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Abstract: The purpose of this informal paper is three-fold: First, filling a gap in the literature, we provide a
(necessary and sufficient) principle of linearized stability for nonautonomous difference equations in Banach
spaces based on the dichotomy spectrum. Second, complementing the above, we survey and exemplify an
ambient nonautonomous and infinite-dimensional center manifold reduction, that is Pliss’s reduction principle
suitable for critical stability situations. Third, these results are applied to integrodifference equations of
Hammerstein- and Urysohn-type both in 𝐶- and 𝐿𝑝-spaces. Specific features of the nonautonomous case are
underlined. Yet, for the simpler situation of periodic time-dependence even explicit computations are feasible.

Keywords: nonautonomous difference equation, periodic difference equation, linearized stability, dichotomy
spectrum, center manifold reduction, integrodifference equation

MSC(2010): 39A30, 37C60

1 Stability and dispersal in discrete time

Determining local stability properties of fixed points 𝑢* to autonomous difference equations 𝑢𝑡+1 = F(𝑢𝑡)

(maps) by linearization is a fairly classical and textbook matter: If the spectrum 𝜎(𝐷F(𝑢*)) is contained in
the open unit disk of the complex plane, then 𝑢* is exponentially stable (see e.g. [13, p. 2, Thm. 1]), whereas
a component of 𝜎(𝐷F(𝑢*)) outside the closed unit disk guarantees instability (see [13, p. 3, Thm. 2]). This
situation changes when the equilibrium 𝑢* is replaced by a nonconstant solution 𝑢*𝑡 or the difference equation
is time-variant in advance, i.e. 𝑢𝑡+1 = F𝑡(𝑢𝑡). Here, unless for rather slow time-dependencies, the elements of
𝜎(𝐷F𝑡(𝑢

*
𝑡 )) have no relevance in stability theory and effectively become useless.

However, by virtue of the dichotomy (also called Sacker-Sell, cf. [27] for ODEs) spectrum, the above
statements canonically generalize to the time-dependent situation. This dynamical spectrum is a subset of the
positive real line. It proved to be an efficient tool in the geometric theory of nonautonomous dynamical systems
when it comes to the construction of invariant manifolds and foliations, as well as for topological or smooth
linearization questions (see [21] for related references). Given this, it is rather surprising that the crucial role
of the dichotomy spectrum in stability criteria based on linearization is not explicitly present in the literature
to our best knowledge. Indeed, corresponding results are not only convenient, but also essential for instance
in nonautonomous bifurcation theory. For this reason, we provide a natural theorem with self-contained proof
allowing to infer stability properties of arbitrary solutions to time-variant problems in general Banach spaces
based on the spectrum of their variational equation. This result can be seen as a nonautonomous version of
the recent [9, Thm. 1]. It states that a dichotomy spectrum contained in (0, 1) is necessary and sufficient for
uniform exponential stability, while a spectral component in (1,∞) implies instability.

If the stability boundary 1 is contained in the spectrum, then stability cannot be determined via lin-
earization, because nonlinear terms matter. Due to Pliss’s reduction principle (see [19] for ODEs and [13,
pp. 131ff, Chapt. 4] for maps between Banach spaces) one has to investigate the equation reduced to a lower-
dimensional center manifold instead. A related nonautonomous theory in discrete time can be traced back to
[30], although we follow the more recent contributions [1, 24] and [21, pp. 187ff, Chapt. 4]. Then hyperbolicity
is not a generic property anymore and therefore center manifold reduction is even more important for equations
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featuring general time-dependence. The theory is nevertheless rather involved, Taylor coefficients of center
manifolds are determined by dynamical (rather than algebraic) properties [24] and typically assumptions can
only be verified approximately using numerical methods.

Probably due to this reason we are not aware of an explicit application of the tools described above in
a discrete time, infinite-dimensional context. This motivates us to study a corresponding relevant class of
problems, namely nonautonomous integrodifference equations of Urysohn type

𝑢𝑡+1(𝑥) =

∫︁
Ω

𝑓𝑡(𝑥, 𝑦, 𝑢𝑡(𝑦)) d𝑦 for all 𝑥 ∈ Ω

and of Hammerstein type

𝑢𝑡+1(𝑥) =

∫︁
Ω

𝑘𝑡(𝑥, 𝑦)𝑔𝑡(𝑦, 𝑢𝑡(𝑦)) d𝑦 for all 𝑥 ∈ Ω.

Initiated by [15] such recursions became popular and sucessful models in theoretical ecology to describe the
dispersal of populations with nonoverlapping generations (see [18]). Formally, they are difference equations in
the space of continuous or integrable functions over a compact set Ω ⊂ R𝜅 (the habitat). The growth period
is determined in terms of a typical growth function 𝑔𝑡 : Ω×R → R of e.g. Beverton-Holt or Ricker type. The
kernel 𝑘𝑡 : Ω × Ω → R describes the dispersal and 𝑘𝑡(𝑥, 𝑦) can be interpreted as probability to move from
position 𝑦 to 𝑥 in the habitat Ω at time 𝑡. These functions can vary in time, since seasonal, but also aperiodic
external influences are well-motivated from applications. For instance, [14] investigate persistence questions
in river environments.

We provide examples of nonautonomous integrodifference equations allowing an analytical stability anal-
ysis without relying on numerical techniques to a large extend. Admittedly these examples are simple but
have their merit and are still involved to a certain degree. Due to their multiplicative time dependence the
dichotomy spectrum and the relevant invariant subspaces can be computed directly. In the Hammerstein case
they for instance rely on the Laplace kernel 𝑘𝑡, which is often met in applications (cf. [25] or [18, pp. 17ff,
Sect. 2.3]) but allows for explicit solutions to related Fredholm integral equations. In critical stability situations
we even retreat to periodic time-dependence.

The structure of this paper is as follows: By means of the central Thm. 2.1 we first provide a stability
characterization based on linearization and a nonautonomous spectral theory recently developed in [26].
Despite its rather evident nature, we are not aware of another reference in the literature connecting stability
properties with the dichotomy spectrum. To address complementary critical stability situations, the required
center manifold theory (in the nonautonomous case one speaks of center fiber bundles) is illustrated in Sect. 3,
which includes generalizations of Pliss’s reduction principle (see Thm. 3.1) and a scheme to compute Taylor
approximations of center fiber bundles exemplifying [24]. With regard to our applications and in order to
limit the technical effort, we restrict to 1-dimensional bundles. For the sake of our applications, basics on
Hammerstein- and Urysohn-integrodifference equations in the Banach spaces 𝐿𝑝(Ω) and 𝐶(Ω) are provided
in Sect. 4. Our final Sect. 5 is devoted to several specific time-variant integrodifference equations and their
stability. In order to keep the presentation self-contained, we close with three appendices. They tackle critical
stability cases for time-periodic scalar difference equations, provide solutions to Fredholm integral equations
of the second kind and give explicit constants for a stability example in the text.

Notation
Suppose I is an unbounded set of consecutive integers (one speaks of a discrete interval), I′ := {𝑡 ∈ I : 𝑡+ 1 ∈ I}
and Z+

𝜏 := {𝑡 ∈ Z : 𝜏 ≤ 𝑡} for some 𝜏 ∈ Z. We write 𝛿𝑖𝑗 for the Kronecker symbol.
Let (𝑋, ‖·‖) be a Banach space over K ∈ {R,C} having the dual space 𝑋 ′ and

⟨︀
𝑥, 𝑥′

⟩︀
:= 𝑥′(𝑥) stands

for the duality pairing of 𝑥 ∈ 𝑋 with 𝑥′ ∈ 𝑋 ′. The open ball in 𝑋 with radius 𝑟 > 0 and center 𝑥 is denoted
as 𝐵𝑟(𝑥). For the set of continuous 𝑛-linear mappings 𝑇 : 𝑋𝑛 → 𝑋, 𝑛 ∈ N, we write 𝐿𝑛(𝑋) and abbreviate
𝐿(𝑋) := 𝐿1(𝑋), 𝐿0(𝑋) := 𝑋; 𝐼𝑋 is the identity map on 𝑋. Given 𝑆 ∈ 𝐿(𝑋), 𝑅(𝑆) := 𝑆𝑋 is the range and
𝑁(𝑆) := 𝑆−1(0) the kernel of 𝑆. Moreover, we write 𝜎(𝑆) for the spectrum and 𝜎𝑝(𝑆) for the point spectrum.

A subset 𝒱 ⊆ I×𝑋 is called nonautonomous set with 𝑡-fiber 𝒱(𝑡) := {𝑥 ∈ 𝑋 : (𝑡, 𝑥) ∈ 𝒱}.
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2 Linearized stability in nonautonomous difference equations

We investigate the behavior of nonautonomous difference equations

𝑢𝑡+1 = F𝑡(𝑢𝑡) (Δ)

in 𝑋 near a given reference solution 𝜑* = (𝜑*𝑡 )𝑡∈I on a discrete interval I. Assume thereto that 𝐶𝑚-mappings
F𝑡 : 𝑈𝑡 → 𝑋, 𝑡 ∈ I′, are defined on open convex sets 𝑈𝑡 ⊆ 𝑋 and 𝑚 ∈ N. Then the general solution to (Δ) is
defined via the compositions

𝜙(𝑡; 𝜏, 𝑢𝜏 ) :=

{︃
𝑢𝜏 , 𝑡 = 𝜏,

F𝑡−1 ∘ . . . ∘ F𝜏 (𝑢𝜏 ), 𝜏 < 𝑡
for all 𝜏 ∈ I, 𝑢𝜏 ∈ 𝑈𝜏 (2.1)

of the right-hand sides, as long as the inclusion 𝜙(𝑡; 𝜏, 𝑢𝜏 ) ∈ 𝑈𝑡 holds.
One denotes (Δ) as periodic, if there exists a 𝜃 ∈ N such that F𝑡 = F𝑡+𝜃 holds for all 𝑡 ∈ I = Z;

autonomous eqns. (Δ) correspond to the case 𝜃 = 1, i.e. when the right-hand sides do not depend on 𝑡.
A solution 𝜑* to (Δ) is called permanent, provided it uniformly stays away from the boundary of the

domain, that is
inf
𝑡∈I

dist(𝜑*𝑡 , 𝜕𝑈𝑡) > 0. (2.2)

For the reader’s convenience, we repeat the stability notions mentioned in this paper. Provided the interval
I is unbounded above, a solution 𝜑* is denoted as
– stable, if for all 𝜀 > 0, 𝜏 ∈ I there exists a 𝛿 > 0 so that 𝜙(·; 𝜏, 𝑢𝜏 ) exists and satisfies ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )− 𝜑*𝑡 ‖ < 𝜀

for every 𝜏 ≤ 𝑡, 𝑢𝜏 ∈ 𝐵𝛿(𝜑
*
𝜏 ) and uniformly stable, if 𝛿 does not depend on 𝜏 ,

– asymptotically stable, if it is stable and for every 𝜏 ∈ I there exists a 𝜌 > 0 so that 𝜙(·; 𝜏, 𝑢𝜏 ) exists and
satisfies lim𝑡→∞ ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )− 𝜑*𝑡 ‖ = 0 for every 𝑢𝜏 ∈ 𝐵𝜌(𝜑

*
𝜏 ); a uniformly asymptotically stable solution

is uniformly stable and 𝜌 > 0 is independent of 𝜏 ,
– uniformly exponentially stable, if there exist 𝐾 ≥ 1, 𝛼 ∈ (0, 1), 𝛿 > 0 so that 𝜙(·; 𝜏, 𝑢𝜏 ) exists and satisfies

‖𝜙(𝑡; 𝜏, 𝑢𝜏 )− 𝜑*𝑡 ‖ ≤ 𝐾𝛼𝑡−𝜏 ‖𝑢𝜏 − 𝜑*𝜏‖ for every 𝜏 ≤ 𝑡, 𝑢𝜏 ∈ 𝐵𝛿(𝜑
*
𝜏 )

and an unstable solution 𝜑* is not stable. These stability notions are related as follows

𝑈𝐸𝑆 ⇒ 𝑈𝐴𝑆 ⇒ 𝑈𝑆

⇓ ⇓
𝐴𝑆 ⇒ 𝑆

and for periodic solutions 𝜑* to periodic eqns. (Δ), stability resp. asymptotic stability is always uniform.
Using the mean value theorem [31, p. 148–149, Thm. 4.A(b) for 𝑛 = 1] the difference equation of perturbed

motion 𝑢𝑡+1 = F𝑡(𝑢𝑡 + 𝜑*𝑡 )− F𝑡(𝜑
*
𝑡 ) becomes

𝑢𝑡+1 = 𝐷F𝑡(𝜑
*
𝑡 )𝑢𝑡 +R𝑡(𝑢𝑡) (2.3)

with the nonlinearity R𝑡(𝑢) :=
∫︀ 1
0
[𝐷F𝑡(𝜑

*
𝑡 + ℎ𝑢)−𝐷F𝑡(𝜑

*
𝑡 )] dℎ𝑢. The variational difference equation of (Δ)

along 𝜑* reads as
𝑢𝑡+1 = 𝐷F𝑡(𝜑

*
𝑡 )𝑢𝑡. (𝑉𝜑*)

We define the transition operator to (𝑉𝜑*) by

Φ(𝑡, 𝜏) :=

{︃
𝐷F𝑡−1(𝜑

*
𝑡−1) · · ·𝐷F𝜏 (𝜑

*
𝜏 ), 𝜏 < 𝑡,

𝐼𝑋 , 𝑡 = 𝜏.

It is well-known that the time-dependent spectrum 𝜎(𝐷F𝑡(𝜑
*
𝑡 )), 𝑡 ∈ I′, provides no stability information

unless for periodic or slow temporal variation (see [10, pp. 177ff]). Yet, a feasible approach is given as follows:
The variational eqn. (𝑉𝜑*) is said to have an exponential dichotomy (ED for short) on I, if there exists a
projection-valued sequence (𝑃+

𝑡 )𝑡∈I in 𝐿(𝑋) with

𝑃+
𝑡+1𝐷F𝑡(𝜑

*
𝑡 ) = 𝐷F𝑡(𝜑

*
𝑡 )𝑃

+
𝑡 , 𝐷F𝑡(𝜑

*
𝑡 ) : 𝑁(𝑃+

𝑡 ) → 𝑁(𝑃+
𝑡+1) is an isomorphism for all 𝑡 ∈ I′ (2.4)
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Fig. 1: Dichotomy spectra Σ(𝜑*) indicating (a) uniform
exponential stability of 𝜑* and (b) instability of 𝜑*

and reals 𝛼 ∈ (0, 1), 𝐾 ≥ 1 such that⃦⃦⃦
Φ(𝑡, 𝑠)𝑃+

𝑠

⃦⃦⃦
≤ 𝐾𝛼𝑡−𝑠,

⃦⃦⃦
Φ(𝑠, 𝑡)𝑃−

𝑡

⃦⃦⃦
≤ 𝐾𝛼𝑡−𝑠 for all 𝑠 ≤ 𝑡

with the complementary projector 𝑃−
𝑡 := 𝐼𝑋 − 𝑃+

𝑡 . An ED on I with 𝑃+
𝑡 ≡ 𝐼𝑋 on I describes a uniformly

exponentially stable variational eqn. (𝑉𝜑*).
The dichotomy spectrum (see [26] and references therein) of a solution 𝜑* is

Σ(𝜑*) :=
{︁
𝜌 > 0 : 𝑢𝑡+1 = 1

𝜌𝐷F𝑡(𝜑
*
𝑡 )𝑢𝑡 has no ED on I

}︁
.

This closed set Σ(𝜑*) is a union of spectral intervals among which the most right-hand one (see Fig. 1) is called
dominant. Each spectral interval has an associated spectral bundle — a nonautonomous set whose fibers are
linear subspaces being invariant w.r.t. (𝑉𝜑*). Their dimension is called multiplicity of the spectral interval. If
the associate spectral bundle is one-dimensional, then one speaks of a simple spectral interval.

A survey on the dichotomy spectra of difference equations in infinite dimensions is given in [22]. In the
simplest time-variant situation, the periodic case one obtains:

Example 2.1 (periodic and autonomous case). For 𝜃-periodic variational eqns. (𝑉𝜑*) the spectrum is

Σ(𝜑*) = 𝜃
√︀

|𝜎(Φ(𝜏 + 𝜃, 𝜏))| ∖ {0} ;

this quantity is independent of 𝜏 ∈ Z due to [26, p. 42, Prop. 3.1(a)]. In particular, a fixed point 𝑢* of an
autonomous difference equation

𝑢𝑡+1 = F(𝑢𝑡) (Δ′)

has the dichotomy spectrum Σ(𝑢*) = |𝜎(𝐷F(𝑢*))| ∖ {0} and the spectral intervals correspond to the moduli of
spectral points.

Our main result tackling stability is as follows:

Theorem 2.1 (linearized stability). If 𝜑* = (𝜑*𝑡 )𝑡∈I is a permanent solution of (Δ) on an interval I un-
bounded above and the relations

sup
𝑡∈I

⃦⃦
𝐷F𝑡(𝜑

*
𝑡 )
⃦⃦
<∞, lim

𝑢→0
sup
𝑡∈I

⃦⃦
𝐷F𝑡(𝜑

*
𝑡 + 𝑢)−𝐷F𝑡(𝜑

*
𝑡 )
⃦⃦
= 0 (2.5)

are satisfied, then the following holds:
(a) If Σ(𝜑*) ⊆ (0, 1), then 𝜑* is uniformly exponentially stable and on an interval I bounded below also the

converse holds (cf. Fig. 1(a)).
(b) If (1,∞) contains a spectral interval of Σ(𝜑*), then 𝜑* is unstable (cf. Fig. 1(b)).

Remark 2.1. (1) Since Fréchet differentiability is a rather strong assumption in certain applications, the
subsequent proof shows that the assertions of Thm. 2.1 remain true for the zero solution of semilinear differ-
ence equations 𝑢𝑡+1 = K𝑡𝑢𝑡 + R𝑡(𝑢𝑡) under corresponding assertions on the dichotomy spectrum Σ(K) and
nonlinearities R𝑡 : 𝑈𝑡 → 𝑋 satisfying R𝑡(0) = 0 ∈ 𝑈𝑡 and lim𝑢,𝑢̄→0

‖R𝑡(𝑢)−R𝑡(𝑢̄)‖
‖𝑢−𝑢̄‖ = 0 uniformly in 𝑡 ∈ I.

(2) Both scalar difference eqns. 𝑢𝑡+1 = 𝑢𝑡+𝑢
2
𝑡 and 𝑢𝑡+1 = 𝑢𝑡−𝑢3𝑡 have the trivial solution with Σ(0) = {1}.

Due to Thm. A.1(a) the zero fixed point of the first equation is unstable, which shows that the converse of
statement (b) does not hold. Thm. A.1(b) implies that the zero solution of the second equation is (uniformly)
asymptotically stable and thus exponential stability in statement (a) cannot be replaced by asymptotic stability.
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Yet, in the light of Exam. 2.1 the above result generalizes the classical autonomous situation [13, 9] with 1 as
stability boundary. In general, however, Σ(𝜑*) has to be approximated numerically (see [12] for dim𝑋 <∞).
The next example shows that the boundedness assumption on the coefficients of (𝑉𝜑*) is not technical:

Example 2.2. The linear difference equation

𝑢𝑡+1 =

(︃
|𝑡|+ 1 0

0 1
2

)︃
𝑢𝑡 (2.6)

in 𝑋 = R2 has the dichotomy spectrum
{︀
1
2

}︀
⊂ (0, 1). Its transition operator

Φ(𝑡, 𝑠) =

(︃∏︀𝑡−1
𝑟=𝑠(|𝑟|+ 1) 0

0 2𝑠−𝑡

)︃
for all 𝑠 ≤ 𝑡

shows that unbounded solutions to (2.6) exist. Therefore, eqn. (2.6) is unstable.

In case I = Z the assertion (b) follows from the existence of an unstable manifold (fiber bundle) associated
to 𝜑* (see [21, p. 259, Thm. 4.6.4(b)]). However, our subsequent proof merely assumes (𝑉𝜑*) to be given on
a half-line unbounded above.

Proof (of Thm. 2.1). First, we restrict to stability properties for the trivial solution of the eqn. (2.3) of
perturbed motion, which is defined in a neighborhood of 0 uniformly in 𝑡 ∈ I (thanks to permanence (2.2)).
Moreover, let 𝜏 ∈ I and 𝜙 stands for the general solution to (2.3). Note that 𝜙(·; 𝜏, 𝑢𝜏 ) is also a solution to
the linearly inhomogeneous difference eqn. 𝑢𝑡+1 = 𝐷F𝑡(𝜑

*
𝑡 )𝑢𝑡 +R𝑡(𝜙(𝑡; 𝜏, 𝑢𝜏 )) and the variation of constants

formula (see [21, p. 100, Thm. 3.1.16(a)]) yields

𝜙(𝑡; 𝜏, 𝑢𝜏 ) = Φ(𝑡, 𝜏)𝑢𝜏 +

𝑡−1∑︁
𝑠=𝜏

Φ(𝑡, 𝑠+ 1)R𝑠(𝜙(𝑠; 𝜏, 𝑢𝜏 )) (2.7)

as long as 𝜙(·; 𝜏, 𝑢𝜏 ) exists. Second, due to (2.5), for all 𝑀 > 0 there is a 𝜌 > 0 with

‖R𝑡(𝑢)‖ ≤𝑀 ‖𝑢‖ for all 𝑡 ∈ I, 𝑢 ∈ 𝐵̄𝜌(0). (2.8)

(a) (⇒) Due to Σ(𝜑*) ⊆ (0, 1) there exists reals 𝐾 ≥ 1 and 𝛼 ∈ (0, 1) such that

‖Φ(𝑡, 𝜏)‖ ≤ 𝐾𝛼𝑡−𝜏 for all 𝜏 ≤ 𝑡. (2.9)

We choose 𝑀 ∈
[︀
0, 1−𝛼

𝐾

)︀
and obtain 𝛼 +𝐾𝑀 ∈ [0, 1). Finally, given an initial value 𝑢𝜏 ∈ 𝐵𝜌(0) we define

𝑇 *(𝑢𝜏 ) := sup
{︀
𝜃 ∈ Z+

𝜏 : ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝜌 for all 𝜏 ≤ 𝑡 ≤ 𝜃
}︀

as exit time at which the solution 𝜙(·; 𝜏, 𝑢𝜏 )
leaves the 𝜌-neighborhood of the trivial solution for the first time. This definition includes 𝑇 *(𝑢𝜏 ) = ∞, when
the solution stays in 𝐵𝜌(0).

(I) We show that every initial value 𝑢𝜏 ∈ 𝐵𝜌(0) yields an estimate

‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝐾 (𝛼+𝐾𝑀)𝑡−𝜏 ‖𝑢𝜏‖ for all 𝜏 ≤ 𝑡 ≤ 𝑇 *(𝑢𝜏 ). (2.10)

Thereto, on this discrete interval, (2.7) brings us to the estimate

‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖
(2.9)
≤ 𝐾𝛼𝑡−𝜏 ‖𝑢𝜏‖+𝐾

𝑡−1∑︁
𝑠=𝜏

𝛼𝑡−𝑠−1 ‖R𝑠(𝜙(𝑠; 𝜏, 𝑢𝜏 ))‖

(2.8)
≤ 𝐾𝛼𝑡−𝜏 ‖𝑢𝜏‖+

𝐾𝑀

𝛼

𝑡−1∑︁
𝑠=𝜏

𝛼𝑡−𝑠 ‖𝜙(𝑠; 𝜏, 𝑢𝜏 )‖

and multiplication with 𝛼𝜏−𝑡 implies the inequality

𝛼𝜏−𝑡 ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝐾 ‖𝑢𝜏‖+
𝐾𝑀

𝛼

𝑡−1∑︁
𝑠=𝜏

𝛼𝜏−𝑠 ‖𝜙(𝑠; 𝜏, 𝑢𝜏 )‖ for all 𝜏 ≤ 𝑡 ≤ 𝑇 *(𝑢𝜏 ).



6 Christian Pötzsche and Evamaria Russ, Reduction principle at work

This relation and the Grönwall lemma [21, p. 348, Prop. A.2.1(a)] yield

𝛼𝜏−𝑡 ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝐾
(︀
1 + 𝐾𝑀

𝛼

)︀𝑡−𝜏 ‖𝑢𝜏‖ for all 𝜏 ≤ 𝑡 ≤ 𝑇 *(𝑢𝜏 ),

which is obviously equivalent to (2.10).
(II) In order to conclude the proof, we exploit (2.10) where (𝛼+𝐾𝑀)𝑡−𝜏 ∈ [0, 1) is strictly decreasing in

𝑡 ∈ Z+
𝜏 . First, given initial values 𝑢𝜏 ∈ 𝐵𝜌/𝐾(0) we obtain that ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ (𝛼+𝐾𝑀)𝑡−𝜏𝜌 ≤ 𝜌 and hence

𝑇 *(𝑢𝜏 ) = ∞. Thus, (2.10) holds for 𝑡 ∈ Z+
𝜏 and the trivial solution to (2.3) is uniformly exponentially stable.

(⇐) Let I be bounded below. By assumption there exist reals 𝐾 ≥ 1, 𝛼 ∈ (0, 1) and 𝛿 > 0 with

‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝐾𝛼𝑡−𝜏 ‖𝑢𝜏‖ for all 𝜏 ≤ 𝑡, 𝑢𝜏 ∈ 𝐵𝛿(0) (2.11)

and we follow the finite-dimensional case considered in [11]. For fixed 𝛽 ∈ (𝛼, 1) choose 𝑀 ∈
(︀
0, 𝛽−𝛼

𝐾

)︀
and

using (2.5) there exist a 𝜌 > 0 such that (2.8) holds. If we take 𝜌0 ∈ (0,min
{︀
𝛿, 𝜌

𝐾

}︀
), then (2.11) implies

‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝐾 ‖𝑢𝜏‖ ≤ 𝐾𝜌0 < 𝜌 for all 𝜏 ≤ 𝑡, 𝑢𝜏 ∈ 𝐵𝜌0(0) and

‖Φ(𝑡, 𝜏)𝑢𝜏‖
(2.7)
≤ ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖+𝑀

𝑡−1∑︁
𝑠=𝜏

‖Φ(𝑡, 𝑠+ 1)‖ ‖𝜙(𝑠; 𝜏, 𝑢𝜏 )‖

(2.11)
≤ 𝐾𝛼𝑡−𝜏𝜌0 +𝑀𝐾𝜌0

𝑡−1∑︁
𝑠=𝜏

𝛼𝑠−𝜏 ‖Φ(𝑡, 𝑠+ 1)‖ .

Because of 𝛼 < 𝛽 this guarantees

𝛽𝜏−𝑡 ‖Φ(𝑡, 𝜏)𝑢𝜏‖ ≤ 𝐾𝜌0 +
𝑀𝐾𝜌0
𝛽

𝑡−1∑︁
𝑠=𝜏

(︁
𝛼

𝛽

)︁𝑠−𝜏
𝛽(𝑠+1)−𝑡 ‖Φ(𝑡, 𝑠+ 1)‖ ,

with 𝜔𝑡 := max𝑡𝑠=𝜏 𝛽
𝑠−𝑡 ‖Φ(𝑡, 𝑠)‖ it results

𝛽𝜏−𝑡 ‖Φ(𝑡, 𝜏)𝑢𝜏‖ ≤ 𝐾𝜌0 +
𝑀𝐾𝜌0
𝛽

𝜔𝑡

𝑡−1∑︁
𝑠=𝜏

(︁
𝛼

𝛽

)︁𝑠−𝜏
≤ 𝐾𝜌0 +

𝑀𝐾𝜌0
𝛽 − 𝛼

𝜔𝑡

and consequently

𝛽𝜏−𝑡 ‖Φ(𝑡, 𝜏)‖ = 𝛽𝜏−𝑡 sup
‖𝑢‖≤1

‖Φ(𝑡, 𝜏)𝑢‖ =
1

𝜌0
sup

‖𝑢‖≤𝜌0

‖Φ(𝑡, 𝜏)𝑢‖ ≤ 𝐾 +
𝐾𝑀

𝛽 − 𝛼
𝜔𝑡

for all 𝜏 ≤ 𝑡. Hence, 𝜔𝑡 ≤ 𝐾 + 𝑀𝐾
𝛽−𝛼𝜔𝑡 by passing to the maximum over 𝜏 ∈ {0, . . . , 𝑡} on the left-hand side.

Due to 𝑀𝐾
𝛽−𝛼 < 1 and the choice of 𝑀 , this inequality implies that 𝛽𝜏−𝑡 ‖Φ(𝑡, 𝜏)‖ ≤ 𝐾(𝛽−𝛼)

𝛽−𝛼−𝑀𝐾 . Thanks to
𝛽 < 1 this means that (𝑉𝜑*) has an ED with projector 𝑃+

𝑡 ≡ 𝐼𝑋 and therefore Σ(𝜑*) ⊆ (0, 1).
(b) Let 𝜎 be a spectral interval in (1,∞) (see Fig. 1(b)). We start with the substitution 𝑤𝑡 := 𝛾−𝑡𝑢𝑡 for

some 𝛾 ∈ (0,∞) ∖ Σ(𝜑*) ∩ [1,min𝜎) yielding the equation

𝑤𝑡+1 = 1
𝛾𝐷F𝑡(𝜑

*
𝑡 )𝑤𝑡 +

1
𝛾𝑡+1R𝑡(𝛾

𝑡𝑤𝑡) (2.12)

and the general solutions 𝜙 of (2.3) and 𝜓 to (2.12) are related by

𝜓(𝑡; 𝜏, 𝑤𝜏 ) = 𝛾−𝑡𝜙(𝑡; 𝜏, 𝑢𝜏 ). (2.13)

Thanks to min𝜎 > 1 the scaled variational equation

𝑤𝑡+1 = 1
𝛾𝐷F𝑡(𝜑

*
𝑡 )𝑤𝑡 (2.14)

has an ED on I with projectors 𝑃+
𝑡 ̸= 𝐼𝑋 for all 𝑡 ∈ I, i.e. there exist reals 𝐾 ≥ 1, 𝛼 ∈ (0, 1) such that⃦⃦⃦

Φ𝛾(𝑡, 𝑠)𝑃
+
𝑠

⃦⃦⃦
≤ 𝐾𝛼𝑡−𝑠,

⃦⃦⃦
Φ𝛾(𝑠, 𝑡)𝑃

−
𝑡

⃦⃦⃦
≤ 𝐾𝛼𝑡−𝑠 for all 𝑠 ≤ 𝑡, (2.15)
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where Φ𝛾 is the transition operator to (2.14). Hence, we obtain

𝑡−1∑︁
𝑠=𝜏

⃦⃦⃦
Φ𝛾(𝑡, 𝑠+ 1)𝑃+

𝑠+1

⃦⃦⃦
+

∞∑︁
𝑠=𝑡

⃦⃦⃦
Φ𝛾(𝑡, 𝑠+ 1)𝑃−

𝑠+1

⃦⃦⃦
(2.15)
≤ 𝐾

𝑡−1∑︁
𝑠=𝜏

𝛼𝑡−𝑠−1 +𝐾

∞∑︁
𝑠=𝑡

𝛼𝑠+1−𝑡 ≤ 𝐾
1 + 𝛼

1− 𝛼
=: 𝐾̃ for all 𝜏 ≤ 𝑡 (2.16)

and choosing 𝑀 ∈
(︀
0, 𝐾̃−1

)︀
in (2.8) implies 1− 𝐾̃𝑀 ∈ (0, 1).

(I) We show that if 𝜙(·; 𝜏, 𝑢𝜏 ) satisfies ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝜌 for all 𝜏 ≤ 𝑡, then

‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝛾𝑡−𝜏 (1− 𝐾̃𝑀)−1𝐾
⃦⃦⃦
𝑃+
𝜏 𝑢𝜏

⃦⃦⃦
for all 𝜏 ≤ 𝑡. (2.17)

Indeed, the bound on 𝜙(𝑡; 𝜏, 𝑢𝜏 ) yields⃦⃦⃦
1

𝛾𝑡+1R𝑡(𝜙(𝑡; 𝜏, 𝑢𝜏 ))
⃦⃦⃦ (2.8)

≤ 𝑀
𝛾𝑡+1 ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ ≤ 𝑀

𝛾𝜏 𝜌 for all 𝜏 ≤ 𝑡.

Combined with (2.16) this guarantees that

𝜂𝑡 := 𝜓(𝑡; 𝜏, 𝑤𝜏 )− Φ𝛾(𝑡, 𝜏)𝑃
+
𝜏 𝑤𝜏 +

𝑡−1∑︁
𝑠=𝜏

1
𝛾𝑠+1Φ𝛾(𝑡, 𝑠+ 1)𝑃+

𝑠+1R𝑠(𝜙(𝑠; 𝜏, 𝑢𝜏 ))

−
∞∑︁
𝑠=𝑡

1
𝛾𝑠+1Φ𝛾(𝑡, 𝑠+ 1)𝑃−

𝑠+1R𝑠(𝜙(𝑠; 𝜏, 𝑢𝜏 ))

defines a bounded sequence 𝜂 = (𝜂𝑡)𝜏≤𝑡. Moreover, the curious reader might verify that 𝜂 solves (2.14) and
satisfies 𝑃+

𝜏 𝜂𝜏 = 0. Since (2.14) admits an ED on Z+
𝜏 , this is only possible if 𝜂𝑡 ≡ 0 on Z+

𝜏 (cf. [21, p. 140,
Cor. 3.4.21(a)]). Thus, we obtain

𝜓(𝑡; 𝜏, 𝑤𝜏 ) = Φ𝛾(𝑡, 𝜏)𝑃
+
𝜏 𝑤𝜏 −

𝑡−1∑︁
𝑠=𝜏

1
𝛾𝑠+1Φ𝛾(𝑡, 𝑠+ 1)𝑃+

𝑠+1R𝑠(𝜙(𝑠; 𝜏, 𝑢𝜏 ))

+

∞∑︁
𝑠=𝑡

1
𝛾𝑠+1Φ𝛾(𝑡, 𝑠+ 1)𝑃−

𝑠+1R𝑠(𝜙(𝑠; 𝜏, 𝑢𝜏 )),

according to (2.8) this implies

‖𝜓(𝑡; 𝜏, 𝑤𝜏 )‖ ≤ 𝐾𝛼𝑡−𝜏
⃦⃦⃦
𝑃+
𝜏 𝑤𝜏

⃦⃦⃦
+𝑀

𝑡−1∑︁
𝑠=𝜏

⃦⃦⃦
Φ𝛾(𝑡, 𝑠+ 1)𝑃+

𝑠+1

⃦⃦⃦ ‖𝜙(𝑠; 𝜏, 𝑢𝜏 )‖
𝛾𝑠+1

+𝑀

∞∑︁
𝑠=𝑡

⃦⃦⃦
Φ𝛾(𝑡, 𝑠+ 1)𝑃−

𝑠+1

⃦⃦⃦ ‖𝜙(𝑠; 𝜏, 𝑢𝜏 )‖
𝛾𝑠+1

,

a combination of (2.13), (2.16) and 𝛾 ≥ 1 gives

‖𝜓(𝑡; 𝜏, 𝑤𝜏 )‖ ≤ 𝐾𝛼𝑡−𝜏
⃦⃦⃦
𝑃+
𝜏 𝑤𝜏

⃦⃦⃦
+ 𝐾̃𝑀 sup

𝜏≤𝑠
‖𝜓(𝑠; 𝜏, 𝑤𝜏 )‖ for all 𝜏 ≤ 𝑡

and finally the estimate ‖𝜓(𝑡; 𝜏, 𝑤𝜏 )‖ ≤ 𝛾−𝜏 (1− 𝐾̃𝑀)−1𝐾
⃦⃦
𝑃+
𝜏 𝑢𝜏

⃦⃦
holds. Due to (2.13) we arrive at (2.17).

(II) Suppose that the trivial solution to (2.3) is stable, i.e. for 𝜀 > 0 there is a 𝛿 > 0 so that 𝑢𝜏 ∈ 𝐵𝛿(0)

guarantees ‖𝜙(𝑡; 𝜏, 𝑢𝜏 )‖ < 𝜀 for all 𝜏 ≤ 𝑡. Since 𝑃+
𝜏 ̸= 𝐼𝑋 , one can choose a nonzero 𝑢𝜏 ∈ 𝑁(𝑃+

𝜏 ) and (2.17)
implies 0 < ‖𝑢𝜏‖ = ‖𝜙(𝜏 ; 𝜏, 𝑢𝜏 )‖ = 0, which is a contradiction.

Concrete applications of Thm. 2.1 will be given in Sect. 5.
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0 1 R
α β σ

ρ

ρ

Fig. 2: Dichotomy spectrum requiring a reduction to a center-
unstable fiber bundle 𝒲− and choice of 𝛼 < 𝛽

3 Critical stability situations

This section complements Thm. 2.1. Indeed, given a permanent solution (𝜑*𝑡 )𝑡∈I of (Δ) we assume that the
stability boundary 1 is contained in the dominant spectral interval of the variational eqn. (𝑉𝜑*). More precisely,
we suppose I is unbounded below and
(𝜎) Σ(𝜑*) has at least two components and 1 is contained in the dominant spectral interval 𝜎. Moreover,

choose reals 0 < 𝛼 < 𝛽 < 1 such that (𝛼, 𝛽) ∩ Σ(𝜑*) = ∅.
There is a 𝜌 ∈ (𝛼, 𝛽) as in Fig. 2, i.e. in the spectral gap just left of the dominant interval 𝜎. By construction,
the scaled variational eqn. 𝑢𝑡+1 = 1

𝜌𝐷F𝑡(𝜑
*
𝑡 )𝑢𝑡 has an ED on I, whose projector may have the (unique)

complementary projector (𝑃−
𝑡 )𝑡∈I.

Now stability properties of the reference solution 𝜑* need not to be determined by the linearization (𝑉𝜑*).
They rather depend on the nonlinearity R𝑡 in (2.3) and our further analysis requires some preparations. The
center-unstable vector bundle

𝒱− :=
{︁
(𝑡, 𝑥) ∈ I×𝑋 : 𝑥 ∈ 𝑅(𝑃−

𝑡 )
}︁

of the variational eqn. (𝑉𝜑*) is invariant and (2.4) guarantees that all fibers 𝒱−(𝑡) are isomorphic; in particular,
they have the same dimension, which is denoted as multiplicity of the dominant spectral interval 𝜎. Addressing
the nonlinear eqn. (Δ), the set 𝒱− persists as locally invariant center-unstable fiber bundle

𝒲− = 𝜑* +
{︁
(𝜏, 𝜉 + 𝑤−

𝜏 (𝜉)) ∈ I×𝑋 : 𝜉 ∈ 𝒱−(𝜏) ∩𝐵𝑟(0)
}︁

of the solution 𝜑*: This means there exists a 𝑟 > 0 so that each fiber 𝒲−(𝑡) is graph of a Lipschitzian
function 𝑤−

𝑡 : 𝒱−(𝑡)∩𝐵𝑟(0) → 𝑅(𝑃+
𝑡 ), 𝑡 ∈ I, satisfying 𝑤−

𝑡 (0) ≡ 0 on I (cf. [21, pp. 259–260, Thm. 4.6.4(b)]).
The nonautonomous set 𝒲− contains all solutions to (Δ) which exist in backward time and have a bounded
distance to 𝜑*. Thus, 𝒲− captures the essential dynamics of (Δ) near 𝜑* in terms of

Theorem 3.1 (reduction principle). Suppose (𝜎) and (2.5) hold on I = Z. A permanent solution 𝜑* of (Δ)
is (uniformly, asymptotically, uniformly asymptotically, uniformly exponentially) stable, or unstable, if and
only if the zero solution of the reduced difference equation

𝑣𝑡+1 = 𝐷F𝑡(𝜑
*
𝑡 )𝑣𝑡 + 𝑃−

𝑡+1R𝑡(𝑣𝑡 + 𝑤−
𝑡 (𝑣𝑡)) (3.1)

in the center-unstable vector bundle 𝒱− has the respective stability property.

Proof. The trivial solution to the eqn. (2.3) inherits the stability properties of 𝜑*. Furthermore, [21, p. 267,
Thm. 4.6.15] applies to (2.3) and yields the claim.

For compact operators 𝐷F𝑡(𝜑
*
𝑡 ) ∈ 𝐿(𝑋), 𝑡 ∈ I′, more can be said on the structure of Σ(𝜑*) and [26] gives a

detailed classification. In particular, the center-unstable bundle 𝒱− has fibers of constant and finite dimension
𝑐 ∈ N. Thus, the reduced eqn. (3.1) can be transformed to a difference equation in K𝑐 as follows: For the sake
of a (significant) simplification, we suppose the (complementary) projectors 𝑃±

𝑡 ≡ 𝑃± do not depend on 𝑡

and choose a basis {𝑒1, . . . , 𝑒𝑐} of 𝑅(𝑃−). By means of the Hahn-Banach theorem we can complement it with
elements

{︀
𝑒′1, . . . , 𝑒

′
𝑐

}︀
⊂ 𝑋 ′ to a biorthogonal system, i.e.⟨︀

𝑒𝑖, 𝑒
′
𝑗

⟩︀
= 𝛿𝑖𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑐. (3.2)

With 𝑣𝑡 =
∑︀𝑐

𝑗=1 𝜉
𝑗
𝑡 𝑒𝑗 and 𝑃−𝑣 :=

∑︀𝑐
𝑖=1

⟨︀
𝑣, 𝑒′𝑖

⟩︀
𝑒𝑖 the reduced eqn. (3.1) becomes

𝑐∑︁
𝑗=1

𝜉𝑗𝑡+1𝑒𝑗 = 𝐷F𝑡(𝜑
*
𝑡 )

𝑐∑︁
𝑗=1

𝜉𝑗𝑡 𝑒𝑗 +

𝑐∑︁
𝑗=1

⟨
R𝑡

(︃
𝑐∑︁

𝑖=1

𝜉𝑖𝑡𝑒𝑖 + 𝑤−
𝑡

(︃
𝑐∑︁

𝑖=1

𝜉𝑖𝑡𝑒𝑖

)︃)︃
, 𝑒′𝑗

⟩
𝑒𝑗 ,
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Fig. 3: The 𝛼-𝛽-plane illustrating the maximal degree of differentiability
𝑚 < ln𝛼

ln 𝛽
(encoded via the color bar) for the center-unstable bundle 𝒲−

according to the spectral gap condition (𝐺𝑚) for different values of the
reals 0 < 𝛼 < 𝛽 < 1

applying
⟨︀
·, 𝑒′𝑘

⟩︀
on both sides yields

𝜉𝑘𝑡+1
(3.2)
=

𝑐∑︁
𝑗=1

⟨︀
𝐷F𝑡(𝜑

*
𝑡 )𝑒𝑗 , 𝑒

′
𝑘

⟩︀
𝜉𝑗𝑡 +

⟨
R𝑡

(︃
𝑐∑︁

𝑖=1

𝜉𝑖𝑡𝑒𝑖 + 𝑤−
𝑡

(︃
𝑐∑︁

𝑖=1

𝜉𝑖𝑡𝑒𝑖

)︃)︃
, 𝑒′𝑘

⟩
for all 1 ≤ 𝑘 ≤ 𝑐

and we finally arrive at the finite-dimensional equation

𝜉𝑡+1 = 𝑓𝑡(𝜉𝑡) := 𝐶𝑡𝜉𝑡 +𝑅𝑡(𝜉𝑡) (3.3)

in K𝑐 with 𝜉 = (𝜉1, . . . , 𝜉𝑐), 𝐶𝑡 := (
⟨︀
𝐷F𝑡(𝜑

*
𝑡 )𝑒𝑗 , 𝑒

′
𝑘

⟩︀
)𝑐𝑗,𝑘=1 and the nonlinearity

𝑅𝑡(𝜉) :=

(︃⟨
R𝑡

(︃
𝑐∑︁

𝑖=1

𝜉𝑖𝑒𝑖 + 𝑤−
𝑡

(︃
𝑐∑︁

𝑖=1

𝜉𝑖𝑒𝑖

)︃)︃
, 𝑒′𝑘

⟩)︃𝑐

𝑘=1

for all 𝑡 ∈ I′.

3.1 Smoothness and approximation of center-unstable fiber bundles

As mentioned above, the fibers of a center-unstable bundle 𝒲− can be represented as graphs of Lipschitzian
mappings 𝑤−

𝑡 : 𝒱−(𝑡) ∩ 𝐵𝑟(0) → 𝑅(𝑃+), 𝑡 ∈ I. In order to approximate 𝑤−
𝑡 , a higher-order smoothness is

desirable. In the general nonautonomous situation this is based on the following technical assumption:
– 𝑋 is a 𝐶𝑚-Banach space, i.e. the norm ‖·‖ : 𝑋 → R is 𝑚-times continuously differentiable away from 0.

Concrete examples and information on such spaces are given in [21, pp. 364ff, Sect. C.2].
Then, [21, pp. 259–260, Thm. 4.6.4(b)] shows that the functions 𝑤−

𝑡 , 𝑡 ∈ I, are of class 𝐶1 and satisfy

𝑤−
𝑡 (0) ≡ 0, 𝐷𝑤−

𝑡 (0) ≡ 0 on I. (3.4)

Concerning higher-order differentiability, for nonautonomous problems it is not guaranteed that 𝒲− inherits
the smoothness from the right-hand side of eqn. (Δ):

Remark 3.1 (spectral gap condition). The additional spectral gap condition

𝛼 < 𝛽𝑚 (𝐺𝑚)

yields that also the bundle 𝒲− is 𝑚-times continuously differentiable. For dominant spectral intervals 𝜎

satisfying min𝜎 = 1, which particularly holds in the compact periodic situation, it is always possible to fulfill
(𝐺𝑚) by choosing 𝛽 < 1 sufficiently close to 1. If min𝜎 < 1, then (𝐺𝑚) is an actual restriction on the
differentiability order and Fig. 3 illustrates the maximal value 𝑚 such that (𝐺𝑚) holds for 0 < 𝛼 < 𝛽 < 1.

For simplicity we suppose from now on that the dominant spectral interval containing 1 has multiplicity 1.
Hence, also 𝒲− possesses dimension 𝑐 = 1. Given a sufficient differentiability order 𝑚 ∈ N, the derivatives of
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the nonlinearity 𝑅𝑡(𝜉) =
⟨︀
R𝑡(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1)), 𝑒
′
1

⟩︀
become

𝑅′
𝑡(𝜉) =

⟨
𝐷R𝑡(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))[𝑒1 +𝐷𝑤−
𝑡 (𝜉𝑒1)𝑒1], 𝑒

′
1

⟩
,

𝑅′′
𝑡 (𝜉) =⟨𝐷2R𝑡(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))[𝑒1 +𝐷𝑤−
𝑡 (𝜉𝑒1)𝑒1]

2 +𝐷R𝑡(𝜉𝑒1 + 𝑤−
𝑡 (𝜉𝑒1))𝐷

2𝑤−
𝑡 (𝜉𝑒1)𝑒

2
1, 𝑒

′
1⟩,

𝑅′′′
𝑡 (𝜉) =⟨𝐷3R𝑡(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))[𝑒1 +𝐷𝑤−
𝑡 (𝜉𝑒1)𝑒1]

3

+ 3𝐷2R𝑡(𝜉𝑒1 + 𝑤−
𝑡 (𝜉𝑒1))

[︁
𝐷2𝑤−

𝑡 (𝜉𝑒1)𝑒
2
1

]︁
[𝑒1 +𝐷𝑤−

𝑡 (𝜉𝑒1)𝑒1]

+𝐷R𝑡(𝜉𝑒1 + 𝑤−
𝑡 (𝜉𝑒1))𝐷

3𝑤−
𝑡 (𝜉𝑒1)𝑒

3
1, 𝑒

′
1⟩

and consequently, due to (3.4), we arrive at 𝑅′
𝑡(0) = 0,

𝑓 ′′𝑡 (0) =
⟨
𝐷2R𝑡(0)𝑒

2
1, 𝑒

′
1

⟩
, 𝑓 ′′′𝑡 (0) =

⟨
𝐷3R𝑡(0)𝑒

3
1 + 3𝐷2R𝑡(0)[𝐷

2𝑤−
𝑡 (0)𝑒21]𝑒1, 𝑒

′
1

⟩
(3.5)

for all 𝑡 ∈ I′, provided (𝐺2) resp. (𝐺3) holds. Hence, an explicit knowledge of Taylor coefficients to the center-
unstable bundle 𝒲− is only required for 3rd and higher order approximations of (3.1). Our approach is based
on the fact that the functions 𝑤−

𝑡 satisfy the invariance equation

𝑃+𝐷F𝑡(𝜑
*
𝑡 )𝑤

−
𝑡 (𝜉𝑒1) + 𝑃+R𝑡(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))

= 𝑤𝑡+1

(︀
𝜉𝐷F𝑡(𝜑

*
𝑡 )𝑒1 + 𝑃−R𝑡+1(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))
)︀

for all 𝑡 ∈ I′, 𝜉 ∈ R (3.6)

as long as the inclusion 𝜉𝐷F𝑡(𝜑
*
𝑡 )𝑒1 + 𝑃−R𝑡+1(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1)) ∈ 𝐵𝑟(0) holds. If 𝑚 > 1, then differentiating
(3.6) twice w.r.t. 𝜉 yields

𝑃+𝐷F𝑡(𝜑
*
𝑡 )𝐷

2𝑤−
𝑡 (𝜉𝑒1)𝑒

2
1+𝑃

+[︀𝐷2R𝑡(𝜉𝑒1+𝑤
−
𝑡 (𝜉𝑒1))[𝑒1+𝐷𝑤

−
𝑡 (𝜉𝑒1)𝑒1]

2+𝐷R𝑡(𝜉𝑒1+𝑤
−
𝑡 (𝜉𝑒1))𝐷

2𝑤−
𝑡 (𝜉𝑒1)𝑒

2
1

]︀
= 𝐷2𝑤𝑡+1

(︀
𝜉𝐷F𝑡(𝜑

*
𝑡 )𝑒1 + 𝑃−R𝑡+1(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))
)︀
·

· [𝐷F𝑡(𝜑
*
𝑡 )𝑒1 + 𝑃−𝐷R𝑡+1(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))[𝑒1 +𝐷𝑤−
𝑡 (𝜉𝑒1)𝑒1]]

2

+𝐷𝑤𝑡+1

(︀
𝜉𝐷F𝑡(𝜑

*
𝑡 )𝑒1 + 𝑃−R𝑡+1(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))
)︀
𝑃−[𝐷2R𝑡+1(𝜉𝑒1 + 𝑤−

𝑡 (𝜉𝑒1))[𝑒1 +𝐷𝑤−
𝑡 (𝜉𝑒1)𝑒1]

2

+𝐷R𝑡+1(𝜉𝑒1 + 𝑤−
𝑡 (𝜉𝑒1))𝐷

2𝑤−
𝑡 (𝜉𝑒1)𝑒

2
1].

Due to (3.5), setting 𝜉 = 0 implies a linearly inhomogeneous difference equation

𝑃+𝐷F𝑡(𝜑
*
𝑡 )𝐷

2𝑤−
𝑡 (0)𝑒21 + 𝑃+𝐷2R𝑡(0)𝑒

2
1 = 𝐷2𝑤−

𝑡+1(0)[𝐷F𝑡(𝜑
*
𝑡 )𝑒1]

2 for all 𝑡 ∈ I′.

Keeping our assumption of constant projectors in mind, 𝑅(𝑃−) is invariant w.r.t. (𝑉𝜑*) and there exist scalars
𝜂𝑡 ̸= 0 such that 𝜂𝑡𝑒1 = 𝐷F𝑡(𝜑

*
𝑡 )𝑒1. Indeed, (3.2) implies 𝜂𝑡 =

⟨︀
𝐷F𝑡(𝜑

*
𝑡 )𝑒1, 𝑒

′
1

⟩︀
for all 𝑡 ∈ I′. This means that

the sequence 𝑡 ↦→ 𝐷2𝑤−
𝑡 (0)𝑒21 in 𝑅(𝑃+), bounded due to [24, Thm. 3.2(b)], solves the homological equation

𝜂2𝑡𝑤𝑡+1 = 𝑃+𝐷F𝑡(𝜑
*
𝑡 )𝑤𝑡 + 𝑃+𝐷2R𝑡(0)𝑒

2
1 (3.7)

and, for nonzero coefficients 𝜂𝑡, is therefore of the form (cf. [24])

𝐷2𝑤−
𝑡 (0)𝑒21 =

𝑡−1∑︁
𝑠=−∞

(︃
𝑡−1∏︁

𝑟=𝑠+1

1

𝜂2𝑟

)︃
Φ(𝑡, 𝑠+ 1)𝑃+𝐷2R𝑠(0)𝑒

2
1 for all 𝑡 ∈ I.

3.2 Periodic and autonomous equations

The general nonautonomous situation simplifies for 𝜃-periodic eqns. (Δ) and solutions 𝜑* such that the varia-
tional eqn. (Δ) has compact coefficients. First, the dichotomy spectrum is discrete. Second, as a consequence,
the gap condition (𝐺𝑚) can always be fulfilled. Third, the center-unstable vector bundle 𝒱− is finite-dimen-
sional and the technical assumption of 𝑋 being a 𝐶𝑚-Banach space can be avoided. In fact, an ambient center
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manifold theorem for maps is due to [16, p. 189, Thm. III.1] for 𝑚 = 1 and [6] for 𝑚 ∈ N. These results carry
over to 𝜃-periodic difference eqns. (Δ) and solutions 𝜑* as follows: They apply to the period maps

𝜋𝜏 := F𝜏+𝜃−1 ∘ · · · ∘ F𝜏 : 𝑈𝜏 → 𝑋

and each 𝜏 ∈ Z yields a center-unstable manifold 𝒲−(𝜏) for the autonomous system 𝑢𝑡+1 = 𝜋𝜏 (𝑢𝑡). By the
𝜋𝜏 -invariance of 𝒲−(𝜏), the fibers 𝒲−(𝑡) := 𝜙(𝑡; 𝜏,𝒲−(𝜏)), as well as the functions 𝑤−

𝑡 are 𝜃-periodic and
define the center-unstable fiber bundle of (Δ). Thus, one has to solve the homological eqn. (3.7) for 𝜃-periodic
sequences. This results in the 𝜃 cyclic linear equations{︃

𝜂2𝑡𝑤𝑡+1 = 𝑃+𝐷F𝑡(𝜑
*
𝑡 )𝑤𝑡 + 𝑃+𝐷2R𝑡(0)𝑒

2
1 for all 0 ≤ 𝑡 < 𝜃 − 1,

𝜂2𝜃−1𝑤0 = 𝑃+𝐷F𝜃−1(𝜑
*
𝜃−1)𝑤𝜃−1 + 𝑃+𝐷2R𝜃−1(0)𝑒

2
1,

whose solution (𝑤0, . . . , 𝑤𝜃−1) ∈ 𝑅(𝑃+)𝜃 yields the coefficients 𝐷2𝑤−
𝑡 (0)𝑒21 = 𝑤𝑡 for 0 ≤ 𝑡 < 𝜃.

For a fixed point 𝑢* of an autonomous eqn. (Δ′) and 𝐷F(𝑢*)𝑒1 = 𝜂𝑒1 one solves

[𝜂2𝐼𝑋 − 𝑃+𝐷F(𝑢*)]𝐷2𝑤−(0)𝑒21 = 𝑃+𝐷2R(0)𝑒21 in 𝑅(𝑃+);

that is a single linear-inhomogeneous equation.

4 Integrodifference equations

Our next aim is to apply the above general methods to concrete integrodifference equations (abbreviated as
IDEs). Thereto, suppose (Ω,A, 𝜇) is a measure space with nonempty bounded Ω ⊂ R𝜅 and 𝜇(Ω) <∞.

4.1 Hammerstein equations in 𝑋 = 𝐿𝑝(Ω)

A first possible state space are the 𝑝-integrable functions

𝐿𝑝
𝑑(Ω, 𝜇) :=

⎧⎨⎩𝑢 : Ω → K𝑑

⃒⃒⃒⃒
⃒⃒𝑢 is 𝜇-measurable,

∫︁
Ω

|𝑢|𝑝 d𝜇 <∞

⎫⎬⎭
equipped with the canonical norm ‖𝑢‖𝑝 :=

(︀∫︀
Ω
|𝑢|𝑝 d𝜇

)︀1/𝑝 for 𝑝 ≥ 1. It is well-known that (𝐿𝑝
𝑑(Ω, 𝜇))𝑝≥1 forms

a strictly decreasing scale of Banach spaces, which in the terminology of [3, p. 43], are pairwise compatible.
Moreover, 𝐿𝑝

𝑑(Ω, 𝜇) is a 𝐶𝑚𝑝 -Banach space with (see [4, p. 184, Thm. 1.1])

𝑚𝑝 :=

⎧⎪⎪⎨⎪⎪⎩
𝑝− 1, 𝑝 ∈ N is odd,

[𝑝], 𝑝 ∈ [1,∞) ∖N,
∞, 𝑝 ∈ N is even.

In particular, 𝐿2
𝑑(Ω, 𝜇) is a Hilbert space with ⟨𝑢, 𝑣⟩ =

∫︀
Ω

∑︀𝑑
𝑗=1 𝑢𝑗(𝑥)𝑣𝑗(𝑥) d𝜇(𝑥) as inner product. We

abbreviate 𝐿𝑝(Ω, 𝜇) := 𝐿𝑝
1(Ω, 𝜇) and 𝐿𝑝(Ω) := 𝐿𝑝(Ω, 𝜇𝜅) when the Lebesgue measure 𝜇 = 𝜇𝜅 on R𝜅 is used;

here we write
∫︀
Ω
𝑢 :=

∫︀
Ω
𝑢(𝑦) d𝑦 =

∫︀
Ω
𝑢d𝜇𝜅.

Let us consider Hammerstein integrodifference equations of the form

𝑢𝑡+1 =

∫︁
Ω

𝑘𝑡(·, 𝑦)𝑔𝑡(𝑦, 𝑢𝑡(𝑦)) d𝜇(𝑦) + ℎ𝑡 (H)

with inhomogeneity ℎ𝑡 ∈ 𝐿𝑝
𝑑(Ω, 𝜇). Our analysis of (H) requires to represent the right-hand side

F𝑡(𝑢) = K𝑡 ∘ G𝑡(𝑢) + ℎ𝑡
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of (Δ) as composition of a linear integral operator and a substitution operator

(K𝑡𝑣)(𝑥) :=

∫︁
Ω

𝑘𝑡(𝑥, 𝑦)𝑣(𝑦) d𝜇(𝑦), (G𝑡(𝑣))(𝑥) := 𝑔𝑡(𝑥, 𝑣(𝑥)) for all 𝑥 ∈ Ω.

Their properties are subject to our following analysis, in which 𝑡 ∈ I′ is kept fixed: For the kernel functions
𝑘𝑡 : Ω× Ω → 𝐿(K𝑑) we suppose Hille-Tamarkin conditions: There exist 𝑝, 𝑞 ≥ 1 such that
(ht1) 𝑘𝑡 is 𝜇⊗ 𝜇-measurable,
(ht2) for all 𝑢 ∈ 𝐿𝑞

𝑑(Ω, 𝜇) there exists a 𝜇-zero set 𝑁𝑢 so that 𝑘𝑡(𝑥, ·)𝑢 is 𝜇-measurable on Ω for all 𝑥 ∈ Ω∖𝑁𝑢

and the following function is 𝑝-integrable

𝑢̂(𝑥) :=

{︃∫︀
Ω
𝑘𝑡(𝑥, 𝑦)𝑢(𝑦) d𝜇(𝑦), 𝑥 ∈ Ω ∖𝑁𝑢,

0, 𝑥 ∈ 𝑁𝑢,

(ht3) if 𝑞′ ≥ 1 is determined by 1
𝑞 + 1

𝑞′ = 1, then 𝑘′(𝑥) := ‖𝑘𝑡(𝑥, ·)‖𝑞′ < ∞ for 𝜇-almost all 𝑥 ∈ Ω and
𝑘′ ∈ 𝐿𝑝(Ω, 𝜇) holds.

Lemma 4.1. If (ht1-ht2) hold, then K𝑡 ∈ 𝐿(𝐿𝑞
𝑑(Ω, 𝜇), 𝐿

𝑝
𝑑(Ω, 𝜇)) is well-defined. Assuming additionally 𝑝 > 1,

then (ht3) implies compactness.

Proof. See [7, p. 288, Satz 1 and p. 293, Satz 2].

Concerning the growth function 𝑔𝑡 : Ω × K𝑑 → K𝑑 we suppose that the partial derivatives 𝐷𝑙
2𝑔𝑡 exist and

satisfy Carathéodory conditions for all 0 ≤ 𝑙 ≤ 𝑚, 𝑚 ∈ N:
(c1) 𝐷𝑙

2𝑔𝑡(·, 𝑧) : Ω → 𝐿𝑙(K𝑑) is 𝜇-measurable on Ω for all 𝑧 ∈ K𝑑,
(c2) 𝐷𝑙

2𝑔𝑡(𝑥, ·) : K𝑑 → 𝐿𝑙(K𝑑) is continuous for 𝜇-almost all 𝑥 ∈ Ω.

Lemma 4.2. Let 0 ≤ 𝑙 ≤ 𝑚, 𝑐0 ∈ 𝐿𝑞(Ω, 𝜇) for 𝑞 ≥ 1, 𝑐1 ≥ 0 and suppose (c1-c2) are satisfied. If 𝑚𝑞 < 𝑝

and the growth conditions⃒⃒⃒
𝐷𝑙

2𝑔𝑡(𝑥, 𝑧)
⃒⃒⃒
≤ 𝑐0(𝑥) + 𝑐1 |𝑧|

𝑝−𝑙𝑞
𝑞 for 𝜇-a.a. 𝑥 ∈ Ω and all 𝑧 ∈ K𝑑 (4.1)

hold, then G𝑡 : 𝐿
𝑝
𝑑(Ω, 𝜇) → 𝐿𝑞

𝑑(Ω, 𝜇) is well-defined and of class 𝐶𝑚 with derivatives

[𝐷𝑙G𝑡(𝑢)𝑣1 · · · 𝑣𝑙](𝑥) = 𝐷𝑙
2𝑔𝑡(𝑥, 𝑢(𝑥))𝑣1(𝑥) · · · 𝑣𝑙(𝑥) for all 𝑥 ∈ Ω and all 𝑢, 𝑣1, . . . , 𝑣𝑚 ∈ 𝐿𝑝

𝑑(Ω, 𝜇).

Proof. A proof can be modeled after [5, p. 372, Prop. 7.57].

Proposition 4.1. Let 𝑐0 ∈ 𝐿𝑞(Ω, 𝜇) for 𝑞 ≥ 1, 𝑐1 ≥ 0, suppose (ht1-ht2) and (c1-c2) are satisfied. If
𝑚𝑞 < 𝑝 and (4.1) hold, then K𝑡 ∘ G𝑡 : 𝐿𝑝

𝑑(Ω, 𝜇) → 𝐿𝑝
𝑑(Ω, 𝜇) is well-defined and of class 𝐶𝑚 with derivatives

𝐷𝑙(K𝑡 ∘ G𝑡)(𝑢) = K𝑡𝐷
𝑙G𝑡(𝑢) for all 0 ≤ 𝑙 ≤ 𝑚 and 𝑢 ∈ 𝐿𝑝

𝑑(Ω, 𝜇).

Proof. The linear operator K𝑡 ∈ 𝐿(𝐿𝑞
𝑑(Ω, 𝜇), 𝐿

𝑝
𝑑(Ω, 𝜇)) is well-defined by Lemma 4.1. Then Lemma 4.2 and

the chain rule applied to K𝑡 ∘ G𝑡 yield the claim.

4.2 Urysohn equations in 𝑋 = 𝐶(Ω)

Let us focus on compact sets Ω ⊂ R𝜅 and equip

𝐶𝑑(Ω) :=
{︁
𝑢 : Ω → K𝑑|𝑢 is continuous

}︁
with the natural norm ‖𝑢‖ := sup𝑥∈Ω |𝑢(𝑥)|. The Banach spaces 𝐶𝑑(Ω) and 𝐿𝑝

𝑑(Ω), 𝑝 ≥ 1, are compatible as
understood in [3, p. 43] and we abbreviate 𝐶(Ω) := 𝐶1(Ω). However, 𝐶𝑑(Ω) typically has no smooth norm.
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Consider an Urysohn integrodifference equation

𝑢𝑡+1 =

∫︁
Ω

𝑓𝑡(·, 𝑦, 𝑢𝑡(𝑦)) d𝜇(𝑦) + ℎ𝑡 (U)

with an inhomogeneity ℎ𝑡 ∈ 𝐶𝑑(Ω) and a function 𝑓𝑡 : Ω × Ω × 𝑍𝑡 → K𝑑 defined on a nonempty open sets
𝑍𝑡 ⊆ K𝑑 satisfying for each fixed 𝑡 ∈ I′ that:
(u1) 𝐷𝑙

3𝑓𝑡 : Ω× Ω× 𝑍𝑡 → 𝐿𝑙(K𝑑), 0 ≤ 𝑙 ≤ 𝑚, exist as continuous functions.

Proposition 4.2 (see [23]). If (u1) holds, then F𝑡 : 𝐶𝑑(Ω, 𝑍𝑡) → 𝐶𝑑(Ω) is well-defined and of class 𝐶𝑚 with
derivatives

𝐷𝑙F𝑡(𝑢)𝑣1 · · · 𝑣𝑙=
∫︁
Ω

𝐷𝑙
3𝑓𝑡(·, 𝑦, 𝑢(𝑦))𝑣1(𝑦) · · · 𝑣𝑙(𝑦) d𝜇(𝑦) for all 0 ≤ 𝑙 ≤ 𝑚, 𝑢 ∈ 𝐶(Ω, 𝑍𝑡), 𝑣1, . . . , 𝑣𝑚 ∈ 𝐶𝑑(Ω).

4.3 Linear integral operators

We equip R𝜅 with the Lebesgue measure 𝜇 = 𝜇𝜅 and suppose Ω ⊂ R𝜅 is compact. Given a kernel function
𝑘 : Ω× Ω → 𝐿(K𝑑) consider the Fredholm integral operator

K𝑣 :=

∫︁
Ω

𝑘(·, 𝑦)𝑣(𝑦) d𝑦. (4.2)

If K is (power) compact, then the Riesz-Schauder theory [7, 8] guarantees that 𝜎(K)∖{0} consists of eigenvalues
𝜆𝑛, 𝑛 ∈ 𝑁 , having finite multiplicity with 0 as only possible accumulation point and a countable set 𝑁 . As a
convention, the 𝜆𝑛 are numbered according to

. . . ≤ |𝜆3| ≤ |𝜆2| ≤ |𝜆1| .

Proposition 4.3. Let 𝑝 > 1 and 𝑋 ∈
{︀
𝐿𝑝
𝑑(Ω), 𝐶𝑑(Ω)

}︀
. If 𝑘 : Ω×Ω → 𝐿(K𝑑) is continuous, then K ∈ 𝐿(𝑋)

defined in (4.2) is well-defined and compact. Moreover, the eigenpairs ((𝜆𝑛, 𝑒𝑛))𝑛∈𝑁 of K are independent of
𝑋 and the following holds true:
(a) If 𝑁(K) = {0} and 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥) for 𝑥, 𝑦 ∈ Ω, then 𝑁 is countably infinite and the (normed) eigen-

functions (𝑒𝑛)𝑛∈𝑁 are an orthonormal basis of 𝐿2
𝑑(Ω).

(b) If 𝑑 = 1, K = R and 𝑘(𝑥, 𝑦) > 0 for all 𝑥, 𝑦 ∈ Ω, then 𝑒1(𝑥) > 0 for all 𝑥 ∈ Ω.

The assumptions of (a) rule out that K has a degenerate kernel.

Proof. Being continuous on the compact set Ω2, the kernel 𝑘 : Ω2 → 𝐿(K𝑑) fulfills (ht1-ht3) with 𝜇 = 𝜇𝜅.
Therefore, Lemma 4.1 shows that K ∈ 𝐿(𝐿𝑞

𝑑(Ω)) is well-defined and compact. On the space 𝑋 = 𝐶𝑑(Ω) these
properties are due to [7, p. 247, Satz 4]. Since 𝐶𝑑(Ω) and 𝐿𝑝

𝑑(Ω), 𝑝 > 1, are compatible Banach spaces, [3,
pp. 109–110, Thm. 4.2.14] implies eigenpairs ((𝜆𝑛, 𝑒𝑛))𝑛∈N of K ∈ 𝐿(𝑋) being independent of 𝑋.

(a) By assumption, K ∈ 𝐿(𝐿2
𝑑(Ω)) is self-adjoint and [8, p. 200, Satz 3] implies that the (normed)

eigenfunctions of K are a complete orthonormal system in 𝐿2
𝑑(Ω), i.e. an orthonormal basis.

(b) results immediately from the Krein-Rutman Theorem [31, p. 290, Thm. 7.C] applied to K ∈ 𝐿(𝐶(Ω))

and the solid cone of nonnegative continuous functions.

In what follows, we suppose 𝑑 = 1 and conveniently introduce the numbers

𝜅𝑖 :=

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)𝑒1(𝑦)
𝑖 d𝑦𝑒1(𝑥) d𝑥 for all 𝑖 ∈ N.
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Example 4.1 (degenerate kernel). Let 𝑝 ≥ 1 and 𝑋 ∈ {𝐿𝑝(Ω), 𝐶(Ω)}. Let us assume that 𝑎𝑗 ∈ 𝐶(Ω),
𝑏𝑗 ∈ 𝑋, 1 ≤ 𝑗 ≤ 𝐽 , are functions such that

𝑘(𝑥, 𝑦) =

𝐽∑︁
𝑗=1

𝑎𝑗(𝑦)𝑏𝑗(𝑥) for all 𝑥, 𝑦 ∈ Ω

and {𝑏1, . . . , 𝑏𝐽} ⊆ 𝑋 is linearly independent. We define the matrix

𝐾 := (𝑘𝑖𝑗)
𝐽
𝑖,𝑗=1, 𝑘𝑖𝑗 :=

∫︁
Ω

𝑎𝑖(𝑦)𝑏𝑗(𝑦) d𝑦

and obtain 𝜎(K) ∖ {0} = 𝜎(𝐾) ∖ {0}. If 𝜐 ∈ K𝐽 is an eigenvector of 𝐾, then the corresponding eigenvector of
the operator K with degenerate kernel is 𝑣 :=

∑︀𝑛
𝑗=1 𝜐𝑗𝑏𝑗 .

The habitat in the next example is an interval Ω :=
[︀
−𝐿

2 ,
𝐿
2

]︀
of length 𝐿 > 0, equipped with the Lebesgue

measure 𝜇 = 𝜇1. Let us begin with a prototypical kernel relevant in applications, but allowing an analysis
based on few numerical tools.

ν1 ν3 ν5

ν

0 ν2 ν4 ν6

ν

0

Fig. 4: Solutions (𝜈𝑗)𝑗∈N of the transcendental equations tan(𝑎𝐿
2
𝜈) = 1

𝜈
(left) or cot(𝑎𝐿

2
𝜈) = − 1

𝜈
(right) from Exam. 4.2

as intersection of the corresponding graphs. See Tab. 1 for numerical values in case 𝑎𝐿 = 2

Example 4.2 (Laplace kernel). Let 𝐿 > 0 and Ω = [−𝐿
2 ,

𝐿
2 ]. For reals 𝑎 > 0 the integral operator (4.2) with

kernel
𝑘(𝑥, 𝑦) := 𝑎

2 𝑒
−𝑎|𝑥−𝑦| for all 𝑥, 𝑦 ∈ Ω (4.3)

is well-defined and compact. Due to [25, Appendix 2] its spectrum is obtained as follows: Provided (see Fig. 4)
– tan(𝑎𝐿2 𝜈) =

1
𝜈 has the positive solutions 𝜈1 < 𝜈3 < . . .,

– cot(𝑎𝐿2 𝜈) = − 1
𝜈 has the positive solutions 𝜈2 < 𝜈4 < . . .,

then 𝜎𝑝(K) = {𝜆𝑛 ∈ R : 𝑛 ∈ N} ⊂ (0, 1) with the strictly decreasing eigenvalue sequence 𝜆𝑛 = 1
1+𝜈2

𝑛
and

𝑒𝑛(𝑥) :=

√︂
2𝑎𝜈𝑛

𝐿𝑎𝜈𝑛 − (−1)𝑛 sin(𝑎𝐿𝜈𝑛)

{︃
cos(𝑎𝜈𝑛𝑥), 𝑛 is odd,

sin(𝑎𝜈𝑛𝑥), 𝑛 is even
for all 𝑛 ∈ N

as associate eigenfunctions. Moreover, 𝑒1(𝑥) > 0 for all 𝑥 ∈ Ω and thus the reals

𝜅𝑖 =
𝑎

2

𝐿/2∫︁
−𝐿/2

𝐿/2∫︁
−𝐿/2

𝑒−𝑎|𝑥−𝑦|𝑒1(𝑦)
𝑖 d𝑦𝑒1(𝑥) d𝑥 > 0 for all 𝑖, 𝑗 ∈ N0

are positive by Prop. 4.3(b). We refer to Tab. 1 for numerical approximations of the eigenvalues 𝜆𝑛 of K (for
𝑎𝐿 = 2) and note that they behave asymptotically as

𝜆2𝑛 ∼ 𝑎2𝐿2

𝑎2𝐿2 + 𝜋2(1 + 2𝑛)2
, 𝜆2𝑛−1 ∼ 𝑎2𝐿2

𝑎2𝐿2 + 𝜋2(2𝑛)2
as 𝑛→ ∞.

Since all eigenvalues are positive, K is positive-definite and consequently 𝑁(K) = {0} implies that (𝑒𝑛)𝑛∈N is
an orthonormal basis of 𝐿2(Ω) due to Prop. 4.3(a).
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𝑛 𝜈𝑛 𝜆𝑛
𝜆𝑛

𝜆𝑛+1

1 0.860334 0.574655 2.93985
2 2.02876 0.195471 2.48929
3 3.42562 0.0785245 1.97406
4 4.91318 0.0397783 1.68814
5 6.4373 0.0235633 1.52358
6 7.97867 0.0154657 1.41988
7 9.52933 0.0108923 1.34943

Tab. 1: The solutions 𝜈𝑛 > 0 and the resulting eigenvalues 𝜆𝑛, 1 ≤ 𝑛 ≤ 7, from
Exam. 4.2 in case 𝑎𝐿 = 2. See Fig. 4 for an illustration

Example 4.3 (periodic kernels). Provided 𝑘0 : R → C is a continuous, 𝐿-periodic function, a convolution
kernel 𝑘(𝑥, 𝑦) := 𝑘0(𝑥 − 𝑦) for all 𝑥, 𝑦 ∈ Ω yields a Fredholm integral operator (4.2), whose eigenvalues are
given by the Fourier coefficients

𝜆𝑛 =
1

𝐿

𝐿/2∫︁
−𝐿/2

𝑘0(𝑦)𝑒
−2𝜋𝜄𝑛

𝐿 𝑦 d𝑦

with corresponding eigenfunctions 𝑒𝑛 : Ω → C, 𝑒𝑛(𝑥) :=
√︁

1
𝐿𝑒

2𝜋𝜄𝑛
𝐿 𝑥 for all 𝑛 ∈ Z. That is, the eigenfunctions

coincide with the trigonometric system (𝑒𝑛)𝑛∈Z and form an orthonormal basis of 𝐿2(Ω), as well as a Schauder
basis of 𝐿𝑝(Ω) for 1 < 𝑝 <∞.

5 Examples

Let (𝛾𝑡)𝑡∈I be a nonzero sequence in K satisfying

sup
𝑡∈I

max
{︁
|𝛾𝑡| , |𝛾𝑡|−1

}︁
<∞ (5.1)

and we define its upper resp. lower Bohl exponent

𝛽(𝛾) := lim
𝐿→∞

sup
𝑡∈I

𝐿

⎯⎸⎸⎷⃒⃒⃒𝑡+𝐿−1∏︁
𝑠=𝑡

𝛾𝑠

⃒⃒⃒
, 𝛽(𝛾) := lim

𝐿→∞
inf
𝑡∈I

𝐿

⎯⎸⎸⎷⃒⃒⃒𝑡+𝐿−1∏︁
𝑠=𝑡

𝛾𝑠

⃒⃒⃒
on a discrete interval I unbounded above. For instance, 𝜃-periodic sequences have the geometric mean as Bohl
exponents 𝛽(𝛾) = 𝛽(𝛾) = 𝜃

√︀
|𝛾𝜃 · · · 𝛾1|.

We are interested in linear nonautonomous IDEs

𝑢𝑡+1 = 𝛾𝑡K𝑢𝑡, (5.2)

where K ∈ 𝐿(𝑋) denotes a Fredholm operator as in (4.2) satisfying the assumptions of Prop. 4.3. Let us
define a sequence of positive reals . . . < 𝜌2 < 𝜌1 by means of{︀

𝜌𝑛 > 0 : 𝑛 ∈ 𝑁 ′}︀ = |𝜎(K)| ∖ {0}

and suppose the spectrum of (5.2) is of the form Σ =
⋃︀

𝑗∈𝑁 ′ [𝜌𝑗𝛽(𝛾), 𝜌𝑗𝛽(𝛾)].

Example 5.1 (Laplace kernel). The dichotomy spectrum Σ of a linear nonautonomous IDE (5.2) with the
Laplace kernel (4.3) has the following properties (cf. Fig. 5):
(a) If 𝛽(𝛾) = 𝛽(𝛾), then Σ =

⋃︀
𝑗∈N

{︀
𝜆𝑗𝛽(𝛾)

}︀
is discrete with spectral intervals of multiplicity 1 and constant

spectral manifolds 𝒱𝑗 = I× span
{︀
𝑒𝑗
}︀
, 𝑗 ∈ N,

(b) if 𝛽(𝛾) < 𝛽(𝛾), then Σ = (0, 𝜆𝐽+1𝛽(𝛾)] ∪
⋃︀𝐽

𝑗=1[𝜆𝑗𝛽(𝛾), 𝜆𝑗𝛽(𝛾)] for some 𝐽 ∈ N0, with constant spectral
manifolds 𝒱𝑗 = I× span

{︀
𝑒𝑗
}︀
, 1 ≤ 𝑗 ≤ 𝐽 ,
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0 Ra1 b1

0 Rβ(γ)λ1

(a)

(b)

aJ bJaJ+1

β(γ)λJ Fig. 5: The dichotomy spectra from Exam. 5.1: (a) Countably
many singletons accumulating at 0 as spectral intervals for
𝛽(𝛾) = 𝛽(𝛾) and (b) 𝐽 + 1 spectral intervals for 𝛽(𝛾) < 𝛽(𝛾)

(c) if 𝛽(𝛾)𝜆2 < 𝛽(𝛾)𝜆1, then the dominant spectral interval is simple,

where the real and positive eigenvalues 𝜆𝑛 were determined in Exam. 4.2. This is shown in [22] and particularly
[22, Thm. 1, Exam. 12] for (b). Concerning (c) the assumption implies that the dominant spectral interval
has positive distance from the remaining spectrum and the spectral manifold I× span {𝑒1} has dimension 1.

From now on, suppose (𝛾𝑡)𝑡∈I′ is a sequence of positive reals satisfying (5.1).

5.1 Beverton-Holt integrodifference equation

Let us understand the scalar IDE
𝑢𝑡+1 = 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦) 𝑢𝑡(𝑦)

1 + 𝑢𝑡(𝑦)
d𝑦 (5.3)

as of Urysohn type (U) with the function 𝑓𝑡 : Ω × Ω × (−1,∞) → R given by 𝑓𝑡(𝑥, 𝑦, 𝑧) := 𝛾𝑡𝑘(𝑥, 𝑦)
𝑧

1+𝑧 ,
𝑡 ∈ I′, satisfying (u1) due to

𝐷𝑙
3𝑓𝑡(𝑥, 𝑦, 𝑧) = 𝛾𝑡𝑘(𝑥, 𝑦)

(−1)𝑙+1𝑙!
(1+𝑧)𝑙+1 for all 𝑙 ∈ N.

Prop. 4.2 shows that the right-hand side F𝑡 : 𝑈𝑡 → 𝐶(Ω) of (5.3) is of class 𝐶∞ on the constant open sets
𝑈𝑡 := {𝑢 ∈ 𝐶(Ω) : −1 < inf𝑥∈Ω 𝑢(𝑥)}. We interpret (5.3) as difference equation in 𝐶(Ω) and in the equation
of perturbed motion (2.3) (corresponding to the trivial solution 𝜑*𝑡 ≡ 0) one has

𝐷F𝑡(0) = 𝛾𝑡K, R𝑡(𝑢) = −𝛾𝑡
∫︁
Ω

𝑘(·, 𝑦) 𝑢(𝑦)2

1 + 𝑢(𝑦)
d𝑦 for all 𝑡 ∈ I′.

In order to obtain stability properties of the trivial solution, consider the associate variational eqn. (5.2)
with the operator K from (4.3). Thus, due to Thm. 2.1 the trivial solution to (5.3) is
– uniformly exponentially stable, if and only if 𝜌1𝛽(𝛾) < 1 (see Fig. 1(a)),
– unstable, if 𝜌2𝛽(𝛾) < 𝜌1𝛽(𝛾) (guaranteeing a spectral gap left of the dominant interval) and 1 < 𝜌1𝛽(𝛾)

(see Fig. 1(b)).
As alternative spectral constellation (see Fig. 2) we now assume
(𝜎1) The eigenvalue 𝜆1 of K is simple and dominant (i.e. 𝜌1 = |𝜆1|) with eigenfunction 𝑒1 : Ω → K
(𝜎2) Σ(𝜑*) has at least two components, where

𝜌1𝛽(𝛾) ≤ 1 ≤ 𝜌1𝛽(𝛾), 𝜌2𝛽(𝛾) < 𝜌1𝛽(𝛾). (5.4)

Note that 𝜌2𝛽(𝛾) < 𝜌𝑚1 𝛽(𝛾)
𝑚 is sufficient for the spectral gap condition (𝐺𝑚).

In the following, given 𝑣 ∈ 𝐶(Ω) we use⟨︀
𝑣, 𝑒′1

⟩︀
:=

∫︁
Ω

𝑣(𝑥)𝑒1(𝑥) d𝑥

as duality pairing and define constant, complementary projectors

𝑃−𝑣 :=

∫︁
Ω

𝑣(𝑥)𝑒1(𝑥) d𝑥𝑒1, 𝑃+𝑣 := 𝑣 − 𝑃−𝑣. (5.5)
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Under the above spectral constellation a reduction to the center-unstable fiber bundle 𝒲− of (5.3) is due.
The reduced eqn. (3.3) has the right-hand side

𝑓𝑡(𝜉) = 𝛾𝑡𝜆1𝜉 − 𝛾𝑡

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)
(𝜉𝑒1(𝑦) + 𝑤−

𝑡 (𝜉𝑒1)(𝑦))
2

1 + 𝜉𝑒1(𝑦) + 𝑤−
𝑡 (𝜉𝑒1)(𝑦)

d𝑦𝑒1(𝑥) d𝑥

and 𝐷2R𝑡(0)𝑒
2
1 = −2𝛾𝑡

∫︀
Ω
𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦. Let us now refrain from the general nonautonomous case due to

the following reasons: First, since 𝐶(Ω) is only a 𝐶0-Banach space, the reduced difference eqn. (3.1) is merely
Lipschitz. Second, we are not aware of tools to investigate critical time-variant difference equations (note that
e.g. [24, Prop. 5.4] does not apply). We supplement (𝜎1-𝜎2) by the assumption
(𝜎3) The dominant eigenvalue 𝜆1 of K is real and positive with real and positive eigenfunction 𝑒1 : Ω → R.

Example 5.2 (periodic and autonomous case). Let (𝜎1-𝜎3) hold and suppose (𝛾𝑡)𝑡∈Z is a 𝜃-periodic se-
quence. Thanks to Exam. 2.1 the dichotomy spectrum is discrete. The Beverton-Holt IDE (5.3) and its reduced
eqn. (3.3) become 𝜃-periodic. Whence, upper and lower Bohl exponent of (𝛾𝑡)𝑡∈I agree and (5.4) reduces to

𝜆1 𝜃
√
𝛾𝜃 · · · 𝛾1 = 1, |𝜆2| < 𝜆1.

By choosing 𝛽 sufficiently close to 1, one can always fulfill (𝐺𝑚). In particular, for 𝑚 = 2 the center-unstable
bundle 𝒲− is given by graphs of 𝐶2-functions 𝑤−

𝑡 , also 𝑓𝑡 is of class 𝐶2 in a (uniform) neighborhood of the
origin. From the coefficients

𝑓 ′𝑡(0) = 𝜆1𝛾𝑡, 𝑓 ′′𝑡 (0) = −2𝛾𝑡𝜅2 for all 𝑡 ∈ Z (5.6)

we have 𝜑0(𝑡, 𝜏) = 𝜆𝑡−𝜏
1

∏︀𝑡−1
𝑠=𝜏 𝛾𝑠 > 0. Thus, (5.4) implies 𝜑0(𝜃, 0) = 1. We apply Thm. A.1 based on

𝑑2(𝜃) =

𝜃−1∑︁
𝑠2=0

Φ(𝜃, 𝑠2 + 1)𝑓 ′′𝑠2(0)Φ(𝑠2, 0)
2 = −2𝜅2

𝜆1

𝜃−1∑︁
𝑠2=0

𝑠2−1∏︁
𝑠=0

(𝜆1𝛾𝑠) < 0

and consequently the trivial solution of (5.3) is unstable.

5.2 Ricker integrodifference equation

An analogous approach as above applies to another Hammerstein-type eqn. (H), but now with Ricker non-
linearity 𝑔𝑡(𝑥, 𝑧) := 𝛾𝑡𝑧𝑒

−𝑧 . Yet, the scalar IDE

𝑢𝑡+1 = 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦)𝑢𝑡(𝑦)𝑒−𝑢𝑡(𝑦) d𝑦 (5.7)

is still understood as Urysohn equation with kernel function 𝑓𝑡 : Ω × Ω × R → R, 𝑓𝑡(𝑥, 𝑦, 𝑧) := 𝑘(𝑥, 𝑦)𝑧𝑒−𝑧 ,
𝑡 ∈ I′. Mathematical induction yields

𝐷𝑙
3𝑓𝑡(𝑥, 𝑦, 𝑧) = (−1)𝑙𝛾𝑡𝑘(𝑥, 𝑦)(𝑧 − 𝑙)𝑒−𝑧 for all 𝑙 ∈ N0

and thus (u1) holds. In conclusion, Prop. 4.2 yields right-hand sides F𝑡 : 𝑈𝑡 → 𝐶(Ω) of class 𝐶∞ with constant
domains 𝑈𝑡 = 𝐶(Ω). In the equation of perturbed motion (2.3) (associated to the zero solution) one has

𝐷F𝑡(0) = 𝛾𝑡K, R𝑡(𝑢) = 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦)𝑢(𝑦)(𝑒−𝑢(𝑦) − 1) d𝑦 for all 𝑡 ∈ I′.

Hence, stability criteria are literally as in Sect. 5.1 and we focus on the constellation (𝜎1-𝜎2), requiring a
center fiber bundle reduction. The reduced eqn. (3.3) possesses

𝑓𝑡(𝜉) = 𝜆1𝛾𝑡𝜉 + 𝛾𝑡

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)(𝜉𝑒1(𝑦) + 𝑤−
𝑡 (𝜉𝑒1)(𝑦))(𝑒

−𝜉𝑒1(𝑦)−𝑤−
𝑡 (𝜉𝑒1)(𝑦) − 1) d𝑦𝑒1(𝑥) d𝑥

as right-hand side. For the same reason as above, we retreat to

Example 5.3 (periodic and autonomous case). Let (𝜎1-𝜎3) hold and suppose the sequence (𝛾𝑡)𝑡∈Z is 𝜃-
periodic. We again obtain the coefficients (5.6) and as in Exam. 5.2 the trivial solution to (5.7) is unstable.
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5.3 Logistic integrodifference equation

From now on, let us actually work with Hammerstein difference eqns. (H), namely

𝑢𝑡+1 = 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦)𝑢𝑡(𝑦)(1− 𝑢𝑡(𝑦)) d𝑦 (5.8)

having a logistic nonlinearity 𝑔𝑡(𝑥, 𝑧) := 𝛾𝑡𝑧(1− 𝑧), 𝑡 ∈ I′. We understand the right-hand side as composition
F𝑡 = K ∘ G𝑡 : 𝑈𝑡 → 𝐿𝑝(Ω) of two operators with 𝑈𝑡 = 𝐿𝑝(Ω):
– The linear operator K ∈ 𝐿(𝐿1(Ω), 𝐿𝑝(Ω)) is well-defined and compact for every 𝑝 > 1 due to Lemma 4.1.
– G𝑡 : 𝐿

𝑝(Ω) → 𝐿1(Ω) is of class 𝐶2 due to Lemma 4.2. Indeed, one has

𝐷2𝑔𝑡(𝑥, 𝑧) = 𝛾𝑡(1− 2𝑧), 𝐷2
2𝑔𝑡(𝑥, 𝑧) = −2𝛾𝑡 for all 𝑡 ∈ I′

and thus (c1-c2) hold with appropriate 𝑐0, 𝑐1 in (4.1), provided 𝑝 > 2.
Hence, Prop. 4.1 applies for 𝑝 > 2 and yields right-hand sides F𝑡 : 𝐿

𝑝(Ω) → 𝐿𝑝(Ω) of class 𝐶2. We arrive at
an equation of perturbed motion (2.3) with

𝐷F𝑡(0) = 𝛾𝑡K, R𝑡(𝑢) = −𝛾𝑡
∫︁
Ω

𝑘(·, 𝑦)𝑢(𝑦)2 d𝑦 for all 𝑡 ∈ I′.

Linearizing (5.8) along the trivial solution yields the variational eqn. (5.2) on the state space 𝐿𝑝(Ω), while
stability criteria are as in Sect. 5.1.

We next study the alternative constellation (𝜎1-𝜎2) requiring reduction to a center fiber bundle. For this,⟨︀
𝑢, 𝑒′1

⟩︀
:=

∫︁
Ω

𝑢(𝑦)𝑒1(𝑦) d𝑦 for all 𝑢 ∈ 𝐿𝑝(Ω)

serves as duality pairing and we define projectors as in (5.5). Therefore, the reduced eqn. (3.3) possesses

𝑓𝑡(𝜉) = 𝜆1𝛾𝑡𝜉 − 𝛾𝑡

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)(𝜉𝑒1(𝑦) + 𝑤−
𝑡 (𝜉𝑒1)(𝑦))

2 d𝑦𝑒1(𝑥) d𝑥

as right-hand side. Because 𝐿𝑝(Ω) is a 𝐶2-Banach space, for 𝑝 > 2 the center-unstable bundle 𝒲− is given
by graphs of (at least) 𝐶2-functions and 𝑓𝑡 is of class 𝐶2 in a (uniform) neighborhood of the origin, provided
the spectral gap condition (𝐺2) can be fulfilled.

In the 𝜃-periodic situation, this anew leads to the coefficients (5.6) and an analysis as in Sect. 5.1.

5.4 Toy model 1

We continue with a more artificial example, whose stability behavior is rather subtle in the critical case.
Consider the scalar, inhomogeneous IDE

𝑢𝑡+1 = 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦) sin𝑢𝑡(𝑦) d𝑦 + 𝜋ℎ𝑡, (5.9)

where (ℎ𝑡)𝑡∈I′ is a bounded sequence of integers interpreted as constant functions in 𝐿𝑝(Ω), 𝑝 ≥ 1. The
sequence 𝜑*𝑡 (𝑥) :≡ 𝜋ℎ𝑡−1 on Ω defines a bounded solution (𝜑*𝑡 )𝑡∈I′ due to the following identity on I′,

𝜑*𝑡+1 ≡ 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦) sin(𝜋ℎ𝑡−1)⏟  ⏞  
=0

d𝑦 + 𝜋ℎ𝑡 ≡ 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦) sin𝜑*𝑡 (𝑦) d𝑦 + 𝜋ℎ𝑡.

The eqn. (5.9) is of Hammerstein type (H) with growth function 𝑔𝑡 : Ω×R → R, 𝑔𝑡(𝑦, 𝑧) := 𝛾𝑡 sin 𝑧 satisfying⃒⃒⃒
𝐷𝑙

2𝑔𝑡(𝑥, 𝑧)
⃒⃒⃒
≤ 𝛾𝑡 for all 𝑥 ∈ Ω, 𝑧 ∈ R, 𝑙 ∈ N0, 𝑡 ∈ I′.
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Thus, due to Prop. 4.1 we can understand (5.9) as equation in 𝐿𝑝(Ω), 𝑈𝑡 := 𝐿𝑝(Ω) and for 𝑝 > 1 the right-
hand side of (5.9) is continuously differentiable. We represent the equation of perturbed motion corresponding
to 𝜑* as (2.3) with

𝐷F𝑡(𝜑
*
𝑡 ) = 𝜚𝑡𝛾𝑡K, R𝑡(𝑢) = 𝜚𝑡𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦) (sin𝑢(𝑦)− 𝑢(𝑦)) d𝑦 for all 𝑡 ∈ I′

and

𝜚𝑡 := cos(𝜋ℎ𝑡−1) =

{︃
−1, ℎ𝑡−1 is odd,

1, ℎ𝑡−1 is even.

Since the variational difference eqn. 𝑢𝑡+1 = 𝜚𝑡𝛾𝑡K𝑢𝑡 fits in the setting of (5.2) and the Bohl exponents satisfy
𝛽(𝜚𝛾) = 𝛽(𝛾), 𝛽(𝜚𝛾) = 𝛽(𝛾), Thm. 2.1 shows that 𝜑* is
– uniformly exponentially stable, if and only if 𝜌1𝛽(𝛾) < 1 (see Fig. 1(a)),
– unstable, if 𝜌2𝛽(𝛾) < 𝜌2𝛽(𝛾) and 1 < 𝜌1𝛽(𝛾) (see Fig. 1(b)).
A stability analysis in the critical spectral setting (𝜎1-𝜎3) is more interesting and based on the reduced
eqn. (3.3) with right-hand side

𝑓𝑡(𝜉) = 𝜚𝑡𝛾𝑡𝜆1𝜉 + 𝜚𝑡𝛾𝑡

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)(sin(𝜉𝑒1(𝑦) + 𝑤−
𝑡 (𝜉𝑒1)(𝑦))− 𝜉𝑒1(𝑦)− 𝑤−

𝑡 (𝜉𝑒1)(𝑦)) d𝑦𝑒1(𝑥) d𝑥.

If even 𝑝 > 3 holds, then (5.9) is of class 𝐶3 (see Prop. 4.1), and since 𝐿𝑝(Ω) is a 𝐶3-Banach space, also the
resulting 1-dimensional center-unstable fiber bundle 𝒲− is of class 𝐶3, when the spectral gap condition (𝐺3)

holds. This leads to the coefficients

𝑓 ′𝑡(0) = 𝜚𝑡𝛾𝑡𝜆1, 𝑓 ′′𝑡 (0) = 0, 𝑓 ′′′𝑡 (0) = −𝜚𝑡𝛾𝑡𝜅3 ̸= 0 for all 𝑡 ∈ I′.

Example 5.4 (periodic and autonomous case). Let (𝜎1-𝜎3) hold and suppose the sequences (𝛾𝑡)𝑡∈Z, (ℎ𝑡)𝑡∈Z
are 𝜃-periodic. The stability properties of the 𝜃-periodic solution 𝜑* to (5.9) in critical situations 𝜑0(𝜃, 0) = ±1

are determined by the coefficient 𝑏 := ℎ1 + · · ·+ ℎ𝜃. Indeed, from the elementary trigonometric identity

cos(𝜋𝑘) cos(𝜋𝑙) = cos(𝜋𝑘) cos(𝜋𝑙)− sin(𝜋𝑘) sin(𝜋𝑙) = cos(𝜋(𝑘 + 𝑙)) for all 𝑘, 𝑙 ∈ Z,

we compute
𝜃−1∏︁
𝑠=0

𝜚𝑠 =

𝜃−1∏︁
𝑠=0

cos(𝜋ℎ𝑠−1) = cos(𝜋(ℎ−1 + · · ·+ ℎ𝜃−2)) =

{︃
1, 𝑏 is even,

−1, 𝑏 is odd

and this yields

𝜑0(𝜃, 0) =

𝜃−1∏︁
𝑠=0

(𝜚𝑠𝛾𝑠𝜆1) =

(︃
𝜃−1∏︁
𝑠=0

𝜚𝑠

)︃
𝜃−1∏︁
𝑠=0

(𝛾𝑠𝜆1)

{︃
> 0, 𝑏 is even,

< 0, 𝑏 is odd.

From 𝑓 ′′𝑡 (0) = 0 we see that 𝑑2(𝑡) = 0, but

𝑑3 =

𝜃−1∑︁
𝑠3=0

𝜑0(𝜃, 𝑠3 + 1)𝑓 ′′′𝑠3 (0)𝜑0(𝑠3, 0)
3 = −𝜅3

𝜆1

𝜃−1∑︁
𝑠3=0

𝜑0(𝜃, 𝑠3 + 1)𝜚𝑠3𝛾𝑠3𝜆1𝜑0(𝑠3, 0)
3

= −𝜅3
𝜆1
𝜑0(𝜃, 0)

𝜃−1∑︁
𝑠3=0

𝜑0(𝑠3, 0)
2

{︃
< 0, 𝑏 is even,

> 0, 𝑏 is odd.

In conclusion, for 𝜑0(𝜃, 0) = 1 Thm. A.1 shows that 𝜑* is uniformly asymptotically stable for an even sum 𝑏

and unstable for odd 𝑏. In case 𝜑0(𝜃, 0) = −1 the situation reverses and Thm. A.2 implies that 𝜑* is uniformly
asymptotically stable for an odd sum 𝑏 and unstable for even 𝑏.
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5.5 Toy model 2

Our final example allows an explicit analysis at least in the autonomous situation. Yet, let us begin with the
nonautonomous, scalar and inhomogeneous IDE

𝑢𝑡+1 = 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦)𝑢𝑡(𝑦) cos𝑢𝑡(𝑦) d𝑦 + 𝜋
2 (5.10)

having the stationary solution 𝜑*𝑡 (𝑥) ≡ 𝜋
2 , because of the solution identity

𝜑*𝑡+1 ≡ 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦)𝜋2 cos 𝜋
2⏟  ⏞  

=0

d𝑦 + 𝜋
2 ≡ 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦)𝜑*𝑡 (𝑦) cos𝜑*𝑡 (𝑦) d𝑦 + 𝜋
2 on I′.

For the growth function 𝑔𝑡(𝑥, 𝑧) := 𝛾𝑡𝑔(𝑧), 𝑔(𝑧) := 𝑧 cos 𝑧 we obtain the derivatives

𝑔′(𝑧) = cos 𝑧 − 𝑧 sin 𝑧, 𝑔′′(𝑧) = −2 sin 𝑧 − 𝑧 cos 𝑧, 𝑔′′′(𝑧) = −3 cos 𝑧 + 𝑧 sin 𝑧

and thus
⃒⃒⃒
𝐷𝑙

2𝑔𝑡(𝑥, 𝑧)
⃒⃒⃒
≤ sup𝑡∈I′ 𝛾𝑡(𝑙 + |𝑧|) for all 𝑥 ∈ Ω, 𝑧 ∈ R and 0 ≤ 𝑙 ≤ 3. In order to apply Prop. 4.1 we

choose 𝑝 > 3, 𝑞 = 1, 𝑐0(𝑥) :≡ 3 and 𝑐1 := 1, resulting in a 𝐶3-right-hand side F𝑡 : 𝐿
𝑝(Ω) → 𝐿𝑝(Ω) of (5.10).

In particular, we view (5.10) as difference equation in 𝐿𝑝(Ω).
In the associate equation of perturbed motion (2.3) one has

𝐷F𝑡(𝜑
*
𝑡 ) = −𝜋

2 𝛾𝑡K, R𝑡(𝑢) = 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦)
(︀
𝜋
2 𝑢(𝑦)− (𝑢(𝑦) + 𝜋

2 ) sin𝑢(𝑦)
)︀
d𝑦 for all 𝑡 ∈ I′

leading to 𝐷2R𝑡(0)𝑒
2
1 = −𝛾𝑡

∫︀
Ω
𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦. Directly from the relations (3.5) it results 𝑓 ′𝑡(0) = −𝜋

2 𝛾𝑡𝜆1,
and under the gap conditions (𝐺2) resp. (𝐺3),

𝑓 ′′𝑡 (0) =− 2𝛾𝑡

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)𝑒1(𝑦)
2 d𝑦𝑒1(𝑥) d𝑥 = −2𝛾𝑡𝜅2,

𝑓 ′′′𝑡 (0) =
𝜋𝛾𝑡
2

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)𝑒1(𝑦)
3 d𝑦𝑒1(𝑥) d𝑥− 6𝛾𝑡

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)(𝐷2𝑤−
𝑡 (0)𝑒21)(𝑦)𝑒1(𝑦) d𝑦𝑒1(𝑥) d𝑥

=
𝜋𝛾𝑡
2
𝜅3 − 6𝛾𝑡

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)(𝐷2𝑤−
𝑡 (0)𝑒21)(𝑦)𝑒1(𝑦) d𝑦𝑒1(𝑥) d𝑥.

Therefore, we have to compute the Taylor coefficients 𝐷2𝑤−
𝑡 (0)𝑒21 ∈ 𝐿𝑝(Ω), 𝑡 ∈ I, of the functions parametriz-

ing the center-unstable fiber bundle 𝒲− of 𝜑*. It solves the homological eqn. (3.7) which now reads as

𝜂2𝑡𝑤𝑡+1 = −𝜋
2 𝛾𝑡K𝑤𝑡 + 𝛾𝑡𝜅2𝑒1 − 𝛾𝑡

∫︁
Ω

𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦.

Due to the eigenvalue property it follows 𝜂𝑡 =
⟨︀
𝐷F𝑡(𝜑

*
𝑡 )𝑒1, 𝑒

′
1

⟩︀
= −𝜋

2 𝛾𝑡𝜆1 and the unique bounded solution
of the homological equation becomes

𝐷2𝑤−
𝑡 (0)𝑒21 =

𝑡−1∑︁
𝑠=−∞

(︁
2

𝜋𝜆1

)︁2(𝑡−𝑠−1)
𝛾𝑠

(︃
𝑡−1∏︁

𝑟=𝑠+1

1
𝛾𝑟

)︃
K𝑡−𝑠−1

⎛⎝𝜅2𝑒1 −
∫︁
Ω

𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦

⎞⎠ for all 𝑡 ∈ I.

The powers of the Fredholm operator K compute as 𝑡-fold integral

K𝑡𝑣 =

∫︁
Ω𝑡

𝑘(·, 𝑦𝑡)

(︃
𝑡−1∏︁
𝑟=1

𝑘(𝑦𝑟+1, 𝑦𝑟)

)︃
𝑣(𝑦1) d(𝑦1, . . . , 𝑦𝑡) for all 𝑡 ∈ Z+

1 ,
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which results from Fubini’s theorem, and we arrive at the formula

𝐷2𝑤−
𝑡 (0)𝑒21 =

𝑡−1∑︁
𝑠=−∞

(︁
2

𝜋𝜆1

)︁2(𝑡−𝑠−1)
𝛾𝑠

(︃
𝑡−1∏︁

𝑟=𝑠+1

1
𝛾𝑟

)︃
·

·

(︃
𝜅2

∫︁
Ω𝑡−𝑠−1

𝑘(·, 𝑦𝑡−𝑠−1) · · · 𝑘(𝑦2, 𝑦1)𝑒1(𝑦1) d(𝑦1, . . . , 𝑦𝑡−𝑠−1)

−
∫︁

Ω𝑡−𝑠

𝑘(·, 𝑦𝑡−𝑠−1) · · · 𝑘(𝑦1, 𝑦0)𝑒1(𝑦0)2 d(𝑦0, . . . , 𝑦𝑡−𝑠−1)

)︃
for all 𝑡 ∈ I.

Since it is apparently problematic to evaluate this expression, we again retreat to

Example 5.5 (periodic and autonomous case). Let (𝜎1-𝜎3) hold and suppose (𝛾𝑡)𝑡∈Z is a 𝜃-periodic se-
quence. Thanks to

𝜑0(𝜃, 0) =
(︀
−𝜋

2 𝜆1
)︀𝜃
𝛾𝜃 · · · 𝛾1,

we need to distinguish two cases:
(I) 𝜃 is even: One has 𝜑0(𝜃, 0) = 1 and in order to apply Thm. A.1 we note

𝑑2(𝜃) =

𝜃−1∑︁
𝑠2=0

𝜑0(𝜃, 𝑠2 + 1)𝑓 ′′𝑠2(0)𝜑0(𝑠2, 0)
2 =

4𝜅2
𝜋𝜆1

𝜃−1∑︁
𝑠2=0

𝜑0(𝑠2, 0).

For 𝑑2(𝜃) ̸= 0 we derive from Thm. A.1 that 𝜑* is unstable. In the degenerate case 𝑑2(𝜃) = 0 results

𝑑2(𝑡) =
4𝜅2
𝜋𝜆1

𝜑0(𝑡, 0)

𝑡−1∑︁
𝑠2=0

𝜑0(𝑠2, 0),

𝑑3 =

𝜃−1∑︁
𝑠3=0

𝜑0(𝜃, 𝑠3 + 1)𝑓 ′′′𝑠3 (𝜑
*
𝑠3)𝜑0(𝑠3, 0)

3 +
12𝜅2
𝜋𝜆1

𝜃−1∑︁
𝑠3=1

𝑑2(𝑠3)

=
𝜅3
𝜆1

𝜃−1∑︁
𝑠3=0

𝜑0(𝑠3, 0)
2 +

12

𝜋𝜆1

𝜃−1∑︁
𝑠3=0

∫︁
Ω

∫︁
Ω

𝑘(𝑥, 𝑦)(𝐷2𝑤−
𝑠3(0)𝑒

2
1)(𝑦)𝑒1(𝑦) d𝑦𝑒1(𝑥) d𝑥𝜑0(𝑠3, 0)

2

+
12𝜅2
𝜋𝜆1

𝜃−1∑︁
𝑠3=1

𝑑2(𝑠3),

where the vectors 𝐷2𝑤−
𝑠3(0)𝑒

2
1 ∈ 𝐿𝑝(Ω), 0 ≤ 𝑠3 < 𝜃 are to be computed from the cyclic 𝜃 coupled linear

Fredholm integral equations{︃
𝜂2𝑡𝑤𝑡+1 =−𝜋

2 𝛾𝑡
∫︀
Ω
𝑘(·, 𝑦)𝑤𝑡(𝑦) d𝑦 + 𝛾𝑡𝜅2𝑒1 − 𝛾𝑡

∫︀
Ω
𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦 for all 0 ≤ 𝑡 < 𝜃 − 1,

𝜂2𝜃−1𝑤0 =−𝜋
2 𝛾𝜃−1

∫︀
Ω
𝑘(·, 𝑦)𝑤𝜃−1(𝑦) d𝑦 + 𝛾𝜃−1𝜅2𝑒1 − 𝛾𝜃−1

∫︀
Ω
𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦.

In the autonomous case this reduces to the Fredholm equation of the second kind

𝜂20𝑤0 = −𝜋
2
𝛾

∫︁
Ω

𝑘(·, 𝑦)𝑤0(𝑦) d𝑦 + 𝛾𝜅2𝑒1 − 𝛾

∫︁
Ω

𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦,

while for instance the 2-periodic situation requires{︃
𝜂21𝑤0 = −𝜋

2 𝛾1
∫︀
Ω
𝑘(·, 𝑦)𝑤1(𝑦) d𝑦 + 𝛾1𝜅2𝑒1 − 𝛾1

∫︀
Ω
𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦,

𝜂20𝑤1 = −𝜋
2 𝛾0

∫︀
Ω
𝑘(·, 𝑦)𝑤0(𝑦) d𝑦 + 𝛾0𝜅2𝑒1 − 𝛾0

∫︀
Ω
𝑘(·, 𝑦)𝑒1(𝑦)2 d𝑦.

Eventually, explicit computations are feasible for autonomous IDEs (5.10) with the Laplace kernel (4.3) on
the interval Ω = [−𝐿

2 ,
𝐿
2 ] and thus 𝜂0 = −𝜋

2 𝛾𝜆. Suppose 𝜈 > 0 denotes the smallest positive solution of the
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Fig. 6: Values of the dominant eigenvalue 𝜆 of the integral op-
erator (4.2) with Laplace kernel (4.3) depending on the product
𝑎𝐿

equation tan
(︀
𝑎𝐿
2 𝜈
)︀
= 1

𝜈 , which by Exam. 4.2 is related to the dominant eigenvalue to K via 𝜆 = 1
1+𝜈2 ∈ (0, 1)

(see Fig. 6) with corresponding eigenfunction

𝑒1(𝑥) = 𝐶 cos(𝑎𝜈𝑥), 𝐶 :=
√︁

2𝑎𝜈
𝐿𝑎𝜈+sin(𝐿𝑎𝜈)

.

The nonhyperbolic situation holds for 𝜋
2 𝛾𝜆 = 1, i.e. 𝛾 = 2

𝜋𝜆 =
2(1+𝜈2)

𝜋 = 2𝜔2

𝜋 , where we conveniently
abbreviate 𝜔 :=

√
1 + 𝜈2. This implies the homological equation

𝑤0(𝑥) +
𝑎𝜔2

2

𝐿/2∫︁
−𝐿/2

𝑒−𝑎|𝑥−𝑦|𝑤0(𝑦) d𝑦 =
2𝜅2𝜔

2

𝜋
𝑒1(𝑥)−

𝑎𝜔2

𝜋

𝐿/2∫︁
−𝐿/2

𝑒−𝑎|𝑥−𝑦|𝑒1(𝑦)
2 d𝑦 for all 𝑥 ∈ [−𝐿

2 ,
𝐿
2 ],

which is a Fredholm integral eqn. (B.1) of the second kind with 𝛿 = −𝜔2, the inhomogeneity

𝑏(𝑥) =
2𝜅2𝜔

2

𝜋
𝑒1(𝑥)−

𝑎𝜔2

𝜋

𝐿/2∫︁
−𝐿/2

𝑒−𝑎|𝑥−𝑦|𝑒1(𝑦)
2 d𝑦 =

3∑︁
𝑗=0

𝜚𝑗ℎ𝑗(𝑥), (5.11)

the linearly independent functions ℎ0, . . . , ℎ3 : [−𝐿
2 ,

𝐿
2 ] → R,

ℎ0(𝑥) :≡ 1, ℎ1(𝑥) := 𝑒1(𝑥), ℎ2(𝑥) := cos(2𝑎𝜈𝑥), ℎ3(𝑥) := cosh(𝑎𝑥)

and coefficients 𝜚0, . . . , 𝜚3 (all depending on 𝑎, 𝐿) from (C.1). Due to 𝛿 < 1 the solution from Sect. B implies

[𝐷2𝑤−(0)𝑒21](𝑥) = 𝑐1 cosh(𝜗𝑥) + 𝑐2 sinh(𝜗𝑥) + 𝑏(𝑥) + 𝑎𝜔

𝑥∫︁
−𝐿/2

𝑏(𝑦) sinh(𝜗(𝑥− 𝑦)) d𝑦 for all 𝑥 ∈ [−𝐿
2 ,

𝐿
2 ]

with 𝜗 := 𝑎𝜔 and coefficients

𝑐1 = −
𝑎𝜔
∫︀ 𝐿/2
−𝐿/2

𝑏(𝑦)
(︀
sinh

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀
+ 𝜔 cosh

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀)︀
d𝑦

2
(︀
cosh 𝑎𝐿𝜔

2 + 𝜔 sinh 𝑎𝐿𝜔
2

)︀ =
𝐵0𝜚0 +𝐵1𝜚1 +𝐵2𝜚2 +𝐵3𝜚3

cosh 𝑎𝐿𝜔
2 + 𝜔 sinh 𝑎𝐿𝜔

2

,

𝑐2 = −
𝑎𝜔
∫︀ 𝐿/2
−𝐿/2

𝑏(𝑦)
(︀
sinh

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀
+ 𝜔 cosh

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀)︀
d𝑦

2
(︀
sinh 𝑎𝐿𝜔

2 + 𝜔 cosh 𝑎𝐿𝜔
2

)︀ =
𝐵0𝜚0 +𝐵1𝜚1 +𝐵2𝜚2 +𝐵3𝜚3

sinh 𝑎𝐿𝜔
2 + 𝜔 cosh 𝑎𝐿𝜔

2

,

where the real coefficients 𝐵0, . . . , 𝐵3 are defined in (C.2). This leads to 𝐷2𝑤−(0)𝑒21 =
∑︀5

𝑗=1 𝜔𝑗ℎ𝑗 with

ℎ4, ℎ5 : [−𝐿
2 ,

𝐿
2 ] → R, ℎ4(𝑥) := 𝑒𝑎𝜔𝑥, ℎ5(𝑥) := 𝑒−𝑎𝜔𝑥



Christian Pötzsche and Evamaria Russ, Reduction principle at work 23

as additional coefficient functions and the reals 𝜔1, . . . , 𝜔5 given in (C.3), (C.4). Based on these preparations,
we compute 𝑓 ′(0) = −1, 𝑓 ′′(0) = − 4

𝜋𝜆1
𝜅2 and finally

𝑓 ′′′(0) =
𝜅3
𝜆1

− 6𝑎

𝜋𝜆1

𝐿/2∫︁
−𝐿/2

𝐿/2∫︁
−𝐿/2

𝑒−𝑎|𝑥−𝑦|(𝐷2𝑤−(0)𝑒21)(𝑦)𝑒1(𝑦) d𝑦𝑒1(𝑥) d𝑥

= (1 + 𝜈2)

⎛⎜⎝𝜅3 − 6𝑎

𝜋

5∑︁
𝑗=1

𝐿/2∫︁
−𝐿/2

𝐿/2∫︁
−𝐿/2

𝑒−𝑎|𝑥−𝑦|ℎ𝑗(𝑦)𝑒1(𝑦) d𝑦𝑒1(𝑥) d𝑥

⎞⎟⎠ .

The value 𝑓 ′′(0) depends only on 𝑎, 𝐿 > 0 and Fig. 7 (left) indicates 𝑓 ′′(0) < 0 for parameters 0 < 𝑎,𝐿 < 5.
Whence, the trivial solution of the reduced equation is unstable due to Thm. A.1 and the reduction principle
in Thm. 3.1 ensures that the constant solution 𝜑*(𝑥) ≡ 𝜋

2 of (5.10) is unstable as well.

Fig. 7: Values of 𝑓 ′′(0) (left) and of (the reciprocal of) the stability indicator 𝑓 ′′′(0) − 3
2
𝑓 ′′(0)2 (right) from Exam. 5.5

depending on the parameters 𝑎, 𝐿; the reciprocals are shown due to large values.

(II) 𝜃 is odd: Now 𝜑0(𝜃, 0) = −1 requires to apply Thm. A.2. Both derivatives 𝑓 ′′(0) and 𝑓 ′′′(0) depend
only on 𝑎, 𝐿 > 0, and so does the stability indicator 𝑓 ′′′(0)+ 3

2𝑓
′′(0)2. Fig. 7 (right) indicates its positivity, at

least as long as 𝑎, 𝐿 ∈ [0, 5] and therefore asymptotic stability. Again, the reduction principle Thm. 3.1 shows
that 𝜑*(𝑥) ≡ 𝜋

2 is an asymptotically stable solution of the IDE (5.10).

6 Perspectives

We conclude this paper with some open questions and possible perspectives:
– It is not clear what can be said on the stability of a critical solution 𝜑*, when center-unstable bundles

𝒲− are not at hand (and one cannot pull a Lyapunov function out of the hat)? First, the construction
of 𝒲− via the Lyapunov-Perron method requires that (Δ) is defined on a discrete interval unbounded
below. Hence, equations given in forward time need an ambient backward extension. Second, what if
(𝑉𝜑*) has a dichotomy spectrum as in Fig. 8, that is, it consists of a single spectral interval containing the
stability boundary 1? However, we point out that Σ(𝜑*) associated to EDs on a positive half-line I can be
strictly smaller than the dichotomy spectrum associated to the entire integer line. As a result, Thm. 2.1
applied with the half-line spectrum might yield information. In an autonomous, continuous time setting
it is shown by [29, Thm. 1] that a spectrum merely meeting the positive half plane {𝜆 ∈ C : Re𝜆 > 0}
already guarantees instability.
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ρ

Fig. 8: Dichotomy spectrum consisting of a single interval (0, 𝜌]
with 𝜌 > 1

– When the spectral gap condition (𝐺𝑚) is violated, the center-unstable fiber bundle is merely continuously
differentiable and higher-order terms in the reduced equation cannot be computed. Thus, stability criteria
not based on Taylor coefficients of order > 1 are needed (see, for instance, [28, pp. 13ff, Chapt. 2]).

– As already indicated above, very little is known on the stability for, say the trivial solution of scalar
nonautonomous equations 𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡) when the variational eqn. 𝑥𝑡+1 = 𝑓 ′𝑡(0)𝑥𝑡 has a dichotomy
spectrum containing 1. Although this question is elementary, the nonautonomous reduction principle and
an analysis of the reduced equation crucially depends on corresponding answers.

A solution to the above problems might be a dynamical spectrum different from the dichotomy spectrum. For
instance, the Lyapunov spectrum is finer, but problematic for equations, which are not regular (see [17]). One
could also think of alternative spectra measuring subexponential or polynomial growth.

Appendices

A Stability of nonhyperbolic periodic solutions

Let I be a discrete interval and 𝑚 ∈ N. We consider scalar (real) difference equations

𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡) (A.1)

having a solution (𝜑*𝑡 )𝑡∈I and a 𝐶𝑚-right-hand side 𝑓𝑡 being defined in a neighborhood of 𝜑*𝑡 uniformly in
𝑡 ∈ I′. Furthermore, for the transition operator we abbreviate

𝜑0(𝑡, 𝜏) :=

{︃∏︀𝑡−1
𝑠1=𝜏 𝑓

′
𝑠1(𝜑

*
𝑠1), 𝜏 < 𝑡,

1, 𝑡 = 𝜏.

Lemma A.1. If 𝜏 ≤ 𝑡, then the general solution 𝜙(𝑡; 𝜏, ·) of (A.1) is of class 𝐶𝑚 and for 𝑚 = 1, 2 resp. 3,
the derivatives satisfy 𝐷3𝜙(𝑡; 𝜏, 𝜑

*
𝜏 ) = 𝜑0(𝑡, 𝜏),

𝐷2
3𝜙(𝑡; 𝜏, 𝜑

*
𝜏 ) =

𝑡−1∑︁
𝑠2=𝜏

𝜑0(𝑡, 𝑠2 + 1)𝑓 ′′𝑠2(𝜑
*
𝑠2)𝐷3𝜙(𝑠2; 𝜏, 𝜑

*
𝜏 )

2,

𝐷3
3𝜙(𝑡; 𝜏, 𝜑

*
𝜏 ) =

𝑡−1∑︁
𝑠3=𝜏

𝜑0(𝑡, 𝑠3 + 1)𝑓 ′′′𝑠3 (𝜑
*
𝑠3)𝐷3𝜙(𝑠3; 𝜏, 𝜑

*
𝜏 )

3

+ 3

𝑡−1∑︁
𝑠3=𝜏+1

𝜑0(𝑡, 𝑠3 + 1)𝑓 ′′𝑠3(𝜑
*
𝑠3)𝐷3𝜙(𝑠3; 𝜏, 𝜑

*
𝜏 )𝐷

2
3𝜙(𝑠3; 𝜏, 𝜑

*
𝜏 ).

Proof. Assume 𝜏 ≤ 𝑡 throughout. The smoothness of 𝜙(𝑡; 𝜏, ·) is an immediate consequence of the chain rule
and (2.1). It is convenient to transform (𝜑*𝑡 )𝑡∈I to the trivial solution by passing over to the associate equation
of perturbed motion

𝑥𝑡+1 = 𝑓*𝑡 (𝑥𝑡) := 𝑓𝑡(𝑥𝑡 + 𝜑*𝑡 )− 𝑓𝑡(𝜑
*
𝑡 ), (A.2)

whose general solution is denoted as 𝜙𝑡,𝜏 (𝜉) for reals 𝜉. Differentiating the properties 𝜙𝑡+1,𝜏 (𝜉) = 𝑓*𝑡 (𝜙𝑡,𝜏 (𝜉))

and 𝜙𝜏,𝜏 (𝜉) = 𝜉 w.r.t. 𝜉 yields

𝜙′
𝑡+1,𝜏 (𝜉) = 𝐷𝑓*𝑡 (𝜙𝑡,𝜏 (𝜉))𝜙

′
𝑡,𝜏 (𝜉), 𝜙′

𝜏,𝜏 (𝜉) = 1. (A.3)
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Consequently, since (A.2) has the trivial solution, i.e. 𝜙𝑡,𝜏 (0) = 0, we get

𝜙′
𝑡,𝜏 (0) =

𝑡−1∏︁
𝑠1=𝜏

𝐷𝑓*𝑠1(0) = 𝜑0(𝑡, 𝜏) for all 𝜏 ≤ 𝑡.

Differentiating (A.3) again leads to

𝜙′′
𝑡+1,𝜏 (𝜉) = 𝐷𝑓*𝑡 (𝜙𝑡,𝜏 (𝜉))𝜙

′′
𝑡,𝜏 (𝜉) +𝐷2𝑓*𝑡 (𝜙𝑡,𝜏 (𝜉))𝜙

′
𝑡,𝜏 (𝜉)

2, 𝜙′′
𝜏,𝜏 (𝜉) = 0

and therefore 𝜙′′
·,𝜏 (𝜉) solves the linearly inhomogeneous difference equation

𝑥𝑡+1 = 𝐷𝑓*𝑡 (𝜙𝑡,𝜏 (𝜉))𝑥𝑡 +𝐷2𝑓*𝑡 (𝜙𝑡,𝜏 (𝜉))𝜙
′
𝑡,𝜏 (𝜉)

2

to the initial condition 𝑥𝜏 = 0. Thus, the variation of constants formula [21, p. 100, Thm. 3.1.16(a)] yields
𝜙′′
𝑡,𝜏 (0) =

∑︀𝑡−1
𝑠2=𝜏 𝜑0(𝑡, 𝑠2 + 1)𝐷2𝑓*𝑠2(0)𝜙

′
𝑠2,𝜏 (0)

2 for 𝜏 ≤ 𝑡. Eventually, differentiating (A.3) twice implies

𝜙′′′
𝑡+1,𝜏 (𝜉) =𝐷𝑓

*
𝑡 (𝜙𝑡,𝜏 (𝜉))𝜙

′′′
𝑡,𝜏 (𝜉) +𝐷3𝑓*𝑡 (𝜙𝑡,𝜏 (𝜉))𝜙

′
𝑡,𝜏 (𝜉)

3, 𝜙′′′
𝜏,𝜏 (𝜉) =0

+ 3𝐷2𝑓*𝑡 (𝜙𝑡,𝜏 (𝜉))𝜙
′
𝑡,𝜏 (𝜉)𝜙

′′
𝑡,𝜏 (𝜉),

and by the same argument as above, because of 𝜙′′
𝜏,𝜏 (0) = 0 the variation of constants formula leads to

𝜙′′′
𝑡,𝜏 (0) =

𝑡−1∑︁
𝑠3=𝜏

𝜑0(𝑡, 𝑠3 + 1)𝐷3𝑓*𝑠3(0)𝜙
′
𝑠3,𝜏 (0)

3 + 3

𝑡−1∑︁
𝑠3=𝜏+1

𝜑0(𝑡, 𝑠3 + 1)𝐷2𝑓*𝑠3(0)𝜙
′
𝑠3,𝜏 (0)𝜙

′′
𝑠3,𝜏 (0).

Since the general solutions 𝜙(𝑡; 𝜏, 𝜉) of (A.1) and 𝜙𝑡,𝜏 (𝜉) to (A.2) are related by 𝜙𝑡,𝜏 (𝜉) = 𝜙(𝑡; 𝜏, 𝜉+𝜑*𝜏 )−𝜑*𝑡
for 𝜏 ≤ 𝑡 the claim follows, if we differentiate this relation w.r.t. 𝜉 and set 𝜉 := 0.

Let 𝜃 ∈ N. We next retreat to 𝜃-periodic eqns. (A.1), i.e. I = Z, 𝑓𝑡+𝜃 = 𝑓𝑡 for all 𝑡 ∈ Z and 𝜃-periodic
sequences 𝜑*. Furthermore, we introduce the real numbers

𝑑2(𝑡) :=

𝑡−1∑︁
𝑠2=0

𝜑0(𝑡, 𝑠2 + 1)𝑓 ′′𝑠2(𝜑
*
𝑠2)𝜑0(𝑠2, 0)

2 for all 1 ≤ 𝑡 ≤ 𝜃,

𝑑3 :=

𝜃−1∑︁
𝑠3=0

𝜑0(𝜃, 𝑠3 + 1)𝑓 ′′′𝑠3 (𝜑
*
𝑠3)𝜑0(𝑠3, 0)

3 + 3

𝜃−1∑︁
𝑠3=1

𝜑0(𝜃, 𝑠3 + 1)𝑓 ′′𝑠3(𝜑
*
𝑠3)𝜑0(𝑠3, 0)𝑑2(𝑠3).

In the autonomous case 𝜃 = 1 of constant sequences 𝑓 = 𝑓𝑡 and 𝜑*𝑡 = 𝑢* one obtains

𝑑2(1) = 𝑓 ′′(𝑢*), 𝑑3 = 𝑓 ′′′(𝑢*).

Theorem A.1 (nonhyperbolic solution I). Suppose both the solution 𝜑* and the difference eqn. (A.1) are
𝜃-periodic with 𝜑0(𝜃, 0) = 1.
(a) If 𝑚 = 2 and 𝑑2(𝜃) ̸= 0, then 𝜑* is unstable,
(b) if 𝑚 = 3 and 𝑑2(𝜃) = 0, 𝑑3 < 0, then 𝜑* is uniformly asymptotically stable,
(c) if 𝑚 = 3 and 𝑑2(𝜃) = 0, 𝑑3 > 0, then 𝜑* is unstable.

Proof. Stability properties of 𝜑* coincide with those of the zero solution to the equation of perturbed motion
(A.2), which, in turn, are determined by the stability of the fixed point 𝜑*0 to the period map 𝜋0 := 𝜙(𝜃; 0, ·).
The claim follows by [2, Thm. 2.3i] applied to 𝜋0, whose derivatives, by Lemma A.1 are given by 𝑑2(𝜃), 𝑑3.

Theorem A.2 (nonhyperbolic solution II). Let 𝑚 = 3. Suppose both the solution 𝜑* and the difference
eqn. (A.1) are 𝜃-periodic with 𝜑0(𝜃, 0) = −1.
(a) If 𝑑3 + 3

2𝑑2(𝜃)
2 > 0, then 𝜑* is uniformly asymptotically stable,

(b) if 𝑑3 + 3
2𝑑2(𝜃)

2 < 0, then 𝜑* is unstable.
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Proof. We borrow the notation and arguments from the above proof of Thm. A.1. By assumption 𝜋′0(𝜑
*
0) = −1

(cf. Lemma A.1), the Schwarzian derivative becomes

𝑆𝜋0(𝜑
*
0) =

𝜋′′′0 (𝜑*0)
𝜋′0(𝜑

*
0)

− 3

2

(︂
𝜋′′0 (𝜑

*
0)

𝜋′0(𝜑
*
0)

)︂2

= −𝜋′′′0 (𝜑*0)− 3
2𝜋

′′
0 (𝜑

*
0)

2 = −
(︁
𝑑3 + 3

2𝑑2(𝜃)
2
)︁

and the assertion finally results from [2, Thm. 2.3ii].

B Integral equations with Laplace kernel

Given 𝑎, 𝐿 > 0, let us consider the Fredholm integral operator

K𝑢(𝑥) :=
𝑎

2

𝐿/2∫︁
−𝐿/2

𝑒−𝑎|𝑥−𝑦|𝑢(𝑦) d𝑦 for all 𝑥 ∈ [−𝐿
2 ,

𝐿
2 ]

on the space 𝐶[−𝐿
2 ,

𝐿
2 ]. For 𝐶2-inhomogeneities 𝑏 : [−𝐿

2 ,
𝐿
2 ] → R we provide twice continuously differentiable

solutions 𝑢 : [−𝐿
2 ,

𝐿
2 ] → R to the integral equation

𝑢− 𝛿K𝑢 = 𝑏 (B.1)

of the second kind. Following [20, p. 324, 15.], the structure of these solutions depends on the parameter
𝛿 ∈ R ∖ {0} satisfying 1

𝛿 ̸∈ 𝜎(K):
– If 𝛿 < 1, then

𝑢(𝑥) = 𝑐1 cosh(𝜗𝑥) + 𝑐2 sinh(𝜗𝑥) + 𝑏(𝑥)− 𝑎2𝛿

𝜗

𝑥∫︁
−𝐿/2

𝑏(𝑦) sinh(𝜗(𝑥− 𝑦)) d𝑦

with 𝜗 := 𝑎
√
1− 𝛿 and coefficients

𝑐1 :=
𝑎2𝛿

∫︀ 𝐿/2
−𝐿/2

𝑏(𝑦)
(︀
𝑎 sinh

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀
+ 𝜗 cosh

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀)︀
d𝑦

2𝜗
(︀
𝑎 cosh 𝜗𝐿

2 + 𝜗 sinh 𝜗𝐿
2

)︀ ,

𝑐2 :=
𝑎2𝛿

∫︀ 𝐿/2
−𝐿/2

𝑏(𝑦)
(︀
𝑎 sinh

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀
+ 𝜗 cosh

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀)︀
d𝑦

2𝜗
(︀
𝑎 sinh 𝜗𝐿

2 + 𝜗 cosh 𝜗𝐿
2

)︀ .

– If 𝛿 = 1, then 𝑢(𝑥) = 𝑐1 + 𝑐2𝑥+ 𝑏(𝑥)− 𝑎2
∫︀ 𝑥
−𝐿/2

𝑏(𝑦)(𝑥− 𝑦) d𝑦, where

𝑐1 :=
𝑎

2

𝐿/2∫︁
−𝐿/2

𝑏(𝑦)
(︀
1 + 𝑎

(︀
𝐿
2 − 𝑦

)︀)︀
d𝑦, 𝑐2 :=

𝑎2

𝑎𝐿+ 2

𝐿/2∫︁
−𝐿/2

𝑏(𝑦)
(︀
1 + 𝑎

(︀
𝐿
2 − 𝑦

)︀)︀
d𝑦.

– Finally, for 𝛿 > 1 the solutions are of the form

𝑢(𝑥) = 𝑐1 cos(𝜗𝑥) + 𝑐2 sin(𝜗𝑥) + 𝑏(𝑥)− 𝑎2𝛿

𝜗

𝑥∫︁
−𝐿/2

𝑏(𝑦) sin(𝜗(𝑥− 𝑦)) d𝑦

with 𝜗 := 𝑎
√
𝛿 − 1 and the constants

𝑐1 :=
𝑎2𝛿

∫︀ 𝐿/2
−𝐿/2

𝑏(𝑦)
(︀
𝑎 sin

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀
+ 𝜗 cos

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀)︀
d𝑦

2𝜗
(︀
𝑎 cos 𝜗𝐿

2 − 𝜗 sin 𝜗𝐿
2

)︀ ,

𝑐2 :=
𝑎2𝛿

∫︀ 𝐿/2
−𝐿/2

𝑏(𝑦)
(︀
𝑎 sin

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀
+ 𝜗 cos

(︀
𝜗
(︀
𝐿
2 − 𝑦

)︀)︀)︀
d𝑦

2𝜗
(︀
𝑎 sin 𝜗𝐿

2 + 𝜗 cos 𝜗𝐿
2

)︀ .
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C Coefficients of 𝑓 ′′′(0) in Subsect. 5.5

The real coefficients in (5.11) are 𝜚0 := −𝐶2(1+𝜈2)
𝜋 ,

𝜚1 :=
𝐶3𝑒−𝑎𝐿

6𝜋𝑎𝜈 (1 + 4𝜈2)

(︁
2
(︁(︁

5𝜈2 + 2
)︁
𝑒𝑎𝐿 − 9𝜈2

)︁
cos(𝑎𝐿𝜈) sin 𝑎𝐿𝜈

2

+
(︁(︁

6𝜈4 + 65𝜈2 + 20
)︁
𝑒𝑎𝐿 + 6𝜈4 − 9𝜈2

)︁
sin 𝑎𝐿𝜈

2

− 3𝜈
(︁
(1 + 2𝜈2)𝑒𝑎𝐿 + 2𝜈2 − 1

)︁
cos 3𝑎𝐿𝜈

2

)︁
, (C.1)

𝜚2 :=− 𝐶2𝜔2

𝜋(1 + 4𝜈2)
,

𝜚3 :=
𝐶2𝜔2

𝜋(1 + 4𝜈2)
𝑒−

𝑎𝐿
2 (1 + 4𝜈2 − 2𝜈 sin(𝑎𝐿𝜈) + cos(𝑎𝐿𝜈)),

the real coefficients determining 𝑐1, 𝑐2 read as 𝐵0 = 1− 𝜔 sinh(𝑎𝐿𝜔)− cosh(𝑎𝐿𝜔),

𝐵1 =− 2𝐶𝜔

1 + 2𝜈2
cos 𝑎𝐿𝜈

2

(︀
sinh 𝑎𝐿𝜔

2 + 𝜔 cosh 𝑎𝐿𝜔
2

)︀ (︀
𝜔 sinh 𝑎𝐿𝜔

2 + cosh 𝑎𝐿𝜔
2

)︀
,

𝐵2 =− 𝜔(2𝜈 sin(𝑎𝐿𝜈)

1 + 5𝜈2
(︀
(sinh(𝑎𝐿𝜔) + 𝜔) + 𝜔 cos(𝑎𝐿𝜈)(𝜔 sinh(𝑎𝐿𝜔)− 1)

+ 𝜔 cosh(𝑎𝐿𝜔)(2𝜈 sin(𝑎𝐿𝜈) + cos(𝑎𝐿𝜈)))
)︀
, (C.2)

𝐵3 =
𝜔

𝜈2
(︀
sinh 𝑎𝐿

2 (sinh(𝑎𝐿𝜔) + 𝜔 cosh(𝑎𝐿𝜔) + 𝜔)− 𝜔 cosh 𝑎𝐿
2

(︀
2 sinh2 𝑎𝐿𝜔

2 + 𝜔 sinh(𝑎𝐿𝜔)
)︀)︀

and finally one has

𝜔1 =
𝜚1𝜈

2

1 + 2𝜈2
, 𝜔2 =

4𝜚2𝜈
2

1 + 5𝜈2
, 𝜔3 = −𝜚3

𝜈2
, (C.3)

as well as

𝜔4 =
𝑐1 + 𝑐2

2
+ 𝑒

𝑎𝐿𝜔
2

[︁
𝜚0
2

+ 𝜔
(︁
𝐶𝜚1𝜔

1 + 2𝜈2
+

𝜚2𝜔

2(1 + 5𝜈2)
+

𝜚2
1 + 5𝜈2

)︁
cos 𝑎𝐿𝜈

2 +
𝜚3𝜔

4

(︁
𝑒
𝑎𝐿
2

𝜔 + 1
+
𝑒−

𝑎𝐿
2

𝜔 − 1

)︁]︁
,

𝜔5 =
𝑐1 − 𝑐2

2
+ 𝑒−

𝑎𝐿𝜔
2

[︁
𝜚0
2

+
𝜚2𝜔

1 + 5𝜈2

(︁
𝜔

2
cos(𝑎𝐿𝜈)− 𝜈 sin(𝑎𝐿𝜈)

)︁
+
𝜚3𝜔

4

(︁
𝑒−

𝑎𝐿
2

𝜔 + 1
+

𝑒
𝑎𝐿
2

𝜔 − 1

)︁]︁
. (C.4)
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