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Abstract. Topological linearization results typically require solution flows

rather than merely semiflows. An exception occurs when the linearization ful-
fills spectral assumptions met e.g. for scalar reaction-diffusion equations. We

employ tools from the geometric theory of nonautonomous dynamical systems

in order to extend earlier work by Lu [12] to time-variant evolution equations
under corresponding conditions on the Sacker-Sell spectrum of the linear part.

Our abstract results are applied to nonautonomous reaction-diffusion and con-

vection equations.

1. Introduction. One of the vital pillars in the theory of dynamical systems is
the Hartman-Grobman theorem dating back to [9, 10]. Its simplest form states
that generically the flow of an ordinary differential equation (ODE for short) in the
vicinity of an equilibrium is topologically conjugated to its linearization. Thus, the
local phase portraits near equilibria are homeomorphic. The generic property under
which the Hartman-Grobman theorem holds is hyperbolicity, i.e. a linearization
without spectrum on the imaginary axis. This underlines the importance of such
results in bifurcation theory and for the concept of structural stability.

A Hartman-Grobman theorem in the discrete time setting of difference equations
or mappings is more subtle. Here, besides hyperbolicity (no spectrum on the unit
circle in C) one also needs invertibility (cf. [17, p. 334, Ex. 5.2.8]). This neces-
sity affects possible applications to evolution equations via the time-1-map of their
solution semiflow. In the invertible case, [13] obtain a C1-linearization result for
semilinear wave equations. Otherwise, while [1, 20, 21] give conditions for at least
partial linearization of general maps, it is remarkable that Lu [12] derived a topo-
logical linearization result for scalar reaction-diffusion equations under Dirichlet
boundary conditions. Later his theory was extended to the nonhyperbolic situation
in [3], where the semiflow is conjugated to an infinite-dimensional saddle times an
ODE on the finite-dimensional center manifold. Both [12, 3] substantially require
an appropriate spectrum of the linearization: The projection of its resolvent set
onto the real axis must contain an infinite sequence with sufficiently rapid decay to
−∞ and components of lengths being bounded away from 0.
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The paper at hand establishes a generalization of the main result in [12] to non-
autonomous abstract evolution equations. They are not assumed to be dissipative
or to possess an inertial manifold. Explicitly time-dependent right-hand sides are
well-motivated when studying the behavior near non-constant reference solutions,
compact invariant sets or under time-varying parameters. When dealing with non-
autonomous evolution equations the crucial hyperbolicity concept, although not
generically given, is an exponential dichotomy with the Sacker-Sell theory [22] yield-
ing an ambient spectral notion. For the Sacker-Sell (also called dichotomy) spectrum
in infinite dimensions we refer to [7, 18, 19]. This allows us to closely follow the
strategy from [12]: Under appropriate compactness properties of the linear part the
unstable vector bundles (subspaces) become finite-dimensional. Restricting our non-
autonomous evolution equation to these sets yields a hierarchy of finite-dimensional
ODEs. Here, well-established linearization tools (see [15, 2, 16, 24] in a nonauto-
nomous setting) based on invariant foliations and asymptotic phases apply. They
permit to first decouple and afterwards to linearize these finite-dimensional prob-
lems. Then an infinite composition of the related topological conjugations applies
to the general evolution equation and convergence is guaranteed by our spectral
assumptions on the linear part. The resulting central Thm. 5.2 even captures the
nonhyperbolic situation and allows a topological linearization except from the flow
on the finite-dimensional center manifold. In addition, Cor. 5.3 essentially contains
the Hartman-Grobman result from [12] as special case. We illustrate the applicabil-
ity of our approach to nonautonomous reaction-diffusion and convection equations
in Sect. 6. An outlook and appendix (two minor technical tools) close the paper.

Let us finally put this paper into the context of previous work: As pointed
out above, [3, 12] study time-invariant evolutionary PDEs. Concerning Hartman-
Grobman-like results for autonomous retarded functional differential equations (for
short, FDEs) we refer to [26] (establishing a conjugation on the global attractor)
and [8] (showing conjugation on the center-unstable manifold). Hence, both con-
tributions are essentially finite-dimensional. Related integral manifold, decoupling
and linearization results for nonautonomous differential equations in Banach spaces
are due to [2, 5, 6, 16]. They led to a Palmer-Šošitǎǐsvili-type theorem (see ad-
ditionally [15, 17, 24, 25]). On the other hand, a theory of invariant foliations in
the field of infinite-dimensional random dynamical systems was developed recently
in [11]. We extensively benefit from these preparations and their proofs concern-
ing integral manifolds, foliations and asymptotic phases basically carry over to the
present set-up. One finds them summarized in Sect. 3. This enables us to restrict
to remarks handling the case of unbounded operators and certain required further
statements. The construction of the topological conjugation resembles [12] with
certain modifications and additions due to the time-dependent set-up.

Our terminology is as follows: Let (X, ‖·‖) be an infinite-dimensional Banach
space, L(X) the algebra of bounded linear operators on X and idX be the identity
mapping on X. Then R(T ) := TX is the range and N(T ) := T−1(0) the kernel of
a bounded linear operator T ∈ L(X). The diameter of a subset A ⊆ X is defined
as diamA := supx,y∈A ‖x− y‖. On the cartesian product X2 = X ×X we use the
norm ‖(x, y)‖ := max {‖x‖ , ‖y‖}.

Nonautonomous sets. Any subsetA ⊆ R×X is called a nonautonomous set (marked
by calligraphic letters throughout) and its t-fibers are denoted by

A(t) := {x ∈ X : (t, x) ∈ A} for all t ∈ R.
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In case A(t) ⊆ X is a linear space or a manifold, we speak of a vector bundle resp.
a fiber bundle. If each fiber A(t), t ∈ R, of a vector bundle has the same dimension,
then dimA := dimA(t) is called dimension of A. The same terminology applies
to fiber bundles when the dimension of the manifolds A(t) does not change. Given
invariant vector bundles A,B their Whitney sum resp. their cartesian product is

A⊕ B := {(t, x) ∈ R×X : x ∈ A(t)⊕ B(t)} ,
A× B := {(t, x, y) ∈ R×X ×X : x ∈ A(t), y ∈ B(t)}

and other operations between nonautonomous sets are defined fiber-wise. A family
of nonautonomous sets Ap is said to form a foliation of R×X over a set P , if

X =
⋃
p∈P
Ap(t), Ap1(t) ∩ Ap2(t) = ∅ for all p1 6= p2, p1, p2 ∈ P and t ∈ R;

in this case every Ap is called a leaf of the foliation.

Exponentially bounded functions. With a growth rate γ ∈ R and a fixed τ ∈ R, we
say a continuous function

• φ : [τ,∞)→ X is γ+-bounded, if supt≥τ ‖φ(t)‖ eγ(τ−t) <∞
• φ : (−∞, τ ]→ X is γ−-bounded, if supt≤τ ‖φ(t)‖ eγ(τ−t) <∞
• φ : R→ X is γ-bounded, if supt∈R ‖φ(t)‖ eγ(τ−t) <∞.

The sets B+
τ,γ and B−τ,γ of γ+-bounded resp. γ−-bounded functions, as well as the

γ-bounded functions Bγ become normed spaces w.r.t. the norms

‖φ‖+τ,γ := sup
τ≤t

eγ(τ−t) ‖φ(t)‖ , ‖φ‖−τ,γ := sup
t≤τ

eγ(τ−t) ‖φ(t)‖ ,

‖φ‖τ,γ := sup
t∈R

eγ(τ−t) ‖φ(t)‖ .

These sets form a scale of Banach spaces allowing the continuous embeddings

γ ≤ δ ⇒ B+
τ,γ ↪→ B+

τ,δ and B−τ,δ ↪→ B−τ,γ . (1.1)

2. Semilinear evolution equations. For the sake of a transparent presentation
it has advantages to abstractly develop our theory for semilinear evolution equations

u̇ = A(t)u+ F (t, u) (E)

on a Banach space X first. In particular, for nonlinearities F : R×X → X fulfilling
an ambient global smallness condition we are able to derive largely explicit results.

2.1. Linear theory. We begin by stating our assumptions on the linear part, which
are collectively denoted by (L): For unbounded operators A(t) : D(A(t)) ⊂ X → X,
t ∈ R, let us suppose that the linear evolution equation

u̇ = A(t)u (L)

in X generates an evolution family U : {(t, s) ∈ R× R : s ≤ t} → L(X) (see [14]),
i.e. (t, s) 7→ U(t, s)x is continuous for all x ∈ X and furthermore fulfills

(L1) U(t, t) = idX and U(t, s)U(s, τ) = U(t, τ) for all τ ≤ s ≤ t
(L2) there exist reals K0 ≥ 1, α0 ∈ R such that ‖U(t, s)‖ ≤ K0e

α0(t−s) for all s ≤ t.
We say that (L) or the evolution family U admits an exponential dichotomy (ED

for short), if there exists a projector P : R→ L(X) and K ≥ 1, α > 0 such that

• U(t, s)P (s) = P (t)U(t, s) for all s ≤ t
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• the restriction Ū(t, s) := U(t, s)|N(P (s)) : N(P (s))→ N(P (t)) is a topological
isomorphism for every s < t

• ‖U(t, s)P (s)‖ ≤ Ke−α(t−s) and
∥∥Ū(s, t) [idX −P (t)]

∥∥ ≤ Keα(s−t) for s ≤ t.
The mapping t 7→ P (t) is denoted as regular projector and [14, Lemma 4.2] estab-
lishes its strong continuity. For θ-periodic or autonomous eqns. (L) the projectors
can be chosen accordingly having the same period θ > 0.

With γ ∈ R we write Uγ(t, s) := eγ(s−t)U(t, s) for the associated scaled evolution
family. If Uγ admits an ED, then the inequalities

‖U(t, s)P (s)‖ ≤ Ke(γ−α)(t−s),
∥∥Ū(s, t) [idX −P (t)]

∥∥ ≤ Ke(γ+α)(s−t) for s ≤ t
are equivalent to the above dichotomy estimates. On this basis, the dichotomy
spectrum Σ(A) of (L) is defined as the closed set

Σ(A) = {γ ∈ R : Uγ admits no ED on R} .
In the following, we assume that the dichotomy spectrum Σ(A) of (L) satisfies

(L3) Σ(A) =
⋃
n∈N [λ−n , λ

+
n ] with two sequences (λ+n )n∈N, (λ−n )n∈N, such that

αn < βn < λ−n ≤ λ+n < αn−1 for all n ∈ N

and strictly decreasing real sequences (αn)n∈N0
and (βn)n∈N (cf. Fig. 1). More-

over, the spectral projectors Pn : R → L(X) associated to the spectral inter-
vals [λ−n , λ

+
n ] are complete, i.e.∑
n∈N

Pn(t)x = x for all x ∈ X uniformly in t ∈ R.

Rλ−
1 λ+

1λ−
2 λ+

2λ−
n−1 λ+

n−1λ−
n λ+

nλ−
n+1 λ+

n+1

β1α1β2α2βn−1αn−1βnαn α0

Figure 1. Dichotomy spectrum Σ(A) of (L) consisting of the spec-
tral intervals [λ−n , λ

+
n ] (in red) and the gap intervals [αn, βn], n ∈ N

This yields that Σ(A) is bounded above and (L2) implies Σ(A) ⊆ (−∞, α0]. The
union

⋃
n∈N(βn, αn−1) is an open cover of Σ(A) and every gap interval [αn, βn] is

located left of the spectral interval [λ−n , λ
+
n ] in the spectral gap (λ+n+1, λ

−
n ).

For any given n ∈ N let us define the n-stable vector bundle

X+
n :=

{
(τ, ξ) ∈ R×X : U(·, τ)ξ is γ+-bounded for each γ ∈ (λ+n+1, λ

−
n )
}
,

as well as the associated n-unstable vector bundle

X−n :=

(τ, ξ) ∈ R×X :
(L) has a γ−-bounded solution
φ : (−∞, τ ]→ X with φ(τ) = ξ
for each γ ∈ (λ+n+1, λ

−
n )

 ;

we supplement this with the convention X+
0 := R×X. Due to (L3) there exists a

regular invariant projector P+
n allowing the representation

X+
n =

{
(t, x) ∈ R×X : x ∈ R(P+

n (t))
}
,

X−n =
{

(t, x) ∈ R×X : x ∈ N(P+
n (t))

}
.

(2.1)

Moreover, there are reals Kn ≥ 1 such that the crucial estimates∥∥U(t, s)P+
n (s)

∥∥ ≤ Kne
αn(t−s),

∥∥Ū(s, t)P−n (t)
∥∥ ≤ Kne

βn(s−t) for s ≤ t (2.2)
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with the complementary projector P−n (t) := idX −P+
n (t) hold. In addition, we have

to require that U is compactifying, which in turn means

(L4) There exists a compactification time T ≥ 0 such that U(t, s)B ⊆ X is relatively
compact for all t− s > T and bounded B ⊆ X.

Proposition 2.1. For all n ∈ N we have dimX−n <∞.

Proof. Let n ∈ N, t0 ∈ R be arbitrarily fixed and set S0 := {x ∈ X−n (t0) : ‖x‖ ≤ 1}
for the closed unit ball in X−n (t0). Since

Ū(t, s) : X−n (s)→ X−n (t) for all s, t ∈ R (2.3)

is an isomorphism we can define S(t) := Ū(t, t0)S0 for t ≤ t0 and obtain from

diamS(t) = diam Ū(t, t0)S(t0)
(2.2)

≤ 2Kne
βn(t−t0) for all t ≤ t0

that every S(t) is bounded. The compactification condition (L4) allows us to choose
t > t0 + T so that the closed S(t0) = U(t0, t)Ū(t, t0)S0 = U(t0, t)S(t) ⊆ X−n (t0)
is compact; thus, dimX−n (t0) < ∞. The isomorphism property (2.3) implies that
every X−n (t), t ∈ R, has the same finite dimension and the claim follows.

To each spectral interval [λ−n , λ
+
n ] we associate a spectral bundle (see Fig. 2)

Xn := X−n ∩ X+
n−1

having the multiplicity dimXn := dimXn(t) =: dn.

Rλ−
1 λ+

1λ−
2 λ+

2λ−
n−1 λ+

n−1λ−
n λ+

nλ−
n+1 λ+

n+1

X2 := X−
2 ∩ X+

1

Xn := X−
n ∩ X+

n−1 X1 := X−
1

Xn−1 := X−
n−1 ∩ X+

n−2

Figure 2. Dichotomy spectrum Σ(A) of (L) (in red) and the as-
sociated dn-dimensional spectral bundles Xn

By Prop. 2.1 the spectral bundle Xn is finite-dimensional with the representation

Xn = {(t, x) ∈ R×X : x ∈ R(Pn(t))}

for a projector Pn : R → L(X) from (L3). Furthermore, there is a complementary
subbundle X⊥n of R×X establishing the Whitney sum R×X = Xn ⊕X⊥n . Writing

Xmn := Xn ⊕ · · · ⊕ Xm for all n ≤ m,

we finally obtain for every n ∈ N that

R×X = Xn1 ⊕X+
n , X−n = Xn1 , n ≤ dimX−n = d1 + · · ·+ dn.

Note that [18] provides concrete information on the dichotomy spectrum and the
spectral bundles for nonautonomous parabolic PDEs.
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2.2. Nonlinear theory. The assumptions on the nonlinearity F : R×X → X in
(E) will be denoted by (N): Let us suppose there exists a L ≥ 0 such that

(N1) F (t, 0) ≡ 0 on R and F (·, u) : R→ X is continuous for all u ∈ X
(N2) ‖F (t, u)− F (t, ū)‖ ≤ L ‖u− ū‖ for all t ∈ R, u, ū ∈ X.

These conditions particularly imply continuity of F : R×X → X. Clearly, (E) has
the trivial solution. Using standard arguments one derives that (E) is well-posed in
the following sense (cf., for instance [23, pp. 224ff]): For any pairs (τ, u0) ∈ R×X
there exists a unique continuous function u(·; τ, u0) : [τ,∞)→ X satisfying

u(t) = U(t, τ)u0 +

∫ t

τ

U(t, s)F (s, u(s)) ds for all τ ≤ t;

one speaks of a mild solution. The function u(·; τ, u0) defines a continuous 2-para-
meter semiflow on X, i.e. it fulfills

u(τ ; τ, u0) = u0, u(t; s, u(s; τ, u0)) = u(t; τ, u0) for all τ ≤ s ≤ t, u0 ∈ X (2.4)

and is denoted as general solution to (E). An entire solution of (E) exists on the
real line. A nonautonomous set A is called forward invariant w.r.t. (E) under the
inclusion u(t; τ,A(τ)) ⊆ A(t) for all τ ≤ t and invariant, provided equality holds.

Sometimes a further assumption on the nonlinearity is necessary, namely its
global boundedness: This means there exists a C ≥ 0 such that

(B) ‖F (t, u)‖ ≤ C for all t ∈ R, u ∈ X.

3. Integral manifolds and invariant foliations. Throughout the section, we
tacitly suppose that the assumptions (L) and (N) are fulfilled, choose reals

σn ∈
(

0, βn−αn

2

]
, γ ∈ Γn := [αn + σn, βn − σn]

for some fixed n ∈ N and define the constants

`n :=
KnL

σn − 2KnL
<

2KnL

σn − 4KnL
=: `?n.

3.1. Integral manifolds. Our analysis is based on the Lyapunov-Perron operator

T−τ (φ, x0) := Ū(·, τ)P−n (τ)x0−
∫ τ

·
Ū(·, s)P−n (s)F (s, φ(s)) ds

+

∫ ·
−∞

U(·, s)P+
n (s)F (s, φ(s)) ds, (3.1)

which formally defines a function between (−∞, τ ] and X, depending on τ ∈ R, a
continuous φ : (−∞, τ ]→ X and x0 ∈ X.

Lemma 3.1 (the operator T−τ ). For τ ∈ R the operator T−τ : B−τ,γ ×X → B−τ,γ is
well-defined with

lip1 T
−
τ ≤

2KnL

σn
, lip2 T

−
τ ≤ Kn. (3.2)

In the following, we conveniently abbreviate T−τ (t, φ, x0) := T−τ (φ, x0)(t) ∈ X
and proceed similarly with our further notation.

Proof. The well-definedness of T−τ will be tackled at the end of the proof. We thus
suppose that this property is given for the moment. Then the second inequality
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in (3.2) is an immediate consequence of the dichotomy estimate (2.2) and γ ∈ Γn.
Concerning the first Lipschitz estimate in (3.2) we obtain using (N2) that∥∥T−τ (t, φ, x0)− T−τ (t, φ̄, x0)

∥∥ eγ(τ−t)
(3.1)

≤
∥∥∥∥∫ τ

t

Ū(t, s)P−n (s)[F (s, φ(s))− F (s, φ̄(s))] ds

∥∥∥∥ eγ(τ−t)
+

∥∥∥∥∫ t

−∞
U(t, s)P+

n (s)[F (s, φ(s))− F (s, φ̄(s))] ds

∥∥∥∥ eγ(τ−t)
(2.2)

≤ KnL

(
1

γ − αn
+

1

βn − γ

)∥∥φ− φ̄∥∥−
τ,γ

for all t ≤ τ

and φ, φ̄ ∈ B−τ,γ , x0 ∈ X. Passing to the least upper bound over t ≤ τ allows to

infer the first estimate (3.2). In order to finally prove the well-definedness of T−τ ,
we observe that (N1) and the above estimates guarantee∥∥T−τ (t, φ, x0)

∥∥ eγ(τ−t) ≤ ∥∥T−τ (φ, x0)− T−τ (0, x0)
∥∥−
τ,γ

+
∥∥T−τ (0, x0)− T−τ (0, 0)

∥∥−
τ,γ

(3.2)

≤ 2KnL

σn
‖φ‖−τ,γ +Kn ‖x0‖ for all t ≤ τ.

Since T−τ (φ, x0) : (−∞, τ ]→ X is continuous the lemma is established.

Lemma 3.2 (the fixed point φ−τ ). Let L < βn−αn

4Kn
and choose σn ∈

(
2KnL,

βn−αn

2

]
.

For τ ∈ R the operator T−τ : B−τ,γ × X → B−τ,γ has a unique fixed point function

φ−τ : X → B−τ,γ ; it satisfies

φ−τ (0) = 0, lipφ−τ ≤
σn

σn − 2KnL
. (3.3)

Proof. In the above Lemma 3.1 we showed that T−τ (·, x0), x0 ∈ X, maps the Banach
space B−τ,γ into itself. Moreover, due to lip1 T

−
τ ≤ 2KnL

σn
< 1 (see (3.2)) the mapping

T−τ is a uniform contraction in the first argument. Thus, the uniform contraction
principle (cf., for example [17, p. 352, Thm. B.1.1]) yields a unique fixed point
function φ−τ : X → B−τ,γ . Due to (3.2) it fulfills a global Lipschitz condition as

claimed in (3.3). Finally, the relation T−τ (0, 0) = 0 implies that φ−τ (0) = 0.

The following abstraction of the classical Hadamard-Perron theorem assures that
both vector bundles X−n and X+

n persist under nonlinear perturbations fulfilling (N),
provided the Lipschitz constant L is sufficiently small. In other words, for every
gap in the dichotomy spectrum Σ(A) there exist two integral manifolds intersecting
along the trivial solution to (E):

Theorem 3.3 (pseudo-stable and -unstable manifolds). Let n ∈ N. If

L < βn−αn

6Kn
, σn ∈

(
3KnL,

βn−αn

2

]
, (3.4)

then the following holds true for the evolution eqn. (E):

(a) The infinite-dimensional n-stable integral manifold

W+
n :=

{
(τ, u0) ∈ R×X : u(·; τ, u0) is γ+-bounded

}
(3.5)

is independent of γ ∈ Γn and a forward invariant fiber bundle with

W+
n =

{
(τ, ζ + w+

n (τ, ζ)) ∈ R×X : (τ, ζ) ∈ X+
n

}
.
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(b) The d1 + . . .+ dn-dimensional n-unstable integral manifold

W−n :=

{
(τ, u0) ∈ R×X :

(E) has a γ−-bounded solution
φ : (−∞, τ ]→ X with φ(τ) = u0

}
(3.6)

is independent of γ ∈ Γn and an invariant fiber bundle with

W−n =
{

(τ, ξ + w−n (τ, ξ)) ∈ R×X : (τ, ξ) ∈ X−n
}
. (3.7)

(c) The continuous functions w±n : R×X → X satisfy w±n (τ, 0) ≡ 0, the inclusions
w±n (τ, u1) ∈ X∓n (τ) for all (τ, u1) ∈ R×X and the Lipschitz estimates

lip2 w
±
n ≤ `n < 1. (3.8)

(d) W+
n ∩W−n = R× {0}.

(e) For θ-periodic evolution eqns. (E) the functions w±n are θ-periodic in, and for
autonomous (E) even independent of the first variable.

Proof. Constructing integral manifolds by the Lyapunov-Perron method is a fairly
well-established matter both in an autonomous (cf. [12, 3, 23]), as well as a non-
autonomous context (cf. [4, 5, 6, 16, 24]). We thus only give a sketch focussing on
preparations for our following considerations and differences in the present situation
of an unbounded linear part in (E). Thereto, let (τ, x0) ∈ R×X and γ ∈ Γn.

(a) allows a dual proof to the subsequent assertion
(b) The γ−-bounded mild solutions φ to (E) satisfying P−n (τ)φ(τ) = P−n (τ)x0

can be characterized as fixed points of the operator T−τ (·, x0) : B−τ,γ → B−τ,γ given
in (3.1); this can be shown as in [23, p. 467ff, Proof of Lemma 71.2]. Thanks to
Lemma 3.2 there exists a unique fixed point φ−τ (x0) ∈ B−τ,γ . If we define the function

w−n as w−n (τ, x0) := P+
n (τ)φ−τ (τ, x0), then

w−n (τ, ξ)
(3.1)
=

∫ τ

−∞
U(τ, s)P+

n (s)F (s, φ−τ (s, ξ)) ds for all (τ, ξ) ∈ X−n . (3.9)

(c) It results from Lemma 3.2 that w−n : R×X → X has the claimed properties.
In particular, the Lipschitz estimates follow with (3.3).

(d) Suppose that φ∗ ∈ Bγ is an entire solution of (E). Because of (N) the
function t 7→ F (t, φ∗(t)) is γ-bounded. Hence, the unique γ-bounded mild solution
of the linearly inhomogeneous equation

u̇ = A(t)u+ F (t, φ∗(t)) (3.10)

can be characterized by means of the fixed point relation

φ∗ =

∫ ·
−∞

U(·, s)P+
n (s)F (s, φ∗(s)) ds−

∫ ∞
·

Ū(·, s)P−n (s)F (s, φ∗(s)) ds

in Bγ (see, e.g. [23, pp. 205–206, Thm. 45.7(3)]). Our assumptions yield that its
right-hand side is globally Lipschitz in φ on the Banach space Bγ with constant

KnL

γ − αn
+

KnL

βn − γ
≤ 2KnL

σn
< 1.

Thus, the unique γ-bounded solution to (3.10) must be the trivial one, i.e. (d) holds.
(e) Given ξ ∈ X−n (τ) let us consider the entire solution φ : R → X satisfying

φ(τ) = ξ+w−n (τ, ξ). Thanks to the characterization (3.7) we know φ ∈ B−τ,γ . Then

also the shifted function φθ(t) := φ(t−θ) is γ−-bounded and, since (E) is θ-periodic,
φθ is furthermore a mild solution to (E). We can conclude

w−n (τ + θ, ξ) = w−n (τ + θ, P−n (τ)φ(τ − θ + θ))
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= w−n (τ + θ, P−n (τ + θ)φθ(τ + θ))

= P+
n (τ + θ)φθ(τ + θ) = P+

n (τ)φ(τ) = w−n (τ, ξ) for all τ ∈ R,

since the dichotomy projector P−n inherits θ-periodicity from (L). If (E) is even
autonomous, then the above equation holds for all θ > 0 and therefore w−n does not
depend on the first variable. This completes the proof of Thm. 3.3.

Corollary 3.4. Under the additional assumption (B) one has the implication

αn < 0 ⇒
∥∥w−n (τ, ξ)

∥∥ ≤ Kn

|αn|
C for all (τ, ξ) ∈ X−n .

Proof. Our argument is based on the relation (3.9) yielding∥∥w−n (τ, ξ)
∥∥ (2.2)

≤ KnC

∫ τ

−∞
eαn(τ−s) ds for all (τ, ξ) ∈ X−n .

The improper integral converges for αn < 0 and the claimed estimate follows.

Besides the pseudo-stable and -unstable vector bundles X+
n ,X−n , also the spectral

bundles Xn of (L) persist under small Lipschitzian perturbations. As demonstrated
in the next proof, this follows by a geometric argument.

Theorem 3.5 (pseudo-center manifolds). Let n > 1. If

L <
βj−αj

6Kj
, σj ∈

(
3KjL,

βj−αj

2

]
for all j ∈ {n, n− 1} , (3.11)

then the dn-dimensional n-center integral manifold

Wn :=W−n ∩W+
n−1 =

(τ, u0) ∈ R×X :
u(·; τ, u0) is γ+n−1-bounded and
(E) has a γ−n -bounded solution
φ : (−∞, τ ]→ X with φ(τ) = u0


is independent of γj ∈ Γj, j ∈ {n, n− 1}, and an invariant fiber bundle of the
evolution eqn. (E) allowing the representation

Wn = {(τ, η + wn(τ, η)) ∈ R×X : (τ, η) ∈ Xn}
as graph of a continuous function wn : R × X → X satisfying wn(τ, 0) ≡ 0, the
inclusion wn(τ, u1) ∈ X⊥n (τ) for all (τ, u1) ∈ R×X and

lip2 wn ≤
2 maxj∈{n,n−1} `j

1−maxj∈{n,n−1} `j
. (3.12)

For θ-periodic evolution eqns. (E) the function wn is θ-periodic in, and for autono-
mous (E) even independent of the first variable.

Remark 3.6 (hierarchies of integral manifolds). The dynamical characterizations
(3.5) and (3.6) yield the inclusions (cf. (1.1))

R× {0} ⊂ . . . ⊂ W+
n ⊂ W+

n−1 ⊂ . . . ⊂ W+
1 ⊂ W+

0 := R×X
∪ ∪ ∪ ∪

. . . Wn+1 Wn . . . W2 W1

∩ ∩ ∩ ||
R×X ⊃ . . . ⊃ W−n+1 ⊃ W−n ⊃ . . . ⊃ W−2 ⊃ W−1 ⊃ W−0 := R× {0} ,

(3.13)

where we supplemented Thm. 3.5 with the convention W1 :=W−1 .
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Proof. Let τ ∈ R. Thanks to our assumption (3.11) we obtain from Thm. 3.3 that
the integral manifolds W+

n−1 and W−n can be represented as graphs using functions

w+
n−1, w

−
n : R ×X → X. In particular, the Lipschitz estimates (3.8) readily imply

the inequalities lip2 w
+
n−1, lip2 w

−
n ≤ maxj∈{n,n−1} `j < 1.

(I) Given this, let us define the mapping

S : X2 × R×X → X2, S(x, z; τ, y) :=

(
w+
n−1(τ, y + z)
w−n (τ, x+ y)

)
,

which allows us to deduce the Lipschitz estimate

‖S(x, z; τ, y)− S(x̄, z̄; τ, y)‖
= max

{∥∥w+
n−1(τ, y + z)− w+

n−1(τ, y + z̄)
∥∥ ,∥∥w−n (τ, x+ y)− w−n (τ, x̄+ y)

∥∥}
≤ max
j∈{n,n−1}

`j

∥∥∥∥(x− x̄z − z̄

)∥∥∥∥ for all x, x̄, y, z, z̄ ∈ X

from (3.8). Therefore, S is a uniform contraction in the first two arguments. With
the uniform contraction principle in e.g. [17, p. 352, Thm. B.1.1] we obtain a unique
continuous fixed point function (w1

n, w
2
n) : R ×X → X2. From the definition of S

the inclusions w1
n(τ, y) ∈ X−n−1(τ) and w2

n(τ, y) ∈ X+
n (τ) follow for all y ∈ X. Using

the Lipschitz estimates (3.8) again, given x, z ∈ X, y, ȳ ∈ X one deduces

‖S(x, z; τ, y)− S(x, z; τ, ȳ)‖ ≤ max
j∈{n,n−1}

`j ‖y − ȳ‖ . (3.14)

(II) Let us show the representation of Wn as graph of a function wn over Xn.
Thereto, suppose u0 ∈ X. With Thm. 3.3(a) one has the inclusion (τ, u0) ∈ W+

n−1
if and only if there exists a ζ0 ∈ X+

n−1(τ) such that u0 = ζ0 +w+
n−1(τ, ζ0), which in

turn implies P+
n−1(τ)u0 = ζ0+P+

n−1(τ)w+
n−1(τ, ζ0) = ζ0. This yields the equivalence

(τ, u0) ∈ W+
n−1 ⇔ u0 = P+

n−1(τ)u0+w+
n−1(τ, P+

n−1(τ)u0) and analogously we deduce
from Thm. 3.3(b) that (τ, u0) ∈ W−n ⇔ u0 = P−n (τ)u0 + w−n (τ, P−n (τ)u0). Now we
can represent u0 = ζ + η + ξ uniquely with components ζ ∈ X+

n (τ), η ∈ Xn(τ) and
ξ ∈ X−n−1(τ). Hence, thanks to the equivalences

(τ, u0) ∈ Wn ⇔u0 = P+
n−1(τ)u0 + w+

n−1(τ, P+
n−1(τ)u0) and

u0 = P−n (τ)u0 + w−n (τ, P−n (τ)u0)

⇔ ξ = w+
n−1(τ, η + ζ) and ζ = w−n (τ, ξ + η)⇔ (ξ, ζ) = S(ξ, ζ; τ, η)

the pair (ξ, ζ) ∈ (X−n−1×X+
n )(τ) is a fixed point of S(·; τ, η). Referring to step (I) this

fixed point is uniquely given by (w1
n, w

2
n)(τ, η). Consequently, wn : R × X → X,

wn(τ, η) := (w1
n + w2

n)(τ, η) is a continuous function with wn(τ, η) ∈ X⊥n (τ). In
addition, (0, 0) is the unique fixed point of S(·; τ, 0) and thus wn(τ, 0) ≡ 0 on R.

(III) We next establish the claimed Lipschitz condition (3.12): In step (I) it was
shown that lip(1,2) S < 1 and (3.14) means that S also fulfills a Lipschitz estimate

in the parameter y. Accordingly, [17, p. 352, Thm. B.1.1(b)] implies that

lip2

(
w1
n

w2
n

)
≤ lip4 S

1− lip(1,2) S
≤ maxj∈{n,n−1} `j

1−maxj∈{n,n−1} `j
.

Thus, the relation wn = w1
n + w2

n leads to the desired estimate (3.12).
(IV) To complete the proof it remains to justify two assertions: First, as intersec-

tion of forward invariant sets, Wn =W+
n−1 ∩W−n itself is forward invariant and as

a finite-dimensional set even invariant. Second, from Thm. 3.3(d) we deduce that
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S(x, z; τ, y) = S(x, z; τ + θ, y) for x, y, z ∈ X. Hence, the respective unique fixed
points (w1

n, w
2
n)(τ, y), (w1

n, w
2
n)(τ + θ, y) coincide yielding a θ-periodic wn(·, y).

Since the pseudo-unstable integral manifolds W−n are invariant, the 2-parameter
semiflow of (E) restricted to eachW−n fulfills the semilinear d1+. . .+dn-dimensional
nonautonomous ODEs

ẋ = A−n (t)x+ F−n (t, x) (E−n )

in the vector bundles X−n ; we have abbreviated

A−n (t) := A(t)P−n (t), F−n (t, x) := P−n (t)F (t, x+ w−n (t, x))

and write x−n for the general solution of (E−n ). Note that every solution φn : R→ X
to (E−n ) yields an entire solution u : R→ X for (E) via u(t) := φn(t)+w−n (t, φn(t)).

For an insight into the dynamics of (E) on the finite-dimensional integral mani-
foldW−n we next perform a similar analysis as above for every ODE (E−n ). Keeping

X−n = X k1 ⊕Xnk+1 for all 1 ≤ k < n

in mind, a counterpart to Thm. 3.3 reads as

Proposition 3.7 (reduced pseudo-stable and -unstable manifolds). Let 1 ≤ k < n.
If

L < βk−αk

12Kk
, σk ∈

(
6KkL,

βk−αk

2

]
and (3.4) hold, then the ODE (E−n ) fulfills:

(a) The dk+1 + . . .+ dn-dimensional (n, k)-stable integral manifold

W+
n,k :=

{
(τ, x0) ∈ X−n : x−n (·; τ, x0) is γ+-bounded

}
is independent of γ ∈ Γk and an invariant fiber bundle with

W+
n,k =

{
(τ, ζ + w+

n,k(τ, ζ)) ∈ X−n : (τ, ζ) ∈ Xnk+1

}
(3.15)

and the inclusion w+
n,k(τ, x1) ∈ X k1 (τ) for all (τ, x1) ∈ X−n .

(b) The d1 + . . .+ dk-dimensional (n, k)-unstable integral manifold

W−n,k :=
{

(τ, x0) ∈ X−n : x−n (·; τ, x0) is γ−-bounded
}

is independent of γ ∈ Γk and an invariant fiber bundle with

W−n,k =
{

(τ, ξ + w−n,k(τ, ξ)) ∈ X−n : (τ, ξ) ∈ X k1
}

and the inclusion w−n,k(τ, x1) ∈ Xnk+1(τ) for all (τ, x1) ∈ X−n .

(c) The continuous functions w±n,k : X±n → X satisfy w±n,k(τ, 0) ≡ 0 and

lip2 w
±
n,k ≤ `?k < 1. (3.16)

(d) W+
n,k ∩W−n,k = R× {0}.

(e) For θ-periodic evolution eqns. (E) the functions w±n,k are θ-periodic in, and

for autonomous (E) even independent of the first variable.

Proof. The assumption (3.4) ensures that W−n can be represented as graph over a
function w−n as in Thm. 3.3(b). Since (E−n ) is an ODE in the vector bundle X−n , it
offers itself to work with an adapted norm, namely the family

‖x‖t :=
∥∥P−n (t)x

∥∥ for all (t, x) ∈ X−n . (3.17)
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Rλ−
1 λ+

1λ−
2 λ+

2λ−
n−1 λ+

n−1λ−
n λ+

n

β1α1β2α2βn−1αn−1 α0

Figure 3. Bounded dichotomy spectrum Σ(A−n ) of ẋ = A−n (t)x
(in red) and the gap intervals [αk, βk], 1 ≤ k < n

Then ‖·‖t is a norm on the fiber X−n (t) being equivalent to ‖·‖ uniformly in t ∈ R.
This allows us to show that (E−n ) fulfills almost the same assumptions as (E):

ad (L): The dichotomy estimates (2.2) remain unchanged when using the oper-
ator norm induced by ‖·‖t. In addition, the spectrum Σ(A−n ) of the linear part in
(E−n ) consists of the first n spectral intervals of Σ(A) and is illustrated in Fig. 3.

ad (N): For all t ∈ R and x, x̄ ∈ X−n (t) one obtains the Lipschitz estimate∥∥F−n (t, x)− F−n (t, x̄)
∥∥
t

(3.17)
=

∥∥F (t, x+ w−n (t, x))− F (t, x̄+ w−n (t, x̄))
∥∥

≤ L
(
‖x− x̄‖+

∥∥w−n (t, x)− w−n (t, x̄)
∥∥)

(3.8)

≤ 2L
∥∥P−n (t)(x− x̄)

∥∥ = 2L ‖x− x̄‖t .
Consequently, the remaining assertions can be deduced as in the proof of Thm. 3.3
with the constant L replaced by 2L. Here, the estimates (3.8) are to be understood
w.r.t. ‖·‖τ . However, since both functions w±n,k, as well as their second arguments

have values in X−n (τ), the estimates remain unchanged when using the norm ‖·‖.
Corollary 3.8. Under the additional assumption (B) one has the implication

αk < 0 ⇒
∥∥∥w−n,k(τ, ξ)

∥∥∥ ≤ Kk

|αk|
C for all (τ, ξ) ∈ X k1 . (3.18)

Proof. The proof of Prop. 3.7 is based on the adapted norms ‖·‖t, t ∈ R, defined in
(3.17). Then using the estimate∥∥F−n (t, x)

∥∥
t

=
∥∥F (t, x+ w−n (t, x))

∥∥ ≤ C for all (t, x) ∈ X−n ,
the claim follows as in Cor. 3.4.

Proposition 3.9 (reduced pseudo-center manifolds). Let 1 < k < n. If

L <
βj−αj

12Kj
, σj ∈

(
6KjL,

βj−αj

2

]
for all j ∈ {k, k − 1} (3.19)

and (3.4) hold, then the dk-dimensional (n, k)-center integral manifold

Wn,k :=W−n,k ∩W+
n,k−1 =

{
(τ, x0) ∈ X−n : x−n (·; τ, x0) is γ+k−1- and γ−k -bounded

}
does not depend on γj ∈ Γj, j ∈ {k, k − 1}, and is an invariant fiber bundle of the
ODE (E−n ) allowing the representation

Wn,k =
{

(τ, η + wn,k(τ, η)) ∈ X−n : (τ, η) ∈ Xk
}

as graph of a continuous function wn,k : X−n → X satisfying wn,k(τ, 0) ≡ 0, the
inclusion wn,k(τ, x1) ∈ (Xk ⊕Xnk+1)(τ) for all (τ, x1) ∈ X−n and

lip2 wn,k ≤
2 maxj∈{k,k−1} `?j

1−maxj∈{k,k−1} `?j
.

For θ-periodic evolution eqns. (E) the function wn,k is θ-periodic in, and for auto-
nomous (E) even independent of the first variable.



DECOUPLING AND LINEARIZATION OF NONAUTONOMOUS EQUATIONS 13

Remark 3.10 (hierarchies of reduced integral manifolds). In analogy to Rem. 3.6
the reduced integral manifolds of (E−n ) fulfill the inclusions

R× {0} =:W+
n,n ⊂ W+

n,n−1 ⊂ . . . ⊂ W+
n,1 ⊂ W+

n,0 := X−n
|| ∪ ∪
Wn,n . . . Wn,2 Wn,1

∩ ∩ ||
X−n =: W−n,n ⊃ . . . ⊃ W−n,2 ⊃ W−n,1 ⊃ W−n,0 := R× {0}

Proof. First of all, the assumptions (3.4) ensure thatW−n is graph of a function w−n
with lip2 w

−
n < 1 (cf. Thm. 3.3(b)). Moreover, due to (3.19) the integral manifolds

W+
n,k−1, W−n,k from Prop. 3.7 can be characterized by continuous functions w+

n,k−1,

w−n,k with Lipschitz constant < 1. Under these conditions the proof of Thm. 3.5

directly applies to (E−n ) having a nonlinearity fulfilling lip2 F
−
n ≤ 2L w.r.t. the

adapted norms (3.17). This yields the assertions.

Our following result aims to describe the dynamics of (E) restricted to the
pseudo-center manifolds Wk. It is determined by the dk-dimensional ODE

ẏ = Ak(t)y + Fk(t, y) (Ek)

in the spectral bundles Xk, where we have abbreviated

Ak(t) := A(t)Pk(t), Fk(t) := Pk(t)F (t, y + wk(t, y)).

If yk denotes the general solution to (Ek), then û : R→ X,

û(t) := yk(t; τ, η) + wk(t, yk(t; τ, η)) (3.20)

defines an entire solution of (E) inWk (by the invariance properties from Thm. 3.5).

Corollary 3.11. For 1 ≤ k ≤ n the following holds:

(a) The general solutions x−k to (E−k ) and x−n,k to

ẋ = A−k (t)x+ P−k (t)F
(
t, x+ w−n,k(t, x) + w−n (t, x+ w−n,k(t, x))

)
(E−n,k)

coincide and for all (τ, ξ) ∈ X−k we have

ξ + w−k (τ, ξ) = ξ + w−n,k(τ, ξ) + w−n (τ, ξ + w−n,k(τ, ξ)). (3.21)

(b) The general solutions yk to (Ek) and yn,k to

ẏ = Ak(t)y + Pk(t)F
(
t, y + wn,k(t, y) + w−n (t, y + wn,k(t, y))

)
(En,k)

coincide and for all (τ, η) ∈ Xk we have

η + wk(τ, η) = η + wn,k(τ, η) + w−n (τ, η + wn,k(τ, η)). (3.22)

Proof. Since assertion (a) can be shown analogously, we provide only a proof of (b).
Given a pair (τ, η) ∈ Xk, the function û : R → X from (3.20) defines an entire
solution to (E) in Wk and hence also in W−k (cf. Thm. 3.5), i.e.

û(t) = yk(t; τ, η) + w−k (t, yk(t; τ, η)) for all t ∈ R.

Thanks to the hierarchy (3.13) this implies û(τ) ∈ W−k (τ) ⊆ W−n (τ) and conse-
quently also the representation

û(τ) = ξ + w−k (τ, ξ) for some (τ, ξ) ∈ X−k
holds. With the general solution x−n to (E−n ) we then obtain that u : R→ X,

u(t) := x−n (t; τ, ξ) + w−n (t, x−n (t; τ, ξ)) for all t ∈ R
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is an entire solution of (E) inW−n . Accordingly, the uniqueness of (entire) solutions
in W−n implies û = u. Our assumption (3.4) ensures lip2 w

−
n < 1 and therefore∥∥x−n (t; τ, ξ)

∥∥ (3.8)

≤ 1
1−`n ‖u(t)‖ for all t ∈ R.

Due to u(τ) ∈ Wk this allows us to conclude that x−n (·; τ, ξ) is γ−k - and γ+k−1-bounded
from the corresponding properties of u. Hence, (τ, ξ) ∈ Wn,k by Prop. 3.9 and one
has the representation ξ = ηk +wn,k(τ, ηk) for some (τ, ηk) ∈ Xk. The invariance of
Wn,k yields xn(t; τ, ξ) = yn,k(t; τ, ηk) + wn,k(t, yn,k(t; τ, ηk)) for all t ∈ R and thus

yk(t; τ, ηk) + wk(t, yk(t; τ, ηk)) = u(t) = x−n (t; τ, ξ) + w−n (t, x−n (t; τ, ξ))

= yn,k(t; τ, ηk)+wn,k(t, yn,k(t; τ, ηk))+w−n
(
t, yn,k(t; τ, ηk)+wn,k(t, yn,k(t; τ, ηk))

)
.

Setting t = τ yields the claimed identity (3.22). The converse direction can be
established using similar arguments.

3.2. Invariant foliations and asymptotic phase. In the previous Subsect. 3.1
we provided a geometrical description of the solution entities to (E) and (E−n )
having a particular exponential growth behavior in relation to the trivial solution.

Rather than working with the zero solution, our present goal is to characterize
solutions to (E) whose distance to an arbitrary forward solution allows a specific
exponential estimate. Thus, given the solution u(·; τ, u0) : [τ,∞) → X for initial
pairs (τ, u0) ∈ R×X, let us investigate the evolution equation

u̇ = A(t)u+G(t, u; τ, u0)

with the nonlinearity G : {(t, u; τ, u0) ∈ R×X × R×X : τ ≤ t} → X,

G(t, u; τ, u0) := F (t, u+ u(t; τ, u0))− F (t, u(t; τ, u0)), (3.23)

and (τ, u0) understood as a parameter. The Lyapunov-Perron operator

S+
τ (ψ, y0, u0) := U(·, τ)[y0 − P+

n (τ)u0] +

∫ ·
τ

U(·, s)P+
n (s)G(s, ψ(s); τ, u0) ds

−
∫ ∞
·

Ū(·, s)P−n (s)G(s, ψ(s); τ, u0) ds (3.24)

formally introduces a continuous function between [τ,∞) and X, depending on the
pair (τ, y0) ∈ X+

n , a continuous ψ : [τ,∞)→ X and u0 ∈ X.
The analysis of the operators T−τ from (3.1) and S+

τ is largely dual. Therefore,
our present approach complements the one from Subsect. 3.1. We actually focus on
the dynamical meaning of S+

τ : B+
τ,γ ×X2 → B+

τ,γ :

Lemma 3.12. Given (τ, y0) ∈ X+
n , u0 ∈ X the following statements are equivalent:

(a) There exists a u1 ∈ X such that ψ := u(·; τ, u1)− u(·; τ, u0) ∈ B+
τ,γ satisfies

P+
n (τ)ψ(τ) = y0 − P+

n (τ)u0. (3.25)

(b) ψ ∈ B+
τ,γ fulfills ψ = S+

τ (ψ, y0, u0).

Proof. Let (τ, y0) ∈ X+
n and u0 ∈ X.

(a)⇒ (b) Assume there exists a u1 ∈ X so that ψ := u(·; τ, u1)−u(·; τ, u0) ∈ B+
τ,γ

and (3.25) hold. Then ψ is a γ+-bounded solution to the inhomogeneous equation

u̇ = A(t)u+G(t, ψ(t); τ, u0)

and [23, pp. 205–207, Thm. 45.7(3)] yields the fixed point relation ψ = S+
τ (ψ; τ, u0).
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(b) ⇒ (a) Suppose that ψ ∈ B+
τ,γ is a fixed point of the operator S+

τ (·; y0, u0).

With u1 := P−n (τ)[u0 + ψ(τ)] + y0 and ν := ψ + u(·; τ, u0) one obtains

ν(τ)
(2.4)
= ψ(τ) + u0 = P−n (τ)ψ(τ) + P+

n (τ)S+
τ (τ, ψ; y0, u0) + u0

(3.24)
= P−n (τ)ψ(τ) + y0 − P+

n (τ)u0 + u0 = P−n (τ)[ψ(τ) + u0] + y0 = u1

and moreover ν solves (E). Since forward solutions to (E) are unique, we conclude
ν = u(·; τ, u1), that is, ψ = u(·; τ, u1)− u(·; τ, u0). Finally, it results

P+
n (τ)ψ(τ) = P+

n (τ)[u1 − u0] = P+
n (τ)[y0 − u0] = y0 − P+

n (τ)u0

and the proof is finished.

Proposition 3.13 (pseudo-stable leafs). Let n ∈ N and suppose that

L < βn−αn

2Kn(Kn+2) , σn ∈
(
Kn(Kn + 2)L, βn−αn

2

]
(3.26)

is fulfilled. For every u0 ∈ X the infinite-dimensional n-stable leaf

V+
n (u0) :=

{
(τ, u1) ∈ R×X : u(·; τ, u1)− u(·; τ, u0) is γ+-bounded

}
does not depend on γ ∈ Γn and is a forward invariant fiber bundle of (E) fulfilling:

(a) It allows the representation

V+
n (u0) =

{
(τ, ζ + v+n (τ, ζ;u0)) ∈ R×X : (τ, ζ) ∈ X+

n

}
(3.27)

as graph of a continuous function v+n : R ×X2 → X satisfying the inclusion
v+n (τ, u1, u0) ∈ X−n (τ) for all (τ, u1) ∈ R×X.

(b) v+n (τ, u1, u0) = P−n (τ)u0 +V +
n (τ, u1, u0) for all (τ, u1) ∈ R×X with a contin-

uous function V +
n : R×X2 → X satisfying V +

n (τ, u1, u0) ∈ X−n (τ).
(c) One has the Lipschitz estimates

lip2 v
+
n ≤ Kn`n < 1, lip2 V

+
n ≤ Kn`n < 1. (3.28)

Because (E) has the trivial solution it is clear that every V+
n (0) defines a pseudo-

stable integral manifold, i.e. V+
n (0) =W+

n .

Proof. Let (τ, u0) ∈ R × X and choose γ ∈ Γn. Above all, the nonlinearity G
given in (3.23) satisfies G(t, 0; τ, u0) ≡ 0 on [τ,∞), inherits the Lipschitz condition
lip2G ≤ L from (N2) and is finally continuous, since u has this property.

(I) As in the proof of Lemma 3.1 one shows that S+
τ : B+

τ,γ ×X+
n (τ)×X → B+

τ,γ

is well-defined with

lip1 S
+
τ ≤

2KnL

σn
, lip2 S

+
τ ≤ Kn.

The condition (3.26) yields that 2KnL
σn

< 1 and thus S+
τ is a uniform contraction

in the first argument. Again the uniform contraction principle guarantees a unique
and continuous fixed point function ψ+

τ : X+
n (τ)×X → B+

τ,γ which satisfies

lip1 ψ
+
τ ≤

σn
σn − 2KnL

.

(II) Let us show that the nonautonomous set V+
n (u0) is forward invariant. For

t ≥ τ choose û0 ∈ u(t; τ,V+
n (τ, u0)). According to Lemma 3.12 this means there

exists a u1 ∈ X such that û0 = u(t; τ, u1) and u(·; τ, u1)− u(·; τ, u0) ∈ B+
τ,γ , hence

u(·; t, û0)− u(·; t, u(t; τ, u0)) = u(·; t, u(t; τ, u1))− u(·; t, u(t; τ, u0))

(2.4)
= u(·; τ, u1)− u(·; τ, u0).
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Consequently, û0 ∈ V+
n (t, u(t; τ, u0)) and we verify the further assertions:

(a) Given the fixed point function ψ+
τ from (I) we define

v+n (τ, y0;u0) := P−n (τ)
(
u0 + ψ+

τ (τ, P+
n (τ)y0, u0)

)
and obtain a continuous function v+n : R×X2 → X.

(b) Also the function V +
n : R×X2 → X is continuous, if we set

V +
n (τ, y0, u0) := P−n (τ)ψ+

n (τ, P+
n (τ)y0, u0). (3.29)

(c) Finally, the definition of v+n implies the relation

v+n (τ, y0, u0)
(3.24)

= P−n (τ)u0 −
∫ ∞
τ

Ū(τ, s)P−n (s)G(s, ψ+
τ (s, P+

n (τ)y0, u0); τ, u0) ds,

from which the Lipschitz estimates (3.28) follow.

Corollary 3.14. Under the additional assumption (B) one has the implication

βn < 0 ⇒
∥∥V +

n (τ, ζ, u0)
∥∥ ≤ 2Kn

|βn|
C for all (τ, ζ) ∈ X+

n , u0 ∈ X.

Proof. The function V +
n : R×X2 → X defined in (3.29) allows the representation

V +
n (τ, ζ, u0)

(3.24)
= −

∫ ∞
τ

Ū(τ, s)P−n (s)G(s, ψ+
n (s, P+

n (τ)ζ, u0); τ, u0) ds

and the claim follows from (2.2) due to ‖G(t, u; τ, u0)‖ ≤ 2C.

Pseudo-stable leafs allow to establish the following geometric property of pseudo-
unstable integral manifolds:

Theorem 3.15 (asymptotic forward phase). Let n ∈ N. If (3.26) holds, then the
n-unstable integral manifold W−n has an asymptotic forward phase, i.e. there exists
a continuous function π+

n : R × X → X and a bounded Cn : R × [0,∞) → [0,∞)
such that the following holds for every (τ, u0) ∈ R×X:∥∥u(t; τ, u0)− u(t; τ, π+

n (τ, u0))
∥∥ ≤ Cn(τ, ‖u0‖)eγ(t−τ) for all τ ≤ t (3.30)

and γ ∈ Γn. Geometrically, π+
n (τ, u0) is given as unique intersection

W−n ∩ V+
n (u0) =

{
(t, π+

n (t, u0)) : t ∈ R
}

for all u0 ∈ X (3.31)

and each π+
n (τ, ·) : X → W−n (τ) is a retraction onto W−n (τ). In particular, there

exists a unique continuous function ξ+n : R×X → X with ξ+n (τ, u0) ∈ X−n (τ) and

π+
n (τ, u0) = ξ+n (τ, u0) + w−n (τ, ξ+n (τ, u0)).

The mapping π+
n : R×X → X is linearly bounded, i.e.∥∥π+
n (τ, u0)

∥∥ ≤ Kn
1+`?n
1−`?n ‖u0‖ for all (τ, u0) ∈ R×X. (3.32)

For θ-periodic evolution eqns. (E) the functions π+
n and ξ+n are θ-periodic in, and

for autonomous (E) even independent of the first variable.

The boundedness of the real-valued function Cn means that for every R > 0 one
has sup(t,x)∈R×[0,R) Cn(t, x) <∞.
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Proof. Let (τ, u0) ∈ R×X. Our assumption (3.26) implies (3.4). Hence, Thm. 3.3
yields the properties of W−n and Prop. 3.13 contains the necessary facts on V+

n (u0).
We first show that the intersection (3.31) is a singleton. Thereto, every element
û ∈ V+

n (τ, u0) ∩W−n (τ) allows the representation

û = ζ + v+n (τ, ζ, u0), û = ξ + w−n (τ, ξ)

with ζ ∈ X+
n (τ), ξ ∈ X−n (τ). This is equivalent to

ξ = v+n (τ, ζ;u0), ζ = w−n (τ, ξ)

and consequently
(
ξ
ζ

)
is a fixed point of the mapping S : X2 × R×X → X,

S(x, z; τ, u0) :=

(
v+n (τ, z;u0)
w−n (τ, x)

)
.

Since both lip2 v
+
n < 1 and lip2 w

−
n < 1 hold due to (3.8) resp. (3.28), the uniform

contraction principle yields unique continuous fixed point functions ξ+n : R×X → X,
ζ+n : R×X → X. In particular, by definition of S the inclusions ξ+n (τ, u0) ∈ X−n (τ)
and ζ+n (τ, u0) ∈ X+

n (τ) hold true.
We will not show (3.30) and (3.32) since the argument is as in [16, Thm. 3.7].

The sets V+
n (u0), u0 ∈ X, allow us to foliate the extended state space R×X:

Corollary 3.16 (pseudo-stable foliation). The nonautonomous sets V+
n (u0) are

leafs of a foliation over every fiber W−n (τ), τ ∈ R.

Proof. Let (τ, u0) ∈ R×X. Due to (3.30) it is u(·; τ, u0)− u(·; τ, π+
n (τ, u0)) ∈ B+

τ,γ

and Prop. 3.13 shows u0 ∈ V+
n (τ, π+

n (τ, u0)). Because u0 ∈ X was arbitrary, one
has X =

⋃
ξ∈W−

n (τ) V+
n (τ, ξ). The fibers V+

n (τ, u1), V+
n (τ, u2) are pairwise disjoint,

∅ = {u1} ∩ {u2} = V+
n (τ, u1) ∩ V+

n (τ, u2) for u1 6= u2 and u1, u2 ∈ W−n (τ).

The concepts of pseudo-stable foliations and asymptotic forward phases also ap-
ply to the nonautonomous ODEs (E−n ) in the finite-dimensional vector bundles X−n .
Its solutions exist on R and in particular the unique existence of backward solutions
is always given. This enables us to introduce the dual concepts of pseudo-unstable
foliations and asymptotic backward phases:

Proposition 3.17 (reduced pseudo-stable and -unstable leafs). Let 1 ≤ k < n. If

L < βk−αk

4Kk(Kk+2) , σk ∈
(

2Kk(Kk + 2)L, βk−αk

2

]
(3.33)

and (3.4) hold, then the ODE (E−n ) satisfies for all (τ, x0) ∈ X−n :

(a) The d1 + . . .+ dk-dimensional (n, k)-stable leafs, fiberwise given as

V+
n,k(τ, x0) :=

{
x1 ∈ X−n (τ) : x−n (·; τ, x1)− x−n (·; τ, x0) is γ+-bounded

}
do not depend on γ ∈ Γk and are invariant fiber bundles of (E−n ) satisfying:
(a1) They allow the representation

V+
n,k(x0) =

{
(τ, ζ + v+n,k(τ, ζ, x0)) ∈ X−n : (τ, ζ) ∈ Xnk+1

}
(3.34)

as graph of a continuous function v+n,k : R×X2 → X fulfilling the inclu-

sion v+n,k(τ, x1, x0) ∈ X k1 (τ) for all (τ, x1) ∈ X−n .

(a2) v+n,k(τ, x1, x0) = P k1 (τ)x0 + V +
n,k(τ, x1, x0) for all (τ, x1) ∈ X−n with a

continuous V +
n,k : R×X2 → X satisfying V +

n,k(τ, x1, x0) ∈ X k1 (τ).
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(b) The dk+1 + . . .+ dn-dimensional (n, k)-unstable leafs, fiberwise given as

V−n,k(τ, x0) :=
{
x1 ∈ X−n (τ) : x−n (·; τ, x1)− x−n (·; τ, x0) is γ−-bounded

}
do not depend on γ ∈ Γk and are invariant fiber bundles of (E−n ) satisfying:
(b1) They allow the representation

V−n,k(x0) =
{

(τ, ξ + v−n,k(τ, ξ, x0)) ∈ X−n : (τ, ξ) ∈ X k1
}

(3.35)

as graph of a continuous function v−n,k : R×X2 → X fulfilling the inclu-

sion v−n,k(τ, x1, x0) ∈ Xnk+1(τ) for all (τ, x1) ∈ X−n .

(b2) v−n,k(τ, x1, x0) = Pnk+1(τ)x0 + V −n,k(τ, x1, x0) for all (τ, x1) ∈ X−n with a

continuous V −n,k : R×X2 → X satisfying V −n,k(τ, x1, x0) ∈ Xnk+1(τ).

(c) One has the Lipschitz estimates

lip2 v
±
n,k ≤ Kk`

?
k < 1, lip2 V

±
n,k ≤ Kk`

?
k < 1. (3.36)

(d) There exists a unique continuous mapping Πn
k : X−n ×X−n → X with

V+
n,k(τ, x1) ∩ V−n,k(τ, x2) = {Πn

k (τ, x1, x2)} for all (τ, x1, x2) ∈ X−n ×X−n ,
which, moreover, is also linearly bounded

‖Πn
k (τ, x1, x2)‖ ≤ (1 + 2`?k)(Kk + `?k)

1− `?2k
(‖x1‖+ ‖x2‖) . (3.37)

Since the ODE (E−n ) shares the trivial solution with (E) one immediately obtains
the relations V+

n,k(0) =W+
n,k and V−n,k(0) =W−n,k.

Proof. With lip2 F
−
n < 2L in mind, one mimics the proof of Prop. 3.13 using the

adapted norm (3.17) for (a)–(c). The assertion (d) is shown in [16, Prop. 3.1(c)].

Corollary 3.18. Let (τ, x0) ∈ X−n . Under the additional assumption (B) it holds

βk < 0 ⇒
∥∥∥V +

n,k(τ, ζ, x0)
∥∥∥ ≤ 2Kk

|βk|C for all ζ ∈ Xnk+1(τ), (3.38)

αk < 0 ⇒
∥∥∥V −n,k(τ, ξ, x0)

∥∥∥ ≤ 2Kk

|αk|C for all ξ ∈ X k1 (τ). (3.39)

Proof. Proceed as in the proofs of Cor. 3.8 and Cor. 3.14.

Proposition 3.19 (reduced asymptotic phases). Let 1 ≤ k < n. If (3.4), (3.33)
are satisfied, then there exists a bounded function Cn,k : R × [0,∞) → [0,∞) such
that the following holds true for every (τ, x0) ∈ X−n :

(a) The (n, k)-unstable integral manifold W−n,k of (E−n ) has an asymptotic for-

ward phase, i.e. there exists a continuous function π+
k,n : X−n → X such that∥∥∥x−n (t; τ, x0)− x−n (t; τ, π+

n,k(τ, x0))
∥∥∥ ≤ Cn,k(τ, ‖x0‖)eγ(t−τ) for all τ ≤ t

and γ ∈ Γk. Geometrically, π+
n,k(τ, x0) is given as unique intersection

W−n,k ∩ V+
n,k(x0) =

{
(t, π+

n,k(t, x0)) ∈ X−n : t ∈ R
}

and each π+
n,k(τ, ·) : X−n (τ) → W−n,k(τ) is a retraction onto W−n,k(τ). In

particular, there exists a unique continuous function ξ+n,k : X−n → X satisfying

the inclusion ξ+n,k(τ, x0) ∈ X k1 (τ) and

π+
n,k(τ, x0) = ξ+n,k(τ, x0) + w−n,k(τ, ξ+n,k(τ, x0)). (3.40)
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(b) The (n, k)-stable integral manifoldW+
n,k of (E−n ) has an asymptotic backward

phase, i.e. there exists a continuous function π−k,n : X−n → X such that∥∥∥x−n (t; τ, x0)− x−n (t; τ, π−n,k(τ, x0))
∥∥∥ ≤ Cn,k(τ, ‖x0‖)eγ(t−τ) for all t ≤ τ

and γ ∈ Γk. Geometrically, π−n,k(τ, x0) is given as unique intersection

W+
n,k ∩ V−n,k(x0) =

{
(t, π−n,k(t, x0)) ∈ X−n : t ∈ R

}
and each π−n,k(τ, ·) : X−n (τ) → W+

n,k(τ) is a retraction onto W+
n,k(τ). In

particular, there exists a unique continuous function ζ−n,k : X−n → X satisfying

the inclusion ζ−n,k(τ, x0) ∈ Xnk+1(τ) and

π−n,k(τ, x0) = ζ−n,k(τ, x0) + w+
n,k(τ, ζ−n,k(τ, x0)). (3.41)

(c) The mappings π±n,k : X−n → X are linearly bounded, i.e.∥∥∥π±n,k(τ, x0)
∥∥∥ ≤ Kk

1+`?k
1−`?k

‖x0‖ for all (τ, x0) ∈ X−n (3.42)

(d) For θ-periodic evolution eqns. (E) the functions π±n,k and ξ±n,k are θ-periodic

in, and for autonomous (E) even independent of the first variable.

Proof. Using lip2 F
−
n ≤ 2L the proof parallels that of Thm. 3.15.

Corollary 3.20 (reduced pseudo-stable and -unstable foliation). The nonautono-
mous sets V±n,k(x0) are leafs of a foliation of X−n over the fiber W∓n,k(τ), τ ∈ R.

Proof. Referring to Prop. 3.19 this follows as in the proof of Cor. 3.16.

4. Topological decoupling. For nonautonomous evolution eqns. (E), the concept
of topological conjugation is not as straight forward as in the classical autonomous
situation. Clearly, it is natural to allow time-dependent transformations here, but
this alone offers too much flexibility: Then, as already demonstrated in [24, p. 72]
one could actually conjugate arbitrary equations. Indeed further assumptions are
due and we suggest the following notion (cf. [16, 24]):

Suppose also F̄ : R×X → X fulfills (N). A continuous function T : R×X → X
is called topological conjugation between the semi-linear evolution eqn. (E) and

u̇ = A(t)u+ F̄ (t, u), (Ē)

provided Tτ : X → X, Tτ (x) := T (τ, x) is a homeomorphism for every τ ∈ R, its
inverse T̄ : R×X → X, T̄ (τ, x) := T−1τ (x) is continuous, and one has the properties:

(i) limx→0 T (τ, x) = limx→0 T̄ (τ, x) = 0 uniformly in τ ∈ R
(ii) for every solution φ of (E) the function φ̄(t) := T (t, φ(t)) solves (Ē)

(iii) for every solution φ̄ of (Ē) the function φ(t) := T̄ (t, φ(t)) solves (E).

In this case the differential eqns. (E) and (Ē) are called topologically conjugated.
The condition (i) yields the canonical requirement that stability properties of the

trivial solution to (E) are preserved under topological conjugation.

Proposition 4.1 (topological decoupling of (E−n )). If (L), (N) and the inequality

L <
1

4

n
min
k=1

βk − αk
Kk(Kk + 2)

(4.1)
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hold for some n > 1, there exists a topological conjugation Tn : X−n → X between
(E−n ) and the decoupled ODE

ẋ = A−n (t)x+

n∑
k=1

Pk(t)F (t, Pk(t)x+ wk(t, x)). (D−n )

This result could be established solely as an inductive application of [16, Prop. 4.3]
(see also [24, p. 219, 5.4 Satz]), which decouples the finite-dimensional ODEs (E−n )
into two subsystems for every gap in Σ(A−n ). Yet, we combine this argument with
[12, Thm. 5.1] in order to prepare an upcoming infinite-dimensional version.

Proof. Let 1 ≤ k ≤ n and (τ, x0) ∈ X−n with a fixed n > 1. We remind the reader
that x−n denotes the general solution to the ODE (E−n ) and yk is the general solution
for (Ek). Let us subdivide the proof into four steps:

(I) We argue on basis of Prop. 3.17 and Prop. 3.19, which apply because of (4.1):
First, for k = 1 the intersection W−n,1(τ) ∩ V+

n,1(τ, x0) contains a unique element

π+
n,1(τ, x0) ∈ X−n (τ). For some ζ ∈ Xn2 (τ) it allows the representation

ξ+n,1(τ, x0) + w−n,1(τ, ξ+n,1(τ, x0))
(3.40)

= π+
n,1(τ, x0)

(3.34)
= ζ + P1(τ)x0 + V +

n,1(τ, ζ, x0).

Due to Prop. 3.7(c) we obtain from Lemma A.1 applied to the first part of this
equation that ηn1 := ξ+n,1 : X−n → X defines a continuous function satisfying

‖ηn1 (τ, x0)‖
(3.16)

≤ 1
1−`?1

∥∥π+
n,1(τ, x0)

∥∥ (3.42)

≤ Kk(1+`
?
1)

(1−`?1)2
‖x0‖ −−−−→

x0→0
0

uniformly in τ ∈ R and ηn1 (τ, x0) ∈ X1(τ). Moreover, it holds

ηn1 (τ, x0) = P1(τ)x0 + V +
n,1(τ, w−n,1(τ, ηn1 (τ, x0)), x0) (4.2)

and by the invariance of leafs and manifolds this implies for all t ∈ R that

y1(t; τ, ηn1 (τ, x0)) = v+n,1
(
t, w−n,1

(
t, y1(t; τ, ηn1 (τ, x0))

)
, x−n (t; τ, x0)

)
.

Second, let 1 < k < n: On the one hand, W−n,k(τ) and V+
n,k(τ, x0) intersect at

a unique point π+
n,k(τ, x0) = ξ+n,k(τ, x0) + w−n,k(τ, ξ+n,k(τ, x0)). As above one shows

that the continuous function ξ+n,k fulfills ξ+n,k(τ, x0) ∈ X k1 (τ), limx0→0 ξ
+
n,k(τ, x0) = 0

uniformly in τ ∈ R and

ξ+n,k(τ, x0) = P k1 (τ)x0 + V +
n,k(τ, w−n,k(τ, ξ+n,k(τ, x0)), x0). (4.3)

On the other hand, also W+
k,k−1(τ) ∩ V−k,k−1(τ, ξ+n,k(τ, x0)) consists of a unique ele-

ment, which is of the form

π−k,k−1(τ, ξ+n,k(τ, x0)) = ζ−k,k−1(τ, ξ+n,k(τ, x0)) + w+
k,k−1

(
τ, ζ−k,k−1(τ, ξ+n,k(τ, x0))

)
with a continuous ζ−k,k−1 : X−n → X. As composition of continuous functions also

ηnk (τ, x0) := ζ−k,k−1(τ, ξ+n,k(τ, x0)) ∈ Xk(τ) is continuous. Hence,

ηnk (τ, x0) + w+
k,k−1(τ, ηnk (τ, x0))

(3.41)
= π−k,k−1(τ, ξ+n,k(τ, x0))

(3.35)
= ξ + Pk(τ)ξ+n,k(τ, x0) + V −k,k−1(τ, ξ, ξ+n,k(τ, x0))

holds for a ξ ∈ X k−11 (τ), where the first equation implies limx0→0 η
n
k (τ, x0) = 0

uniformly in τ ∈ R. We furthermore deduce

ηnk (τ, x0) = Pk(τ)ξ+n,k(τ, x0) + V −k,k−1(τ, w+
k,k−1(τ, ηnk (τ, x0)), ξ+n,k(τ, x0))
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and from (4.3) one has

ηnk (τ, x0) = Pk(τ)x0 + Pk(τ)V +
n,k(τ, w−n,k(τ, ξ+n,k(τ, x0)), x0)

+ V −k,k−1(τ, w+
k,k−1(τ, ηnk (τ, x0)), ξ+n,k(τ, x0)). (4.4)

Since the involved integral manifolds and leafs are invariant, we conclude that

yk(t; τ, ηnk (τ, x0)) = v−k,k−1
(
t, w+

k,k−1
(
t, yk(t; τ, ηnk (τ, x0))

)
, ξ+n,k(t, x−n (t; τ, x0))

)
holds for all t ∈ R.
Third, for k = n, also the intersection W+

n,n−1(τ) ∩ V−n,n−1(τ, x0) is a singleton

π−n,n−1(τ, x0) = ζ−n,n−1(τ, x0)+w+
n,n−1(τ, ζ−n,n−1(τ, x0)). Now ηnn := ζ−n,n−1 : X−n →X

defines a continuous function with ηnn(τ, x0) ∈ Xn(τ), limx0→0 η
n
n(τ, x0) = 0 uni-

formly in τ ∈ R and

ηnn(τ, x0) = Pn(τ)x0 + V −n,n−1(τ, w+
n,n−1(τ, ηnn(τ, x0)), x0). (4.5)

Moreover, the invariance of leafs and integral manifolds guarantees

yn(t; τ, ηnn(τ, x0)) = v−n,n−1
(
t, w+

n,n−1
(
t, yn(t; τ, ηnn(τ, x0))

)
, x−n (t; τ, x0)

)
for all t ∈ R. After these preparations we are in the position to introduce

Tn : X−n → X, Tn(τ, x0) :=

n∑
k=1

ηnk (τ, x0).

Thanks to the properties of its summands, Tnτ : X−n (τ)→ X−n (τ) is well-defined and
Tn is continuous with limx0→0 T

n(τ, x0) = 0 uniformly in τ ∈ R. In the following,
whenever confusion is absent, it is convenient to neglect the dependence of ξ+n,k, η

n
k

(and further quantities) on (τ, x0). Given this, by means of (4.2), (4.4) and (4.5)
one finally obtains the alternative representation

Tnτ (x0) = x0 + V +
n,1(τ, w−n,1(τ, ηn1 ), x0) + V −n,n−1(τ, w+

n,n−1(τ, ηnn), x0) (4.6)

+

n−1∑
k=2

[
Pk(τ)V +

n,k(τ, w−n,k(τ, ξ+n,k), x0) + V −k,k−1(τ, w+
k,k−1(τ, ηnk ), ξ+n,k)

]
.

(II) Claim: Pn1 (τ)Tmτ (x0 + w−m,n(τ, x0)) = Tnτ (x0) for all n < m. We merely
give a sketch of the argument, since it is analogous to step (II) in the proof of the
subsequent Thm. 4.2. Let us briefly write η̄nk (τ, x0) := ηnk (τ, x0 + w−m,n(τ, x0)).

• k = 1: The definition of Tm and Tn implies

η̄n1 + w−m,1(τ, η̄n1 ) ∈ V+
m,1(τ, x0 + w−m,n(τ, x0)) ∩W−m,1(τ),

ηn1 + w−n,1(τ, ηn1 ) ∈ V+
n,1(τ, x0) ∩W−n,1(τ)

and thanks to Cor. 3.11 one obtains

ηn1 + w−n,1(τ, ηn1 ) + w−m,n(τ, ηn1 + w−n,1(τ, ηn1 )) ∈ W−m,1(τ),

ηn1 + w−n,1(τ, ηn1 ) + w−m,n
(
τ, ηn1 + w−n,1(τ, ηn1 )

)
∈ V+

m,1(τ, x0 + w−m,n(τ, x0)).

Since the nonautonomous setsW−m,1 and V+
m,1(x0 +w−m,n(τ, x0)) possess fibers

intersecting at a unique point, this implies ηn1 = η̄m1 .
• 1 < k < n: One has ξ+n,k(τ, x0+w−m,n(τ, x0)) = ξ+n,k(τ, x0) due to the definition

of Tn, Tm and consequently ηnk = η̄mk .
• k = n is evident.
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This finally gives us the assertion (II) because of

Pn1 (τ)Tmτ (x0+w−m,n(τ, x0)) =

n∑
k=1

ηmk (τ, x0+w−m,n(τ, x0)) =

n∑
k=1

ηnk (τ, x0) = Tnτ (x0).

(III) Claim: Tn is a topological conjugation between (E−n ) and (D−n ). We use
mathematical induction over n ≥ 2 in order to prove that Tnτ : X−n (τ) → X−n (τ)
possesses an inverse function T̄nτ such that T̄n(τ, y) = T̄nτ (y) is continuous and
satisfies the limit relation limy→0 T̄

n
τ (y) = 0 uniformly in τ ∈ R. For n = 2 the

proof comes along [16, Prop. 3.1]: Given (τ, y) ∈ X−2 define

T̄ 2(τ, y) := Π2
1(τ, P1(τ)y + w−2,1(τ, y), P2(τ)y + w+

2,1(τ, y))

with Π2
1 given in Prop. 3.17(d). Thanks to Prop. 3.7(c) the mapping T̄ 2 is continuous

and (3.37) guarantees that the desired uniform limit relation holds. Due to

T 2
τ (x) = P1(τ)π+

2,1(τ, x) + P2(τ)π−2,1(τ, x)

we obtain for all (τ, x) ∈ X−2 that

T̄ 2
τ (Tτ (x)) = Π2

1

(
τ, η21(τ, x) + w−2,1(τ, η21(τ, x))︸ ︷︷ ︸

∈V+
2,1(τ,x)

, η22(τ, x) + w+
2,1(τ, η22(τ, x))︸ ︷︷ ︸

∈V−
2,1(τ,x)

)
= x

and it follows analogously that T 2
τ (T̄ 2

τ (y)) = y for all (τ, y) ∈ X−2 holds. Hence, the
mappings T 2

τ , T̄
2
τ are inverse to each other. As induction hypothesis we know that

for every (τ, yn) ∈ X−n there exists a unique T̄nτ (yn) ∈ X−n (τ) with

yn = Tnτ (T̄nτ (yn)) =

n∑
k=1

ηnk (τ, T̄nτ (yn)), lim
y→0

T̄nτ (y) = 0 uniformly in τ ∈ R

and T̄n : X−n → X being continuous. We define the continuous mapping T̄n+1 via

T̄n+1
τ (y) := Πn+1

n (τ, T̄nτ (Pn1 (τ)y)+w−n+1,n(τ, T̄nτ (Pn1 (τ)y)), Pn+1(τ)y+w+
n+1,n(τ, y))

with the function Πn+1
n from Prop. 3.17(d). Thanks to step (II) and the construction

of Tn+1 it holds that

Tn+1
τ (T̄n+1

τ (y)) = y, T̄n+1
τ (Tn+1

τ (x)) = x for all (τ, x), (τ, y) ∈ X−n+1

and thus Tn+1 is shown to be bijective. The limit relation limy→0 T̄
n+1
τ (y) = 0

uniformly in τ ∈ R results from (3.37).
(IV) In summary, the function Tn transforms solutions of (E−n ) to solutions of

the decoupled eqn. (D−n ). Moreover, by uniqueness of solutions, the inverse T̄n

maps solutions of (D−n ) to solutions of (E−n ). Both Tn, T̄n are continuous and
fulfill uniform limit relations, i.e. Tn is the desired topological conjugation.

Due to (L3) there exists an index κ ∈ N such that βk < 0 for all k ≥ κ (cf. Fig. 1).
This enables us to formulate a crucial decay condition for the remainder of the paper:

Theorem 4.2 (topological decoupling of (E)). Suppose that (L), (N), (B) and

L <
1

5
inf
k∈N

βk − αk
Kk(Kk + 2)

(4.7)

hold. If (Kk)k∈N is bounded and the decay condition

βk < 0 for all k ≥ κ ⇒
∑
k≥κ

Kk

|βk|
<∞ (4.8)
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is fulfilled, then (E) is topologically conjugated to the fully decoupled equation

u̇ = A(t)u+
∑
k∈N

Pk(t)F (t, Pk(t)u+ wk(t, u)). (D)

The inequality (4.7) is not only a smallness assumption on the Lipschitz constant
of our nonlinearity F . It also guarantees that the lengths of the intervals [αk, βk]
and therefore the spectral gaps (λ+k+1, λ

−
k ) is bounded away from 0 (see Fig. 1).

Proof. Note that u and x−n stand for the respective general solution to (E) or (E−n ).
Let us construct a candidate for a topological conjugation T : R×X → X between
(E) and (D): Thereto, choose (τ, u0) ∈ R × X arbitrarily. Because of Prop. 3.13
and Thm. 3.15, which apply thanks to (4.7), for every n ∈ N the intersection

W−n ∩ V+
n (u0)

(3.31)
=

{
(t, π+

n (t, u0)) ∈ R×X : t ∈ R
}

allows the representations

P+
n (τ)π+

n (τ, u0) + v+n (τ, P+
n (τ)π+

n (τ, u0), u0)
(3.27)

= π+
n (τ, u0)

= ξ+n (τ, u0) + w−n (τ, ξ+n (τ, u0))

with a unique ξ+n (τ, u0) ∈ X−n (τ) defining a continuous function ξ+n : R ×X → X.
Thanks to Prop. 3.13(b) the point ξ+n (τ, u0) moreover fulfills the fixed point equation

ξ = v+n (τ, w−n (τ, ξ), u0) = P−n (τ)u0 + V +
n (τ, w−n (τ, ξ), u0). (4.9)

First, for n = 1 let us define the mapping η1(τ, u0) := ξ+1 (τ, u0) ∈ X1(τ). Second,
for n > 1 our Prop. 3.19(b) guarantees

W+
n,n−1(τ) ∩ V−n,n−1(τ, ξ+n (τ, u0)) =

{(
t, π−n,n−1(t, ξ+n (τ, u0))

)
∈ X−n : t ∈ R

}
with

π−n,n−1(t, ξ+n (τ, u0))
(3.41)

= ζ−n,n−1(τ, ξ+n (τ, u0)) +w+
n,n−1

(
τ, ζ−n,n−1(τ, ξ+n (τ, u0))

)
(4.10)

and a unique continuous ζ−n,n−1 : X−n → X. Hence, as composition of continuous

functions ηn : R×X → X, ηn(τ, u0) := ζ−n,n−1(τ, ξ+n (τ, u0)) ∈ Xn(τ) is continuous.

Whenever convenient and unambiguous, we neglect the dependence of ξ+n , ηn on
the argument (τ, u0). Due to the alternative representation in Prop. 3.17(b) we
have

ηn + w+
n,n−1(τ, ηn)

(4.10)
= ξ + Pn(τ)ξ+n + V −n,n−1(τ, ξ, ξ+n )

with some ξ ∈ Xn−11 (τ). Consequently, the element ηn fulfills the fixed point relation
ηn = Pn(τ)ξ+n + V −n,n−1(τ, w+

n,n−1(τ, ηn), ξ+n ), which in turn implies

ηn
(4.9)
= Pn(τ)u0 + Pn(τ)V +

n (τ, w−n (τ, ξ+n ), u0)

+ V −n,n−1(τ, w+
n,n−1(τ, ηn), ξ+n ). (4.11)

After these preparations we now formally define the mapping T : R×X → X by

T (τ, u0) :=
∑
n∈N

ηn(τ, u0) (4.12)

and proceed in seven steps:
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(I) Claim: T : R×X → X is well-defined and continuous. We initially establish
that the infinite series (4.12) converges. Our assumption (L3) shows 1

|αk| <
1
|βk| for

all k ≥ κ. Hence, due to Cors. 3.14 and 3.18 the series∑
n≥1

Pn(τ)V +
n (τ, w−n (τ, ξ+n ), u0),

∑
n≥2

V −n,n−1
(
τ, w+

n,n−1
(
τ, ηn

)
, ξ+n

)
have

∑∞
k=κ

Kk

|βk| as convergent majorant, uniformly in (τ, u0) ∈ R×X. Referring to

(4.9), (4.11) and complete spectral projectors due to (L3), T can be written as

Tτ (u0) = u0 +
∑
n≥1

Pn(τ)V +
n (τ, w−n (τ, ξ+n ), u0)

+
∑
n≥2

V −n,n−1
(
τ, w+

n,n−1
(
τ, ηn

)
, ξ+n

)
.

Moreover, thanks to Lemma A.1 first we obtain∥∥ξ+n ∥∥ (3.8)

≤ 1
1−`n

∥∥π+
n (τ, u0)

∥∥ (3.32)

≤ Kn(1+`
?
n)

(1−`?n)2 ‖u0‖ −−−−→u0→0
0 uniformly in τ ∈ R

for all n ∈ N and second, (4.10) implies for every n > 1 that

‖ηn(τ, u0)‖
(3.16)

≤ 1

1− `?n−1
∥∥π−n,n−1(τ, ξ+n )

∥∥
(3.42)

≤ Kn−1(1 + `?n−1)

(1− `?n−1)2
∥∥ξ+n ∥∥ −−−−→

u0→0
0 uniformly in τ ∈ R.

Hence, all summands in (4.12) are continuous and Lemma A.2 allows to conclude
that the limit T is continuous fulfilling limu→0 Tτ (u) = 0 uniformly in τ ∈ R.

(II) Claim: Pn1 (τ)Tτ (u0) = Tnτ (ξ+n (τ, u0)) for all n > 1. Here, Tn : X−n → X
denotes the topological conjugation from Prop. 4.1 between the finite-dimensional
eqns. (E−n ) and (D−n ). Based on the representations (cf. the proof of Prop. 4.1)

Tnτ (ξ+n ) =

n∑
k=1

η̄nk (τ, u0), Pn1 (τ)Tτ (u0) =

n∑
k=1

ηk(τ, u0)

with η̄nk (τ, u0) := ηnk (τ, ξ+n (τ, u0)) we establish that ηk = η̄nk for every 1 ≤ k ≤ n:

• k = 1: Using Thm. 3.15 and the proof of Prop. 4.1 it is

W−1 (τ) ∩ V+
1 (τ, u0) =

{
η1 + w−1 (τ, η1)

}
⊆ X,

W−n,1(τ) ∩ V+
n,1(τ, ξ+n ) =

{
η̄n1 + w−n,1(τ, η̄n1 ))

}
⊆ X−n (τ).

On the one hand, due to (3.21) in Cor. 3.11 and Rem. 3.10 one has

η̄n1 + w−n,1(τ, η̄n1 ) + w−n (τ, η̄n1 + w−n,1(τ, η̄n1 )) = η̄n1 + w−1 (τ, η̄n1 ) ∈ W−1 (τ).

On the other hand, the invariance of W−n implies that

u(t; τ, η̄n1 + w−1 (τ, η̄n1 )) = x−n (t; τ, η̄n1 + w−n,1(τ, η̄n1 )) + w−n
(
t, x−n (t; τ, η̄n1 + w−n,1(τ, η̄n1 ))

)
,

u(t; τ, π+
n (τ, u0)) = x−n (t; τ, ξ+n ) + w−n (t, x−n (t; τ, ξ+n ))

for all t ≥ τ and consequently the triangle inequality leads to∥∥u(t; τ, u0)− u(t; τ, η̄n1 + w−1 (τ, η̄n1 ))
∥∥

≤
∥∥u(t; τ, u0)− u(t; τ, π+

n (τ, u0))
∥∥+

∥∥u(t; τ, π+
n (τ, u0))− u(t; τ, η̄n1 + w−1 (τ, η̄n1 ))

∥∥
(3.8)

≤
∥∥u(t; τ, u0)− u(t; τ, π+

n (τ, u0))
∥∥+ 2

∥∥x−n (t; τ, η̄n1 + w−n,1(τ, η̄n1 ))− x−n (t; τ, ξ+n )
∥∥
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for all t ≥ τ . Combining (3.30) and η̄n1 + w−n,1(t, η̄n1 ) ∈ V+
n,1(t, ξ+n ) yields

u(·; τ, η̄n1 + w−n (τ, η̄n1 ))− u(·; τ, u0) ∈ B+
τ,γ for all γ ∈ Γn,

i.e. η̄n1 + w−1 (τ, η̄n1 ) ∈ V+
1 (τ, u0) (cf. Prop. 3.13) and hence

η̄n1 + w−n (τ, η̄n1 ) = π+
n (τ, u0) = η1 + w−1 (τ, η1).

Multiplication with Pn1 (τ) implies η1 = η̄n1 .
• 1 < k < n: Again from Thm. 3.15 and Prop. 3.19(a) it follows that

W−k (τ) ∩ V+
k (τ, u0) =

{
ξ+k + w−k (τ, ξ+k )

}
⊆ X,

W−n,k(τ) ∩ V+
n,k(τ, ξ+n ) =

{
ξ+n,k(τ, ξ+n ) + w−n,k(τ, ξ+n,k(τ, ξ+n ))

}
⊆ X−n (τ).

Using the same arguments as above it results ξ+k = ξ+n,k(τ, ξ+n ) and therefore
due to the definition of T one has ηk = η̄nk .

• k = n: Finally, ηk = η̄nk results from the construction of T .

(III) Claim: Tτ : X → X is injective. We assume u1, u2 ∈ X, u1 6= u2. Then the
function φ := u(·; τ, u1)− u(·; τ, u2) is a mild solution of the semilinear equation

u̇ = A(t)u+G(t, u) (4.13)

with the nonlinearity G(t, u) := F (t, u(t; τ, u1) + u) − F (t, u(t; τ, u1)). It is clear
that G : [τ,∞)×X → X fulfills (N) with the Lipschitz constant L. Following the
convention that the growth rates γn are always contained in Γn, one obtains:

• If φ 6∈ B+
τ,γn for all n ∈ N, then V+

1 (u1) ∩ V+
1 (u2) = ∅ (see Cor. 3.16) and

hence the construction of T guarantees P1(τ)Tτ (u1) 6= P1(τ)Tτ (u2).
• If there exists a n ∈ N with φ ∈ B+

τ,γn \B+
τ,γn+1

, then the definition of T estab-

lishes ξ+n+1(τ, u1) 6= ξ+n+1(τ, u2), but ξ+n (τ, u1) = ξ+n (τ, u2). Due to step (II)
and Prop. 4.1 this implies that Pn+1(τ)Tτ (u1) 6= Pn+1(τ)Tτ (u2).

• φ ∈ B+
τ,γn for all n ∈ N means that φ is a small solution to (4.13). Since (4.7)

allows to apply [18, Thm. 4.1], we deduce φ = 0 i.e. the contradiction u1 = u2.

(IV) Claim: Tτ : X → X is onto. Given an arbitrary pair (τ, v0) ∈ R × X
we write v0 =

∑
n∈N Pn(τ)v0 and abbreviate vn0 := Pn1 (τ)v0 for the partial sums.

From Prop. 4.1 it is known that for every n > 1 and there exists a unique preimage
xn ∈ X−n (τ) under Tnτ . It is xn = T̄nτ (vn0 ) with a continuous T̄n : X−n → X and

lim
y→0

T̄n(τ, y) = 0 uniformly in τ ∈ R. (4.14)

We briefly write υn := T̄nτ (vn0 ) and aim to show that (υn + w−n (τ, υn))n∈N defines
a Cauchy sequence in the Banach space X. Thereto, let m > n. On the one hand,
the inclusion υm ∈ V+

m,n(τ, υn + w+
m,n(τ, υm)) leads to

υn = v+m,n(τ, w−m,n(τ, υn), υm). (4.15)

Having said this, υm ∈ V+
m,n(τ, υm) ∩ V−m,n(τ, υm) and due to our construction and

Prop. 3.17(d) we arrive at the representation

ζm + v+m,n(τ, ζm, υm)
(3.34)

= υm
(3.35)

= ξm + v−m,n(τ, ξm, υm),

which immediately implies

ζm = v−m,n(τ, ξm, υm) ∈ Xmn+1(τ), ξm = v+m,n(τ, ζm, υm) ∈ Xn1 (τ) (4.16)

as well as the decomposition υm = ξm + ζm. Thanks to (4.6) one obtains

ym = υm + V +
m,1(τ, w−m,1(τ, ηm1 ), υm) + V −m,m−1(τ, w+

m,m−1(τ, ηmm), υm)
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+

m−1∑
k=2

[
Pk(τ)V +

m,k(τ, w−m,k(τ, ξ+m,k), υm) + V −k,k−1(τ, w+
k,k−1(τ, ηmk ), υk)

]
and multiplication with Pmn+1(τ) yields

m∑
k=n+1

Pk(τ)ym = ζm +

m−1∑
k=n+1

[
Pk(τ)V +

m,k(τ, w−m,k(τ, ξ−m,k), υm)

+ V −k,k−1(τ, w+
k,k−1(τ, ηmk ), υk)

]
+ V −m,m−1(τ, w+

m,m−1(τ, ηmm), υm). (4.17)

After these preparations we can verify the Cauchy property of the sequence (υn)n∈N:
Given ε > 0, it follows from Cors. 3.4 and 3.18 combined with (4.8) that there exists
a N1 ∈ N such that∥∥w−n (τ, υn)

∥∥ < ε
9 ,

∥∥V −n,n−1(τ, w+
n,n−1(τ, ηnn), υn)

∥∥ < ε
9 for all n ≥ N1. (4.18)

Because the limits∑
k≥1

Pk(τ)ym,
∑
k≥1

(
Pk(τ)V +

m,k(τ, w−m,k(τ, ξ−m,k), υm) + V −k,k−1(τ, w+
k,k−1(τ, ηmk ), υk)

)
exist due to Cor. 3.18 and (4.8) again, there is a N2 ≥ N1 such that

‖ζm‖
(4.17)

≤
∥∥∥∥∥
m−1∑
k=n+1

Pk(τ)V +
m,k(τ, w−m,k(τ, ξ−m,k), υm) + V −k,k−1(τ, w+

k,k(τ, ηmk ), υk)

∥∥∥∥∥
+

∥∥∥∥∥
m−1∑
k=n+1

Pk(τ)ym

∥∥∥∥∥+
∥∥V −m,m−1(τ, w+

m,m−1(τ, υm), υm)
∥∥

(4.18)
< ε

9 + ε
9 + ε

9 = ε
3 for all m > n ≥ N2

by the Cauchy criterion for infinite series. With (4.15), (4.16) one obtains

‖υm − υn‖ ≤ ‖ζm‖+ ‖ξm − υn‖
= ‖ζm‖+

∥∥v+m,n(τ, ζm, υm)− v+m,n(τ, w−n (τ, υn), υm)
∥∥

(3.36)

≤ ‖ζm‖+
∥∥ζm − w−n (τ, υn)

∥∥ ≤ 2 ‖ζm‖+
∥∥w−n (τ, υn)

∥∥
(4.18)
< 2

3ε+ 1
9ε for all m ≥ n ≥ N2 (4.19)

from the triangle inequality and therefore∥∥υm + w−m(τ, υm)− (υn + w−n (τ, υn))
∥∥

≤ ‖υm − υn‖+
∥∥w−m(τ, υm)

∥∥+
∥∥w−n (τ, υn)

∥∥ (4.18)
< ε for all m ≥ n ≥ N2.

Hence, the Cauchy property is fulfilled in the Banach space X and

T̄ (τ, v0) := lim
n→∞

(
υn + w−n (τ, υn)

)
is the unique Tτ -preimage of v0. Indeed, setting u0 := T̄ (τ, v0) one obtains

lim
m→∞

Pn1 (τ)
[
Tτ (u0)− Tτ (υm + w−m(τ, υm))

]
= 0

from the continuity of Tτ and using step (II) we derive the relation

Pn1 (τ)
[
Tτ (u0)− Tτ (υm + w−m(τ, υm))

]
= Pn1 (τ)

(
Tτ (u0)−

n∑
k=1

ηk

)
for alln < m.
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Consequently, Pn1 (τ)Tτ (u0) =
∑n
k=1 ηk and Tτ (u0) = v0 results.

(V) Claim: T̄ : R × X → X is continuous. Let (τ0, v0) ∈ R × X be arbitrary,
choose ε > 0 and abbreviate vn := Pn1 (τ)v, vn0 := Pn1 (τ)v0, n ∈ N.

• As in (4.19) there exist N1, N2 ∈ N such that both
∥∥T̄mτ (vm)− T̄nτ (vn)

∥∥ < ε
4

for m ≥ n ≥ N1 and
∥∥T̄mτ0 (vm)− T̄nτ0(vn)

∥∥ < ε
4 for m ≥ n ≥ N2 hold. Hence,

passing to the limit m→∞ and setting N := max {N1, N2} results in∥∥T̄τ (v)− T̄nτ (vn)
∥∥ < ε

3 ,
∥∥T̄τ0(v0)− T̄nτ0(vn0 )

∥∥ < ε
3 for all n ≥ N. (4.20)

• Because T̄N is continuous due to Prop. 4.1, there exists a δ1 > 0 such that
the inclusion (τ, vN ) ∈ Bδ1(τ0, v

N
0 ) implies

∥∥T̄Nτ (vN )− T̄Nτ0 (vN0 )
∥∥ < ε

3 . Now
we choose δ ∈ (0, δ1) so small that∥∥vN − vN0 ∥∥ =

∥∥PN1 (τ)[v − v0]
∥∥ (2.2)

≤ KN ‖v − v0‖ < δ1 for all v ∈ Bδ(v0)

and arrive at∥∥T̄Nτ (vN )− T̄Nτ0 (vN0 )
∥∥ < ε

3 for all (τ, v) ∈ Bδ(τ0, v0).

Given this, the triangle inequality yields the estimate∥∥T̄τ (v)− T̄τ0(v0)
∥∥ ≤ ∥∥T̄τ (v)− T̄Nτ (vN )

∥∥+
∥∥T̄Nτ (vN )− T̄Nτ0 (vN0 )

∥∥
+
∥∥T̄Nτ0 (vN0 )− T̄τ0(v0)

∥∥
≤
∥∥T̄τ (v)− T̄Nτ (vN )

∥∥+ ε
3 +

∥∥T̄Nτ0 (vN0 )− T̄τ0(v0)
∥∥ (4.20)

< ε

for all pairs (τ, v) ∈ Bδ(τ0, v0). This implies that T̄ is continuous.
(VI) Claim: limu→0 T̄τ (u) = 0 uniformly in τ ∈ R. According to their definition

in step (IV) the mappings υn : R × X → X fulfill υn(τ, v) = T̄nτ (Pn1 (τ)v) for all
n ∈ N, v ∈ X. Since the sequence (Kk)k∈N of dichotomy constants is bounded, we
can guarantee by means of (4.7) that the constants `k, `

∗
k stay below 1 uniformly

in k ∈ N; the factor 1
5 in (4.7) was introduced to ensure this. Thus, the estimates

(3.16), (3.37) can be realized to hold uniformly in k ∈ N as well. Due to the
construction of T̄nτ in step (III) of the proof to Prop. 4.1, this guarantees that the
limit limv→0 υ

n(τ, v) = 0 holds uniformly in both τ ∈ R and n ∈ N. Since also (3.8)
holds uniformly, we can conclude the claim from (4.14).

(VII) The invariance properties of the integral manifolds and leafs involved guar-
antee that T maps solutions of (E) to solutions of (D). It also follows that T̄ maps
solutions of the decoupled eqn. (D) to solutions of our initial evolution eqns. (E).

5. Topological linearization. Having the above technical preparations at hand,
we are finally in the position to formulate our main results. The sole missing
ingredient is a linearization result for dk-dimensional ODEs (Ek) with hyperbolic
linear part. It is based on the premise that w.l.o.g. one can always choose the
sequences (αn)n∈N0 , (βn)n∈N to have values different from 0 and thus also

νn :=

{
βn, λ−n > 0,

αn−1, λ+n < 0
6= 0 for all n ∈ N.

Proposition 5.1. Suppose that the assumptions (L), (N), (B) hold. If

0 6∈ Σ(Ak), 8KkL < |νk| for some k ∈ N,
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then there is a topological conjugation Sk : Xk → X between the ODEs (Ek) and

ẏ = Ak(t)y (Lk)

in Xk with the following properties:

(a) Sk(τ, y) ∈ Xk(τ) and

max
{∥∥Sk(τ, y)− y

∥∥ ,∥∥S̄k(τ, y)− y
∥∥} ≤ 4KkC

|νk|
for all (τ, y) ∈ Xk. (5.1)

(b) For θ-periodic ODEs (Ek) the functions S and S̄ are θ-periodic in, and for
autonomous (Ek) even independent of the first variable.

Proof. First of all, we have Σ(Ak) =
[
λ−k , λ

+
k

]
and we equip Xk(t) with the adapted

norm ‖x‖t := ‖Pk(t)x‖. Then the boundedness assumption (B) implies

‖Fk(t, y)‖t = ‖F (t, y + wk(t, y))‖ ≤ C for all (t, y) ∈ Xk
and similarly lip2 Fk ≤ 2L. These conditions allow us to apply [16, Prop. 5.2] to

• the ODEs (Ek) and (Lk) yielding a continuous mapping Sk : Xk → X with
the claimed properties

• the ODEs (Lk) and (Ek) guaranteeing a continuous inverse S̄k. In detail, the
assumption 8KkL < |νk| combined with [16, (5.7)] guarantees that∥∥S̄k(t, y)− y

∥∥ ≤ 2KkC

|νk| − 4KkL
≤ 4KkC

|νk|
for all (t, y) ∈ X−k .

Notice that the above estimates hold w.r.t. the norm ‖·‖, since the considered maps
have images and arguments in Xk. The periodicity assertion (b) can be shown as
in [24, p. 222, 5.5. Lemma].

This finally brings us to our following main result:

Theorem 5.2 (Palmer-Šošitǎǐsvili linearization of (E)). Suppose that the assump-
tions (L), (N), (B), as well as the decay condition (4.8) hold with

L <
1

5
inf
k∈N

min

{
βk − αk

Kk(Kk + 2)
,
|νk|
2Kk

}
(5.2)

and a bounded sequence (Kk)k∈N. If Σ(A) contains a spectral interval satisfying

0 ∈ [λ−k∗ , λ
+
k∗ ] for some k∗ ∈ N, (5.3)

then (E) is topologically conjugated to the decoupled equation

u̇ = A(t)u+ Pk∗(t)F (t, Pk∗(t)u+ wk∗(t, u)). (D∗)

Proof. In Thm. 4.2 we established a topological conjugation T : R×X → X between
the semilinear eqn. (E) and the fully decoupled problem (D). Each component is of
the form (Ek), i.e. a dk-dimensional ODE whose linear part (Lk) has the dichotomy
spectrum [λ−k , λ

+
k ], k ∈ N. Moreover, for k 6= k∗ the assumptions of Prop. 5.1 hold.

It yields a topological conjugation Sk : Xk → X satisfying both Sk(τ, x) ∈ Xk(t)
and (5.1), which transforms each (Ek) into (Lk) for every k 6= k∗.

Due to our decay condition (4.8) it results from (5.1) and Lemma A.2 that

(τ, x) 7→
∑
k 6=k∗

(
Sk(τ, Pk(τ)x)− Pk(τ)x

)
is continuous. Hence, the series

∑
k 6=k∗ S

k(τ, Pk(τ)x) exists as a function continu-

ous in (τ, x) and we define S : R×X → X, S(τ, x) :=
∑
k 6=k∗ S

k(τ, Pk(τ)x). With
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Prop. 5.1 its inverse is S̄(τ, x) :=
∑
k 6=k∗ S̄

k(τ, Pk(τ)x), whose convergence and con-

tinuity is established as above. In conclusion, the composition (τ, x) 7→ Sτ (Tτ (x))
is the desired topological conjugation between (E) and (D∗).

As an immediate consequence let us address the hyperbolic situation:

Corollary 5.3 (Hartman-Grobman linearization of (E)). If rather than (5.3) one
has the hyperbolicity condition

0 6∈ Σ(A),

then (E) and its linear part (L) are topologically conjugated.

Proof. Prop. 5.1 applies for all k ∈ N in the proof of Thm. 5.2.

6. Applications and perspectives. At first glance the applicability of our above
results seems to be somewhat limited due to the global assumptions (N2) and (B)
on the nonlinearity, as well as the specific spectrum required in (L3) combined with
the summability assumption (4.8). Such objections are easy to debilitate:

For autonomous evolution equations the spectral intervals [λ−n , λ
+
n ] in (L3) de-

generate to eigenvalue real parts <λn. Thus, in order to fulfill the summability
condition (4.8), their asymptotic behavior must be of the form <λn ∼ Cnα in the
limit n→∞ with some α > 1.

• When dealing with semilinear PDEs, under the standard boundary conditions
this holds for the Laplacian ∆ in one spatial dimension, or the poly-Laplacian
−(−∆)m in d < 2m spatial dimensions. In [18, Sect. 3] we provide several
examples of nonautonomous parabolic PDEs formulated as abstract evolution
equations in X = L2(Ω), where the assumptions (L) can be justified.

• In the area of FDEs the decay condition (4.8) is more problematic. As shown in
the classical paper [27, Thm. 5] already the simple delay differential equation
x′(t) = −αx(t− 1), α > 0, has a spectrum {λn : n ∈ N} with

<λn = − ln
(

(4n+1)π
2α

)
+O

(
( lnn
n )2

)
as n→∞

and thus merely logarithmic decay.

Our main Thm. 5.2 and its Cor. 5.3 apply when interested in the local behavior
near fixed reference solutions. By passing to the equation of perturbed motion
one establishes (N1) (trivial solution). The global Lipschitz condition (N2), the
boundedness assumption (B) and (4.7), (5.2) hold after applying a standard cut-off
procedure (cf., for instance [17, pp. 364ff, Sect. C.2]) yielding local results.

We illustrate these remarks by means of two classes of parabolic PDEs allowing
a formulation as abstract eqn. (E) in the Hilbert space H1

0 := H1
0 (0, `), 0 < `. The

open ball with radius r and center 0 in this space will be denoted by Br.

6.1. Nonautonomous reaction-diffusion equations in 1d. Consider a nonau-
tonomous reaction-diffusion equation

ut = a(t)∂2xu+ g(t, u) (6.1)

equipped with homogeneous Dirichlet boundary conditions u(t, 0) = 0 = u(t, `) for
some ` > 0. Here, a : R → (0,∞) is bounded and continuous, while g : R2 → R is
a continuous function whose partial derivatives Di

2g exist as continuous functions
such that for every bounded B ⊆ R there is a C ≥ 0 fulfilling

sup
t∈R

∣∣Di
2g(t, u)

∣∣ ≤ C for all u ∈ B, i = 1, 2, 3. (6.2)
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Let us moreover suppose that (6.1) has a bounded reference solution u∗ : R → R
which is independent of the spatial variable (e.g. a solution of u̇ = g(t, u)) with

lim
u→0

D2g(t, u∗(t) + u) = D2g(t, u∗(t)) uniformly in t ∈ R. (6.3)

Linearizing (6.1) along u∗ therefore yields

∂tu = [a(t)∂2x + b(t)]u+ f(t, u), (6.4)

where (relying on the mean value theorem)

b(t) := D2g(t, u∗(t)), f(t, u) :=

∫ 1

0

[D2g(t, u∗(t) + hu)−D2g(t, u∗(t))]udh.

Let us formulate (6.4) as abstract evolution eqn. (E) on X = H1
0 with

(A(t)u)(x) := a(t)uxx(x) + b(t)u(x), F (t, u)(x) := f(t, u(x)) for all x ∈ (0, `).

The linear part (L) generates an evolution family as required in (L1) and because
a, b : R→ R are bounded functions, also the growth bound (L2) holds. Furthermore,
[18, Thm. 3.8 and Lemma 2.3] yields the dichotomy spectrum

Σ(A) =
⋃
n∈N

[
β(b−

(
πn
` )2a), β(b−

(
πn
` )2a)

]
,

where β, β denote the lower resp. upper Bohl exponent.1 Yet, to what extend (L3)
holds, crucially depends on the diffusion coefficient a and deserves further remarks:

• For constant a(t) ≡ α > 0 the spectrum is a sequence of identical intervals

Σ(A) =
⋃
n∈N

{
−α
(
πn
`

)2}
+
[
β(b), β(b)

]
decaying to −∞ quadratically.

• For constant b(t) ≡ β it is Σ(A) = {β}+⋃n∈N [β(−
(
πn
` )2a), β(−

(
πn
` )2a)

]
and

Σ(A) could consist of only finitely many intervals violating (L3). For instance,
this occurs when limt→±∞ a(t) = α± with α− 6= α+ (cf. [18, Ex. 3.7]).

• Having θ-periodic functions a, b implies a discrete spectrum

Σ(A) =
1

θ

∫ θ

0

a(s) ds
⋃
n∈N

{
−
(
πn
`

)2}
+
{1

θ

∫ θ

0

b(s) ds
}

and therefore the required behavior is fulfilled, unless
∫ θ
0
a(s) ds = 0.

If one has infinitely many spectral intervals, then Kn = 1, dimXn = 1 holds even-
tually. The compactness property (L3) can be verified according to [23, pp. 244ff].

As in [23, p. 271] one shows that F : R×H1
0 → H1

0 is well-defined with F (t, 0) ≡ 0
on R and locally Lipschitz, i.e. for every r ≥ 0 there exists a `(r) ≥ 0 such that

‖F (t, u)− F (t, ū)‖H1
0
≤ `(r) ‖u− ū‖H1

0
for all t ∈ R, u, ū ∈ Br.

Thanks to (6.2), (6.3) the limit relation limr↘0 `(r) = 0 holds. The radial retraction
on the Hilbert space H1

0 has Lipschitz constant 1 (cf. [17, p. 364, Lemma C.2.1])

1given a bounded continuous function a : R→ R their Bohl exponents are defined as

β(a) := sup

{
ω ∈ R| ∃Kω > 0 : Kω ≤ exp

(∫ t

τ
a(s)− ω ds

)
for all τ ≤ t

}
,

β(a) := inf

{
ω ∈ R| ∃Kω > 0 : exp

(∫ t

τ
a(s)− ω ds

)
≤ Kω for all τ ≤ t

}
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and with [17, p. 365, Prop. C.2.5] there exists a globally Lipschitzian modification
F ρ : R×H1

0 → H1
0 of F satisfying F ρ(t, u) ≡ F (t, u) on R×Bρ and

lip2 F
ρ ≤ `(ρ), ‖F ρ(t, u)‖H1

0
≤ `(ρ)ρ for all (t, u) ∈ R×H1

0 .

Hence, both assumptions (N) and (B) can be satisfied with arbitrarily small con-
stants L,C ≥ 0, by choosing ρ > 0 sufficiently close to 0. In summary, provided
solutions do not escape in forward time, within a ρ-neighborhood of a reference
solution u∗, the reaction-diffusion eqn. (6.1) is locally topologically conjugated to
its linearization

∂tu = [a(t)∂2x +D2g(t, u∗(t))]u.

6.2. Nonautonomous convection equations in 1d. A further ad hoc applica-
tion are convective reaction-diffusion equations

∂tu = a(t)∂2xu+ ∂x(f(t, u)) + g(t, u) (6.5)

equipped with Dirichlet boundary conditions as in Subsect. 6.1 and the same as-
sumption on the diffusion coefficient a : R→ (0,∞). For simplicity, let the contin-
uous functions f, g : R2 → R be polynomials in the second argument,

f(t, u) =

2k+1∑
j=2

fj(t)u
j , g(t, u) =

2k+1∑
j=2

gj(t)u
j for all t, u ∈ R

satisfying g2k+1(t) < 0 for some k ∈ N. Moreover, we assume there exist constants
C ≥ 1, r0 > 0, m ∈ N so that∣∣D1+i

2 f(t, u)
∣∣ ≤ C(1 + |u|m−i), |D2g(t, u)| ≤ C(1 + |u|m) for all t, u ∈ R, i = 0, 1

and g(t, u)u ≤ 0 hold for all t ∈ R, |u| ≥ r0.
Following [23, pp. 313ff] one writes (6.5) as abstract evolution equation

u̇ = A(t)u+B(t, u) +G(t, u) (6.6)

in the Hilbert space X = H1
0 with the operators (A(t)u)(x) := a(t)∂2xu(x),

B(t, u)(x) := D2f(t, u(x))u′(x), G(t, u)(x) := g(t, u(x)).

In this setting, the spectrum of the linear part (L) reads as (cf. [18, Thm. 3.5])

Σ(A) =
⋃
n∈N

[
β
(
−
(
πn
`

)2
a
)
, β
(
−
(
πn
`

)2
a
)]

and the discussion whether (L) can be fulfilled is pursuant to Subsect. 6.1. The
mappings B,G : R × H1

0 → H1
0 are well-defined and differentiable in the second

argument having the continuous derivatives

(D2B(t, u)v)(x) = D2
2f(t, u(x))u′(x)v(x) +D2f(t, u(x))v′(x),

(D2G(t, u)v)(x) = D2g(t, u(x))v(x).

Due to [23, p. 317, Lemma 53.3] the mild solutions to (6.6) generate a 2-parameter
semiflow. It is clear that (6.5) and in turn (6.6) possess the trivial solution. Since
it is D2B(t, 0) ≡ 0, D2G(t, 0) ≡ 0 on R, the same cut-off technique as applied in
Subsect. 6.1 allows to modify B,G outside a sufficiently small neighborhood of 0 in
order to establish (N), (B). Hence, locally near the trivial solution the convection
eqn. (6.5) is topologically conjugated to its linearization

∂tu = a(t)∂2xu.
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6.3. Outlook. The decay condition (4.8) itself is clearly required for our construc-
tion to work. We do not know if it is of purely technical nature, i.e. whether there
are for instance reaction-diffusion equations in spatial domains with d > 1 failing
to allow a topological linearization á la Cor. 5.3?

Nevertheless, the above examples extend to corresponding systems of reaction-
diffusion eqns. (6.1) and (6.5), but (due to the asymptotics of their eigenvalues) only
on spatial domains Ω ⊆ R. This deficit is attenuated when dealing with higher-
order parabolic equations, if they can be formulated abstractly as (E). Another
possible application is the phase-field model discussed in [3, pp. 107ff].

With regard to further PDE examples, an obvious limitation of our approach is
assumption (N2) requiring a Lipschitzian nonlinearity from an interpolation space
X into itself, rather than between a pair of continuously (and densely) embedded
spaces. In the autonomous case such an extension was given in [3] and yields an ac-
cordingly modified decay condition (4.8). Although being technically more involved
than [12] (and hence the present paper), on a conceptional level the arguments
remain quite similar yet.

Acknowledgement. We thank the referee for her/his careful reading of our man-
uscript. . . Moreover, we are grateful to Hans-Otto Walther for pointing out [27].

Appendix A.. Let X,Y be Banach spaces and P be a metric space.

Lemma A.1 (Lipschitz inverse function theorem). Suppose f : X×P → X satisfies
lip1 f < 1. If f(x, ·) : P → X is continuous for all x ∈ X, then for every y ∈ X,
p ∈ P there exists a unique solution x∗(y, p) ∈ X of the equation x + f(x, p) = y,
where the function x∗ : X × P → X is continuous and fulfills lip1 x

∗ ≤ 1
1−lip1 f

.

Proof. Since T : X ×P ×X → X, T (x, y, p) := y− f(x, p) is a uniform contraction
in the first argument, the assertion follows from, e.g. [17, p. 352, Thm. B.1.1].

Lemma A.2. Suppose the real series (
∑n
k=1 ak)n∈N converges. If the continuous

functions Tk : X × P → X fulfill for all k ∈ N that

(a) ‖Tk(x, p)‖ ≤ ak
(b) limx→0 Tk(x, p) = 0 uniformly in p ∈ P ,

then T : X ×P → X, T (x, p) :=
∑∞
k=1 Tk(x, p) exists as a continuous function and

satisfies the limit relation limx→0 T (x, p) = 0 uniformly in p ∈ P .

Proof. Since (
∑n
k=1 ak)n∈N converges, the Weierstraß M -test yields uniform con-

vergence of (
∑n
k=1 Tk(x, p))n∈N and thus T is well-defined and continuous. In order

to establish the claimed limit relation, let ε > 0. By the uniform convergence we
obtain that there exists a N ∈ N such that∥∥∥∥∥

n∑
k=1

Tk(x, p)− T (x, p)

∥∥∥∥∥ < ε

2
for all n ≥ N, x ∈ X and p ∈ P.

The limit relation limx→0

∑N+1
k=1 Tk(x, p) = 0 holds uniformly in p ∈ P and so there

exists a δ > 0 satisfying
∥∥∥∑N+1

k=1 Tk(x, p)
∥∥∥ < ε

2 for all x ∈ Bδ(0), p ∈ P . Hence,

‖T (x, p)‖ ≤
∥∥∥∥∥T (x, p)−

N+1∑
k=1

Tk(x, p)

∥∥∥∥∥+

∥∥∥∥∥
N+1∑
k=1

Tk(x, p)

∥∥∥∥∥ < ε

2
+
ε

2
= ε

for all x ∈ Bδ(0), p ∈ P and thus the claim.
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