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1 Introduction

The concept of asymptotic phase originally occurred in connection with the approach of
a solution of an autonomous ordinary differential equation to an orbitally asymptotically
stable periodic solution. The well known Andronov-Witt-Theorem says that if all but one
of the characteristic multipliers of a periodic solution p(t) have modulus smaller than 1
then any nearby solution behaves asymptotically like a member of the family of periodic
solutions p(t + ϕ) where the phase shift ϕ is the parameter. For ordinary differential
equations this result has been extended to manifolds of stationary or periodic solutions
and to more general invariant manifolds in Aulbach [2, 3, 4] and in López-Fenner &
Pinto [7], and for difference equations in Aulbach [4] and in López-Fenner & Pinto [8].
In the present paper we generalize the main result of [4] to the case of an nonautonomous
equation whose right-hand side is allowed to be noninvertible and whose invariant manifold
does not necessarily consist of stationary solutions. This result may also be considered as
a discrete analog of the main result in [3].

The organization of this paper is as follows. In section 2 we introduce the notation
underlying this paper and in section 3 we prove an auxiliary theorem on the reducibility of
linear systems with a certain kind of exponential trichotomy. Section 4 contains another
auxiliary result which describes a coordinate change by means of which the main result of
this paper can be proved in section 5.
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2 Preliminaries

We first fix the notation and introduce the basic concepts underlying this paper. N denotes
the positive integers. A discrete interval I is defined to be the intersection of a real interval
with the integers Z = {0,±1, . . .}. For any κ ∈ Z we use the abbreviations Z+

κ := [κ,∞)∩Z
and Z−κ := (−∞, κ] ∩ Z. The space of real N × N -matrices is denoted by RN×N with the
zero matrix 0N , and GLN (R) is the multiplicative group of invertible matrices in RN×N

with the identity IN . N (B) := B−1({0}) denotes the nullspace of a matrix B ∈ RN×N and
R(B) := B(RN ) its range. For any x ∈ RN the ball in RN with center x and radius ε > 0 is
denoted by Bε(x). Double bars ‖·‖ stand for an arbitrary norm on RN and our matrix-norms
are always induced by vector-norms. In particular, the norm ‖B‖2 := max‖x‖2=1 ‖Bx‖2 is
induced by the Euclidean norm ‖x‖2 := (

∑N
k=1 x

2
k)

1/2. We write

x′ = f(k, x) (1)

for the difference equation x(k+ 1) = f(k, x(k)) with the right-hand side f : I ×RN → RN

where I is a discrete interval. The expression λ(k;κ, ξ) denotes the general solution of
equation (1), i.e. λ(· ;κ, ξ) solves equation (1) and satisfies the initial condition λ(κ;κ, ξ) = ξ
for κ ∈ I and ξ ∈ RN . The general solution may be represented recursively as

λ(k;κ, ξ) :=
{

ξ for k = κ
f(k − 1, λ(k − 1;κ, ξ)) for k > κ

.

Given a matrix sequence A : I → RN×N we define the transition matrix Φ(k, κ) ∈ RN×N

of the linear equation x′ = A(k)x as the mapping given by

Φ(k, κ) :=
{

IN for k = κ
A(k − 1) · . . . ·A(κ) for k > κ

and if A(k) is invertible (in RN×N ) for k ∈ Z−κ then we set

Φ(k, κ) := A(k)−1 · . . . ·A(κ− 1)−1 for k < κ.

Finally, a point ξ ∈ RN is called an ω-limit point of a mapping µ : Z+
κ → RN if there exists

a sequence (kn)n∈N in Z+
κ with limn→∞ kn =∞ and limn→∞ µ(kn) = ξ.

3 Exponential Trichotomies and Reducibility

We consider a linear difference equation

x′ = A(k)x (2)

where the mapping A : Z+
κ0
→ RN×N , κ0 ∈ Z, is not assumed to have invertible values.

Furthermore we consider two sequences of projections P−, P+ : Z+
κ → RN×N , κ ∈ Z+

κ0
,

with
P−(k + 1)A(k) ≡ A(k)P−(k), P+(k + 1)A(k) ≡ A(k)P+(k) on Z+

κ (3)
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and we assume that the relation P−(k)P+(k) ≡ P+(k)P−(k) holds on Z+
κ . Hence IN −

P−(k)−P+(k) is a projection on Z+
κ as well. The equation (2) is said to satisfy the regularity

condition if the two mappings

A(k)|R(P+(k)) : R(P+(k))→ R(P+(k + 1)),

A(k)|N (P+(k)+P−(k)) : N (P+(k) + P−(k))→ N (P+(k + 1) + P−(k + 1))

are invertible for all k ∈ Z+
κ ; they are well-defined because of the identities (3). If this is

the case we can define the extended transition matrix

ΦP+(k, l) =


[
A(k)|R(P+(k))

]−1
· . . . ·

[
A(l − 1)|R(P+(l−1))

]−1
for k < l

IR(P+(l)) for k = l

A(k − 1)|R(P+(k−1))· . . . ·A(l)|R(P+(l)) for k > l

for (k, l) ∈ (Z+
κ )2. The complementary expression ΦIN−P+−P−(k, l) is defined analogously.

Finally, equation (2) is said to possess an exponential trichotomy if there exist real numbers
0 < α < β and K1,K2,K3 ≥ 1 such that the following estimates hold true:∥∥Φ(k, l)P−(l)

∥∥ ≤ K1α
k−l for k ≥ l ≥ κ, (4)∥∥ΦP+(k, l)P+(l)

∥∥ ≤ K2β
k−l for l ≥ k ≥ κ,∥∥ΦIN−P−−P+(k, l)

[
IN − P−(l)− P+(l)

]∥∥ ≤ K3 for k, l ∈ Z+
κ .

Remark 3.1 (1) If the coefficient matrices appearing in equation (2) are invertible, then the
above notion of exponential trichotomy reduces to the corresponding notion used in López-
Fenner & Pinto [8, Defintion 1.1]. For the differential equations case see Aulbach [3].

(2) If the coefficient matrices in equation (2) are independent of k, A(k) ≡ A, then
this equation has an exponential trichotomy if all eigenvalues of A with modulus 1 are
semi-simple.

Equation (2) is called reducible to an equation x′ = B(k)x with B : Z+
κ → RN×N , if there

exists a function Λ : Z+
κ → GLN (R) with the following properties:

(i) Λ and Λ(·)−1 are bounded as functions from Z+
κ to RN×N ,

(ii) the identity Λ(k + 1)B(k) ≡ A(k)Λ(k) holds on Z+
κ .

Later on we need the following reducibility result.

Theorem 3.2 We suppose system (2) satisfies the following conditions:

(i) It has an exponential trichotomy with constants α, β, K1,K2,K3 and projections
P−, P+ on Z+

κ , κ ∈ Z+
κ0

,

(ii) the ranks of the projections are constant on Z+
κ , N− :≡ rkP−(k), N+ :≡ rkP+(k).
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Then the system (2) is reducible to a decoupled system
u′ =B−(k)u
v′ =B+(k)v
w′=B?(k)w

(5)

with B− : Z+
κ → RN−×N−, B+ : Z+

κ → GLN+(R) and B? : Z+
κ → GLN−N−−N+(R).

Moreover, the transition matrices Ψ−, Ψ− and Ψ? of the subsystems u′ = B−(k)u, v′ =
B+(k)v and w′ = B?(k)w, respectively, satisfy the estimates∥∥Ψ−(k, l)

∥∥
2
≤ (2 +K1)6(2 +K2)2K1α

k−l for k ≥ l ≥ κ,∥∥Ψ+(k, l)
∥∥

2
≤ (2 +K1)6(2 +K2)2K2β

k−l for l ≥ k ≥ κ, (6)

‖Ψ?(k, l)‖2 ≤ (2 +K1)6(2 +K2)2K3 for k, l ∈ Z+
κ . (7)

Proof. (a) Because of the exponential trichotomy of system (2) we have∥∥P−(k)
∥∥

2
≤ K1,

∥∥P+(k)
∥∥

2
≤ K2 for k ∈ Z+

κ . (8)

Using the methods in Gohberg, Kaashoek & Kos [6, Lemma 2.2] (for details see
Pötzsche [9]) there exists a sequence Λ : Z+

κ → GLN (R) such that on Z+
κ we have

Λ(k)−1P−(k)Λ(k) ≡

 IN−
0N+

0N−N−−N+

 =: D−,

Λ(k)−1P+(k)Λ(k) ≡

 0N−
IN+

0N−N−−N+

 =: D+,

Λ(k)−1
[
IN − P−(k)− P+(k)

]
Λ(k) ≡

 0N−
0N+

IN−N−−N+

 =: D?.

and furthermore we get

max
{
‖Λ(k)‖2 ,

∥∥Λ(k)−1
∥∥

2

} (8)

≤ (2 +K1)3(2 +K2) for k ∈ Z+
κ . (9)

Using Λ as a transformation, system (2) turns into the decoupled system (5) which moreover
satisfies the regularity condition with respect to the constant projections D+ and D?. This
implies the invertibility of the matrices B+(k) and B?(k) for all k ∈ Z+

κ .
(b) For the transition matrix Ψ− we obtain∥∥Ψ−(k, l)

∥∥
2

=
∥∥Ψ(k, l)D−

∥∥
2

=
∥∥Λ(k)−1Φ(k, l)Λ(l)D−

∥∥
2

=

=
∥∥Λ(k)−1Φ(k, l)P−(l)Λ(l)

∥∥
2
≤

(9)

≤ (2 +K1)6(2 +K2)2
∥∥Φ(k, l)P−(l)

∥∥
2
≤

(4)

≤ K1(2 +K1)6(2 +K2)2αk−l for k ≥ l ≥ κ

and using arguments as before one can see that Ψ+ and Ψ∗ satisfy the estimates (6) and (7).
This completes the proof of Theorem 3.2. 2
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4 Transformation to Quasilinear Form

For the remainder of this paper we consider a difference equation

x′ = f(k, x) (10)

whose right-hand side f : Z+
κ0
× RN → RN , κ0 ∈ Z, has the property that f(k, ·) is of class

C3 for any k ∈ Z+
κ , κ ∈ Z+

κ0
. We suppose that this system has an M -dimensional bounded

invariant C3-manifold M⊆ RN , this particularly means that for any initial point (κ, ξ) in
Z+
κ0
×M the corresponding solution λ(k;κ, ξ) remains inM for all k ∈ Z+

κ . We furthermore
suppose that any solution µ0 : Z+

κ → RN of (10) with initial value µ0(κ) ∈ M satisfies the
following hypotheses:

(H1) The variational equation

y′ =
∂f

∂x
(k, µ0(k))y

admits an exponential trichotomy with constants 0 < α < 1 < β, K1,K2,K3 and
projections P−, P+ whose ranks N− :≡ rkP−(k) and N+ :≡ rkP+(k) are constant
on Z+

κ and satisfy N− +N+ = N −M .

(H2) The limit

lim
y→0

[
∂f

∂x
(k, y + µ0(k))− ∂f

∂x
(k, µ0(k))

]
= 0N

exists uniformly with respect to k ∈ Z+
κ .

(H3) There exists a neighborhood V ⊆M of µ0(κ) such that the derivatives

∂λ

∂ξ
(·;κ, ·)

∣∣∣∣
Z+
κ×V

and
∂2λ

∂ξ2
(·;κ, ·)

∣∣∣∣
Z+
κ×V

are bounded.

The following theorem describes a change of coordinates which allows to transform
system (10) into a particular ”quasilinear” form which is suitable for further investigations
in the next section.

Theorem 4.1 For any solution µ0 : Z+
κ → RN of (10) with µ0(κ) ∈ M and satisfying the

hypotheses (H1), (H2) and (H3) there exists a local transformation T µ0 : Aµ0 ⊆ Z+
κ ×RN →

RN which transforms system (10) into a system of the form
û′ =B−(k)û + B̂−1 (k, û, v̂, ŵ)û+ B̂−2 (k, û, v̂, ŵ)v̂
v̂′ =B+(k)v̂ + B̂+

2 (k, û, v̂, ŵ)v̂
ŵ′= ŵ + B̂?

1(k, û, v̂, ŵ)û + B̂?
2(k, û, v̂, ŵ)v̂

(11)

where û ∈ RN−, v̂ ∈ RN+
and ŵ ∈ RM . Furthermore the following is true:
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(a) The domain Aµ0 of the transformation T µ0 is a neighborhood of the “solution curve”
{(k, µ0(k)) : k ∈ Z+

κ } with the property that there exists some ρ1 > 0 with

Bρ1(µ0(k)) ⊆
{
x ∈ RN : (k, x) ∈ Aµ0

}
for k ∈ Z+

κ .

In addition, for any k ∈ Z+
κ the mapping T µ0(k, ·) is of class C1 and satisfies the

identity T µ0(k, µ0(k)) ≡ 0 on Z+
κ .

(b) The mappings B− and B+ are of type B− : Z+
κ → RN−×N− and B+ : Z+

κ → GLN+(R),
respectively.

(c) The transition matrices Ψ−,Ψ+ of û′ = B−(k)û and v̂′ = B+(k)v̂, respectively, satisfy
the estimates ∥∥Ψ−(k, l)

∥∥ ≤ K̃1α
k−l for k ≥ l ≥ κ,∥∥Ψ+(k, l)

∥∥ ≤ K̃2β
k−l for l ≥ k ≥ κ

with real constants K̃1, K̃2 ≥ 1.

(d) The matrix-valued mappings B̂−1 , B̂
−
2 , B̂

+
2 , B̂

?
1 , B̂

?
2 are continuous as functions of

(û, v̂, ŵ) and they converge to the respective zero matrix uniformly with respect to
k ∈ Z+

κ as (û, v̂, ŵ)→ (0, 0, 0).

(e) There exist real constants c, C > 0 with the following property: if µ, µ̄ : Z+
κ → RN are

any two solutions of equation (10) which satisfy (k, µ(k)), (k, µ̄(k)) ∈ Aµ0 for all k in
some subset J ⊆ Z+

κ then the estimates

c ‖µ(k)− µ̄(k)‖ ≤ ‖T µ0(k, µ(k))− T µ0(k, µ̄(k))‖ ≤ C ‖µ(k)− µ̄(k)‖

are valid for all k ∈ J .

Proof. We subdivide the proof in four steps.
(I) In order to decouple the linear part of system (10) we first use the transformation

y = x− µ0(k) to get from (10) the system

y′ =
∂f

∂x
(k, µ0(k))y + r(k, y) (12)

where the remainder term r : Z+
κ × RN → RN turns out to have two continuous partial

derivatives with respect to y ∈ RN . Furthermore, we have

r(k, 0) ≡ 0 on Z+
κ (13)

as well as (cf. (H2))

lim
y→0

∂r

∂y
(k, y) = 0 (14)

uniformly with respect to k ∈ Z+
κ . Because of the assumption (H1) we may apply the

Reducibility Theorem 3.2 to the linear part of system (12). This provides a transformation
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matrix Λ : Z+
κ → GLN (R) which allows to decouple this system by means of the transfor-

mation T1 : Z+
κ ×RN → RN with T1(k, y) := Λ(k)−1y. In fact, the transformed system has

the form 
u′ =B−(k)u+ r−(k, u, v, w)
v′ =B+(k)v + r+(k, u, v, w)
w′= B?(k)w + r?(k, u, v, w)

(15)

where B− : Z+
κ → RN−×N− , B+ : Z+

κ → GLN+(R) and B? : Z+
κ → GLM (R). The phase

space RN is split in three parts according to y = (u, v, w) ∈ RN−×RN+×RM . Furthermore,
the transition matrices Ψ−,Ψ+ and Ψ? of the linear systems u′ = B−(k)u, v′ = B+(k)v
and w′ = B?(k)w, respectively, obey the estimates∥∥Ψ−(k, l)

∥∥ ≤ K̃1α
k−l for k ≥ l ≥ κ,∥∥Ψ+(k, l)

∥∥ ≤ K̃2β
k−l for l ≥ k ≥ κ,

‖Ψ?(k, l)‖ ≤ K̃3 for k, l ∈ Z+
κ , (16)

where the constants K̃1, K̃2, K̃3 ≥ 1 only depend on K1,K2,K3 and the used norms (see
Theorem 3.2(b)). The nonlinearities r−, r+ and r? are twice continuously differentiable with
respect to u, v and w. In addition, because of (13) we get

r−(k, 0, 0, 0) ≡ 0, r+(k, 0, 0, 0) ≡ 0, r?(k, 0, 0, 0) ≡ 0 on Z+
κ

as well as (cf. (14))

lim
(u,v,w)→(0,0,0)

∂(r−, r+, r?)
∂(u, v, w)

(k, u, v, w) = 0 (17)

uniformly with respect to k ∈ Z+
κ . It is worth noting here that both Λ : Z+

κ → GLN (R) and
Λ(·)−1 are bounded.

(II) We now determine a local coordinate change which makes the nonlinear terms of
system (15) disappear on a set of the form Z+

κ × {0} × {0} × B where B ⊆ RM is an
open neighborhood of 0. To this end let X : B → M be a local C3-coordinate system of
the manifold M with X(0) = µ0(κ) and X(B) ⊆ V . Then, for any η ∈ B the function
λ(·;κ,X(η)) is a solution of (10) which because of the invariance of M remains in M for
all k ∈ Z+

κ . Furthermore, λ(·;κ,X(η)) − µ0 is a solution of system (12) and therefore the
function

υ(k; η) =

 υ−(k; η)
υ+(k; η)
υ?(k; η)

 := Λ(k)−1(λ(k;κ,X(η))− µ0(k)) (18)

is a solution of (15) for any η ∈ B which moreover vanishes identically for η = 0:

υ(k; 0) ≡ 0 on Z+
κ . (19)

In addition the function υ(·; η) is bounded for any fixed η ∈ B since its values are in M.
Differentiating the corresponding solution identity with respect ηi ∈ R we get

∂υ

∂ηi
(k + 1; η) ≡


B−(k)

B+(k)
B?(k)

+


∂r−

∂(u,v,w)(k, υ(k; η))
∂r+

∂(u,v,w)(k, υ(k; η))
∂r?

∂(u,v,w)(k, υ(k; η))


 ∂υ

∂ηi
(k; η)
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on Z+
κ ×B for i = 1, . . . ,M . According to (17) and (19) we get for η = 0

∂υ

∂ηi
(k + 1; 0) ≡

B−(k)
B+(k)

B?(k)

 ∂υ

∂ηi
(k; 0) on Z+

κ . (20)

Thus the M functions ∂υ
∂η1

(·; 0), . . . , ∂υ
∂ηM

(·; 0) : Z+
κ → RN are solutions of the linear system

u′ =B−(k)u
v′ =B+(k)v
w′=B?(k)w

. (21)

Since X : B → X(B) is a diffeomorphism, the vectors ∂X
∂η1

(0), . . . , ∂X∂ηM (0) ∈ RN are linearly
independent, and because of the invertibility of the matrix Λ(κ) ∈ RN×N also the vectors

∂υ

∂ηi
(κ; 0)

(18)
= Λ(κ)−1∂X

∂ηi
(0) for i = 1, . . . ,M

are linearly independent. Now we can choose the local coordinate system X von M such
that the vectors ∂υ?

∂η1
(κ; 0), . . . , ∂υ

?

∂ηM
(κ; 0) ∈ RM are linearly independent and, since B?(k) ∈

RM×M is regular, we get the linear independence of the solutions ∂υ?

∂η1
(·; 0), . . . , ∂υ

?

∂ηM
(·; 0) of

the M -dimensional linear system w′ = B?(k)w. Altogether we thus have

∂υ?

∂η
(k; 0) ∈ GLM (R) for k ∈ Z+

κ . (22)

Furthermore we get the relation∥∥∥∥∥
[
∂υ?

∂η
(k; 0)

]−1
∥∥∥∥∥ =

∥∥∥∥∥
[
∂υ?

∂η
(κ; 0)

]−1

Ψ?(κ, k)

∥∥∥∥∥ ≤ K̃3

∥∥∥∥∥
[
∂υ?

∂η
(κ; 0)

]−1
∥∥∥∥∥ for k ∈ Z+

κ . (23)

Finally, the function ∂υ
∂η (·; 0) is bounded by assumption (H3) because we have

∂υ

∂η
(k; 0)

(18)
= Λ(k)−1∂λ

∂ξ
(k;κ, µ0(κ))

∂X

∂η
(0) for k ∈ Z+

κ . (24)

Next we want to transform system (15) in such a way that the solutions corresponding to
υ(·; η), η ∈ B, get the form (0, 0, η). To this end we consider the mapping S(k, u, v, w) :=
(u, v, 0) +υ(k;w) and notice that by Taylor’s Theorem this mapping may be represented in
the form

S(k, u, v, w)
(19)
=

u
v
0

+
∂υ

∂η
(k; 0)w +R1(k,w)

where the remainder term R1 = (R−1 , R
+
1 , R

?
1) : Z+

κ × B → RN is twice continuously
differentiable with respect to w ∈ RM and satisfies limw→0

R1(k,w)
‖w‖ = 0. The mapping

υ? : Z+
κ ×B → RM satisfies, because of (19), (22), (23) and

∂2υ

∂η2
(k; η)

(18)
= Λ(k)−1

[
∂2λ

∂ξ2
(k;κ,X(η))DX(η) +

∂λ

∂ξ
(k;κ,X(η))D2X(η)

]

8



together with (H3) the assumptions of Lemma 6.1 (see Appendix). This provides a neigh-
borhood U? ⊆ B of 0, independent of k, where each υ?k := υ?(k; ·) is injective. Lemma 6.1
furthermore implies that (υ?k)

−1 is defined for all k ∈ Z+
κ on a k-independent neighborhood

V ? ⊆ RM of 0 with V ? ⊆ υ?(k;U?). For the inverse of the coordinate change S(k, ·) we get
the representation

S(k, ·)−1(u, v, w) =

u− υ−(k; (υ?k)
−1(w))

v − υ+(k; (υ?k)
−1(w))

(υ?k)
−1(w)


for all (k, u, v, w) ∈ Z+

κ ×RN− ×RN+ ×V ?. Again, from Taylor’s Theorem and the relation
(19) we get

S(k, ·)−1(u, v, w) =


u− ∂υ−

∂η (k; 0)
[
∂υ?

∂η (k; 0)
]−1

w

v − ∂υ+

∂η (k; 0)
[
∂υ?

∂η (k; 0)
]−1

w[
∂υ?

∂η (k; 0)
]−1

w

+R2(k,w)

where the remainder term R2 = (R−2 , R
+
2 , R

?
2) : Z+

κ × V ? → RN has two continuous
partial derivatives with respect to w ∈ RM and satisfies limw→0

R2(k,w)
‖w‖ = 0. Since

the functions ∂υ
∂η1

(·; 0), . . . , ∂υ
∂ηM

(·; 0) are solutions of (21), in terms of the coordinates
(ū, v̄, w̄) := T2(k, u, v, w) := S(k, ·)−1(u, v, w) the transformed system has the simplified
form 

ū′ =B−(k)ū+r̄−(k, ū, v̄, w̄)
v̄′ =B+(k)v̄+r̄+(k, ū, v̄, w̄)
w̄′= w̄ + r̄?(k, ū, v̄, w̄)

. (25)

Here, in view of (20) the nonlinearities r̄−, r̄+ and r̄? are defined as follows:

r̄−(k, ū, v̄, w̄) := B−(k)R−1 (k, w̄) + r−(k, S(k, ū, v̄, w̄))−

−∂υ
−

∂η
(k + 1; 0)

[
∂υ?

∂η
(k; 0)

]−1

R?1(k, w̄)−

−∂υ
−

∂η
(k + 1; 0)

[
∂υ?

∂η
(k + 1; 0)

]−1

r?(k, S(k, ū, v̄, w̄)) +

+R−2 (k + 1,
∂υ?

∂η
(k + 1; 0)w̄ +B?(k)R?1(k, w̄) + r?(k, S(k, ū, v̄, w̄))),

r̄+(k, ū, v̄, w̄) := B+(k)R+
1 (k, w̄) + r+(k, S(k, ū, v̄, w̄))−

−∂υ
+

∂η
(k + 1; 0)

[
∂υ?

∂η
(k; 0)

]−1

R?1(k, w̄)−

−∂υ
+

∂η
(k + 1; 0)

[
∂υ?

∂η
(k + 1; 0)

]−1

r?(k, S(k, ū, v̄, w̄)) +

+R+
2 (k + 1,

∂υ?

∂η
(k + 1; 0)w̄ +B?(k)R?1(k, w̄) + r?(k, S(k, ū, v̄, w̄)))

9



and

r̄?(k, ū, v̄, w̄) :=
[
∂υ?

∂η
(k; 0)

]−1

R?1(k, w̄) +

+
[
∂υ?

∂η
(k + 1; 0)

]−1

r?(k, S(k, ū, v̄, w̄)) +

+R?2(k + 1,
∂υ?

∂η
(k + 1; 0)w̄ +B?(k)R?1(k, w̄) + r?(k, S(k, ū, v̄, w̄))).

These functions have tree crucial properties: They have two continuous partial deriva-
tives with respect to (ū, v̄, w̄), together with the sequence (υ(k; w̄))k∈Z+

κ
also the sequence

(S(k, ū, v̄, w̄))k∈Z+
κ

is bounded (for fixed (ū, v̄, w̄) ∈ RN− × RN+ × U?), and from Lemma
6.1 and the relations (23) and (24) we get the boundedness of (T2(k, u, v, w))k∈Z+

κ
(for fixed

(u, v, w) ∈ RN− × RN+ × V ?). Thus, for the nonlinear terms we get the relation

lim
(ū,v̄,w̄)→(0,0,0)

∂(r̄−, r̄+, r̄?)
∂(ū, v̄, w̄)

(k, ū, v̄, w̄) = 0

uniformly with respect to k ∈ Z+
κ . Since υ(·; η) = S(·, 0, 0, η) solves the system (15) we get

for all η ∈ U?

r̄−(k, 0, 0, η) ≡ 0, r̄+(k, 0, 0, η) ≡ 0, r̄?(k, 0, 0, η) ≡ 0 on Z+
κ . (26)

Hence, (0, 0, η), η ∈ U?, represents a family of stationary solutions of (25).
(III) In order to investigate system (25) we choose an open neighborhood Ũ ⊆ U of

0 ∈ RN such that (tū, tv̄, w̄) ∈ U for any (ū, v̄, w̄) ∈ Ũ and all t ∈ [0, 1]. By the Mean Value
Theorem we then get for any (ū, v̄, w̄) ∈ Ũ and k ∈ Z+

κ the relation

r̄−(k, ū, v̄, w̄) =

= r̄−(k, 0, 0, w̄) +
∫ 1

0

∂r̄−

∂(ū, v̄)
(k, tū, tv̄, w̄) dt

(
ū
v̄

)
=

(26)
=

(∫ 1

0

∂r̄−

∂ū
(k, tū, tv̄, w̄) dt

)
ū+

(∫ 1

0

∂r̄−

∂v̄
(k, tū, tv̄, w̄) dt

)
v̄.

Analogous relations hold for the other nonlinear terms r̄+ and r̄?. Using the abbreviations

B−1 (k, ū, v̄, w̄) :=
∫ 1

0

∂r̄−

∂ū
(k, tū, tv̄, w̄) dt, B−2 (k, ū, v̄, w̄) :=

∫ 1

0

∂r̄−

∂v̄
(k, tū, tv̄, w̄) dt,

B+
1 (k, ū, v̄, w̄) :=

∫ 1

0

∂r̄+

∂ū
(k, tū, tv̄, w̄) dt, B+

2 (k, ū, v̄, w̄) :=
∫ 1

0

∂r̄+

∂v̄
(k, tū, tv̄, w̄) dt,

B?
1(k, ū, v̄, w̄) :=

∫ 1

0

∂r̄?

∂ū
(k, tū, tv̄, w̄) dt, B?

2(k, ū, v̄, w̄) :=
∫ 1

0

∂r̄?

∂v̄
(k, tū, tv̄, w̄) dt,

we get six matrix-valued functions which have continuous partial derivatives with respect
to (ū, v̄, w̄) and converge, by assumption (H2), to 0 uniformly with respect to k ∈ Z+

κ as

10



(ū, v̄, w̄)→ (0, 0, 0). The system (25) thus has the form
ū′ =B−(k)ū+B−1 (k, ū, v̄, w̄)ū+B−2 (k, ū, v̄, w̄)v̄
v̄′ =B+(k)v̄+B+

1 (k, ū, v̄, w̄)ū+B+
2 (k, ū, v̄, w̄)v̄

w̄′= w̄ + B?
1(k, ū, v̄, w̄)ū + B?

2(k, ū, v̄, w̄)v̄
. (27)

In order to further decouple the system under consideration we now apply a theorem on
the existence of local center-stable fiber bundles to systems (25) and (27). This result is a
consequence of a local version of Aulbach, Pötzsche & Siegmund [5, Theorem 4.11]. It
provides a constant ρ > 0 and a function s : Z+

κ ×Bρ(0) ⊆ Z+
κ ×RN−×RM → Bρ(0) ⊆ RN+

which defines a local invariant fiber bundle S. The function s has the following properties:

(a) For all k ∈ Z+
κ we have s(k, 0, 0) = 0 and ∂s

∂(ū,w̄)(k, 0, 0) = 0.

(b) For all points (k, ū, w̄) ∈ Z+
κ × Bρ(0) which have the property that (B−(k)ū +

r̄−(k, ū, s(k, ū, w̄), w̄), w̄ + r̄?(k, ū, s(k, ū, w̄), w̄)) belongs to Bρ(0) we have

s(k + 1, B−(k)ū+B−1 (k, ū, s(k, ū, w̄), w̄)ū+
+B−2 (k, ū, s(k, ū, w̄), w̄)s(k, ū, w̄),
w̄ +B?

1(k, ū, s(k, ū, w̄), w̄)ū+
+B?

2(k, ū, s(k, ū, w̄), w̄)s(k, ū, w̄)) =
= B+(k)s(k, ū, w̄) +B+

1 (k, ū, s(k, ū, w̄), w̄)ū+
+B+

2 (k, ū, s(k, ū, w̄), w̄)s(k, ū, w̄). (28)

(c) For any k ∈ Z+
κ the function s(k, ·) is continuously differentiable.

Without loss of generality we may suppose that Bρ(0) ⊆ Ũ in the following considerations.
Since (0, 0, η) ∈ Bρ(0) is a bounded (since stationary) solution of (25) we get

s(k, 0, η) ≡ 0 on Z+
κ (29)

for any η ∈ Bρ(0) which is sufficiently small. We now apply the local coordinate change û
v̂
ŵ

 := T3(k, ū, v̄, w̄) :=

 ū
v̄ − s(k, ū, w̄)

w̄

 (30)

to system (27). This yields the system
û′ =B−(k)û + r̂−(k, û, v̂, ŵ)
v̂′ = B+(k)v̂ +B+

2 (k, û, v̂, ŵ)v̂+ r̂+(k, û, v̂, ŵ)
ŵ′= ŵ + r̂?(k, û, v̂, ŵ)

where we have used the abbreviations

r̂−(k, û, v̂, ŵ) := B−1 (k, û, v̂ + s(k, û, ŵ), ŵ)û+
+B−2 (k, û, v̂ + s(k, û, ŵ), ŵ)(v̂ + s(k, û, ŵ)),
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r̂?(k, û, v̂, ŵ) := B?
1(k, û, v̂ + s(k, û, ŵ), ŵ)û+

+B?
2(k, û, v̂ + s(k, û, ŵ), ŵ)(v̂ + s(k, û, ŵ)),

r̂+(k, û, v̂, ŵ) := B+(k)s(k, û, ŵ) +B+
1 (k, û, v̂ + s(k, û, ŵ), ŵ)û+

+B+
2 (k, û, v̂ + s(k, û, ŵ), ŵ)s(k, û, ŵ)−

−s(k + 1, B̂−(k)û+B−1 (k, û, v̂ + s(k, û, ŵ), ŵ)û+
+B−2 (k, û, v̂ + s(k, û, ŵ), ŵ)(v̂ + s(k, û, ŵ)),
ŵ +B?

1(k, û, v̂ + s(k, û, ŵ), ŵ)û+
+B?

2(k, û, v̂ + s(k, û, ŵ), ŵ)(v̂ + s(k, û, ŵ))).

Because of the identity (29) we get r̂−(k, 0, 0, η) ≡ 0, r̂?(k, 0, 0, η) ≡ 0 on Z+
κ for normwise

sufficiently small η ∈ Bρ(0). As above we may write

r̂−(k, û, v̂, ŵ) = B̂−1 (k, û, v̂, ŵ)û+ B̂−2 (k, û, v̂, ŵ)v̂,
r̂?(k, û, v̂, ŵ) = B̂?

1(k, û, v̂, ŵ)û+ B̂?
2(k, û, v̂, ŵ)v̂

where

B̂−1 (k, û, v̂, ŵ) :=
∫ 1

0

∂r̂−

∂û
(k, tû, tv̂, ŵ) dt, B̂−2 (k, û, v̂, ŵ) :=

∫ 1

0

∂r̂−

∂v̂
(k, tû, tv̂, ŵ) dt,

B̂?
1(k, û, v̂, ŵ) :=

∫ 1

0

∂r̂?

∂û
(k, tû, tv̂, ŵ) dt, B̂?

2(k, û, v̂, ŵ) :=
∫ 1

0

∂r̂?

∂v̂
(k, tû, tv̂, ŵ) dt.

Moreover we get

r̂+(k, û, 0, ŵ) = B+(k)s(k, û, ŵ) +B+
1 (k, û, s(k, û, ŵ), ŵ)û+

+B+
2 (k, û, s(k, û, ŵ), ŵ)s(k, û, ŵ)−

−s(k + 1, B−(k)û+B−1 (k, û, s(k, û, ŵ), ŵ)û+
+B−2 (k, û, s(k, û, ŵ), ŵ)s(k, û, ŵ),
ŵ +B?

1(k, û, s(k, û, ŵ), ŵ)û+
+B?

2(k, û, s(k, û, ŵ), ŵ)s(k, û, ŵ)) =
(28)
= 0 for k ∈ Z+

κ

and using the abbreviation

B̂+
2 (k, û, v̂, ŵ) := B+

2 (k, û, v̂, ŵ) +
∫ 1

0

∂r̂+

∂v̂
(k, û, tv̂, ŵ) dt

we obtain the claimed form of the difference equation (11). Together with the function
s(k, ·) also the coordinate change T3(k, ·) is continuously differentiable for any k ∈ Z+

κ .
(IV) Defining the transformation T µ0 : Aµ0 → RN by the relation

T µ0(k, x) := T3 (k, T2(k, T1(k, x− µ0(k))))

we get from the previous considerations the assertions of the theorem. Concerning statement
(e) we note that the transformations T1, S, T3 and the inverses have bounded derivatives
on their domain. 2
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5 The Main Result

The following theorem, the main result of this paper, may be considered as a discrete time
version of the corresponding result on differential equations in Aulbach [3]. It turns out
that, compared to the continuous time result, for the difference equations case we have to
make two additional assumptions in order to take care of two well known deficiencies of
discrete time solutions, the lack of backward existence and the disconnectedness.

Theorem 5.1 We reconsider the difference equation

x′ = f(k, x) (31)

dealt with in the previous section. In addition to the assumptions (H1), (H2) and (H3) we
suppose that

(H4) M is compact,

(H5) f(k, ·)|M :M→M is surjective for any k ∈ Z+
κ0

.

Then if µ : Z+
κ → RN is any solution of (31) with the properties

(i) limk→∞ [T µ0(k + 1, µ(k + 1))− T µ0(k, µ(k))] = 0 for any solution µ0 : Z+
κ → RN of

(31) with µ0(κ) ∈M,

(ii) limk→∞ dist (µ(k),M) = 0

then there exists a point ξ ∈M such that

lim
k→∞

[λ(k;κ, ξ)− µ(k)] = 0 ,

i.e. M possesses an asymptotic phase.

Proof. We proceed in three steps.
(I) Since assumption (H3) applies to all solutions of (31) starting on the manifold M

and because M is compact, we have

sup
(k,ξ)∈Z+

κ×M

∥∥∥∥∂λ∂ξ (k;κ, ξ)
∥∥∥∥ <∞.

Thus there exists for any ε > 0 a δ = δ(ε) > 0 such that for all ξ, ξ̄ ∈ M the following
implication is true: ∥∥λ(k0;κ, ξ)− λ(k0;κ, ξ̄)

∥∥ < δ for some k0 ∈ Z+
κ ,

⇒
∥∥λ(k;κ, ξ)− λ(k;κ, ξ̄)

∥∥ < ε for k ∈ Z+
k0
.

(32)

(II) The compactness ofM implies that, because of property (ii), the function µ has an
ω-limit point η ∈M. Thus there exists a sequence (kn)n∈N in Z+

κ with

η = lim
n→∞

µ(kn). (33)
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Assumption (H5) then guarantees that the solutions of (31) on M have (not necessarily
unique) backward continuations. Therefore there exists a sequence (ηn)n∈N in M with

η = λ(kn;κ, ηn) for n ∈ N . (34)

Since M (and thus (ηn)n∈N) is bounded there exists a converging subsequence (ηnm)m∈N
whose limit ξ := limm→∞ ηnm belongs to the closed set M. We therefore get the estimate

‖µ(knm)− λ(knm ;κ, ξ)‖ ≤
(34)

≤ ‖µ(knm)− η‖+ ‖λ(knm ;κ, ηnm)− λ(knm ;κ, ξ)‖ for m ∈ N,

and using (32) and (33) we get

lim
m→∞

[µ(knm)− λ(knm ;κ, ξ)] = 0. (35)

Consequently the solution λ(·;κ, ξ) lies inM and the function µ−λ(·;κ, ξ) has 0 as ω-limit
point. In order to simplify our notation from now on we write (kn)n∈N instead of (knm)m∈N.

(III) In order to show that the difference µ(k)− λ(k;κ, ξ) converges to 0 as k →∞ we
notice that for the function ν(k) = (ν−, ν+, ν?)(k) := T λ(·;κ,ξ)(k, µ(k)) we have, because of
Theorem 4.1(a),

T λ(·;κ,ξ)(k, λ(k;κ, ξ)) ≡ 0 on Z+
κ . (36)

Because of (35) and the construction of T λ(·;κ,ξ) the point 0 ∈ RN is an ω-limit point of the
function ν and it remains to be shown that ν(k) converges to 0 as k → ∞. Assuming the
contrary there exists a real number ρ ∈ (0, ρ1) (ρ1 > 0 is defined in Theorem 4.1(a)) and
because of assumption (i) there exists a sequence of nonempty Z-intervals Jn := [kn, k+

n ]Z,
n ∈ N, with kn, k

+
n ∈ Z+

κ , kn < k+
n < kn+1, such that

lim
n→∞

ν(kn) = 0, (37)

ν(k) ∈ Bρ(0) for k ∈
⋃
n∈N

Jn, (38)

ν(k+
n ) ∈ Bρ(0) \B ρ

2
(0) for n ∈ N. (39)

On any discrete interval Jn the function ν is a solution of the linear homogeneous system
u′ =B−(k)u + B̂−1 (k, ν(k))u+ B̂−2 (k, ν(k))v
v′ =B+(k)v + B̂+

2 (k, ν(k))v
w′= w + B̂?

1(k, ν(k))u + B̂?
2(k, ν(k))v

(40)

where the transition matrices Ψ− and Ψ+ of u′ = B−(k)u and v′ = B+(k)v, respectively,
satisfy the estimates∥∥Ψ−(k, l)

∥∥ ≤ K̃1α
k−l for k ≥ l ≥ κ,

∥∥Ψ+(k, l)
∥∥ ≤ K̃2β

k−l for l ≥ k ≥ κ .

Without loss of generality we may suppose that ρ > 0 is so small that apart from the
estimate

ρ < min
{
ρ1,

c

2
δ(
ρ1

C
)
}

(41)
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(the positive constants c and C are those of Theorem 4.1(e)) the following estimates are
true for all k ∈

⋃
n∈N Jn:∥∥∥B̂−1 (k, ν(k))
∥∥∥ ≤ min

{
1− α
2K̃1

,
β − 1
2K̃2

}
,

∥∥∥B̂−2 (k, ν(k))
∥∥∥ ≤ min

{
1− α
2K̃1

,
β − 1
2K̃2

}
,∥∥∥B̂+

2 (k, ν(k))
∥∥∥ ≤ min

{
1− α
2K̃1

,
β − 1
2K̃2

}
,∥∥∥B̂?

1(k, ν(k))
∥∥∥ ≤ min

{
1− α
2K̃1

,
β − 1
2K̃2

}
,

∥∥∥B̂?
2(k, ν(k))

∥∥∥ ≤ min
{

1− α
2K̃1

,
β − 1
2K̃2

}
.

Using Theorem 4.1(e) we get∥∥µ(k+
n )− λ(k+

n ;κ, ξ)
∥∥ (36)

≤ 1
c

∥∥T λ(·;κ,ξ)(k
+
n , µ(k+

n ))
∥∥ <

(38)
<

ρ

c

(41)

≤ 1
2
δ(
ρ1

C
) for n ∈ N, (42)

and since the sequence (µ(k+
n ))n∈N is bounded, because of the estimate (42), there exists

an ω-limit point η0 := limm→∞ µ(k+
nm) ∈M where (k+

nm)m∈N is a subsequence of (k+
n )n∈N.

As in the second step of this proof we get a point ξ0 ∈M such that

lim
l→∞

[
µ(k+

nml
)− λ(k+

nml
;κ, ξ0)

]
= 0 (43)

where (k+
nml

)l∈N is a further subsequence of (k+
nm)m∈N. Using (42) this implies that for

sufficiently large l0 ∈ N we get∥∥∥λ(k+
nml

;κ, ξ)− λ(k+
nml

;κ, ξ0)
∥∥∥ ≤

≤
∥∥∥λ(k+

nml
;κ, ξ)− µ(k+

nml
)
∥∥∥+

∥∥∥µ(k+
nml

)− λ(k+
nml

;κ, ξ0)
∥∥∥ ≤

(42)

≤ δ(
ρ1

C
) for l ∈ Z+

l0
.

Consequently, because of (32) we get from Theorem 4.1(e)∥∥T λ(·;κ,ξ)(k, λ(k;κ, ξ0))
∥∥ (36)

≤ C ‖λ(k;κ, ξ0)− λ(k;κ, ξ)‖ ≤ ρ1 for k ∈ Z+
nml0

.

Now we are in a position to apply Aulbach [4, Lemma 8.1] to the system (40) and its
bounded solution

ν0(k) = (ν−0 , ν
+
0 , ν

?
0)(k) := T λ(·;κ,ξ)(k, λ(k;κ, ξ0)) .

This provides a relation of the form

lim
k→∞

(ν−0 , ν
+
0 , ν

?
0)(k) = (0, 0, w∗) (44)

for some w∗ ∈ RM . From (43) and Theorem 4.1(e) we conclude that the relation

lim
l→∞

[
(ν−, ν+, ν?)(k+

nml
)− (ν−0 , ν

+
0 , ν

?
0)(k+

nml
)
]

= (0, 0, 0)
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holds true which, in turn, with (44) yields

lim
l→∞

(ν−, ν+, ν?)(k+
nml

) = (0, 0, w∗) . (45)

Then using Aulbach [4, Lemma B.6] we see that there exist constants C1, C2 > 0 (which
depend only on the growth rates α, β and K̃1, K̃2) with the property∥∥∥ν?(k+

nml
)
∥∥∥ ≤ ∥∥∥ν?(knml )∥∥∥+ C1

∥∥∥ν−(knml )
∥∥∥+ C2

∥∥∥ν+(k+
nml

)
∥∥∥ .

Because of (37) and (45) the sequence (ν?(k+
nml

))l∈N and consequently also the sequence
(ν(k+

nml
))l∈N converges to 0 as l→∞. This, however, contradicts the relation (39). 2

6 Appendix: Parameter-dependent Inverse Functions

For the reader’s convenience we state here a qualitative Inverse Function Theorem which
can be shown using Abraham, Marsden & Ratiu [1, Proposition 2.5.6].

Lemma 6.1 Let Ω be an open neighborhood of the zero vector of some Banach space X
and let T : P × Ω→ X be a mapping such that T (p, ·) is of class Cm (m ≥ 2) for any p in
some nonempty set P. Furthermore assume the following:

(i) T (p, 0) ≡ 0 on P,

(ii) the partial derivatives ∂T
∂x (p, 0) : X → X are invertible for p ∈ P,

(iii) M := supp∈P ‖[
∂T
∂x (p, 0)]−1‖ < ∞,

(iv) K := sup
(p,x)∈P×BR(0)

‖∂2T
∂x2 (p, x)‖ < ∞ for some R > 0 with BR(0) ⊆ Ω.

Then, using the abbreviation P := min
{
R, 1

2KM

}
, there exists a uniquely determined map-

ping S : P ×B P
2M

(0)→ X with the following properties:

(a) S is bounded, more explicitly,

‖S(p, y)‖ ≤ P for (p, y) ∈ P ×B P
2M

(0),

(b) S(p, ·) is the inverse function of T (p, ·), more explicitly,

T (p, S(p, y)) = y for (p, y) ∈ P ×B P
2M

(0),

(c) S(p, ·)|B P
2M

(0) is of class Cm for each p ∈ P.
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