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Abstract: The purpose of this informal paper is three-fold: First, filling a gap in the literature, we provide a
(necessary and sufficient) principle of linearized stability for nonautonomous difference equations in Banach
spaces based on the dichotomy spectrum. Second, complementing the above, we survey and exemplify an
ambient nonautonomous and infinite-dimensional center manifold reduction, that is Pliss’s reduction principle
suitable for critical stability situations. Third, these results are applied to integrodifference equations of
Hammerstein- and Urysohn-type both in C- and LP-spaces. Specific features of the nonautonomous case are
underlined. Yet, for the simpler situation of periodic time-dependence even explicit computations are feasible.
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1 Stability and dispersal in discrete time

Determining local stability properties of fixed points u* to autonomous difference equations u;11 = F(ut)
(maps) by linearization is a fairly classical and textbook matter: If the spectrum o(DJF(u*)) is contained in
the open unit disk of the complex plane, then u* is exponentially stable (see e.g. [13, p. 2, Thm. 1]), whereas
a component of o(DF(u*)) outside the closed unit disk guarantees instability (see [13, p. 3, Thm. 2]). This
situation changes when the equilibrium u* is replaced by a nonconstant solution u; or the difference equation
is time-variant in advance, i.e. us41 = F(ut). Here, unless for rather slow time-dependencies, the elements of
o(DJF¢(uf)) have no relevance in stability theory and effectively become useless.

However, by virtue of the dichotomy (also called Sacker-Sell, cf. [27] for ODEs) spectrum, the above
statements canonically generalize to the time-dependent situation. This dynamical spectrum is a subset of the
positive real line. It proved to be an efficient tool in the geometric theory of nonautonomous dynamical systems
when it comes to the construction of invariant manifolds and foliations, as well as for topological or smooth
linearization questions (see [21] for related references). Given this, it is rather surprising that the crucial role
of the dichotomy spectrum in stability criteria based on linearization is not explicitly present in the literature
to our best knowledge. Indeed, corresponding results are not only convenient, but also essential for instance
in nonautonomous bifurcation theory. For this reason, we provide a natural theorem with self-contained proof
allowing to infer stability properties of arbitrary solutions to time-variant problems in general Banach spaces
based on the spectrum of their variational equation. This result can be seen as a nonautonomous version of
the recent [9, Thm. 1]. It states that a dichotomy spectrum contained in (0, 1) is necessary and sufficient for
uniform exponential stability, while a spectral component in (1, 00) implies instability.

If the stability boundary 1 is contained in the spectrum, then stability cannot be determined via lin-
earization, because nonlinear terms matter. Due to Pliss’s reduction principle (see [19] for ODEs and [13,
pp. 131ff, Chapt. 4] for maps between Banach spaces) one has to investigate the equation reduced to a lower-
dimensional center manifold instead. A related nonautonomous theory in discrete time can be traced back to
[30], although we follow the more recent contributions [1, 24] and [21, pp. 187ff, Chapt. 4]. Then hyperbolicity

is not a generic property anymore and therefore center manifold reduction is even more important for equations
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featuring general time-dependence. The theory is nevertheless rather involved, Taylor coefficients of center
manifolds are determined by dynamical (rather than algebraic) properties [24] and typically assumptions can
only be verified approximately using numerical methods.

Probably due to this reason we are not aware of an explicit application of the tools described above in
a discrete time, infinite-dimensional context. This motivates us to study a corresponding relevant class of

problems, namely nonautonomous integrodifference equations of Urysohn type

upr1(x) = /ft(x,y,ut(y)) dy forallz €
Q

and of Hammerstein type

upt1(x) = /kt(x,y)gt(y,ut(y)) dy for all x € Q.
Q

Initiated by [15] such recursions became popular and sucessful models in theoretical ecology to describe the
dispersal of populations with nonoverlapping generations (see [18]). Formally, they are difference equations in
the space of continuous or integrable functions over a compact set 2 C R (the habitat). The growth period
is determined in terms of a typical growth function g; : 2 Xx R — R of e.g. Beverton-Holt or Ricker type. The
kernel k¢ : © X Q — R describes the dispersal and kt(x,y) can be interpreted as probability to move from
position y to x in the habitat 2 at time ¢. These functions can vary in time, since seasonal, but also aperiodic
external influences are well-motivated from applications. For instance, [14] investigate persistence questions
in river environments.

We provide examples of nonautonomous integrodifference equations allowing an analytical stability anal-
ysis without relying on numerical techniques to a large extend. Admittedly these examples are simple but
have their merit and are still involved to a certain degree. Due to their multiplicative time dependence the
dichotomy spectrum and the relevant invariant subspaces can be computed directly. In the Hammerstein case
they for instance rely on the Laplace kernel k¢, which is often met in applications (cf. [25] or [18, pp. 171,
Sect. 2.3]) but allows for explicit solutions to related Fredholm integral equations. In critical stability situations
we even retreat to periodic time-dependence.

The structure of this paper is as follows: By means of the central Thm. 2.1 we first provide a stability
characterization based on linearization and a nonautonomous spectral theory recently developed in [26].
Despite its rather evident nature, we are not aware of another reference in the literature connecting stability
properties with the dichotomy spectrum. To address complementary critical stability situations, the required
center manifold theory (in the nonautonomous case one speaks of center fiber bundles) is illustrated in Sect. 3,
which includes generalizations of Pliss’s reduction principle (see Thm. 3.1) and a scheme to compute Taylor
approximations of center fiber bundles exemplifying [24]. With regard to our applications and in order to
limit the technical effort, we restrict to 1-dimensional bundles. For the sake of our applications, basics on
Hammerstein- and Urysohn-integrodifference equations in the Banach spaces LP(Q) and C(f2) are provided
in Sect. 4. Our final Sect. 5 is devoted to several specific time-variant integrodifference equations and their
stability. In order to keep the presentation self-contained, we close with three appendices. They tackle critical
stability cases for time-periodic scalar difference equations, provide solutions to Fredholm integral equations

of the second kind and give explicit constants for a stability example in the text.

Notation
Suppose I is an unbounded set of consecutive integers (one speaks of a discrete interval), I’ := {t € : t +1 € I}
and ZF = {t € Z: 7 <t} for some 7 € Z. We write §;; for the Kronecker symbol.

Let (X,]]]|) be a Banach space over K € {R,C} having the dual space X’ and <x,x/> := a’(z) stands
for the duality pairing of x € X with 2’ € X’. The open ball in X with radius r > 0 and center x is denoted
as Br(z). For the set of continuous n-linear mappings T : X" — X, n € N, we write Ly, (X) and abbreviate
L(X) := L1(X), Lo(X) := X; Ix is the identity map on X. Given S € L(X), R(S) := SX is the range and
N(S) := S71(0) the kernel of S. Moreover, we write o(S) for the spectrum and o, (S) for the point spectrum.

A subset V C I x X is called nonautonomous set with t-fiber V(t) :={z € X : (t,z) € V}.
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2 Linearized stability in nonautonomous difference equations

We investigate the behavior of nonautonomous difference equations
upy1 = Fe(us) Q)

in X near a given reference solution ¢* = (¢} );c1 on a discrete interval I. Assume thereto that C"™-mappings
F:: U — X, t € I, are defined on open convex sets Uy C X and m € N. Then the general solution to (A) is

defined via the compositions

{uq—, t=r,
p(t;T,ur) = forall 7 € I, ur € Ur (2.1)
Fi10...0Fr(ur), 7<t
of the right-hand sides, as long as the inclusion ¢(t; 7, ur) € Uz holds.

One denotes (A) as periodic, if there exists a § € N such that J; = J;y4 holds for all t € 1 = Z;
autonomous eqns. (A) correspond to the case § = 1, i.e. when the right-hand sides do not depend on ¢.

A solution ¢* to (A) is called permanent, provided it uniformly stays away from the boundary of the
domain, that is

inf dist(¢;, 0U;) > 0. (2.2)

For the reader’s convenience, we repeat the stability notions mentioned in this paper. Provided the interval

I is unbounded above, a solution ¢* is denoted as

—  stable, if for alle > 0, 7 € I there exists a § > 0 so that ¢(-; 7, ur) exists and satisfies ||p(¢; 7, ur) — ¢f|| < &
for every 7 < t, ur € Bs(¢r) and uniformly stable, if 6 does not depend on T,

— asymptotically stable, if it is stable and for every 7 € I there exists a p > 0 so that ¢(-;7,ur) exists and
satisfies lim¢— o0 ||¢(¢; T, ur) — &F || = O for every ur € B,(¢7); a uniformly asymptotically stable solution
is uniformly stable and p > 0 is independent of 7,

—  uniformly exponentially stable, if there exist K > 1, a € (0,1), § > 0 so that ¢(; 7, ur) exists and satisfies
lp(t; 7, ur) = ¢7 || < Ka' ™7 |lur — ¢7]| for every 7 < t, ur € Bs(7)

and an unstable solution ¢* is not stable. These stability notions are related as follows

UES = UAS = US

U U
AS = S

and for periodic solutions ¢* to periodic eqns. (A), stability resp. asymptotic stability is always uniform.
Using the mean value theorem [31, p. 148-149, Thm. 4.A(b) for n = 1] the difference equation of perturbed
motion ugr1 = Ft(ur + ¢f) — Fi(¢y) becomes
up1 = DFy(f Jur + Re(ur) (2.3)

with the nonlinearity R¢(u) := fol [DF:(pf + hu) — DF(¢7)] dhu. The variational difference equation of (A)

along ¢* reads as

a1 = DFu(67)u (Vi)
We define the transition operator to (V=) by

DFi_1(¢;_1) - DF(¢F), T <,
B(t,T) = t—1(di—1) 7 (67)
Ix, t=r.
It is well-known that the time-dependent spectrum o(DJF:(#7)), t € I, provides no stability information
unless for periodic or slow temporal variation (see [10, pp. 177ff]). Yet, a feasible approach is given as follows:

The variational eqn. (Vi«) is said to have an exponential dichotomy (ED for short) on I, if there exists a
projection-valued sequence (P;");ey in L(X) with

P} DF(¢7) = DFe(¢7) P, DFe(4f) : N(P;) — N(P,) is an isomorphism for all t € I’ (2.4)
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(b) Fig. 1: Dichotomy spectra 3(¢*) indicating (a) uniform
0 1 o R exponential stability of ¢* and (b) instability of ¢*

and reals a € (0,1), K > 1 such that

H@(t, )P

‘ < Koztis, Hq)(s,t)P;H < Ka'™® foralls<t

with the complementary projector P, := Ix — Pt+. An ED on I with Pt+ = Ix on I describes a uniformly
exponentially stable variational eqn. (V-).

The dichotomy spectrum (see [26] and references therein) of a solution ¢* is
S(g") = {p >0: upgpq = %Diﬂ((ﬁ?)ut has no ED on ]I} .

This closed set X(¢*) is a union of spectral intervals among which the most right-hand one (see Fig. 1) is called
dominant. Each spectral interval has an associated spectral bundle — a nonautonomous set whose fibers are
linear subspaces being invariant w.r.t. (V). Their dimension is called multiplicity of the spectral interval. If
the associate spectral bundle is one-dimensional, then one speaks of a simple spectral interval.

A survey on the dichotomy spectra of difference equations in infinite dimensions is given in [22]. In the

simplest time-variant situation, the periodic case one obtains:

Example 2.1 (periodic and autonomous case). For §-periodic variational eqns. (Vy«) the spectrum is

5(¢") = Vlo(@(r +0,7))\ {0};

this quantity is independent of T € Z due to [26, p. 42, Prop. 3.1(a)]. In particular, a fized point u* of an
autonomous difference equation
1 = F(ut) (A")

has the dichotomy spectrum % (u*) = |o(DF(u™))|\ {0} and the spectral intervals correspond to the moduli of
spectral points.

Our main result tackling stability is as follows:

Theorem 2.1 (linearized stability). If ¢* = (¢} )icr is a permanent solution of (A) on an interval 1 un-
bounded above and the relations
sup HD?t(qﬁ}f)H < 00, lim sup ||fot(qz$}f +u)— fot(dﬁk)H =0 (2.5)
tel u—0 ¢l
are satisfied, then the following holds:
(a) If 3(¢") C (0,1), then ¢* is uniformly exponentially stable and on an interval I bounded below also the
converse holds (cf. Fig. 1(a)).
(b) If (1,00) contains a spectral interval of 3(¢*), then ¢* is unstable (cf. Fig. 1(b)).

Remark 2.1. (1) Since Fréchet differentiability is a rather strong assumption in certain applications, the
subsequent proof shows that the assertions of Thm. 2.1 remain true for the zero solution of semilinear differ-
ence equations ui+1 = Kiur + Re(ut) under corresponding assertions on the dichotomy spectrum X(K) and

1Re (u)=Re (@ _ ‘ ;
Tu=al = 0 uniformly int € 1.

nonlinearities Ry : Uy — X satisfying R¢(0) = 0 € Uy and limy, g0

(2) Both scalar difference eqns. ugy1 = ug+ui andugy1 = ug—ui have the trivial solution with (0) = {1}.
Due to Thm. A.1(a) the zero fized point of the first equation is unstable, which shows that the converse of
statement (b) does not hold. Thm. A.1(b) implies that the zero solution of the second equation is (uniformly)

asymptotically stable and thus exponential stability in statement (a) cannot be replaced by asymptotic stability.
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Yet, in the light of Exam. 2.1 the above result generalizes the classical autonomous situation [13, 9] with 1 as
stability boundary. In general, however, ¥(¢*) has to be approximated numerically (see [12] for dim X < o00).

The next example shows that the boundedness assumption on the coefficients of (V~) is not technical:

Example 2.2. The linear difference equation

tj+1 0
Ut+1 = (' | 1) ut (2.6)
0 3

in X = R? has the dichotomy spectrum {%} C (0,1). Its transition operator

t—1
1
B(t,5) = (HT—S(OT+ ) 230_t> for all s <t

shows that unbounded solutions to (2.6) exist. Therefore, eqn. (2.6) is unstable.

In case I = Z the assertion (b) follows from the existence of an unstable manifold (fiber bundle) associated
to ¢ (see [21, p. 259, Thm. 4.6.4(b)]). However, our subsequent proof merely assumes (V) to be given on
a half-line unbounded above.

Proof (of Thm. 2.1). First, we restrict to stability properties for the trivial solution of the eqn. (2.3) of
perturbed motion, which is defined in a neighborhood of 0 uniformly in ¢ € I (thanks to permanence (2.2)).
Moreover, let 7 € I and ¢ stands for the general solution to (2.3). Note that ¢(-; 7, ur) is also a solution to
the linearly inhomogeneous difference eqn. ui11 = DF¢(df )ur + Re(4(¢; 7, ur)) and the variation of constants
formula (see [21, p. 100, Thm. 3.1.16(a)]) yields
t—1
Pt ur) = Bt T)ur + Y B(t s + DRs(@(s3 7, ur)) (2.7)

s=T

as long as ¢(+; 7, ur) exists. Second, due to (2.5), for all M > 0 there is a p > 0 with
|Re(u)|| < M ||lu|| for all t €I, u € B,(0). (2.8)

(a) (=) Due to Z(¢*) C (0,1) there exists reals K > 1 and « € (0,1) such that
@t )| < Ka'™ ™ for all 7 < t. (2.9)

We choose M € [0, 1_?") and obtain a + KM € [0,1). Finally, given an initial value ur € B,(0) we define
T*(ur) := sup {9 €Zf : ||lp(t;Tur)| < pforall 7 <t < 0} as exit time at which the solution @(-;7,ur)
leaves the p-neighborhood of the trivial solution for the first time. This definition includes T (u+) = oo, when
the solution stays in B,(0).

(I) We show that every initial value u, € B,(0) yields an estimate

I3t 7 ur)|| < K (a4 KM)'™ |lur|  forall 7 < t < T*(ur). (2.10)

Thereto, on this discrete interval, (2.7) brings us to the estimate

(2.9) B =
lptrunll < Ko flul + K S o R (s 7 un)|

S=T

(2.8) _ KM S oy

R N [ DL il [ GRS
S=T

and multiplication with o” ~¢ implies the inequality

t—1
_ KM _ "
o @t un)l| < K flur|l + == Y 0T [@(si mour)| for all 7 <t < T (ur).

s=T
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This relation and the Grénwall lemma [21, p. 348, Prop. A.2.1(a)] yield
o™t mur) | < K (1+ KM s for all 7 < ¢ < T (ur),

which is obviously equivalent to (2.10).
(II) In order to conclude the proof, we exploit (2.10) where (a4+ KM)!™" € [0, 1) is strictly decreasing in
t € ZF . First, given initial values u, € B,k (0) we obtain that [|4(¢; 7, ur)|| < (a+ KM)'"7p < p and hence
T*(ur) = co. Thus, (2.10) holds for t € Z; and the trivial solution to (2.3) is uniformly exponentially stable.
(<) Let I be bounded below. By assumption there exist reals K > 1, a € (0,1) and ¢ > 0 with

p(t; 7, ur)|| < Ka' 7 |jur||  for all 7 < ¢, ur € Bs(0) (2.11)

and we follow the finite-dimensional case considered in [11]. For fixed 8 € (, 1) choose M € (0, ﬁfTo‘) and
using (2.5) there exist a p > 0 such that (2.8) holds. If we take pg € (0, min {5, £1), then (2.11) implies
lo(t; mur)|| < K |lur|| < Kpo < p for all 7 < t, ur € By, (0) and

(2.7) X =1 R
o, Turll < @ Tun)| + MY [0 s+ D] |¢(s; 7 ur)
s=T
(2.11) =1
< Ko Tpo+ MKpo Y a7 [0t s+ 1)
S=T

Because of a < § this guarantees

T—t MK po —/a\sT (s+1)—t
Bt Turll < Koo+ =520 3T (F) BV et s + 1)

with wy := maxi_. 8578 ||®(¢, s)|| it results

T—t MKpO ! s—T
BT |@(t, T)ur|| < Kpo + 5 wtz = < Kpg+ ——19 5o

and consequently

KM
wt
@

_ _ 1
BTN ) = 87" sup |[@(t, T)ull = — sup [ @(¢,T)ull < K + B—
Jull<1 PO [lull<po

for all 7 < t. Hence, wy < K + B o.)t by passing to the maximum over 7 € {0, ...,t} on the left-hand side.

Due to B < 1 and the choice of M, this inequality implies that 87" |®(t, 7’)H < ﬁKgﬁiM)K Thanks to

< 1 this means that =) has an with projector = Ix and therefore -
B < 1 thi h V=) h ED h Pt+ 1 d theref Y(o* 0,1).
—t

(b) Let o be a spectral interval in (1,00) (see Fig. 1(b)). We start with the substitution wy := v~ *u; for
some v € (0,00) \ X(¢*) N [1,min o) yielding the equation
w1 = EDFe(¢F)we + e Re(v we) (2.12)
and the general solutions ¢ of (2.3) and % to (2.12) are related by
Ot we) =~ @t T ur). (2.13)
Thanks to min o > 1 the scaled variational equation
wip1 = £ DFy(¢F Jwr (2.14)

has an ED on I with projectors Pt+ # Ix for all t € [ i.e. there exist reals K > 1, a € (0,1) such that

H(b“/(t’ S)P;_

‘ < Kal™*, Hfby(s,t)Pt_H < Kal™ forall s <t, (2.15)
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where @~ is the transition operator to (2.14). Hence, we obtain

t—1 00
Z H(I)’Y(tvs + 1)P9—:-1H + Z H(I)’Y(tas + 1)Ps_+1H
s=T s=t

(2.15) i1 1 ~
< KZatiS +KZo¢S+1 t<K1+a =K foral <t (2.16)
S=T s=t

and choosing M € (0,[?71) in (2.8) implies 1 — KM € (0,1).
(I) We show that if ¢(-; 7, ur) satisfies ||@(¢; 7, ur)|| < p for all 7 < ¢, then
¢ty ur)|| <477 (1= KM)™

S ur|l forall T <t. (2.17)

Indeed, the bound on @(t; 7, ur) yields

Combined with (2.16) this guarantees that

(2.8)
ArRe(ptrun)|| S M lettmun)l < Hp foranT <t

t—1
= 1?(72 T, w"') - q)V(t’ T)P:_wT + Z 75‘% (t s+ 1) s+1:R5( (S T, uT))

S=T

N Z T (s + P Re((s3 7, ur))

defines a bounded sequence 1 = (1t)r<¢. Moreover, the curious reader might verify that 7 solves (2.14) and
satisfies P n; = 0. Since (2.14) admits an ED on Z7, this is only possible if n; = 0 on ZF (cf. [21, p. 140,
Cor. 3.4.21(a)]). Thus, we obtain

t—1
Dt we) = Ba(t,7)Plwr =Y L@y (8,5 + 1) P Re(p(s57,ur))

S=T

+Z St Oyt s + 1) Py Rs(@(s3 7, ur)),
according to (2.8) this implies

[0 (t; T wr)|| < Ka'™ ™ P+w‘r

+MZH% (154 )2 | 12T

6 (s; 7 ur)l
+MZH<I>7ts+1 s+1”#,

a combination of (2.13), (2.16) and v > 1 gives

o (t; 7, we)|| < Ka' ™7 || PFws

+ KM sup ||[¢(s; 7, wr )| for all 7 <t
T<s

and finally the estimate ||¢(t; 7, wr)|| <4 " (1 — KM)"'K HPT+“T|| holds. Due to (2.13) we arrive at (2.17).
(IT) Suppose that the trivial solution to (2.3) is stable, i.e. for € > 0 there is a § > 0 so that ur € Bs(0)
guarantees ||¢(t; 7, ur)|| < € for all 7 < t. Since Pj™ # Ix, one can choose a nonzero ur € N(P;7) and (2.17)

implies 0 < ||ur|| = ||@¢(7; 7T, ur )| = 0, which is a contradiction. O

Concrete applications of Thm. 2.1 will be given in Sect. 5.



8 === Christian Pdtzsche and Evamaria Russ, Reduction principle at work DE GRUYTER

«a I} o Fig. 2: Dichotomy spectrum requiring a reduction to a center-
0 ' 1 R  unstable fiber bundle W™~ and choice of oo < 3

3 Critical stability situations

This section complements Thm. 2.1. Indeed, given a permanent solution (¢;)¢cy of (A) we assume that the
stability boundary 1 is contained in the dominant spectral interval of the variational eqn. (Vig« ). More precisely,
we suppose I is unbounded below and
(0) 3(¢") has at least two components and 1 is contained in the dominant spectral interval o. Moreover,

choose reals 0 < a < 8 < 1 such that (o, 8) N X(¢*) = 0.
There is a p € (o, 8) as in Fig. 2, i.e. in the spectral gap just left of the dominant interval o. By construction,
the scaled variational eqn. usy1 = %DS’“} (¢7)ur has an ED on I, whose projector may have the (unique)
complementary projector (P, )¢l

Now stability properties of the reference solution ¢* need not to be determined by the linearization (V- ).
They rather depend on the nonlinearity R; in (2.3) and our further analysis requires some preparations. The
center-unstable vector bundle

Vo= {(t,m) elxX:ze R(Ptf)}

of the variational eqn. (V) is invariant and (2.4) guarantees that all fibers V™ (t) are isomorphic; in particular,
they have the same dimension, which is denoted as multiplicity of the dominant spectral interval o. Addressing

the nonlinear eqn. (A), the set V™ persists as locally invariant center-unstable fiber bundle
W =¢"+{(ne+uwr(©) eIxX: €€V (NN B(0)}

of the solution ¢*: This means there exists a r > 0 so that each fiber W™ (t) is graph of a Lipschitzian
function w; : V™ (t)NBr(0) — R(P;), t € I, satisfying w; (0) = 0 on I (cf. [21, pp. 259-260, Thm. 4.6.4(b)]).
The nonautonomous set YW~ contains all solutions to (A) which exist in backward time and have a bounded

distance to ¢*. Thus, W™ captures the essential dynamics of (A) near ¢* in terms of

Theorem 3.1 (reduction principle). Suppose (o) and (2.5) hold on 1 =7Z. A permanent solution ¢* of (A)
is (uniformly, asymptotically, uniformly asymptotically, uniformly exponentially) stable, or unstable, if and

only if the zero solution of the reduced difference equation

Vi1 = DF(¢f )ve + Py Re(ve + wy (vr)) (3.1)
in the center-unstable vector bundle V™ has the respective stability property.
Proof. The trivial solution to the eqn. (2.3) inherits the stability properties of ¢*. Furthermore, [21, p. 267,
Thm. 4.6.15] applies to (2.3) and yields the claim. O

For compact operators DF¢(¢F) € L(X), t € I, more can be said on the structure of %(¢*) and [26] gives a
detailed classification. In particular, the center-unstable bundle V™ has fibers of constant and finite dimension
¢ € N. Thus, the reduced eqn. (3.1) can be transformed to a difference equation in K¢ as follows: For the sake

of a (significant) simplification, we suppose the (complementary) projectors Pti = P* do not depend on t

and choose a basis {eq,...,ec} of R(P™). By means of the Hahn-Banach theorem we can complement it with
elements {e'l, e e’c} C X’ to a biorthogonal system, i.e.
<ei,e;-> =0;; foralll<i,j<ec (3.2)

With vy = Z;:l fgej and P~v:= Y7 | (v,€})e; the reduced eqn. (3.1) becomes

S s = DI Y ey + 3 <mt (z cles +ui (z g)) > .
j=1 Jj=1 Jj=1 =1 =1
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Fig. 3: The a-S-plane illustrating the maximal degree of differentiability

2 m < }ﬁ—g (encoded via the color bar) for the center-unstable bundle W~

according to the spectral gap condition (Gy,) for different values of the
a reals 0 <a<fB<1

applying <-, e;C> on both sides yields

c c C
b B ST (DFu()es. ) € + <szt (Z Ehei +w; (Z&%@)) ,e;> forall 1 <k <c
j=1 i=1 i=1

and we finally arrive at the finite-dimensional equation

’£t+1 = fi(&) == Cr&e + Re(&t) ‘ (3.3)

in K¢ with £ = (¢1,...,¢£9), C; := (<D?t(¢f)ej, e;c>)§7k:1 and the nonlinearity

R (€) == <<th (Z §iei + wy (Z Eiei>) 7e§€>> forallt el
=1 i=1 k=1

3.1 Smoothness and approximation of center-unstable fiber bundles

As mentioned above, the fibers of a center-unstable bundle W™ can be represented as graphs of Lipschitzian

mappings w, : V™ (t) N B,(0) — R(PT), t € L. In order to approximate w, , a higher-order smoothness is

desirable. In the general nonautonomous situation this is based on the following technical assumption:

— X is a C™-Banach space, i.e. the norm ||-|| : X — R is m~times continuously differentiable away from 0.
Concrete examples and information on such spaces are given in [21, pp. 364ff, Sect. C.2].

Then, [21, pp. 259-260, Thm. 4.6.4(b)| shows that the functions w; , ¢t € I, are of class C' and satisfy

w; (0) =0, Dw; (0)=0 onl. (3.4)

Concerning higher-order differentiability, for nonautonomous problems it is not guaranteed that YW~ inherits

the smoothness from the right-hand side of eqn. (A):

Remark 3.1 (spectral gap condition). The additional spectral gap condition
a < ﬁm (Gm)

yields that also the bundle W™ is m-times continuously differentiable. For dominant spectral intervals o
satisfying min o = 1, which particularly holds in the compact periodic situation, it is always possible to fulfill
(Gm) by choosing B < 1 sufficiently close to 1. If mino < 1, then (Gm) is an actual restriction on the
differentiability order and Fig. 8 illustrates the mazimal value m such that (Gm) holds for 0 < a < 8 < 1.

For simplicity we suppose from now on that the dominant spectral interval containing 1 has multiplicity 1.
Hence, also W™ possesses dimension ¢ = 1. Given a sufficient differentiability order m € N, the derivatives of
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the nonlinearity R¢(§) = <Rt (Ee1 + wy (Eer)), e/1> become

Ri(€) = (DRy(Eer + wy (€e1))ler + Duy (€ev)el,eh ),

R (€) =(D*Ry(Ee1 + wy (€e1))[er + Dwy (€er)er]” + DRe(Eer + wy (Ee1))D*wy (Eer)ed, €h),
R/ (€) =(D*Ry(€e1 +wy (€e1))ler + Dwy (€er)er]®

+ 3D Ry(Ser + wy (§er)) | DPwy (§en)e | e + Dy (€eren]

+ DRe(€e1 + wy (Ee1))DPwy (€er)ed, )

and consequently, due to (3.4), we arrive at R}(0) = 0,
#(0) = (D*Ri(0)ed €} ) #'0) = (D*Ri(0)e} + 3D°Re(0) [ D*w; (0)edler, i) (35)

for all t € I, provided (G2) resp. (G3) holds. Hence, an explicit knowledge of Taylor coefficients to the center-
unstable bundle W™ is only required for 3rd and higher order approximations of (3.1). Our approach is based

on the fact that the functions w, satisfy the invariance equation

P DF(¢7)wy (Ger) + P Ry(er +wy (Sen))
= wiy1(EDFy (7 )er + P~ Rey1(ber +w; (€er))) foralltel', € €R (3.6)

as long as the inclusion EDF¢(py)e1 + P~ Rip1(§er + w, (€er)) € Br(0) holds. If m > 1, then differentiating
(3.6) twice w.r.t. £ yields

P DF1(¢f)D*w; (€e1)ei+PT [D*Ry(€er+w; (€er))ler+Dwy (Eer)er]*+DRe(Eer+w; (Sex)) D w; (Ger)ed]
= D*wy41(6DTFe(7)er + P~ Ryy1(Eer + wy (€er))):-
- [DFe(¢7)er + P~ DRyy1(€er + wy (Eer))ler + Dw; (€en)en])”
+ Dwy 41 (EDF1(67)er + P~ Ry (Ser +w; (Ge1))) P [D*Reqa(€er + wy (Se1))ler + Dw; (Sex)er]”
+ DRiy1(Ger +wy (Se1))D?w, (er)ed].

Due to (3.5), setting & = 0 implies a linearly inhomogeneous difference equation
PTDTFy(¢7)D*wy (0)ef + PTD*Re(0)ef = D*wy, 1 (0)[DF¢(¢7)er]* forallt el

Keeping our assumption of constant projectors in mind, R(P ™) is invariant w.r.t. (V«) and there exist scalars
Nt # 0 such that nre; = DF¢(¢pf)e1. Indeed, (3.2) implies 1y = <D3"t (97)e1, e’1> for all t € I'. This means that
the sequence t — D2wt_ (0)e? in R(P™), bounded due to [24, Thm. 3.2(b)], solves the homological equation

niwes1 = PTDFy(¢7 )wi + PTD*Ry(0)e] (3.7)
and, for nonzero coefficients n;, is therefore of the form (cf. [24])

t—1 t—1
D*w; (0)ef = > ( 11 12) ®(t,s + 1)PTD*Rs(0)e] forall t € L.
T

r=s+1

S=—00

3.2 Periodic and autonomous equations

The general nonautonomous situation simplifies for -periodic eqns. (A) and solutions ¢* such that the varia-
tional eqn. (A) has compact coefficients. First, the dichotomy spectrum is discrete. Second, as a consequence,
the gap condition (Gm) can always be fulfilled. Third, the center-unstable vector bundle V™ is finite-dimen-

sional and the technical assumption of X being a C"-Banach space can be avoided. In fact, an ambient center
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manifold theorem for maps is due to [16, p. 189, Thm. III.1] for m = 1 and [6] for m € N. These results carry
over to f-periodic difference eqns. (A) and solutions ¢* as follows: They apply to the period maps

Tr ::?T+9710~~-O?TIUT—>X

and each T € Z yields a center-unstable manifold W™ (1) for the autonomous system u;y1 = mr(u¢). By the
mr-invariance of W™ (7), the fibers W™ (t) := ¢(t; 7, W™ (7)), as well as the functions w, are 6-periodic and
define the center-unstable fiber bundle of (A). Thus, one has to solve the homological eqn. (3.7) for #-periodic

sequences. This results in the 6 cyclic linear equations

{nfwm = PYDF (¢ )ws + PTD*Ry(0)e? forall 0<t <6 —1,
MG_1wo = PYDFy_1(¢p_1)wg—1 + PTD*Ry_1(0)ed,

whose solution (wy, ..., wy_1) € R(PT)? yields the coefficients Dzwt_ (0)e? = w; for 0 < t < 6.

For a fixed point u* of an autonomous eqn. (A’) and DJF(u*)e; = ne; one solves
2 Ix — PYDF(u*)D*w™ (0)e} = PTD2R(0)e? in R(PT);

that is a single linear-inhomogeneous equation.

4 Integrodifference equations

Our next aim is to apply the above general methods to concrete integrodifference equations (abbreviated as

IDESs). Thereto, suppose (2,2, 1) is a measure space with nonempty bounded Q C R and p(2) < oco.

4.1 Hammerstein equations in X = L?(Q)

A first possible state space are the p-integrable functions

LA, p) = qu:Q— K? |u is p-measurable, /|u\p dp < oo
Q
equipped with the canonical norm [juf, := (fﬂ [ulP d,u) P for p > 1.1t is well-known that (Lf(, u))p>1 forms

a strictly decreasing scale of Banach spaces, which in the terminology of [3, p. 43|, are pairwise compatible.
Moreover, L5 (€, 1) is a C"?-Banach space with (see [4, p. 184, Thm. 1.1])

p—1, pe€Nisodd,
Mmp = [p]7 pE [LOO) \N’

0, p € N is even.

In particular, L3(Q,u) is a Hilbert space with (u,v) = Jo Z?Zl uj(x)vj(x)dp(r) as inner product. We
abbreviate LP (€, u) := L¥(Q, p) and LP(2) := LP (€1, i) when the Lebesgue measure p1 = i, on R” is used;

here we write fQ u = fQ u(y)dy = fQ wdpg.
Let us consider Hammerstein integrodifference equations of the form

Upp1 = /kt(ny)gt(y,w(y))du(y) + hy (H)
Q

with inhomogeneity h; € LZ(Q, w). Our analysis of (H) requires to represent the right-hand side

fft(u) =X;o St(u) + h¢
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of (A) as composition of a linear integral operator and a substitution operator

(Kew)() = / ke, y)o(y) duy), (5¢(0))(@) == gi(w,v(x)) forall z € O,
Q

Their properties are subject to our following analysis, in which ¢ € I is kept fixed: For the kernel functions
ki : QO xQ— L(Kd) we suppose Hille-Tamarkin conditions: There exist p,q > 1 such that

(htl) k¢ is 4 ® p-measurable,

(ht2) for all u € LI(RQ, u) there exists a p-zero set Ny so that k¢(z, -)u is p-measurable on € for all z € 2\ Ny,

and the following function is p-integrable

() = Jo k@, y)uly) du(y), = € Q\ N,
‘ 0, T € Ny,

(ht3) if ¢ > 1 is determined by % + % = 1, then k'(x) := ||ke(x, g < oo for pralmost all z € Q and
k' € LP(Q, u) holds.

Lemma 4.1. If (ht1-ht2) hold, then K € L(L(Q, n), LE(2, 1)) is well-defined. Assuming additionally p > 1,

then (ht3) implies compactness.

Proof. See [7, p. 288, Satz 1 and p. 293, Satz 2|. O

Concerning the growth function g¢ : 2 x K? — K? we suppose that the partial derivatives Dlzgt exist and
satisfy Carathéodory conditions for all 0 <1 <m, m € N:

(c1) Dhgi(-,2): Q — L;(K?) is py-measurable on Q for all z € K¢,

(c2) Dhgi(z,-) : K = L;(K?) is continuous for y-almost all z € Q.

Lemma 4.2. Let 0 <[ < m, ¢y € LY(Q, pn) for ¢ > 1, c1 > 0 and suppose (c1-c2) are satisfied. If mq < p

and the growth conditions

p—lg

’Dlggt(a:,z) <co(x)+cylz] 4 for p-a.a. x € Q and all z € K¢ (4.1)

hold, then Gt : LE(2, p) — LY(, p) is well-defined and of class C™ with derivatives
[Dl9t(u)1)1 ceyl(x) = Dlggt(m,u(m))vl (x)---v(x) forallz € Q and all u,v1,...,vm € LE(Q, p).
Proof. A proof can be modeled after [5, p. 372, Prop. 7.57]. O

Proposition 4.1. Let cg € LY(Q,pu) for ¢ > 1, c1 > 0, suppose (ht1-ht2) and (c1-c2) are satisfied. If
mq < p and (4.1) hold, then K¢ o Gt : LE(Q, u) — LE(Q, ) is well-defined and of class C™ with derivatives
D' (Kt 0 G¢)(u) = K¢ D'Gi(u) for all 0 <1 < m and u € LH(Q, ).

Proof. The linear operator K¢ € L(L§(€2, p), L5(€, 1)) is well-defined by Lemma 4.1. Then Lemma 4.2 and
the chain rule applied to K¢ o G¢ yield the claim. O

4.2 Urysohn equations in X = C(Q)

Let us focus on compact sets 2 C R* and equip
Cy(Q) == {u Q= Kd| u is continuous}

with the natural norm ||ul| := sup,¢q |u(x)|. The Banach spaces Cy(€2) and LE(Q), p > 1, are compatible as
understood in [3, p. 43] and we abbreviate C'(2) := C1(Q2). However, Cy(f2) typically has no smooth norm.
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Consider an Urysohn integrodifference equation

sy = / Fo (e () da(y) + e (U)
Q

with an inhomogeneity h: € Cy(Q2) and a function f; : Q x Q X Z; — K% defined on a nonempty open sets
Zy CK? satisfying for each fixed ¢t € I that:
(ul) DLfi: QxQx Zy — Li(K%), 0 <1 < m, exist as continuous functions.

Proposition 4.2 (see [23]). If (ul) holds, then Ft : Cq(Q, Zt) — Cq(Q) is well-defined and of class C™ with

derivatives

D'Fy(u)vy - -‘vl:/Déft(‘,y,u(y))vl(y) cu(y) dp(y) for all 0 <1< m, ue C(Q,2Zt), v1,...,vm € Cq(Q).
Q

4.3 Linear integral operators

We equip R® with the Lebesgue measure u = ux and suppose 2 C R” is compact. Given a kernel function
k:Qx Q— LK% consider the Fredholm integral operator

5y = / k(- w)u(y) dy. (4.2)

Q

If K is (power) compact, then the Riesz-Schauder theory [7, 8] guarantees that o(X)\{0} consists of eigenvalues
An, n € N, having finite multiplicity with 0 as only possible accumulation point and a countable set N. As a

convention, the Ay, are numbered according to
S s S A2 < A

Proposition 4.3. Letp > 1 and X € {LZ(Q)7 Cd(Q)}. If k: Q x Q — L(KY) is continuous, then K € L(X)

defined in (4.2) is well-defined and compact. Moreover, the eigenpairs ((An,en))nen of K are independent of

X and the following holds true:

(a) If N(X) = {0} and k(z,y) = k(y,x) for x,y € Q, then N is countably infinite and the (normed) eigen-
functions (en)nen are an orthonormal basis of L3(Q).

(b) Ifd=1, K=R and k(z,y) > 0 for all x,y € Q, then e1(z) > 0 for all z € Q.

The assumptions of (a) rule out that X has a degenerate kernel.

Proof. Being continuous on the compact set Q2, the kernel k : Q2 — L(K%) fulfills (ht1-ht3) with p = p.
Therefore, Lemma 4.1 shows that X € L(L%(€)) is well-defined and compact. On the space X = Cy(Q2) these
properties are due to [7, p. 247, Satz 4]. Since Cy(2) and LZ(Q), p > 1, are compatible Banach spaces, [3,
pp. 109-110, Thm. 4.2.14] implies eigenpairs ((An,en))nen of K € L(X) being independent of X.

(a) By assumption, X € L(L3()) is self-adjoint and [8, p. 200, Satz 3] implies that the (normed)
eigenfunctions of X are a complete orthonormal system in L?I(Q), i.e. an orthonormal basis.

(b) results immediately from the Krein-Rutman Theorem [31, p. 290, Thm. 7.C| applied to X € L(C())

and the solid cone of nonnegative continuous functions. O

In what follows, we suppose d = 1 and conveniently introduce the numbers

K 1= //k(:my)el (y)i dyei(xz)dx for all i € N.
Q Q
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Example 4.1 (degenerate kernel). Let p > 1 and X € {LP(Q),C(Q)}. Let us assume that a; € C(Q),
bj € X, 1< 5 <J, are functions such that

k(z,y) = Z a;(y)bj(z) forallz,y e Q
Jj=1

and {b1,...,b5} C X is linearly independent. We define the matriz

K = (kij)i j=1, kij = /ai(y)bj(y) dy
)

and obtain o(X) \ {0} = o(K) \ {0}. If v € K/ is an eigenvector of K, then the corresponding eigenvector of
the operator X with degenerate kernel is v := Z;;l vjb;.

The habitat in the next example is an interval 2 := [—%, %] of length L > 0, equipped with the Lebesgue

measure p = p1. Let us begin with a prototypical kernel relevant in applications, but allowing an analysis

based on few numerical tools.

0 14 V3 1431 0 vy vy Vg

Fig. 4: Solutions (v;);jen of the transcendental equations tan(%u) =1 (left) or cot(%y) = —% (right) from Exam. 4.2

v
as intersection of the corresponding graphs. See Tab. 1 for numerical values in case aL = 2

Example 4.2 (Laplace kernel). Let L > 0 and Q = [—%, %] For reals a > 0 the integral operator (4.2) with
kernel

k(z,y) := %e_alw_yl for all z,y € Q (4.3)
is well-defined and compact. Due to [25, Appendiz 2] its spectrum is obtained as follows: Provided (see Fig. 4)

- tan(%u) = % has the positive solutions 11 <vz <...,

- cot(%u) = —1 has the positive solutions vo < vy < ...,

then op(K) = {d € R: n € N} C (0,1) with the strictly decreasing eigenvalue sequence An = and

1
1+1/72L

for alln e N

. 2avy cos(avnz), n is odd,
en(@) = Lavy, — (—1)™sin(aLvn)

sin(avpz), mn is even

as associate eigenfunctions. Moreover, e1(x) > 0 for all x € Q and thus the reals

L/2 L)2
ki = % / / e_al‘r_ylel(y)i dyei(z)dx >0 for alli,j € Ny
—Lj2-L/2

are positive by Prop. 4.8(b). We refer to Tab. 1 for numerical approzimations of the eigenvalues An of K (for
al = 2) and note that they behave asymptotically as

a’L? A a’L?
a?l? + 72(1 + 2n)2’ =1 ™ 2121 72(2n)2

Aon as n — 0o.

Since all eigenvalues are positive, K is positive-definite and consequently N(X) = {0} implies that (en)nen 1S
an orthonormal basis of L*(Q) due to Prop. 4.3(a).
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An Tab. 1: The solutions vy, > 0 and the resulting eigenvalues \,,, 1 < n < 7, from
Ant1 Exam. 4.2 in case aL. = 2. See Fig. 4 for an illustration

0.860334 | 0.574655 2.93985
2.02876 0.195471 2.48929
3.42562 0.0785245 | 1.97406
4.91318 0.0397783 | 1.68814
6.4373 0.0235633 | 1.52358
7.97867 0.0154657 | 1.41988
9.52933 0.0108923 | 1.34943

Un An

N OOt W N =3

Example 4.3 (periodic kernels). Provided ko : R — C is a continuous, L-periodic function, a convolution
kernel k(z,y) := ko(x —y) for all z,y € Q yields a Fredholm integral operator (4.2), whose eigenvalues are
given by the Fourier coefficients

L/2

1 _2mun
=1 [ Rl E Yy
—L/2

2mn
with corresponding eigenfunctions en : @ — C, en(z) := \/%e L 7 for alln € Z. That is, the eigenfunctions

coincide with the trigonometric system (en)necz and form an orthonormal basis of LQ(Q), as well as a Schauder
basis of LP(Q) for 1 < p < oo.

5 Examples

Let (v¢)ter be a nonzero sequence in K satisfying
supmax{|’yt|,|'yt\71} < oo (5.1)
tel

and we define its upper resp. lower Bohl exponent

B(7) := lim inf ¥

= i
B e b £ L—oo tel

L—oo tel

on a discrete interval I unbounded above. For instance, #-periodic sequences have the geometric mean as Bohl

exponents B(7) = B(7) = ¢/l |-

We are interested in linear nonautonomous IDEs

o2

where X € L(X) denotes a Fredholm operator as in (4.2) satisfying the assumptions of Prop. 4.3. Let us

define a sequence of positive reals ... < p2 < p; by means of
{pn>0:mne N} =|o(XK)|\ {0}
and suppose the spectrum of (5.2) is of the form ¥ = (J;cn/[p;8(7), piB(Y)].

Example 5.1 (Laplace kernel). The dichotomy spectrum X of a linear nonautonomous IDE (5.2) with the

Laplace kernel (4.3) has the following properties (cf. Fig. 5):

(a) If B(v) = B(v), then & = UjeN {AjB(’y)} 1s discrete with spectral intervals of multiplicity 1 and constant
spectral manifolds V; = 1 x span {ej }, jeN,

(b) if B(v) < B(v), then & = (0,A\;418(7)] U szl[/\jé(’y),)\jg('y)} for some J € Ng, with constant spectral
manifolds V; = I x span {ej}, 1<5<J,
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B T R I — —
0 B\ B R
B (A Fig. 5: The dichotomy spectra from Exam. 5.1: (a) Countably
(®) many singletons accumulating at 0 as spectral intervals for
0 @y, ay by a by R é('y) = B(v) and (b) J + 1 spectral intervals for é('y) < BH)

(c) if B(v)A2 < B(v)A1, then the dominant spectral interval is simple,

where the real and positive eigenvalues \p, were determined in Exam. 4.2. This is shown in [22] and particularly
[22, Thm. 1, Ezam. 12] for (b). Concerning (c) the assumption implies that the dominant spectral interval

has positive distance from the remaining spectrum and the spectral manifold I x span {e1} has dimension 1.

From now on, suppose (7¢):crr is a sequence of positive reals satisfying (5.1).

5.1 Beverton-Holt integrodifference equation

Let us understand the scalar IDE )
ut(y
t+1 %/ ( y)1+w(y) y (5.3)
Q
as of Urysohn type (U) with the function f; : © x Q x (~=1,00) — R given by fi(z,y,2) = vk(z,y) 55,
t € I, satisfying (ul) due to
D _ (=)
3ft(x,y,z) —’Ytk(@y)w for anleN
Prop. 4.2 shows that the right-hand side ¢ : Uy — C(Q) of (5.3) is of class C* on the constant open sets
Up:={ueC(): —1<infrecqu(xz)}. We interpret (5.3) as difference equation in C(€2) and in the equation

of perturbed motion (2.3) (corresponding to the trivial solution ¢; = 0) one has

—2 _dy foralltel
T+ u(y) y flor a S

DF(0) =7, Rifu) = 2t [ k)1
Q
In order to obtain stability properties of the trivial solution, consider the associate variational eqn. (5.2)
with the operator K from (4.3). Thus, due to Thm. 2.1 the trivial solution to (5.3) is
—  uniformly exponentially stable, if and only if p13(7) < 1 (see Fig. 1(a)),
—  unstable, if p23(v) < p18(7) (guaranteeing a spectral gap left of the dominant interval) and 1 < p13(7)
(see Fig. 1(b)).
As alternative spectral constellation (see Fig. 2) we now assume
(01) The eigenvalue A; of X is simple and dominant (i.e. p; = |A1]) with eigenfunction e; : @ — K

(02) X(¢%) has at least two components, where

p1B(v) <1< p1B(y), p2B(7) < p1B(7). (5.4)

Note that paB(7y) < p*B(7)™ is sufficient for the spectral gap condition (Gyy).

In the following, given v € C(2) we use

as duality pairing and define constant, complementary projectors

P v:= /v(w)el(a:) dzey, Pty :=v—P o (5.5)
Q
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Under the above spectral constellation a reduction to the center-unstable fiber bundle W™ of (5.3) is due.
The reduced eqn. (3.3) has the right-hand side

561 () + wy (Ee)®)? | ——
fe(€) = yAi€ — ’Yt// 1+£€1( )—l—tw;(&el)(y) dye; (z) dz

and D?R;(0)e? = —2v; fQ - y)e1(y)? dy. Let us now refrain from the general nonautonomous case due to
the following reasons: First, since C'(Q2) is only a C%-Banach space, the reduced difference eqn. (3.1) is merely
Lipschitz. Second, we are not aware of tools to investigate critical time-variant difference equations (note that
e.g. [24, Prop. 5.4] does not apply). We supplement (c1-02) by the assumption

(03) The dominant eigenvalue \; of X is real and positive with real and positive eigenfunction e; :  — R.

Example 5.2 (periodic and autonomous case). Let (01-03) hold and suppose (yi)tez is a O-periodic se-
quence. Thanks to Exam. 2.1 the dichotomy spectrum is discrete. The Beverton-Holt IDE (5.3) and its reduced
eqn. (3.3) become 0-periodic. Whence, upper and lower Bohl exponent of (v¢)ic1 agree and (5.4) reduces to

MY =1, [A2| < A1.

By choosing B sufficiently close to 1, one can always fulfill (Gm). In particular, for m = 2 the center-unstable
bundle W™ is given by graphs of Cz-functions w; , also ft is of class C?ina (uniform) neighborhood of the
origin. From the coefficients
fi(0) = My, f{(0) = —2virg  forallt €7 (5.6)
we have ¢o(t, ) = N7 Hs 7_75 > 0. Thus, (5.4) implies ¢o(0,0) = 1. We apply Thm. A.1 based on
6—1 0—1 827

B(0) = 3 @055+ 1) f4(0)8(s52,0)> = - 52 =22 [T ou) <

so=0 so=0 s=0

and consequently the trivial solution of (5.3) is unstable.

5.2 Ricker integrodifference equation

An analogous approach as above applies to another Hammerstein-type eqn. (H), but now with Ricker non-

linearity g¢(x, z) := yze” *. Yet, the scalar IDE

wrin = [ KCpue @ dy (57)
Q
is still understood as Urysohn equation with kernel function f; : @ x Q@ x R = R, fi(z,y, 2) := k(z,y)ze” %,
t € I'. Mathematical induction yields
Déft(:c,y,z) = (—1)l’ytk(cc,y)(z — e * foralll €Ny
and thus (ul) holds. In conclusion, Prop. 4.2 yields right-hand sides F; : Uy — C(Q) of class C*° with constant

domains Uy = C(€2). In the equation of perturbed motion (2.3) (associated to the zero solution) one has

DF¢(0) = XK, Ri(u) =y / k(o y)u(y)(e ™ —1)dy foralltel.
Q
Hence, stability criteria are literally as in Sect. 5.1 and we focus on the constellation (o1-02), requiring a

center fiber bundle reduction. The reduced eqn. (3.3) possesses
fe(€) = M€ + ’Yt//k(%y)(éel(y) +w; (€e1)(y)) (e S W~ (€)W _ 1) dye (z) da
as right-hand side. For the same reason as above, we retreat to

Example 5.3 (periodic and autonomous case). Let (c1-08) hold and suppose the sequence (Vt)icz is 0-

periodic. We again obtain the coefficients (5.6) and as in Ezxam. 5.2 the trivial solution to (5.7) is unstable.
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5.3 Logistic integrodifference equation
From now on, let us actually work with Hammerstein difference eqns. (H), namely

S / k(- wur () (1 — ue(y)) dy (5.8)
Q

having a logistic nonlinearity gi(x,z) := y2(1 — 2), t € I'. We understand the right-hand side as composition
Fi=KoG;: U — LP(Q) of two operators with Uy = LP(Q):

~  The linear operator X € L(L'(Q), LP(£2)) is well-defined and compact for every p > 1 due to Lemma 4.1.
~ Gy : LP(Q) — LY(Q) is of class C? due to Lemma 4.2. Indeed, one has

Dagi(z,z) = (1 — 22), D%gt(x, z)=—2y foralltel

and thus (c1-¢2) hold with appropriate cg, ¢; in (4.1), provided p > 2.
Hence, Prop. 4.1 applies for p > 2 and yields right-hand sides F; : LP(Q) — LP(Q) of class C?. We arrive at
an equation of perturbed motion (2.3) with

DF(0) = 3K, Re(u) = —y¢ / k(- y)u(y)*dy forallt el
Q

Linearizing (5.8) along the trivial solution yields the variational eqn. (5.2) on the state space LP(2), while
stability criteria are as in Sect. 5.1.

We next study the alternative constellation (01-02) requiring reduction to a center fiber bundle. For this,
<u, e/1> = /u(y)el(y) dy for all u € LP()
Q

serves as duality pairing and we define projectors as in (5.5). Therefore, the reduced eqn. (3.3) possesses

F1(6) = Mné — / / Kz, y)(Eer(y) + wi (Ee1)(y))? dyer (z) dx
Q Q

as right-hand side. Because LP(Q) is a C?%-Banach space, for p > 2 the center-unstable bundle W™ is given
by graphs of (at least) C2-functions and f; is of class C? in a (uniform) neighborhood of the origin, provided
the spectral gap condition (G2) can be fulfilled.

In the #-periodic situation, this anew leads to the coefficients (5.6) and an analysis as in Sect. 5.1.

5.4 Toy model 1

We continue with a more artificial example, whose stability behavior is rather subtle in the critical case.

Consider the scalar, inhomogeneous IDE

U g1 :’Yt/k('7y) sinu(y) dy + 7hy, (5.9)
)

where (ht):err is a bounded sequence of integers interpreted as constant functions in LP(Q), p > 1. The
sequence ¢; (x) := why_1 on  defines a bounded solution (¢} );cpr due to the following identity on I,

Pry1 = %/k(',y) sin(mhy—1) dy + 7whe = 7 / k(-,y) sin ¢ (y) dy + why.
Q
=0

The eqn. (5.9) is of Hammerstein type (H) with growth function g: : @ x R = R, g+(y, 2) := ¢ sin z satisfying

‘Dégt(x,z) <~ forallzeQ,zeR,leNy, tel.
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Thus, due to Prop. 4.1 we can understand (5.9) as equation in LP(Q), Uz := LP(Q) and for p > 1 the right-
hand side of (5.9) is continuously differentiable. We represent the equation of perturbed motion corresponding
to ¢* as (2.3) with

DF(¢1) = 01K, Re(u) = oyt /k(, y) (sinu(y) —u(y)) dy foralltel’
Q

and

—1, h¢_1 is odd,
ot := cos(mhi_1) = {1

ht_1 is even.

Since the variational difference eqn. us1 = oty:Kuy fits in the setting of (5.2) and the Bohl exponents satisfy

Blev) = B(7), Bley) = B(7), Thm. 2.1 shows that ¢ is
— uniformly exponentially stable, if and only if p18(y) < 1 (see Fig. 1(a)),

—  unstable, if p28(7) < p2B(7) and 1 < p18(7) (see Fig. 1(b)).
A stability analysis in the critical spectral setting (o1-03) is more interesting and based on the reduced

eqn. (3.3) with right-hand side

J1(6) = orhE + o / / Kz, ) (sin(€en () + wy (Ee1)(y)) — Eer(y) — wy (Eex)(y)) dyes () da.
Q Q

If even p > 3 holds, then (5.9) is of class C® (see Prop. 4.1), and since LP () is a C3-Banach space, also the
resulting 1-dimensional center-unstable fiber bundle W™ is of class C?’, when the spectral gap condition (G3)
holds. This leads to the coefficients

f1(0) = orve ), f'0) =0, f(0) = —oiyek3 #0 forallt el

Example 5.4 (periodic and autonomous case). Let (c1-03) hold and suppose the sequences (Vi)tez, (ht)tez
are O-periodic. The stability properties of the 0-periodic solution ¢* to (5.9) in critical situations ¢o(0,0) = +1
are determined by the coefficient b := h1 + --- + hg. Indeed, from the elementary trigonometric identity

cos(mk) cos(wl) = cos(wk) cos(nl) — sin(wk) sin(wl) = cos(w(k +1)) for all k,l € Z,

we compute

0—1 1, b is even,
H 0s = H cos(mhs—1) = cos(m(h_1 +---+ hg_3)) = .
fr —1, bis odd

and this yields

o1 o1 o1 >0, biseven
¢0(6,0) = [[ (es7s\1) = (H Qs> 11 %/\1){ o ’
s=0 s=0

<0, bis odd.

From f{'(0) = 0 we see that da(t) = 0, but

0-1 91
ds =Y 60(0,s3+1)fe1(0)0(s3,0)* = Z $0(0, 53 + 1)0s5 785 M b0(s3,0)°
s3=0 53 =0
<0, b iseven,
:—*¢090 Zti?o 53,0 ,
55=0 >0, bis odd.

In conclusion, for ¢g(0,0) =1 Thm. A.1 shows that ¢* is uniformly asymptotically stable for an even sum b
and unstable for odd b. In case ¢o(0,0) = —1 the situation reverses and Thm. A.2 implies that ¢* is uniformly
asymptotically stable for an odd sum b and unstable for even b.
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5.5 Toy model 2

Our final example allows an explicit analysis at least in the autonomous situation. Yet, let us begin with the

nonautonomous, scalar and inhomogeneous IDE
wir = [ KCpul)cos )y + 3 (5.10)
Q

having the stationary solution @i (x) = %, because of the solution identity

1= / B 9T cosE dy+ 5 =y / K(9)6E () cos d (y) dy + § on T.
Q =0 Q

For the growth function g¢(x, 2) := v:g(2), g(2) := zcos z we obtain the derivatives
g (z) = cosz — zsin z, g’ (z) = —2sinz — zcos 2, g"(2) = =3cosz + zsin z
Dl2.gt (:l‘, Z)

choose p > 3, ¢ =1, co(z) := 3 and ¢; := 1, resulting in a C3-right-hand side F; : LP(2) — LP(Q) of (5.10).

In particular, we view (5.10) as difference equation in LP(Q).

and thus < supgep (I + |2|) for all z € Q, z € R and 0 < < 3. In order to apply Prop. 4.1 we

In the associate equation of perturbed motion (2.3) one has
DTF¢(67) = — 57X, Re(u) = %/k(-,y) (Fuly) — (uly) + §)sinu(y)) dy forallt €T’
Q
leading to D2R;(0)e? = —v; Jo k(-,y)e1(y)? dy. Directly from the relations (3.5) it results f;(0) = — 5L,

and under the gap conditions (G2) resp. (G3),

#O =2 [ [Henea)? dyerw)ds = ~2yma
Q Q
#'0) =" [ [ 1 e aer@as—on [ [ k@ Odwe m) e @) az
Q Q Q Q

:%”3 *6%//k(x7y)(D2WI(0)e%)(y)e1(y) dye (z) dz.

Q Q
Therefore, we have to compute the Taylor coefficients D%w; (0)e? € LP(Q), t € I, of the functions parametriz-
ing the center-unstable fiber bundle W™ of ¢*. It solves the homological eqn. (3.7) which now reads as
niwi1 = — 5uKwe + yeroer — %/k(-,y)el(y)2dy.
Q

Due to the eigenvalue property it follows n; = <D3rt (67)e1, e'1> = —Z7yA1 and the unique bounded solution
of the homological equation becomes

-1 2t—s—1) =l
D*w; (0)el = ) (%\1) v | II 5 )X [ me ’/k(wy)el(y)z dy | foralltel

§=—00 r=s+1 Q

The powers of the Fredholm operator X compute as t-fold integral

t—1
Kty = /k’("yt) (H k(yr+1,yr)> v(y1)d(y1,...,y:) forallte Z+,
r=1

Qt
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which results from Fubini’s theorem, and we arrive at the formula

5 o A [ g\ o .
D*w; (0)ef = ) (,7\1) w| I -

§=—00 r=s+1

'(Kz / E(yt—s—1) - k(y2,y1)e1(y1) d(y, - - yt—s—1)
Qt—s—l

- / k(wyts1)“'k(ylyyo)el(yo)Qd(yov---,yts1)> for all ¢ € IL.
Qt*S

Since it is apparently problematic to evaluate this expression, we again retreat to

Example 5.5 (periodic and autonomous case). Let (01-03) hold and suppose (Yi)icz is a 6-periodic se-

quence. Thanks to
%
$0(0,0) = (=FA1) Y0,

we need to distinguish two cases:
(1) 0 is even: One has ¢o(0,0) =1 and in order to apply Thm. A.1 we note

0—1 ey 01
= > 00,52+ 1) f4,(0)po(s2,0)” = r/\? > bo(s2,0)
82=0 82=0

For ds(0) # 0 we derive from Thm. A.1 that ¢* is unstable. In the degenerate case d2(0) = 0 results

da(t) 74&450 t,0) Z bo(s2,0
82_0
0—1 —
dz =Y ¢o(0,s3+1)fe(65,)b0(s3,0)* + Tr)\12 Z da(s3)

S3*0 '*

- Z fo(53,0)% + Z // 2,9)(D*ws, (00 (y)ex (y) dyer (2) dago(s3,0)°
s3=0 s3=0

01

12k
7r)\12 SXZ:I da(s3),

where the vectors D2w5_3 (0)e? € LP(Q), 0 < s3 < 6 are to be computed from the cyclic 6 coupled linear

Fredholm integral equations
{nfwt_i_l =37t Jo k( y)wi(y) dy + yekzer — e o k(- v)ei(y Y2dy forall0<t<6-—1,
Mg—_1w0 =—3v9—1 fo k(- y)wo—1(y) dy + v9_1K2e1 — Y91 [ k(-1 y)e1(y)? dy.
In the autonomous case this reduces to the Fredholm equation of the second kind

™
nwo = —§v/k(-,y)wo(y) dy + ykoer —v/k(ny)el(y)zdy,

Q Q
while for instance the 2-periodic situation requires
{ﬁ%wo = =3 Jo kG, p)wi(y) dy + vikzer — 1 [k y)er(y)® dy,
mwr = =390 Jo k(. y)wo(y) dy + vor2er — Y0 [ k(,y)er(y)? dy.

Eventually, explicit computations are feasible for autonomous IDFEs (5.10) with the Laplace kernel (4.3) o
the interval = [ 55 2] and thus ng = —5yX. Suppose v > 0 denotes the smallest positive solution of the
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Fig. 6: Values of the dominant eigenvalue \ of the integral op-

25 erator (4.2) with Laplace kernel (4.3) depending on the product
alL

equation tan (%1/) = %, which by Exam. 4.2 is related to the dominant eigenvalue to X via A =

1
=137 € (0,1)
(see Fig. 6) with corresponding eigenfunction
2
e1(z) = Ccos(avz), C:= W&Lw)
2
The nonhyperbolic situation holds for ZyA = 1, i.e. v = 7r2/\ = @ = 2‘;’2, where we conveniently
abbreviate w := /1 + v2. This implies the homological equation
L/2 L/2
aw? ‘ —alz—y| 2kow? aw? / —alz—yl,
wo(m)-i-T e V9w (y) dy = ———e1(z) — — e Ylei(y)?dy forallz e [—% £ L
T T
—L/2 —L/2

which is a Fredholm integral eqn. (B.1) of the second kind with 6 = —w?, the inhomogeneity

L/2 5
2/42002 aw? —alz—y| 2
— _ = = hs 11
ba) = 22y (@) - S [ e e )ty = 3 0y (o) (5.11)
—L/2 j=0
the linearly independent functions hg, ... hs : [—% o, 2] — R,
ho(z) =1, hi(z) = ei(z), ha(z) := cos(2avz), h3(z) := cosh(ax)

and coefficients gq, ..., 03 (all depending on a, L) from (C.1). Due to 6 < 1 the solution from Sect. B implies

[D*w ™ (0)ef](z) = ¢1 cosh(¥z) + 2 sinh(dz) + b(z) + aw / b(y) sinh(¥(x

L2

—y))dy forallz € [f%, %]
with ¥ := aw and coefficients

ao.)f L/2 (sinh('ﬂ(%fy))+wcosh<19(L

o 7-v)) dy _ Booo + Bie1 + B2g2 + Bses

! 2 (cosh ag” + wsinh QLT”) cosh ag“’ + wsinh ag‘*’ ’
L ,

101200 (sinh (0 (5 =) +woosh (9 (5 =) dv _ Bogy + Buor + Baes + Boes

2 (sinh aé"" + wcosh ag“’)

. b)
sinh aé“’ + w cosh aé""

where the real coefficients By, ..., B are defined in (C.2). This leads to D*w™ (0)e? = 2221 wih; with

ha, hs : [ %, 2] — R, hy(z) i= %, hs(z) == e %%
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as additional coefficient functions and the reals wy, ... ,ws given in (C.3), (C.4). Based on these preparations,
we compute f'(0) = —1, f(0) = —%)\lmg and finally

. L/2 L2
o= S [ [ e ot @) e ) dyer o) do
1 T
—L/2-L/2
5 L/2 L/2

=(1+v%) | k3 - g Z / / efalmfylhj(y)el(y) dye; (x) dz

The value f"(0) depends only on a,L > 0 and Fig. 7 (left) indicates f"(0) < 0 for parameters 0 < a,L < 5.
Whence, the trivial solution of the reduced equation is unstable due to Thm. A.1 and the reduction principle

in Thm. 3.1 ensures that the constant solution ¢*(x) = T of (5.10) is unstable as well.

0
0.5 B
= <
5 -l T
- =
15 %
5 5
2.
0

Fig. 7: Values of f//(0) (left) and of (the reciprocal of) the stability indicator f"”/(0) — %f”(O)2 (right) from Exam. 5.5
depending on the parameters a, L; the reciprocals are shown due to large values.

(II) 0 is odd: Now ¢o(6,0) = —1 requires to apply Thm. A.2. Both derivatives f"(0) and f"'(0) depend
only on a,L > 0, and so does the stability indicator f"'(0) + %f”(0)2. Fig. 7 (right) indicates its positivity, at
least as long as a, L € [0,5] and therefore asymptotic stability. Again, the reduction principle Thm. 3.1 shows
that ¢*(x) = 5 is an asymptotically stable solution of the IDE (5.10).

6 Perspectives

We conclude this paper with some open questions and possible perspectives:

— It is not clear what can be said on the stability of a critical solution ¢*, when center-unstable bundles
W™ are not at hand (and one cannot pull a Lyapunov function out of the hat)? First, the construction
of W™ via the Lyapunov-Perron method requires that (A) is defined on a discrete interval unbounded
below. Hence, equations given in forward time need an ambient backward extension. Second, what if
(Vg+) has a dichotomy spectrum as in Fig. 8, that is, it consists of a single spectral interval containing the
stability boundary 1?7 However, we point out that 3(¢*) associated to EDs on a positive half-line I can be
strictly smaller than the dichotomy spectrum associated to the entire integer line. As a result, Thm. 2.1
applied with the half-line spectrum might yield information. In an autonomous, continuous time setting
it is shown by [29, Thm. 1] that a spectrum merely meeting the positive half plane {A € C: Re A > 0}

already guarantees instability.
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Fig. 8: Dichotomy spectrum consisting of a single interval (0, p]
0 1 R Wwithp>1

—  When the spectral gap condition (G ) is violated, the center-unstable fiber bundle is merely continuously
differentiable and higher-order terms in the reduced equation cannot be computed. Thus, stability criteria
not based on Taylor coefficients of order > 1 are needed (see, for instance, [28, pp. 13ff, Chapt. 2]).

— As already indicated above, very little is known on the stability for, say the trivial solution of scalar
nonautonomous equations w11 = fi(x¢) when the variational eqn. 2411 = f{(0)z; has a dichotomy
spectrum containing 1. Although this question is elementary, the nonautonomous reduction principle and
an analysis of the reduced equation crucially depends on corresponding answers.

A solution to the above problems might be a dynamical spectrum different from the dichotomy spectrum. For

instance, the Lyapunov spectrum is finer, but problematic for equations, which are not regular (see [17]). One

could also think of alternative spectra measuring subexponential or polynomial growth.

Appendices

A Stability of nonhyperbolic periodic solutions

Let I be a discrete interval and m € N. We consider scalar (real) difference equations

xi+1 = fe(ze) (A1)

having a solution (¢;);er and a C™-right-hand side f; being defined in a neighborhood of ¢; uniformly in

t € I'. Furthermore, for the transition operator we abbreviate

t—1 *
do(t, ) := [To=- fa(@2). 7 <t,
1, t=r.
Lemma A.1. If 7 < t, then the general solution o(t;7,-) of (A.1) is of class C™ and for m = 1,2 resp. 3,
the derivatives satisfy Dsp(t; T, dx) = ¢o(t,T),

t—1
Dig(tim,¢5) = Y do(t, 52+ 1) £, (6%,) Dap(s; 7, 67)°,

S2=T

t—1
Dip(t;m,¢7) = Y olt,ss + 1) fis (6s,) Dsp(ss; 7, 67)°
83=T
t—1
+3 ) olt, sz + 1) fL, (65,) Da(ss; 7, ¢7) D3p(s3; 7, ¢7).
sz3=7+1

Proof. Assume 7 < t throughout. The smoothness of ¢(¢; 7,-) is an immediate consequence of the chain rule
and (2.1). It is convenient to transform (¢} );cy to the trivial solution by passing over to the associate equation

of perturbed motion

wip1 = fi (x1) == fi(we + 1) — fe(90), (A.2)

whose general solution is denoted as ¢y, - (&) for reals &. Differentiating the properties @¢11,(&) = f; (e, (£))
and @r (&) = & w.r.t. £ yields

LP;-H,T(&) = th*(‘PtJ(g))(p;,T(f)v ‘P;—,‘r(f) =1L (A.3)
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Consequently, since (A.2) has the trivial solution, i.e. ¢t +(0) = 0, we get
t—1
01-(0) = [ Dfi(0) = ¢o(t,7) forall r <t.
S1=T
Differentiating (A.3) again leads to
/! * /1 2 px / 2 1!
Pt+1,7(§) = Dfe (01,7 (§))pt, (&) + D ft (01,7 (§))pt,r(£)” or,r(§) =0

and therefore go{fT (&) solves the linearly inhomogeneous difference equation

w41 = Dff (01,0 (€)xt + D f7 (01,7 (€))7 (€)°

to the initial condition zr = 0. Thus, the variation of constants formula [21, p. 100, Thm. 3.1.16(a)] yields
4,02/’7(0) = ZZ;;_ oo(t,s2 + 1)D2f;‘k2 (0)¢sy.r (0)2 for 7 < t. Eventually, differentiating (A.3) twice implies

O1,7(€) =D fi (0r.(€))0l (&) + D ff (01,7 (6))h,+(€)*, or-(€) =0
+3D% £ (01.7(€)) 1, ()t (6),

and by the same argument as above, because of 50/7/,7(0) = 0 the variation of constants formula leads to

t—1 t—1
P (0) =D dolt,ss + 1D’ 5,000, (0> +3 > go(t,s3+ 1)D*£2,(0)¢k, ~(0)0k, - (0).
S3=T s3=7+1

Since the general solutions ¢(¢;7,£) of (A.1) and ¢ r(€) to (A.2) are related by ¢ +(£) = p(t; 7, & + ¢5) — df
for 7 <t the claim follows, if we differentiate this relation w.r.t. £ and set £ := 0. O

Let 0 € N. We next retreat to O-periodic eqns. (A.1), i.e. I = Z, fi19 = ft for all t € Z and 6-periodic
sequences ¢". Furthermore, we introduce the real numbers

t—1
da(t) =Y do(t,s2 +1)fe,(05,)d0(s2,0)> forall 1 <t <0,
52:O
0—1 6—1
d3 =Y ¢o(0,s3+1)fes(65,)00(s3,0)° +3 > 600,53+ 1) f2, (¢3,)b0(s3,0)da(s3).
83:0 83:1

In the autonomous case § = 1 of constant sequences f = f; and ¢; = u™ one obtains
do(1) = f"(u"), ds = f" (u*).

Theorem A.1 (nonhyperbolic solution I). Suppose both the solution ¢* and the difference eqn. (A.1) are
0-periodic with ¢o(6,0) = 1.

(a) If m =2 and d2(0) # 0, then ¢* is unstable,

(b) if m =3 and d2(0) =0, ds < 0, then ¢* is uniformly asymptotically stable,

(¢) if m =3 and d2(0) =0, d3 > 0, then ¢* is unstable.

Proof. Stability properties of ¢* coincide with those of the zero solution to the equation of perturbed motion
(A.2), which, in turn, are determined by the stability of the fixed point ¢f to the period map mg := ¢(6;0,-).
The claim follows by [2, Thm. 2.3i] applied to 7, whose derivatives, by Lemma A.1 are given by d2(0),ds. O

Theorem A.2 (nonhyperbolic solution II). Let m = 3. Suppose both the solution ¢* and the difference
eqn. (A.1) are 0-periodic with ¢o(0,0) = —1.

(a) Ifds + %dz (0)2 > 0, then ¢* is uniformly asymptotically stable,

(b) if d3 + 3d2(0)? < 0, then ¢* is unstable.
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Proof. We borrow the notation and arguments from the above proof of Thm. A.1. By assumption 7((¢g3) = —1

(cf. Lemma A.1), the Schwarzian derivative becomes

* /N(Qb ) 3 7"”(¢*) ? _ 11 % 17 %\2 )
Smo(po) = (¢(?) —3 (ﬂ?)(qbg)) = —75' (#6) — 370 (65)” = — (ds + %d2(9)2)

and the assertion finally results from [2, Thm. 2.3ii]. O

B Integral equations with Laplace kernel

Given a, L > 0, let us consider the Fredholm integral operator

L2
Ku(zx) := % / e_au_y‘u(y) dy for all z € [—%, %]
_L/2
on the space C[—%, é] For C%-inhomogeneities b : [—%, %] — R we provide twice continuously differentiable
solutions w : [f% %] — R to the integral equation
u—0Ku=> (B.1)

of the second kind. Following [20, p. 324, 15.], the structure of these solutions depends on the parameter
0 € R\ {0} satisfying % Z o(K):
- If§ <1, then
x
)
u(x) = ¢1 cosh(¥z) + co sinh(Yx) 4 b(x) — 5 / b(y) sinh(¥(z — y)) dy
L2

with ¥ := av/1 — § and coefficients

0?5 1175, b(y) (asinh (9 (% — ) + 0 cosh (9 (% —y))) dy
29 (a cosh ﬂTL + 19 sinh ﬂTL)

26fLI/32 (asinh (19 (% fy)) + ¥ cosh (19 (% fy))) dy
29 (a sinh % + ¢ cosh %)

Cc1] ‘=

I

co =

— Ifé6 =1, then u(z) = c1 + cox + b(x —asz/Z y)(xz — y) dy, where

L/2 , L2
c1 ::g / b(y) (1+a (5 —y)) dy, C2 1= aLa+2 / by) (1+a (5 —v)) dy.
i —L/2

—  Finally, for § > 1 the solutions are of the form

2
u(z) = ¢y cos(Vzx) + cosin(Vz) + b(x) — %ﬁ / b(y) sin(d(z — y)) dy
—L/2
with ¢ := av/d — 1 and the constants

o a?8 117, b(y) (asin (9 (5 —y)) + dcos (9 (5 —v))) dy

v 219(acos19—L—19s1n19L) ’

a?s [1175,b(y) (asin (9 (5 —y)) +veos (9 (§ —v))) dy

29 (asinﬂTLJrﬁcosﬂTL) ’

co =
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C Coefficients of f”’(0) in Subsect. 5.5

2 2
The real coefficients in (5.11) are gg := —%,
CPe ok 2 L 2 L
01 ::W (2 ((51/ + 2) e —9v ) cos(aLv)sin 45%
+ ((6v* + 650 +20) * 4 60" — 90° ) sin 25
—3v ((1 + 21/2)eaL + 27— 1) cos %), (C.1)
C?%w?
0= T a2y
02w2 _alL 2
03 : e 2 (14+4v” — 2usin(aLv) + cos(aLv)),

T+ 4?)

the real coefficients determining ¢y, co read as By = 1 — wsinh(aLw) — cosh(aLw),

2Cw L . L L . L L
By =— T3 22 cos 5% (smh 95% 4+ wcosh %) (w sinh %5* 4 cosh %) ,
By =-— w(2vsin(aLv) ((sinh(aLw) + w) + wcos(aLv)(wsinh(aLw) — 1)
2T 1+ 502
+ wcosh(aLw)(2vsin(aLv) + cos(aLy))))7 (C.2)
Bs :% (sinh 2L (sinh(aLw) + w cosh(aLw) + w) — w cosh 4& (2 sinh? alw 4y sinh(aLw)))

and finally one has

2 2
o1V 4oov 03
— = == C.3
w1 1+ 21/2 5 w2 1+ 51/2 5 w3 1/2 ) ( )
as well as
c1+c2 e [QO ( 01w 02w 02 ) aLv | 93W ( e e )}
—are 2 | €0 alv 4 @3%
wa y t° 2 T xaz T o) T1rs2) 2 Ty i oo 1/)
€1 —C2 —4E¥ oo 0w (W . o3w (e e
ws = ——5— +e 2 [? + T4 502 (5 cos(aLv) — Vsm(aLy)) + e (w | + m)} (C.4)
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