `+κ,γ(X ×Y) for every γ ∈ [α+ σ, β − σ]. Then
the function s(·, p) : I × X → Y, p ∈ P, defines the invariant fiber bundle S(p), if we set s(κ, ξ, p) :=
(νκ(ξ, p))(κ), where (µκ, νκ)(ξ, p) ∈ `+κ,γ(X ×Y) denotes the unique fixed point of the operator Tκ(· ; ξ, p) :
`+κ,γ(X × Y)→ `+κ,γ(X × Y) introduced in Lemma 3.3 for any ξ ∈ X , p ∈ P and γ ∈ [α+ σ, β − σ]. Here
and in the following one should be aware of the estimate

(3.14) max
{
K1 |F |1
γ − α

,
K2 |G|1
β − γ

}
(3.10)

≤ L < 1.

The further proof of part (a3) will be divided into several steps. For notational convenience we introduce
the abbreviations µκ(k; ξ, p) := (µκ(ξ, p))(k) and νκ(k; ξ, p) := (νκ(ξ, p))(k).

Step 1 - Claim: For every γ ∈ (α+ σ, β − σ] the mappings (µκ, νκ) : Z+
κ × X × P → X × Y and

s : I ×X × P → Y are continuous.
By Hypothesis 3.1 the parameter space P satisfies the first axiom of countability. Consequently [Mun75,
p. 190, Theorem 1.1(b)] implies that in order to prove the continuity of (µκ, νκ)(κ; ξ0, ·) : P → X ×Y, it
suffices to show for arbitrary but fixed κ ∈ I, ξ0 ∈ X and p0 ∈ P the following limit relation:

(3.15) lim
p→p0

(
µκ
νκ

)
(κ; ξ0, p) =

(
µκ
νκ

)
(κ; ξ0, p0).

For any parameter p ∈ P we obtain, by using the equations (3.9) and (3.12)∥∥∥∥(µκνκ
)

(k; ξ0, p)−
(
µκ
νκ

)
(k; ξ0, p0)

∥∥∥∥
(3.2)

≤ max

{
K1

k−1∑
n=κ

αk−n−1 ‖F (n, (µκ, νκ)(n; ξ0, p), p)− F (n, (µκ, νκ)(n; ξ0, p0), p0)‖ ,

K2

∞∑
n=k

βk−n−1 ‖G(n, (µκ, νκ)(n; ξ0, p), p)−G(n, (µκ, νκ)(n; ξ0, p0), p0)‖

}
for k ∈ Z+

κ .

Subtraction and addition of the expressions ‖F (n, (µκ, νκ)(n; ξ0, p0), p)‖ and ‖G(n, (µκ, νκ)(n; ξ0, p0), p)‖,
respectively, leads to∥∥∥∥(µκνκ

)
(k; ξ0, p)−

(
µκ
νκ

)
(k; ξ0, p0)

∥∥∥∥ ≤ max {a+ b, c+ d} for k ∈ Z+
κ ,

where (cf. (3.4))

a := K1

k−1∑
k=κ

αk−n−1 ‖F (n, (µκ, νκ)(n; ξ0, p0), p)− F (n, (µκ, νκ)(n; ξ0, p0), p0)‖ ,

b := K1 |F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(µκνκ
)

(n; ξ0, p)−
(
µκ
νκ

)
(n; ξ0, p0)

∥∥∥∥ ,
c := K2

∞∑
n=k

βk−n−1 ‖G(n, (µκ, νκ)(n; ξ0, p0), p)−G(n, (µκ, νκ)(n; ξ0, p0), p0)‖ ,

d := K2 |G|1
∞∑
n=k

βk−n−1

∥∥∥∥(µκνκ
)

(n; ξ0, p)−
(
µκ
νκ

)
(n; ξ0, p0)

∥∥∥∥ .
Now and in the further progress of this proof, we often use the relation

(3.16) max {a+ b, c+ d} ≤ a+ c+ max {b, d} ,
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which is valid for arbitrary reals a, b, c, d ≥ 0, and obtain the estimate∥∥∥∥(µκνκ
)

(k; ξ0, p)−
(
µκ
νκ

)
(k; ξ0, p0)

∥∥∥∥ γκ−k
≤ aγκ−k + cγκ−k + max

{
K1 |F |1
γ − α

,
K2 |G|1
β − γ

}∥∥∥∥(µκνκ
)

(ξ0, p)−
(
µκ
νκ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

for k ∈ Z+
κ .

Hence, by passing over to the least upper bound for k ∈ Z+
κ , we get (cf. (3.10))∥∥∥∥(µκνκ

)
(ξ0, p)−

(
µκ
νκ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

(3.14)

≤ max {K1,K2} γκ

1− L
sup
k∈Z+

κ

U(k, p)

with the mapping

U(k, p) :=
αk−1

γk

k−1∑
n=κ

α−n ‖F (n, (µκ, νκ)(n; ξ0, p0), p)− F (n, (µκ, νκ)(n; ξ0, p0), p0)‖

+
βk−1

γk

∞∑
n=k

β−n ‖G(n, (µκ, νκ)(n; ξ0, p0), p)−G(n, (µκ, νκ)(n; ξ0, p0), p0)‖ .
(3.17)

Therefore it suffices to prove

(3.18) lim
p→p0

sup
k∈Z+

κ

U(k, p) = 0

to show the limit relation (3.15). We proceed indirectly. Assume (3.18) does not hold. Then there exists
an ε > 0 and a sequence (pi)i∈N in P with limi→∞ pi = p0 and supk∈Z+

κ
U(k, pi) > ε for i ∈ N. This

implies the existence of a sequence (ki)i∈N in Z+
κ such that

(3.19) U(ki, pi) > ε for i ∈ N.

From now on we consider α + σ < γ, choose a fixed growth rate δ ∈ (α+ σ, γ) and remark that the
inequality δ

γ < 1 will play an important role below. Because of Hypothesis 3.1(ii) and the inclusion
(µκ, νκ)(ξ0, p) ∈ `+κ,δ(X × Y) we get (cf. (3.4))

‖F (n, (µκ, νκ)(n; ξ0, p0), p)‖
(3.3)

≤ |F |1

∥∥∥∥(µκνκ
)

(ξ0, p0)
∥∥∥∥+

κ,δ

δn−κ for n ∈ Z+
κ ,

‖G(n, (µκ, νκ)(n; ξ0, p0), p)‖
(3.3)

≤ |G|1

∥∥∥∥(µκνκ
)

(ξ0, p0)
∥∥∥∥+

κ,δ

δn−κ for n ∈ Z+
κ ,

and the triangle inequality leads to

U(k, p)
(3.17)

≤ 2 |F |1

∥∥∥∥(µκνκ
)

(ξ0, p0)
∥∥∥∥+

κ,δ

αk−1

γk

k−1∑
n=κ

(
δ

α

)n
+ 2 |G|1

∥∥∥∥(µκνκ
)

(ξ0, p0)
∥∥∥∥+

κ,δ

βk−1

γk

∞∑
n=k

(
δ

β

)n
≤

2 max {|F |1 , |G|1}
δκ

∥∥∥∥(µκνκ
)

(ξ0, p0)
∥∥∥∥+

κ,δ

(
1

δ − α
+

1
β − δ

)(
δ

γ

)k
for k ∈ Z+

κ .

Because of δ
γ < 1, passing over to the limit k → ∞ yields limk→∞ U(k, p) = 0 uniformly in p ∈ P, and

taking into account (3.19) the sequence (ki)i∈N in Z+
κ has to be bounded above, i.e. there exists an integer

K > κ with ki ≤ K for all i ∈ N. Hence we can deduce

U(ki, pi)
(3.17)

≤ ακ−1

γκ

K−1∑
n=κ

α−n ‖F (n, (µκ, νκ)(n; ξ0, p0), pi)−F (n, (µκ, νκ)(n; ξ0, p0), p0)‖
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+
βK−1

γK

∞∑
n=κ

β−n ‖G(n, (µκ, νκ)(n; ξ0, p0), pi)−G(n, (µκ, νκ)(n; ξ0, p0), p0)‖

for i ∈ N, where the first finite sum tends to zero for i → ∞ by the continuity of F . Continuity
of G implies limi→∞G(n, (µκ, νκ)(n; ξ0, p0), pi) = G(n, (µκ, νκ)(n; ξ0, p0), p0) and with the Theorem of
Lebesgue5) we get the convergence of the infinite sum to zero for i → ∞. Thus we derived the relation
limi→∞ U(ki, pi) = 0, which obviously contradicts (3.19). Up to now we have shown the continuity of
(µκ, νκ)(ξ0, ·) : P → `+κ,γ(X ×Y) and by properties of the evaluation map (see [APS01, Lemma 3.4]) that
(3.15) holds. On the other hand, Lemma 3.3(b) gives us the Lipschitz estimate∥∥∥∥(µκνκ

)
(κ; ξ, p0)−

(
µκ
νκ

)
(κ; ξ0, p0)

∥∥∥∥ ≤ ∥∥∥∥(µκνκ
)

(ξ, p0)−
(
µκ
νκ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

(3.11)

≤ K1

1− L
‖ξ − ξ0‖

for any ξ ∈ X and e.g. [AW96, Lemma B.4] together with the discrete topology on Z+
κ , implies the

continuity of the fixed point mapping (µκ, νκ) : Z+
κ × X × P → X × Y. With a view to the definition of

s : I ×X × P → Y, its continuity readily follows.

Step 2: Let γ ∈ [α+ σ, β − σ], ξ ∈ X and p ∈ P be arbitrary. By formal differentiation of the fixed
point equation (cf. (3.9), (3.12))

(3.20)
(
µκ
νκ

)
(k; ξ, p) =

(
Φ(k, κ)ξ +

∑k−1
n=κ Φ(k, n+ 1)F (n, (µκ, νκ)(n; ξ, p), p)

−
∑∞
n=k Ψ(k, n+ 1)G(n, (µκ, νκ)(n; ξ, p), p)

)
for k ∈ Z+

κ

with respect to ξ ∈ X , we obtain another fixed point equation

(3.21)
(
µ1
κ

ν1
κ

)
(ξ, p) = T 1

κ ((µ1
κ, ν

1
κ)(ξ, p); ξ, p)

for the formal partial derivative (µ1
κ, ν

1
κ) of (µκ, νκ) : X × P → `+κ,γ(X × Y) with respect to ξ, where the

right-hand side of (3.21) is given by

(3.22)
(
T 1
κ (µ1, ν1; ξ, p)

)
(k) :=

Φ(k, κ) +
∑k−1
n=κ Φ(k, n+ 1) ∂F

∂(x,y) (n, (µκ, νκ)(n; ξ, p), p)
(
µ1

ν1

)
(n)

−
∑∞
n=k Ψ(k, n+ 1) ∂G

∂(x,y) (n, (µκ, νκ)(n; ξ, p), p)
(
µ1

ν1

)
(n)


for k ∈ Z+

κ . Here (µ1, ν1) is a mapping from Z+
κ to L(X ;X × Y) and in the following we investigate this

operator T 1
κ .

Step 3 - Claim: For every γ ∈ [α+ σ, β − σ] the operator T 1
κ : `1κ,γ ×X ×P → `1κ,γ is well-defined and

satisfies the estimate

(3.23)
∥∥T 1

κ (µ1, ν1; ξ, p)
∥∥+

κ,γ
≤ K1 + L

∥∥∥∥(µ1

ν1

)∥∥∥∥+

κ,γ

for (µ1, ν1) ∈ `1κ,γ , ξ ∈ X , p ∈ P.

Thereto choose arbitrary sequences (µ1, ν1) ∈ `1κ,γ and ξ ∈ X , p ∈ P. Now using (3.2), (3.4) it is∥∥T 1
κ (µ1, ν1; ξ, p)(k)

∥∥
L(X ;X×Y)

γκ−k ≤

(3.22)

≤ max

{
K1

(γ
α

)κ−k
+K1 |F |1 γ

κ−k
k−1∑
n=κ

αk−n−1

∥∥∥∥(µ1

ν1

)
(n)
∥∥∥∥ ,

5)To apply this result from integration theory, one has to write the infinite sum as an integral over piecewise-constant
functions and use the Lipschitz estimate of G, which is implied by (3.4), to get an integrable majorant.
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K2 |G|1 γ
κ−k

∞∑
n=k

βk−n−1

∥∥∥∥(µ1

ν1

)
(n)
∥∥∥∥
}

(3.16)

≤ K1 + max

{
K1 |F |1

α

k−1∑
n=κ

(
α

γ

)k−n
,
K2 |G|1

β

∞∑
n=k

(
β

γ

)k−n}∥∥∥∥(µ1

ν1

)∥∥∥∥+

κ,γ

≤ K1 + max
{
K1 |F |1
γ − α

,
K2 |G|1
β − γ

}∥∥∥∥(µ1

ν1

)∥∥∥∥+

κ,γ

(3.14)

≤ K1 + L

∥∥∥∥(µ1

ν1

)∥∥∥∥+

κ,γ

for k ∈ Z+
κ(3.24)

and passing over to the least upper bound over k ∈ Z+
κ implies our claim T 1

κ (µ1, ν1; ξ, p) ∈ `1κ,γ , as well
as the estimate (3.23).

Step 4 - Claim: For every γ ∈ [α+ σ, β − σ] the operator T 1
κ (· ; ξ, p) : `1κ,γ → `1κ,γ is a uniform

contraction in ξ ∈ X , p ∈ P, moreover, the fixed point (µ1
κ, ν

1
κ)(ξ, p) ∈ `1κ,γ does not depend on γ ∈

[α+ σ, β − σ] and satisfies

(3.25)
∥∥∥∥(µ1

κ

ν1
κ

)
(ξ, p)

∥∥∥∥+

κ,γ

≤ K1

1− L
for ξ ∈ X , p ∈ P.

Let ξ ∈ X and p ∈ P be arbitrary. Completely analogous to the estimate (3.24) we get∥∥T 1
κ (µ1, ν1; ξ, p)− T 1

κ (µ̄1, ν̄1; ξ, p)
∥∥+

κ,γ

(3.14)

≤ L

∥∥∥∥(µ1

ν1

)
−
(
µ̄1

ν̄1

)∥∥∥∥+

κ,γ

for (µ1, ν1), (µ̄1, ν̄1) ∈ `1κ,γ .

Taking (3.10) into account, consequently Banach’s fixed point theorem guarantees the unique existence of
a fixed point (µ1

κ, ν
1
κ)(ξ, p) ∈ `1κ,γ of T 1

κ (· ; ξ, p) : `1κ,γ → `1κ,γ . This fixed point is independent of the growth
constant γ ∈ [α+ σ, β − σ] because with Lemma 2.2(b) and (c) we have the inclusion `1κ,α+σ ⊆ `1κ,γ and
every mapping T 1

κ (· ; ξ, p) : `1κ,γ → `1κ,γ has the same fixed point as the restriction T 1
κ (· ; ξ, p)

∣∣
`1κ,α+σ

.

Finally the fixed point identity (3.21) and (3.23) lead to the estimate (3.25).

Step 5 - Claim: For every γ ∈ (α+ σ, β − σ] and p ∈ P the mapping (µκ, νκ)(·, p) : X → `+κ,γ(X × Y)
is differentiable with derivative

(3.26)
∂

∂ξ

(
µκ
νκ

)
=
(
µ1
κ

ν1
κ

)
: X × P → `1κ,γ .

Let ξ ∈ X and p ∈ P be arbitrary. In relation (3.26), as well as in the subsequent considerations we are
using the isomorphism between the spaces `1κ,γ and L(X ; `+κ,γ(X × Y)) from Lemma 2.2(c) and identify
them. To show the claim above, we define the following four quotients

∆µ(n, h) :=
µκ(n; ξ + h, p)− µκ(n; ξ, p)− µ1

κ(n; ξ, p)h
‖h‖

,

∆ν(n, h) :=
νκ(n; ξ + h, p)− νκ(n; ξ, p)− ν1

κ(n; ξ, p)h
‖h‖

(3.27)

and

∆F (n, x, y, h1, h2) :=
F (n, x+ h1, y + h2, p)− F (n, x, y, p)− ∂F

∂(x,y) (n, x, y, p)
(
h1

h2

)
‖(h1, h2)‖

,

∆G(n, x, y, h1, h2) :=
G(n, x+ h1, y + h2, p)−G(n, x, y, p)− ∂G

∂(x,y) (n, x, y, p)
(
h1

h2

)
‖(h1, h2)‖
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for integers n ∈ I and x ∈ X , h, h1 ∈ X \ {0}, y ∈ Y, h2 ∈ Y \ {0}. Thereby obviously the inclusion
(∆µ,∆ν)(·, h) ∈ `+κ,γ(X × Y) holds. To prove the differentiability we have to show the limit relation
limh→0(∆µ,∆ν)(·, h) = 0 in `+κ,γ(X × Y). For this consider α+ σ < γ, a growth rate δ ∈ (α+ σ, γ) and
from Lemma 3.2 we obtain

(3.28)
1
‖h‖

∥∥∥∥(µκνκ
)

(n; ξ + h, p)−
(
µκ
νκ

)
(n; ξ, p)

∥∥∥∥ (3.6)

≤ K1
δ − α

δ − α−K1 |F |1
δn−κ for n ∈ Z+

κ .

Moreover using the fixed point equations (3.20) for µκ and (3.21) for µ1
κ it results (cf. (3.9), (3.22))

‖∆µ(k, h)‖ =
1
‖h‖

∥∥∥∥∥
k−1∑
n=κ

Φ(k, n+ 1)

[
F (n, (µκ, νκ)(n; ξ + h, p), p)− F (n, (µκ, νκ)(n; ξ, p), p)−

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1
κ

ν1
κ

)
(n; ξ, p)h

]∥∥∥∥∥ for k ∈ Z+
κ ,

where subtraction and addition of the expression

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

[(
µκ
νκ

)
(n; ξ + h, p)−

(
µκ
νκ

)
(n; ξ, p)

]
in the above brackets implies the estimate

‖∆µ(k, h)‖ ≤ 1
‖h‖

∥∥∥∥∥
k−1∑
n=κ

Φ(k, n+ 1)
{
F (n, (µκ, νκ)(n; ξ + h, p), p)− F (n, (µκ, νκ)(n; ξ, p), p) −

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

[(
µκ
νκ

)
(n; ξ + h, p)−

(
µκ
νκ

)
(n; ξ, p)

]}∥∥∥∥
+

1
‖h‖

∥∥∥∥∥
k−1∑
n=κ

Φ(k, n+ 1)
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

·
[(
µκ
νκ

)
(n; ξ + h, p)−

(
µκ
νκ

)
(n; ξ, p)−

(
µ1
κ

ν1
κ

)
(n; ξ, p)h

]∥∥∥∥
(3.4)

≤
k−1∑
n=κ

‖Φ(k, n+ 1)‖ ‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖

· 1
‖h‖

∥∥∥∥(µκνκ
)

(n; ξ + h, p)−
(
µκ
νκ

)
(n; ξ, p)

∥∥∥∥+ |F |1
k−1∑
n=κ

‖Φ(k, n+ 1)‖
∥∥∥∥(∆µ

∆ν

)
(n, h)

∥∥∥∥
(3.2)

≤ K1

k−1∑
n=κ

αk−n−1 ‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖

· 1
‖h‖

∥∥∥∥(µκνκ
)

(n; ξ + h, p)−
(
µκ
νκ

)
(n; ξ, p)

∥∥∥∥+K1 |F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(∆µ
∆ν

)
(n, h)

∥∥∥∥
for k ∈ Z+

κ and together with (3.28) we get

‖∆µ(k, h)‖ ≤ K1 |F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(∆µ
∆ν

)
(n, h)

∥∥∥∥+
K2

1 (δ − α)
δ − α−K1 |F |1

αk−1δ−κ

·
k−1∑
n=κ

(
δ

α

)n
‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖
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for k ∈ Z+
κ . Now we analogously derive a similar estimate for the norm of the second component

‖∆ν(k, h)‖ and obtain

‖∆ν(k, h)‖ ≤ K2 |G|1
∞∑
n=k

βk−n−1

∥∥∥∥(∆µ
∆ν

)
(n, h)

∥∥∥∥+
K1K2(δ − α)
δ − α−K1 |F |1

βk−1δ−κ

·
∞∑
n=k

(
δ

β

)n
‖∆G(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖

for k ∈ Z+
κ . Consequently for the norm ‖(∆µ,∆ν)(k, h)‖ one gets the inequality∥∥∥∥(∆µ

∆ν

)
(k, h)

∥∥∥∥ (2.1)
= max {‖∆µ(k, h)‖ , ‖∆ν(k, h)‖} ≤ max {a+ b, c+ d} for k ∈ Z+

κ

with

a :=
K2

1 (δ − α)
δ − α−K1 |F |1

αk−1δ−κ

·
k−1∑
n=κ

(
δ

α

)n
‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖ ,

b := K1 |F |1
k−1∑
n=κ

αk−n−1

∥∥∥∥(∆µ
∆ν

)
(n, h)

∥∥∥∥ ,
c :=

K1K2(δ − α)
δ − α−K1 |F |1

βk−1δ−κ

·
∞∑
n=k

(
δ

β

)n
‖∆G(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖ ,

d := K2 |G|1
∞∑
n=k

βk−n−1

∥∥∥∥(∆µ
∆ν

)
(n, h)

∥∥∥∥ .
We are using the relation (3.16) again, and obtain the estimate∥∥∥∥(∆µ

∆ν

)
(k, h)

∥∥∥∥ γκ−k (3.14)

≤ aγκ−k + cγκ−k + L

∥∥∥∥(∆µ
∆ν

)
(h)
∥∥∥∥+

κ,γ

for k ∈ Z+
κ .

By passing over to the least upper bound for k ∈ Z+
κ we get (cf. (3.10))∥∥∥∥(∆µ

∆ν

)
(h)
∥∥∥∥+

κ,γ

≤ K1 max {K1,K2}
1− L

δ − α
δ − α−K1 |F |1

(γ
δ

)κ
sup
k∈Z+

κ

V (k, h)

with

V (k, h) :=
αk−1

γk

k−1∑
n=κ

(
δ

α

)n
‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖

+
βk−1

γk

∞∑
n=k

(
δ

β

)n
‖∆G(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + h, p)− (µκ, νκ)(n; ξ, p))‖

(3.29)

for k ∈ Z+
κ . Thus to prove the above claim in the present Step 5, we only have to show the limit relation

(3.30) lim
h→0

sup
k∈Z+

κ

V (k, h) = 0,
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which will be done indirectly. Suppose (3.30) is not true. Then there exists an ε > 0 and a sequence
(hi)i∈N in X with limi→∞ hi = 0 such that supk∈Z+

κ
V (k, hi) > ε for i ∈ N. This implies the existence of

a further sequence (ki)i∈N in Z+
κ with

(3.31) V (ki, hi) > ε for i ∈ N.

Using the estimates ‖∆F (n, x, y, h1, h2)‖ ≤ 2 |F |1 and ‖∆G(n, x, y, h1, h2)‖ ≤ 2 |G|1, which result from
(3.4) in connection with [Lan93, p. 342, Corollary 4.3], it follows

V (k, h)
(3.29)

≤
2 |F |1
α

(
α

γ

)k k−1∑
n=κ

(
δ

α

)n
+

2 |G|1
β

(
β

γ

)k ∞∑
n=k

(
δ

β

)n
≤
(

2 |F |1
δ − α

+
2 |G|1
β − δ

)(
δ

γ

)k
for k ∈ Z+

κ and the right-hand side of this estimate converges to 0 for k → ∞, i.e. we have
limk→∞ V (k, h) = 0 uniformly in h ∈ X . Because of (3.31) the sequence (ki)i∈N has to be bounded
in Z+

κ , i.e. there exists an integer K > κ with ki ≤ K for any i ∈ N. Now we obtain

V (ki, hi)
(3.29)

≤ ακ−1

γκ

K−1∑
n=κ

(
δ

α

)n
‖∆F (n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + hi, p)− (µκ, νκ)(n; ξ, p))‖

+
βK−1

γK

∞∑
n=κ

(
δ

β

)n
‖∆G(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + hi, p)− (µκ, νκ)(n; ξ, p))‖(3.32)

for i ∈ N and because of Step 1 we have

lim
i→∞

(
µκ
νκ

)
(n; ξ + hi, p) =

(
µκ
νκ

)
(n; ξ, p) for n ∈ Z+

κ , ξ ∈ X , p ∈ P,

as well as using the partial differentiability of F and G

lim
(h1,h2)→(0,0)

∥∥∥∥(∆F
∆G

)
(n, x, y, h1, h2)

∥∥∥∥ = 0,

which leads to the limit relation

lim
i→∞

∥∥∥∥(∆F
∆G

)
(n, (µκ, νκ)(n; ξ, p), (µκ, νκ)(n; ξ + hi, p)− (µκ, νκ)(n; ξ, p))

∥∥∥∥ = 0 for n ∈ Z+
κ .

Therefore the finite sum in (3.32) tends to 0 for i→∞. Using Lebesgue’s theorem, also the infinite sum
in (3.32) converges to 0 for i → ∞ and we finally have limi→∞ V (ki, hi) = 0, which contradicts (3.31).
Hence the claim in Step 5 is true, where (3.26) follows by the uniqueness of Fréchet derivatives.

Step 6 - Claim: For every γ ∈ (α+ σ, β − σ] the mapping ∂(µκ,νκ)
∂ξ : X × P → `1κ,γ is continuous.

With a view to (3.26) it is sufficient to show the continuity of the mapping (µ1
κ, ν

1
κ) : X × P → `1κ,γ . To

do this, we fix any ξ0 ∈ X , p0 ∈ P and choose ξ ∈ X , p ∈ P arbitrarily. Using the fixed point equation
(3.21) for (µ1

κ, ν
1
κ) we obtain the estimate (cf. (3.22))∥∥∥∥(µ1

κ

ν1
κ

)
(k; ξ, p)−

(
µ1
κ

ν1
κ

)
(k; ξ0, p0)

∥∥∥∥
(3.2)

≤ max

{
K1

k−1∑
n=κ

αk−n−1

∥∥∥∥ ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1
κ

ν1
κ

)
(n; ξ, p)−

− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ0, p0), p0)

(
µ1
κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥ ,
K2

∞∑
n=k

βk−n−1

∥∥∥∥ ∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1
κ

ν1
κ

)
(n; ξ, p)−
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− ∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ0, p0), p0)

(
µ1
κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥
}

for k ∈ Z+
κ ,

where subtraction and addition of the expressions

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1
κ

ν1
κ

)
(n; ξ0, p0),

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µ1
κ

ν1
κ

)
(n; ξ0, p0),

respectively, in the corresponding norms and the use of (3.4) leads to∥∥∥∥(µ1
κ

ν1
κ

)
(k; ξ, p)−

(
µ1
κ

ν1
κ

)
(k; ξ0, p0)

∥∥∥∥ ≤ max {a+ b, c+ d} for k ∈ Z+
κ

with the abbreviations

a := K1

k−1∑
n=κ

αk−n−1
∥∥∥F̂ (n, ξ, p)

∥∥∥∥∥∥∥(µ1
κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥ ,
b := K1 |F |1

k−1∑
n=κ

αk−n−1

∥∥∥∥(µ1
κ

ν1
κ

)
(n; ξ, p)−

(
µ1
κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥ ,
c := K2

∞∑
n=k

βk−n−1
∥∥∥Ĝ(n, ξ, p)

∥∥∥∥∥∥∥(µ1
κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥ ,
d := K2 |G|1

∞∑
n=k

βk−n−1

∥∥∥∥(µ1
κ

ν1
κ

)
(n; ξ, p)−

(
µ1
κ

ν1
κ

)
(n; ξ0, p0)

∥∥∥∥
and

F̂ (n, ξ, p) :=
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ0, p0), p0),

Ĝ(n, ξ, p) :=
∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)− ∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ0, p0), p0).

(3.33)

With the aid of the relation (3.16) one obtains∥∥∥∥(µ1
κ

ν1
κ

)
(k; ξ, p)−

(
µ1
κ

ν1
κ

)
(k; ξ0, p0)

∥∥∥∥ γκ−k
(3.14)

≤ aγκ−k + cγκ−k + L

∥∥∥∥(µ1
κ

ν1
κ

)
(ξ, p)−

(
µ1
κ

ν1
κ

)
(ξ0, p0) for +

κ,γ

∥∥∥∥ k ∈ Z+
κ .

(3.34)

We define γ1 := α + σ to get (µ1
κ, ν

1
κ)(ξ0, p0) ∈ `1κ,γ1

. In the sums a and c we can estimate the mapping
(µ1
κ, ν

1
κ)(ξ0, p0) using its γ+

1 -norm, which yields

a ≤ K1γ
−κ
1 αk−1

∥∥∥∥(µ1
κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ1

k−1∑
n=κ

(γ1

α

)n ∥∥∥F̂ (n, ξ, p)
∥∥∥ for k ∈ Z+

κ ,

c ≤ K2γ
−κ
1 βk−1

∥∥∥∥(µ1
κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ1

∞∑
n=k

(
γ1

β

)n ∥∥∥Ĝ(n, ξ, p)
∥∥∥ for k ∈ Z+

κ .

Now we substitute these expressions into (3.34) and pass over to the supremum over k ∈ Z+
κ to derive∥∥∥∥(µ1

κ

ν1
κ

)
(ξ, p)−

(
µ1
κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ

(3.14)

≤ max {K1,K2}
1− L

∥∥∥∥(µ1
κ

ν1
κ

)
(ξ0, p0)

∥∥∥∥+

κ,γ1

(
γ

γ1

)κ
sup
k∈Z+

κ

W (k, ξ, p)
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with

(3.35) W (k, ξ, p) :=
1
α

(
α

γ

)k k−1∑
n=κ

(γ1

α

)n ∥∥∥F̂ (n, ξ, p)
∥∥∥+

1
β

(
β

γ

)k ∞∑
n=k

(
γ1

β

)n ∥∥∥Ĝ(n, ξ, p)
∥∥∥ .

Therefore it is sufficient to prove the following limit relation

(3.36) lim
(ξ,p)→(ξ0,p0)

sup
k∈Z+

κ

W (k, ξ, p) = 0

to show the claim in the present Step 6. We proceed indirectly and assume the equation (3.36) does not
hold. Then there exists an ε > 0 and a sequence ((ξi, pi))i∈N in X ×P with limi→∞(ξi, pi) = (ξ0, p0) and

(3.37) sup
k∈Z+

κ

W (k, ξi, pi) > ε for i ∈ N,

which moreover leads to the existence of a sequence (ki)i∈N in Z+
κ such that

(3.38) W (ki, ξi, pi) > ε for i ∈ N.
Apart from this, we get (cf. (3.4), (3.33))

W (k, ξ, p)
(3.35)

≤
2 |F |1
α

(
α

γ

)k k−1∑
n=κ

(γ1

α

)n
+

2 |G|1
β

(
β

γ

)k ∞∑
n=k

(
γ1

β

)n
≤
(

2 |F |1
γ1 − α

+
2 |G|1
β − γ1

)(
γ1

γ

)k
for k ∈ Z+

κ , and since γ1
γ < 1, the right-hand side of this estimate converges to 0 for k →∞ which yields

limk→∞W (k, ξ, p) = 0 uniformly in (ξ, p) ∈ X × P. Because of (3.38) the sequence (ki)i∈N in Z+
κ has to

be bounded above, i.e. there exists an integer K > κ with ki ≤ K for all i ∈ N and this is used to obtain

(3.39) W (ki, ξi, pi) ≤
1
α

(
α

γ

)κ K−1∑
n=κ

(γ1

α

)n ∥∥∥F̂ (n, ξ, p)
∥∥∥+

1
β

(
β

γ

)K ∞∑
n=κ

(
γ1

β

)n ∥∥∥Ĝ(n, ξ, p)
∥∥∥ .

The continuity of (µκ, νκ)(n, ·) from Step 1 yields limi→∞(µκ, νκ)(n; ξi, pi) = (µκ, νκ)(n; ξ0, p0) for n ∈ Z+
κ

and therefore the finite sum in (3.39) tends to 0 for i → ∞ by (3.33) and the continuity of ∂F
∂(x,y) . By

the continuity of ∂G
∂(x,y) the infinite sum in (3.39) does the same and we can apply Lebesgue’s Theorem,

which finally implies limi→∞W (ki, ξi, pi) = 0. Of course this contradicts (3.38) and consequently we
have shown the above claim in Step 6.

Step 7: We have the identity s(κ, ξ, p) = νκ(ξ, p)(κ) for κ ∈ I, ξ ∈ X , p ∈ P and by well-known
properties of the evaluation map (see [APS01, Lemma 3.4]) it follows that the mapping s : I×X ×P → Y
is continuously differentiable with respect to its second variable.

(b) Since part (b) of the theorem can be proved along the same lines as part (a) we present only a rough
sketch of the proof. Analogously to Lemma 3.3, for initial values η ∈ Y and parameters p ∈ P, the
γ−-quasibounded solutions of the system (3.1) may be characterized as the fixed points of a mapping
T̄κ : `−κ,γ(X × Y)× Y × P → `−κ,γ(X × Y),

(3.40)
(
T̄κ(µ, ν; η, p)

)
(k) :=

( ∑k−1
n=−∞ Φ(k, n+ 1)F (n, (µ, ν)(n), p)

Ψ(k, κ)η −
∑κ−1
n=k Ψ(k, n+ 1)G(n, (µ, ν)(n), p)

)
for k ∈ Z−κ .

Here the variation of constant formula in backward time and [Aul98, Lemma 3.2(a)] are needed. Now T̄κ
can be treated just as Tκ in (a). In order to prove the counterpart of Lemma 3.2 the two results [Aul98,
Lemma 3.3, Lemma 3.4(a)] have to be replaced by [Aul98, Lemma 3.2(a), Lemma 3.5]. It follows from the
assumption (3.5) that also T̄κ is a contraction on the space `−κ,γ(X ×Y) and if (µκ, νκ)(η, p) ∈ `−κ,γ(X ×Y)
denotes its unique fixed point, we define the function r : I × Y × P → X by r(κ, η, p) :=

(
µκ(η, p)

)
(κ).

The claimed properties of r can be proved along the lines of part (a).
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(c) The proof of part (c) can be done just as in [Aul98, Theorem 4.1(c)] and hence the proof of Theorem
3.4 is complete. �

4. Higher order smoothness of invariant fiber bundles

In [APS01] a higher order smoothness result for the fiber bundles S or R in a nearly hyperbolic situation
is proved, i.e. if the growth rates α, β and the real σmax from Hypothesis 3.1 satisfy α + σmax ≤ 1 or
1 ≤ β−σmax, respectively. Now we weaken this assumption and replace it by the so-called gap-condition.
However, in contrast to [APS01], we cannot use the uniform contraction principle here.

Theorem 4.1 (Cm-smoothness of invariant fiber bundles). We assume Hypothesis 3.1. Then the state-
ments of Theorem 3.4 hold and moreover the mappings s and r satisfy the following statements:

(a) Under the gap-condition

(4.1) αms < β

for some integer ms ∈ {1, . . . ,m} and if σmax = min
{
β−α

2 , α
(
ms

√
α+β

α+αms − 1
)}

, the mapping
s : I × X × P → Y is ms-times continuously differentiable in the second argument with globally
bounded derivatives∥∥∥∥∂ns∂ξn

(κ, ξ, p)
∥∥∥∥
Ln(X ;Y)

≤ Cn for n ∈ {1, . . . ,ms} , (κ, ξ, p) ∈ I ×X × P,

where in particular C1 := σK1

σ−max{K1|F |1,K2|G|1}
,

(b) in case I = Z, under the gap-condition

α < βmr

for some integer mr ∈ {1, . . . ,m} and if σmax = min
{
β−α

2 , β
(

1− mr

√
α+β
β+βmr

)}
, the mapping

r : I × Y × P → X is mr-times continuously differentiable in the second argument with globally
bounded derivatives∥∥∥∥∂nr∂ηn

(κ, η, p)
∥∥∥∥
Ln(Y;X )

≤ Cn for n ∈ {1, . . . ,mr} , (κ, η, p) ∈ I × Y × P,

where in particular C1 := σK2

σ−max{K1|F |1,K2|G|1}
,

(c) the global bounds C2, . . . , Cm ≥ 0 can be determined recursively using the formula

(4.2) Cn :=

max

K1

n∑
j=2

|F |j
∑

(N1,...,Nj)∈P<j (n)

j∏
i=1

C#Ni , K2

n∑
j=2

|G|j
∑

(N1,...,Nj)∈P<j (n)

j∏
i=1

C#Ni


σ −max {K1,K2}max {|F |1 , |G|1}

for n ∈ {2, . . . ,m}.

The following example shows that the gap-condition (4.2) is sharp, i.e. the invariant fiber bundle S from
Theorem 3.4(a) is not Cm in general, even if the non-linearities F and G are C∞-functions.

Example 4.1. The two-dimensional autonomous difference equation

(4.3)
{
x′= ex
y′ = emy + emxmΘρ(x2 + y2)

satisfies Hypothesis 3.1 with α = e, β = em and K1 = K2 = 1, where Θρ : [0,∞)→ [0, 1] is a C∞-cut-off-
function with Θρ(t) = 1 for t ∈ [0, ρ] and Θρ(t) = 0 for t ∈ [2ρ,∞). Here we choose the real constant ρ > 0
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small enough such that condition (3.5) is satisfied with σmax = min
{
β−α

2 , α
(
m−1

√
α+β

α+αm−1 − 1
)}

. Now

for every c ∈ R the sets Sc :=
{

(ξ, η) ∈ Bρ(0, 0)\{(0, 0)} : η = ξm

2 ln ξ2+cξm
}
∪{(0, 0)} contain the origin

and are positively invariant with respect to (4.3), i.e. Z × Sc is an invariant fiber bundle. Additionally,
each point (ξ, η) ∈ Bρ(0, 0), ξ 6= 0, is contained in exactly one of the sets Sc, namely for c = η

ξm −
ln ξ2

2 .
Hence the restriction of the pseudo-stable fiber bundle S from Theorem 4.1 to Z×Bρ(0, 0) has the form
Z× Sc for some c ∈ R. On the other hand, each Sc is a graph of a Cm−1-function sc(ξ) = η, but sc fails
to be m-times continuously differentiable. Note that in the present example the gap-condition α < βms

is only fulfilled for ms ∈ {1, . . . ,m− 1}. A similar example demonstrating this smoothness deficiency for
the pseudo-unstable fiber bundle R can be found in [APS01, Example 4.13].

Remark 4.1. Hypothesis 3.1(ii) on the non-linearities can be relaxed in the way that the partial derivatives
of F and G of order 2 to up to m may be allowed to grow exponentially in k. More precisely, if for each
integer n ∈ {2, . . . ,m} we assume that for k ∈ I, x ∈ X , y ∈ Y and p ∈ P the estimates∥∥∥∥ ∂nF

∂(x, y)n
(k, x, y, p)

∥∥∥∥
Ln(X×Y;X )

< Mγ|k|n ,

∥∥∥∥ ∂nG

∂(x, y)n
(k, x, y, p)

∥∥∥∥
Ln(X×Y;Y)

< Mγ|k|n

hold with positive constants M,γ2, . . . , γn, then Theorem 4.1 is true provided a stronger gap-condition
holds which becomes more and more restrictive as the growth rates γ2, . . . , γn become larger. This can
be seen along the lines of the following proof of Theorem 4.1. One has to balance the growth rates of the
evolution operators Φ(k, l) and Ψ(k, l) with the growth rates γ2, . . . , γn of the non-linearities.

Proof. (a) Since the proof is quite involved we subdivide it into six steps and use the conventions and
notation from the proof of Theorem 3.4. We choose κ ∈ I.

Step 1: Let γ ∈ [α+ σ, β − σ] and ξ ∈ X , p ∈ P be arbitrary. By formal differentiation of the fixed point
equation (3.20) with respect to ξ ∈ X using the higher order chain rule from Theorem 2.1, we obtain
another fixed point equation

(4.4)
(
µlκ
νlκ

)
(ξ, p) = T lκ((µlκ, ν

l
κ)(ξ, p); ξ, p)

for the formal partial derivative (µlκ, ν
l
κ) of (µκ, νκ) : X × P → `+κ,γ(X × Y) of order l ∈ {2, . . . ,ms},

where the right-hand side of (4.4) is given by

(4.5)
(
T lκ(µl, νl; ξ, p)

)
(k) :=


∑k−1
n=κ Φ(k, n+ 1)

[
∂F

∂(x,y) (n, (µκ, νκ)(n; ξ, p), p)
(
µl

νl

)
(n) +Rl1(n, ξ, p)

]
−
∑∞
n=k Ψ(k, n+ 1)

[
∂G

∂(x,y) (n, (µκ, νκ)(n; ξ, p), p)
(
µl

νl

)
(n) +Rl2(n, ξ, p)

]


for k ∈ Z+
κ . Here (µl, νl) is a mapping from Z+

κ to Ll(X ;X × Y). The remainder Rl = (Rl1, R
l
2) has the

following two representations as a partially unfolded derivative tree

(4.6) Rl(n, ξ, p)
(2.2)
=

l−1∑
j=1

(
l − 1
j

)
∂j

∂ξj

[
∂(F,G)
∂(x, y)

(n, (µκ, νκ)(n; ξ, p), p)
](

µl−jκ

νl−jκ

)
(n; ξ, p),

which is appropriate for the induction in the subsequent Step 4, and as a totally unfolded derivative tree
(4.7)

Rl(n, ξ, p)
(2.3)
=

l∑
j=2

∑
(N1,...,Nj)∈P<j (l)

∂j(F,G)
∂(x, y)j

(n, (µκ, νκ)(n; ξ, p), p)
(
µ#N1
κ

ν#N1
κ

)
(n; ξ, p) · · ·

(
µ

#Nj
κ

ν
#Nj
κ

)
(n; ξ, p),

which enables us to obtain explicit global bounds for the higher order derivatives in Step 2. For our
forthcoming considerations it is crucial that Rl does not depend on (µlκ, ν

l
κ). In the following steps
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we will solve the fixed point equation (4.4) for the operator T lκ . As a preparation we define for every
l ∈ {1, . . . ,ms} the abbreviations

γl := max
{
α+ σ, (α+ σ)l

}
=
{

α+ σ if α+ σ < 1
(α+ σ)l if α+ σ ≥ 1 .

Because of the gap-condition (4.2) and with our choice of σmax, it is easy to see that one has the inclusion
γ1, . . . , γms ∈ [α+ σ, β − σ), which in case α + σ < 1 follows from σ < β−α

2 and otherwise essentially
results from (α+ σ)ms < β − σ, which in turn is implied by

(α+ σ)ms + α+ σ = αms
(

1 +
σ

α

)ms
+ α

(
1 +

σ

α

)
≤ αms

(
1 +

σ

α

)ms
+ α

(
1 +

σ

α

)ms
< α+ β

if σ < α
(
ms

√
α+β

α+αms − 1
)

. Now we formulate for m̄ ∈ {1, . . . ,ms} the induction hypotheses

A(m̄) :



For any l ∈ {1, . . . , m̄} and γ ∈ [γl, β − σ) the operator T lκ : `lκ,γ ×X × P → `lκ,γ satisfies:
(a) It is well-defined,
(b) T lτ (· ; ξ, p) is a uniform contraction in ξ ∈ X , p ∈ P,
(c) the unique fixed point (µlκ, ν

l
κ)(· ; ξ, p) = (µlκ, ν

l
κ)(ξ, p) of T lκ(· ; ξ, p) is globally

bounded in the γ+
l -norm∥∥∥∥(µlκνlκ
)

(n; ξ, p)
∥∥∥∥ ≤ Clγn−κl for n ∈ Z+

κ , ξ ∈ X , p ∈ P

with the constants Cl ≥ 0 given in (4.2),
(d) if γl < γ then (µl−1

κ , νl−1
κ ) : X × P → `lκ,γ is continuously partially differentiable

with respect to ξ ∈ X with derivative
∂

∂ξ

(
µl−1
κ

νl−1
κ

)
=
(
µlκ
νlκ

)
: X × P → `lκ,γ .

For m̄ = 1 the proof of Theorem 3.4 implies the induction hypothesis A(1) with C1 = K1
1−L (cf. (3.25)).

Now we assume A(m̄− 1) for an m̄ ∈ {2, . . . ,ms} and we will prove A(m̄) in the following five steps.

Step 2 - Claim: For every γ ∈ [γm̄, β − σ) the operator T m̄κ : `m̄κ,γ × X × P → `m̄κ,γ is well-defined and
satisfies the estimate

∥∥T m̄κ (µm̄, νm̄; ξ, p)
∥∥+

κ,γ
≤ L

∥∥∥∥(µm̄νm̄
)∥∥∥∥+

κ,γ

+ max

K1

σ

m̄∑
j=2

|F |j
∑

(N1,...,Nj)∈P<j (m̄)

j∏
i=1

C#Ni ,

K2

σ

m̄∑
j=2

|G|j
∑

(N1,...,Nj)∈P<j (m̄)

j∏
i=1

C#Ni

 for (µm̄, νm̄) ∈ `m̄κ,γ , ξ ∈ X , p ∈ P,(4.8)

i.e. A(m̄)(a) holds.
Let l ∈ {2, . . . , m̄}, ξ ∈ X , p ∈ P be arbitrary and choose γ ∈ [γl, β − σ). Using the estimate
γ#N1 · · · γ#Nj ≤ γl for any ordered partition (N1, . . . , Nj) ∈ P<j (l) of length j ∈ {2, . . . , l}, from (3.2),
(3.4) and A(m̄− 1)(c) we obtain the inequality

∥∥Rl(k, ξ, p)∥∥ (4.7)

≤ max

K1

k−1∑
n=κ

αk−n−1
l∑

j=2

|F |j
∑

(N1,...,Nj)∈P<j (l)

j∏
i=1

C#Niγ
n−κ
#Ni

,

K2

∞∑
n=k

βk−n−1
l∑

j=2

|G|j
∑

(N1,...,Nj)∈P<j (l)

j∏
i=1

C#Niγ
n−κ
#Ni
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≤ max

K1

k−1∑
n=κ

αk−n−1γn−κl

l∑
j=2

|F |j
∑

(N1,...,Nj)∈P<j (l)

j∏
i=1

C#Ni ,

K2

∞∑
n=k

βk−n−1γn−κl

l∑
j=2

|G|j
∑

(N1,...,Nj)∈P<j (l)

j∏
i=1

C#Ni


≤ max

 K1

γl − α

l∑
j=2

|F |j
∑

(N1,...,Nj)∈P<j (l)

j∏
i=1

C#Ni ,
K2

β − γl

l∑
j=2

|G|j
∑

(N1,...,Nj)∈P<j (l)

j∏
i=1

C#Ni

 γk−κ(4.9)

for k ∈ Z+
κ . Now let γ ∈ [γm̄, β − σ) be arbitrary but fixed, and (µm̄, νm̄) ∈ `m̄κ,γ . With the aid of the

above estimate (4.9) we obtain∥∥T m̄κ (µm̄, νm̄; ξ, p)(k)
∥∥ γκ−k

(4.5)

≤ max

K1 |F |1
k−1∑
n=κ

αk−n−1γn−κ
∥∥∥∥(µm̄νm̄

)∥∥∥∥+

κ,γ

+
K1

γm̄ − α

m̄∑
j=2

|F |j
∑

(N1,...,Nj)∈P<j (m̄)

j∏
i=1

C#Niγ
k−κ,

K2 |G|1
∞∑
n=k

βk−n−1γn−κ
∥∥∥∥(µm̄νm̄

)∥∥∥∥+

κ,γ

+
K2

β − γm̄

m̄∑
j=2

|G|j
∑

(N1,...,Nj)∈P<j (m̄)

j∏
i=1

C#Niγ
k−κ

 γκ−k

≤ max

K1 |F |1
γ − α

∥∥∥∥(µm̄νm̄
)∥∥∥∥+

κ,γ

+
K1

γm̄ − α

m̄∑
j=2

|F |j
∑

(N1,...,Nj)∈P<j (m̄)

j∏
i=1

C#Ni ,

K2 |G|1
β − γ

∥∥∥∥(µm̄νm̄
)∥∥∥∥+

κ,γ

+
K2

β − γm̄

m̄∑
j=2

|G|j
∑

(N1,...,Nj)∈P<j (m̄)

j∏
i=1

C#Ni


(3.14)

≤ L

∥∥∥∥(µm̄νm̄
)∥∥∥∥+

κ,γ

+ max

 K1

γm̄ − α

m̄∑
j=2

|F |j
∑

(N1,...,Nj)∈P<j (m̄)

j∏
i=1

C#Ni ,

K2

β − γm̄

m̄∑
j=2

|G|j
∑

(N1,...,Nj)∈P<j (m̄)

j∏
i=1

C#Ni

 for k ∈ Z+
κ(4.10)

and passing over to the least upper bound over k ∈ Z+
κ implies our claim T m̄κ (µm̄, νm̄; ξ, p) ∈ `m̄κ,γ . In

particular the estimate (4.8) is a consequence of (4.10) and the choice of γm̄ ∈ [α+ σ, β − σ).

Step 3 - Claim: For every γ ∈ [γm̄, β − σ) the operator T m̄κ (· ; ξ, p) : `m̄κ,γ → `m̄κ,γ is a uniform contraction
in ξ ∈ X , p ∈ P, moreover, the fixed point (µm̄κ , ν

m̄
κ )(ξ, p) ∈ `m̄κ,γ does not depend on γ ∈ [γm̄, β − σ) and

satisfies ∥∥∥∥(µm̄κνm̄κ
)

(ξ, p)
∥∥∥∥+

κ,γ

≤ Cm̄ for ξ ∈ X , p ∈ P,(4.11)

i.e. A(m̄)(b) and (c) holds.
Choose γ ∈ [γm̄, β − σ) arbitrarily but fixed, and let (µm̄, νm̄), (µ̄m̄, ν̄m̄) ∈ `m̄κ,γ , ξ ∈ X , p ∈ P. Keeping
in mind that the remainder Rm̄ does not depend on (µm̄, νm̄) or (µ̄m̄, ν̄m̄), respectively, from (3.2) and
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(3.4) we obtain the Lipschitz estimate∥∥T m̄κ (µm̄, νm̄; ξ, p)(k)− T m̄κ (µ̄m̄, ν̄m̄; ξ, p)(k)
∥∥ γκ−k

(4.5)

≤ max

{
K1 |F |1

k−1∑
n=κ

αk−n−1

∥∥∥∥(µm̄νm̄
)

(n)−
(
µ̄m̄

ν̄m̄

)
(n)
∥∥∥∥ ,

K2 |G|1
∞∑
n=k

βk−n−1

∥∥∥∥(µm̄νm̄
)

(n)−
(
µ̄m̄

ν̄m̄

)
(n)
∥∥∥∥
}
γκ−k

≤ max

{
K1 |F |1

k−1∑
n=κ

αk−n−1γn−κ,K2 |G|1
∞∑
n=k

βk−n−1γn−κ

}
γκ−k

∥∥∥∥(µm̄νm̄
)
−
(
µ̄m̄

ν̄m̄

)∥∥∥∥+

κ,γ

≤ max
{
K1 |F |1
γ − α

,
K2 |G|1
β − γ

}∥∥∥∥(µm̄νm̄
)
−
(
µ̄m̄

ν̄m̄

)∥∥∥∥+

κ,γ

(3.14)

≤ L

∥∥∥∥(µm̄νm̄
)
−
(
µ̄m̄

ν̄m̄

)∥∥∥∥+

κ,γ

for k ∈ Z+
κ

and passing over to the least upper bound over k ∈ Z+
κ together with (3.10) implies our claim. Therefore

Banach’s fixed point theorem guarantees the unique existence of a fixed point (µm̄κ , ν
m̄
κ )(ξ, p) ∈ `m̄κ,γ of

the mapping T m̄κ (· ; ξ, p) : `m̄κ,γ → `m̄κ,γ . It can be seen along the same lines as in Step 4 in the proof of
Theorem 3.4 that (µm̄κ , ν

m̄
κ )(ξ, p) does not depend on γ ∈ [γm̄, β − σ). The fixed point identity (4.4) for

(µm̄κ , ν
m̄
κ )(ξ, p) together with (4.8) and (3.10) finally implies (4.11).

Step 4 - Claim: For every γ ∈ (γm̄, β − σ) and p ∈ P the mapping
(
µm̄−1
κ , νm̄−1

κ

)
(·, p) : X → `m̄κ,γ is

differentiable with derivative

(4.12)
∂

∂ξ

(
µm̄−1
κ

νm̄−1
κ

)
=
(
µm̄κ
νm̄κ

)
: X × P → `m̄κ,γ .

Let γ ∈ (γm̄, β − σ) and p ∈ P be fixed. First we show that
(
µm̄−1
κ , νm̄−1

κ

)
(·, p) is differentiable and then

we prove that the derivative is given by (µm̄κ , ν
m̄
κ ) (·, p) : X → L(X ; `m̄−1

κ,γ ) ∼= `m̄κ,γ (cf. Lemma 2.2(c)).
Thereto choose ξ ∈ X arbitrarily, but fixed. From now on for the rest of the proof of the present Step
4 we suppress the p-dependence of the mappings under consideration; nevertheless p ∈ P is arbitrary.
Using the fixed point equation (4.4) for

(
µm̄−1
κ , νm̄−1

κ

)
we get for h ∈ X the identity(

µm̄−1
κ

νm̄−1
κ

)
(k; ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(k; ξ)

(4.5)
=


∑k−1
n=κ Φ(k, n+ 1)

[
∂F

∂(x,y) (n, (µκ, νκ)(n; ξ + h))
(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h) +Rm̄−1

1 (n, ξ + h)
]

−
∑∞
n=k Ψ(k, n+ 1)

[
∂G

∂(x,y) (n, (µκ, νκ)(n; ξ + h))
(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h) +Rm̄−1

2 (n, ξ + h)
]


−


∑k−1
n=κ Φ(k, n+ 1)

[
∂F

∂(x,y) (n, (µκ, νκ)(n; ξ))
(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ) +Rm̄−1

1 (n, ξ)
]

−
∑∞
n=k Ψ(k, n+ 1)

[
∂G

∂(x,y) (n, (µκ, νκ)(n; ξ))
(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ) +Rm̄−1

2 (n, ξ)
]


for k ∈ Z+
κ . This leads to(
µm̄−1
κ

νm̄−1
κ

)
(k; ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(k; ξ)−(4.13)
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−


∑k−1
n=κ Φ(k, n+ 1) ∂F

∂(x,y) (n, (µκ, νκ)(n; ξ + h))
[(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ)

]
−
∑∞
n=k Ψ(k, n+ 1) ∂G

∂(x,y) (n, (µκ, νκ)(n; ξ + h))
[(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ)

]


=


∑k−1
n=κ Φ(k, n+ 1)

[
∂F

∂(x,y) (n, (µκ, νκ)(n; ξ + h))− ∂F
∂(x,y) (n, (µκ, νκ)(n; ξ))

](µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)

−
∑∞
n=k Ψ(k, n+ 1)

[
∂G

∂(x,y) (n, (µκ, νκ)(n; ξ + h))− ∂G
∂(x,y) (n, (µκ, νκ)(n; ξ))

](µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)


+
( ∑k−1

n=κ Φ(k, n+ 1)
[
Rm̄−1

1 (n, ξ + h)−Rm̄−1
1 (n, ξ)

]
−
∑∞
n=k Ψ(k, n+ 1)

[
Rm̄−1

2 (n, ξ + h)−Rm̄−1
2 (n, ξ)

])
for k ∈ Z+

κ . With sequences
(
µm̄−1, νm̄−1

)
∈ `m̄−1

κ,γ and h ∈ X we define the operators K ∈ L
(
`m̄−1
κ,γ

)
,

E ∈ L
(
X ; `m̄−1

κ,γ

)
, J : X → `m̄−1

κ,γ as follows

(
K
(
µm̄−1

νm̄−1

))
(k) :=


∑k−1
n=κ Φ(k, n+ 1) ∂F

∂(x,y) (n, (µκ, νκ)(n; ξ))
(
µm̄−1

νm̄−1

)
(n)

−
∑∞
n=k Ψ(k, n+ 1) ∂G

∂(x,y) (n, (µκ, νκ)(n; ξ))
(
µm̄−1

νm̄−1

)
(n)

 ,

(Eh) (k) :=
( ∑k−1

n=κ Φ(k, n+ 1)Rm̄1 (n, ξ)h
−
∑∞
n=k Ψ(k, n+ 1)Rm̄2 (n, ξ)h

)
and

(4.14) (J (h)) (k) :=



∑k−1
n=κ Φ(k, n+ 1)

{[
∂F

∂(x,y) (n, (µκ, νκ)(n; ξ + h))− ∂F
∂(x,y) (n, (µκ, νκ)(n; ξ))

]
·
(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h) +Rm̄−1

1 (n, ξ + h)−Rm̄−1
1 (n, ξ)−Rm̄1 (n, ξ)h

}
−
∑∞
n=k Ψ(k, n+ 1)

{[
∂G

∂(x,y) (n, (µκ, νκ)(n; ξ + h))− ∂G
∂(x,y) (n, (µκ, νκ)(n; ξ))

]
·
(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h) +Rm̄−1

2 (n, ξ + h)−Rm̄−1
2 (n, ξ)−Rm̄2 (n, ξ)h

}


for k ∈ Z+

κ . In the subsequent lines we will show that K, E and J are well-defined. Using (3.2) and (3.4)
it is easy to see that K : `m̄−1

κ,γ → `m̄−1
κ,γ is linear and satisfies the estimate∥∥∥∥K(µm̄−1

νm̄−1

)∥∥∥∥+

κ,γ

≤ max
{
K1 |F |1
γ − α

,
K2 |G|1
β − γ

}∥∥∥∥(µm̄−1

νm̄−1

)∥∥∥∥+

κ,γ

(3.14)

≤ L

∥∥∥∥(µm̄−1

νm̄−1

)∥∥∥∥+

κ,γ

,

which in turn gives us

(4.15) ‖K‖L(`m̄−1
κ,γ )

(3.10)
< 1.

Keeping in mind that Eh = T m̄κ (0; ξ, p)h (cf. (4.5)), our Step 2 yields the inclusion Eh ∈ `m̄−1
κ,γ , while E is

obviously linear and continuous, hence E ∈ L(X ; `m̄−1
κ,γ ). Arguments similar to those in Step 2, together

with (4.9), lead to J (h) ∈ `m̄−1
κ,γ for any h ∈ X . Because of (4.13) we obtain[(

µm̄−1
κ

νm̄−1
κ

)
(ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(ξ)
]
−K

[(
µm̄−1
κ

νm̄−1
κ

)
(ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(ξ)
]

= Eh+ J (h) for h ∈ X .

Using the Neumann series (cf. [Lan93, p. 74, Theorem 2.1]) and the estimate (4.15), the linear mapping
I`m̄−1
κ,γ
−K ∈ L(`m̄−1

κ,γ ) is invertible and this implies(
µm̄−1
κ

νm̄−1
κ

)
(ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(ξ) =

[
I`m̄−1
κ,γ
−K

]−1

[Eh+ J (h)] for h ∈ X .
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Consequently it remains to show limh→0
J (h)
‖h‖ = 0 in `m̄−1

κ,γ , because then one gets

lim
h→0

1
‖h‖

∥∥∥∥(µm̄−1
κ

νm̄−1
κ

)
(ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(ξ)−

[
I`m̄−1
κ,γ
−K

]−1

Eh
∥∥∥∥+

κ,γ

= 0,

i.e. the claim of the present Step 4 follows. Nevertheless the proof of limh→0
‖J (h)‖+κ,γ
‖h‖ = 0 needs a certain

technical effort. Thereto we use the fact that due to the induction hypothesis A(m̄− 1)(d) the remainder

Rm̄−1(n, ξ)
(4.6)
=

m̄−2∑
j=1

(
m̄− 2
j

)
∂j

∂ξj

[
∂(F,G)
∂(x, y)

(n, (µκ, νκ)(n; ξ))
](

µm̄−1−j
κ

νm̄−1−j
κ

)
(n; ξ)

is partially differentiable with respect to ξ ∈ X , where the derivative is given by

∂Rm̄−1

∂ξ
(n, ξ)

(4.6)
= Rm̄(n, ξ)− ∂2(F,G)

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

(
µ1
κ

ν1
κ

)
(n; ξ)

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ).

Using the abbreviation

∆Rm̄−1(n, ξ, h) :=
1
‖h‖

{
Rm̄−1(n, ξ + h)−Rm̄−1(n, ξ)

−
[
Rm̄(n, ξ)− ∂2(F,G)

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

(
µ1
κ

ν1
κ

)
(n; ξ)

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ)

]
h

}
we obtain the limit relation limh→0 ∆Rm̄−1(n, ξ, h) = 0 for n ∈ Z+

κ . Now we prove estimates for the
components J1 and J2 of J = (J1,J2) separately. For k ∈ Z+

κ we get

(J1(h)) (k)

(4.14)
=

k−1∑
n=κ

Φ(k, n+ 1)
{[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ))

](
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)

− ∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

(
µ1
κ

ν1
κ

)
(n; ξ)

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ)h+ ∆Rm̄−1

1 (n, ξ, h) ‖h‖
}
,

where subtraction and addition of the expression

∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

[(
µκ
νκ

)
(n; ξ + h)−

(
µκ
νκ

)
(n; ξ)−

(
µ1
κ

ν1
κ

)
(n; ξ)h

](
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)

leads to

(J1(h)) (k)

=
k−1∑
n=κ

Φ(k, n+ 1)
{[

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ + h))− ∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ))

− ∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

((
µκ
νκ

)
(n; ξ + h)−

(
µκ
νκ

)
(n; ξ)

)](
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)

+
∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

[(
µκ
νκ

)
(n; ξ + h)−

(
µκ
νκ

)
(n; ξ)−

(
µ1
κ

ν1
κ

)
(n; ξ)h

](
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)

+
∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

(
µ1
κ

ν1
κ

)
(n; ξ)

[(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ)

]
h

+∆Rm̄−1
1 (n, ξ, h) ‖h‖

}
for k ∈ Z+

κ .



24 CHRISTIAN PÖTZSCHE AND STEFAN SIEGMUND

Using the quotient

∆
∂F

∂(x, y)
(n, x, y, h1, h2) :=

∂F
∂(x,y) (n, x+ h1, y + h2)− ∂F

∂(x,y) (n, x, y)− ∂2F
∂(x,y)2 (n, x, y)

(
h1

h2

)
‖(h1, h2)‖

for n ∈ I and x ∈ X , y ∈ Y, h1 ∈ X \ {0} and h2 ∈ Y \ {0}, we obtain the estimate

‖(J1(h)) (k)‖

≤
k−1∑
n=κ

‖Φ(k, n+ 1)‖
[ ∥∥∥∥∆

∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ), (µκ, νκ)(n; ξ + h)− (µκ, νκ)(n; ξ))

∥∥∥∥
·
∥∥∥∥(µκνκ

)
(n; ξ + h)−

(
µκ
νκ

)
(n; ξ)

∥∥∥∥∥∥∥∥(µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)

∥∥∥∥+
∥∥∥∥ ∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

∥∥∥∥
·
∥∥∥∥(µκνκ

)
(n; ξ + h)−

(
µκ
νκ

)
(n; ξ)−

(
µ1
κ

ν1
κ

)
(n; ξ)h

∥∥∥∥∥∥∥∥(µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)

∥∥∥∥
+
∥∥∥∥ ∂2F

∂(x, y)2
(n, (µκ, νκ)(n; ξ))

∥∥∥∥∥∥∥∥(µ1
κ

ν1
κ

)
(n; ξ)

∥∥∥∥∥∥∥∥[(µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ)

]
h

∥∥∥∥
+
∥∥∆Rm̄−1

1 (n; ξ, h)
∥∥ ‖h‖ ] for k ∈ Z+

κ .

With Hypothesis 3.1(ii) (cf. (3.2), (3.4)), the abbreviations (3.27) and the induction hypothesisA(m̄−1)(c)
we therefore get

‖(J1(h)) (k)‖ ≤ K1

k−1∑
n=κ

αk−n−1

[ ∥∥∥∥∆
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ), (µκ, νκ)(n; ξ + h)− (µκ, νκ)(n; ξ))

∥∥∥∥ 1
‖h‖

·
∥∥∥∥(µκνκ

)
(n; ξ + h)−

(
µκ
νκ

)
(n; ξ)

∥∥∥∥Cm̄−1γ
n−κ
m̄−1 + |F |2

∥∥∥∥(∆µκ
∆νκ

)
(n, h)

∥∥∥∥Cm̄−1γ
n−κ
m̄−1

+ |F |2 C1γ
n−κ
1

∥∥∥∥(µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ)

∥∥∥∥+
∥∥∆Rm̄−1

1 (n, ξ, h)
∥∥ ] ‖h‖

for k ∈ Z+
κ . Rewriting this estimate and using Lemma 3.2 we obtain

‖J1(h)‖+κ,γ
‖h‖

(3.6)

≤ K2
1Cm̄−1

αγκm̄−1

γ − α
γ − α−K1 |F |1

sup
k∈Z+

κ

V1(k, h) +
K1 |F |2 Cm̄−1

α

(
γ

γm̄−1

)κ
sup
k∈Z+

κ

V2(k, h)

+
K1 |F |2 C1

α

(
γ

γ1

)κ
sup
k∈Z+

κ

V3(k, h) +
K1

α
γκ sup

k∈Z+
κ

V4(k, h)

with

V1(k, h) :=
(
α

γ

)k k−1∑
n=κ

(γγm̄−1

α

)n ∥∥∥∥∆
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ), (µκ, νκ)(n; ξ + h)− (µκ, νκ)(n; ξ))

∥∥∥∥ ,
V2(k, h) :=

(
α

γ

)k k−1∑
n=κ

(γm̄−1

α

)n ∥∥∥∥(∆µ
∆ν

)
(n, h)

∥∥∥∥ ,
V3(k, h) :=

(
α

γ

)k k−1∑
n=κ

(γ1

α

)n ∥∥∥∥(µm̄−1
κ

νm̄−1
κ

)
(n; ξ + h)−

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ)

∥∥∥∥ ,
V4(k, h) :=

(
α

γ

)k k−1∑
n=κ

α−n
∥∥∆Rm̄−1

1 (n, ξ, h)
∥∥ .
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Similarly to Step 4 in the proof of Theorem 3.4 we get limh→0 supk∈Z+
κ
Vi(k, h) = 0 for i ∈ {1, . . . , 4},

proving that limh→0
‖J1(h)‖+κ,γ
‖h‖ = 0. Completely analogous one shows limh→0

‖J2(h)‖+κ,γ
‖h‖ = 0 and therefore

we have verified the differentiability of the mapping (µm̄−1
κ , νm̄−1

κ )(·, p) : X → `m̄−1
κ,γ for any p ∈ P. Finally

we derive for any parameter p ∈ P that the derivative
∂

∂ξ

(
µm̄−1
κ

νm̄−1
κ

)
(·, p) : X → L(X ; `m̄−1

κ,γ ) ∼= `m̄κ,γ

is the fixed point mapping (µm̄κ , ν
m̄
κ )(·, p) : X → `m̄κ,γ of T m̄κ (· ; ·, p). From the fixed point equation (4.4)

for (µm̄−1
κ , νm̄−1

κ ) we obtain by partial differentiation with respect to ξ ∈ X the identity

∂

∂ξ

(
µm̄−1
κ

νm̄−1
κ

)
(k; ξ, p)

(4.5)
=


∑k−1
n=κ Φ(k, n+ 1) ∂F

∂(x,y) (n, (µκ, νκ)(n; ξ, p), p) ∂∂ξ

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ, p)

−
∑∞
n=k Φ(k, n+ 1) ∂G

∂(x,y) (n, (µκ, νκ)(n; ξ, p), p) ∂∂ξ

(
µm̄−1
κ

νm̄−1
κ

)
(n; ξ, p)


+
( ∑k−1

n=κ Φ(k, n+ 1)Rm̄1 (n, ξ, p)
−
∑∞
n=k Ψ(k, n+ 1)Rm̄2 (n, ξ, p)

)
for k ∈ Z+

κ .

Hence the derivative ∂(µm̄−1
κ ,νm̄−1

κ )
∂ξ (ξ, p) ∈ L(X ; `m̄−1

κ,γ ) ∼= `m̄κ,γ (cf. Lemma 2.2(c)) is a fixed point of
T m̄κ (· ; ξ, p), which in turn is unique by Step 3, and consequently (4.12) holds.

Step 5 - Claim: For every γ ∈ (γm̄, β − σ) the mapping ∂m̄(µκ,νκ)
∂ξm̄ : X × P → `m̄κ,γ is continuous, i.e.

A(m̄)(d) holds.
Because of (4.12) it suffices to prove the continuity of the mapping (µm̄κ , ν

m̄
κ ) : X × P → `m̄κ,γ and this is

analogous to Step 1 in the proof of Theorem 3.4 by adding and subtracting the expressions
∂F

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µm̄κ
νm̄κ

)
(n; ξ0, p0),

∂G

∂(x, y)
(n, (µκ, νκ)(n; ξ, p), p)

(
µm̄κ
νm̄κ

)
(n; ξ0, p0),

in the corresponding estimates. Thus we have verified A(m̄).

Step 6: In the preceding five steps we have shown that (µκ, νκ) : X × P → `+κ,γ(X × P) is ms-times
continuously partially differentiable with respect to its first argument. With the identity s(κ, ξ, p) =
νκ(ξ, p)(κ) the claim follows from properties of the evaluation map (see [APS01, Lemma 3.4]) and the
global bound for the derivatives can be obtained using the fact

(4.16)
∥∥∥∥∂ns∂ξn

(κ, ξ, p)
∥∥∥∥ =

∥∥∥∥∂nνκ∂ξn
(ξ, p)(κ)

∥∥∥∥ ≤ ‖νnκ (ξ, p)‖+κ,γ
(4.11)

≤ Cn for ξ ∈ X , p ∈ P

and n ∈ {1, . . . ,ms}. Hereby the expression for C1 is a consequence of (3.25).

(b) The smoothness proof of the mapping r : I × Y × P → X is dual to the above considerations for
s. A formal differentiation of the identity (3.40) with respect to η ∈ Y gives us a fixed point equation
(µlκ, ν

l
κ)(η, p) = T̄ lκ((µlκ, ν

l
κ)(η, p); η, p) with the right-hand side

(4.17)
(
T̄ lκ(µl, νl; η, p)

)
(k) :=


∑k−1
n=−∞Φ(k, n+ 1)

[
∂F

∂(x,y) (n, (µκ, νκ)(n; η, p), p)
(
µl

νl

)
(n) + R̄l1(n, η, p)

]
−
∑κ−1
n=k Ψ(k, n+ 1)

[
∂G

∂(x,y) (n, (µκ, νκ)(n; η, p), p)
(
µl

νl

)
(n) + R̄l2(n, η, p)

]


for k ∈ Z−κ and parameters p ∈ P, where the remainder R̄l = (R̄l1, R̄
l
2) allows representations analogous

to (4.6) and (4.7). We omit the further details.

(c) The recursion for the global bounds Cn ≥ 0, n ∈ {2, . . . ,m}, of ‖∂
ns
∂ξn (κ, ξ, p)‖ in (4.2) is an obvious

consequence of the estimate (4.10) from Step 2 of part (a) in the present proof. A dual argument shows
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that the solution of the fixed point equation for (4.17) is globally bounded by Cn as well, and an estimate
analogous to (4.16) gives us the global bounds for the partial derivatives of r. Hence we have shown the
assertion (c) and the proof of Theorem 4.1 is finished. �
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[APS01] B. Aulbach, C. Pötzsche and S. Siegmund, A smoothness theorem for invariant fiber bundles, Journal of Dynamics
and Differential Equations, 14(3) (2002), 519–547.
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