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ABSTRACT. Using an invariant manifold theorem we demonstrate that the dynamics of nonauto-
nomous dissipative delayed difference equations (with delayM ) is asymptotically equivalent to the
long-term behavior of an N -dimensional first order difference equation (with N ≤ M ) – assumed
the nonlinearity is small Lipschitzian on the absorbing set. As consequence we obtain a result of
Kirchgraber that multi-step methods for the numerical solution of ordinary differential equations
are essentially one-step methods, and generalize it to varying step-sizes.

1. MOTIVATION AND INTRODUCTION

Scalar real delay (or higher order) difference equations appear in a variety of applications,
ranging from biosciences (Mackey-Glass, Wazewska-Czyzewska and Lasota equation, etc.) to
numerical analysis (multi-step methods for the numerical solution of ordinary, or discretizations
of delay differential equations). Provided their delay is M (or equivalently, their order is M + 1),
they can be formulated as first order equations in RM+1 and become accessible to the theory
of discrete dynamical systems. It is well-known that the possible complexity of their long-time
behavior depends on the dimension of the state space, i.e., the size of M . Ideally, one wants to
keep M as small as possible, but frequently the delay is dictated from the given model.

In this article the geometry of delay difference equations is studied using invariant manifold
theory. The problems under consideration are assumed to be dissipative with contractive linear
part and a locally Lipschitzian nonlinearity. Provided the Lipschitz constants on the absorbing
set are small, we can associate an asymptotically equivalent lower dimensional equation to the
original problem. Hence, we are able to reduce the dimension of the state space for a delay
difference equation without loosing information on its long-time behavior.

Such a global reduction principle is well-known in the area of dissipative evolutionary par-
tial differential equations. Here the existence of a so-called inertial manifold ensures that the
corresponding infinite-dimensional semiflow asymptotically behaves as the solutions of a finite-
dimensional ordinary differential equation (the inertial form; cf., e.g., [SY02, pp. 569ff, Chap-
ter 8]). In order to study the persistence of inertial manifolds under (numerical) discretizations
one needs flexible invariant manifold theorems for mappings. Such results have been derived for
instance in [Pöt07a, Pöt07b] and can be simplified to Theorem C.1 of this paper, allowing an appli-
cation to delay difference equations. Attractive invariant manifold theorems for mappings already
date back to [Har64] and were also considered by [KS78] with generalizations in [NS92]. Differ-
ing from center-unstable manifolds they provide a reduction principle on the whole absorbing set
and not only in a small neighborhood.
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Our basic contribution is to discuss nonautonomous difference equations instead of discrete
dynamical systems (mappings). Dissipativity is understood in the sense of pullback convergence
(cf., e.g., [Klo00]) and invariant manifolds generalize to invariant fiber bundles.

After some necessary terminology is presented in Section 2, we provide a simple criterion for
dissipativity in Section 3 and demonstrate its applicability to nonautonomous versions of various
well-studied delay difference equations. The following Section 4 equips us with sufficient condi-
tions that delay difference equations (with delay M ) feature asymptotically the same dynamical
behavior as first order difference equations in RN with N ≤M . As an application we show in the
final Section 5 that strongly stable multi-step methods for the numerical integration of ordinary
differential equations are conjugated to one-step methods. In the autonomous constant step-size
setting this is a result due to [Kir86] with generalizations to general linear methods by [Sto93].
Our approach is intended to demonstrate how such results can be lifted to schemes with varying
step-sizes and nonautonomous ordinary differential equations. Due to the lack of space, our anal-
ysis is somehow crude neglecting convergence issues; for that we refer the interested reader to the
nice and comprehensive discussion in [Sto93]. Finally, for the reader’s convenience, the Appen-
dix contains some notions important for our nonautonomous perspective, namely nonautonomous
sets, exponential dichotomies and invariant fiber bundles.

Concerning terminology, Z+
κ := [κ,∞)∩Z for integers κ ∈ Z. We index realN -tupels x ∈ RN

according to x = (x−N+1, . . . , x0) and to provide largely explicit assumptions we use the norm
‖x‖ := max0

j=−N+1 |xj | throughout. For the open ball in RN centered in 0 with radius r > 0 we
simply write Br. Given a matrix A ∈ RN×M we denote its transpose by ATA ∈ RM×N , the ith
row, jth column element by Ai,j ∈ R, and obtain the induced norm

‖A‖ =
0

max
i=−N+1

0∑
j=−M+1

|Ai,j | .

Moreover, imA denotes the range (image) and kerA the kernel (nullspace) of A. The identity
matrix on RN is IN and ON the zero matrix.

2. DELAY DIFFERENCE EQUATIONS VERSUS DELAY ENDOMORPHISMS

This paper deals with scalar nonautonomous M + 1-th order difference equations

(2.1) x(k + 1) = f(k, x(k −M), . . . , x(k − 1), x(k)),

where M ∈ Z+
0 is interpreted as delay, f : Z × IM+1 → I is the right hand side and I ⊆ R

an interval. Given an initial time κ ∈ Z, a solution of the delay difference equation is a sequence
φ : Z+

κ−M → I satisfying the identity (2.1) and initial value problems are well-posed, if beyond
φ(κ) ∈ I also supplementary values φ(κ−M), · · · , φ(κ−1) ∈ I are known. The unique solution
ϕ(·;κ, ξ−M , . . . , ξ0) : Z+

κ−M → I starting at time κ ∈ Z with initial values x(κ + j) = ξj for
−M ≤ j ≤ 0 is the general solution of (2.1). It satisfies the cocycle property

ϕ(k; l, ϕ(l −M ;κ, ξ), . . . , ϕ(l;κ, ξ)) = ϕ(k;κ, ξ) for all k ≥ l −M, l ≥ κ−M,

where we have abbreviated ξ = (ξ−M , . . . , ξ0) ∈ IM+1.
From the above it is clear that the natural state space for (2.1) is M + 1-dimensional. In order

to make this more precise, we introduce the mapping f̂ : Z× IM+1 → IM+1,

f̂(k, x−M , . . . , x0) :=


x−M+1

...
x0

f(k, x−M , . . . , x−1, x0)

 ,
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denoted as delay endomorphism associated with (2.1). Having this notion at hand, the delay
difference equation (2.1) is equivalent to the first order difference equation

(2.2) x(k + 1) = f̂(k, x(k))

in the higher dimensional set IM+1 ⊆ RM+1 in the following sense: The solutions φ : Z+
κ−M → I

of (2.1) and φ̂ : Z+
κ → IM+1 of (2.2) are related by the identities

φj(k) = φ̂0(k + j) for all −M ≤ j < 0, φ0(k) = φ̂0(k)(2.3)

and the general solution ϕ̂ of (2.2) can be interpreted as discrete (2-parameter) semiflow of the
delay difference equation (2.1).

In case the mapping f is linear, we can write (2.1) as

(2.4) x(k + 1) =
0∑

j=−M
`j(k)x(k + j)

with sequences `−M , . . . , `0 : Z → R, and borrowing terminology from [HNW93, pp. 402ff] we
denote the delay endomorphism associated with the linear equation (2.4) as companion matrix

(2.5) L(k) :=


0 1

0 1
. . . . . .

0 1
`−M (k) `−M+1(k) . . . `−1(k) `0(k)

 for all k ∈ Z.

The equivalence between (2.1) and (2.2) enables us to apply many results from the theory of
nonautonomous dynamical systems to delay difference equations (see Appendix A for some ter-
minology needed in the following). Here, due to the special algebraic structure of the delay endo-
morphism f̂ , certain assumptions can be simplified.

For the purpose of studying the dynamical behavior of (2.1) we restrict to a class of delay
difference equations, whose solutions eventually enter a bounded set.

Definition 2.1. A delay difference equation (2.1) is said to be pullback dissipative, if I has a
bounded subset A ⊆ I such that for all bounded B ⊆ I there exists a N = N(B) ∈ Z+

0 such that

ϕ(k; k − n, ξ) ∈ A for all k ∈ Z, n ≥ N, ξ ∈ BM+1.

One denotes A as absorbing set of (2.1).

Remark 2.2. (1) The existence of an absorbing set A ⊆ I has far reaching consequences. For a
continuous right hand side f : Z × IM+1 → I one can prove the existence of a global pullback
attractor A for (2.1) (cf. [Klo00, Theorem 3.6]). This is a uniquely determined nonautonomous
set A ⊆ Z×AM+1 with the following properties:

(a) A(k) is compact,
(b) A(k) = ϕ̂(k;κ,A(κ)) for all κ ≤ k (invariance), and
(c) limn→∞ dist(ϕ̂(κ, κ− n, ξ),A(κ− n)) = 0 for all κ ∈ Z, ξ ∈ IM+1 (attractivity).

Dynamically the pullback attractor A consists of all pairs (κ, ξ−M , . . . , ξ0) ∈ A such that there
exists a bounded solution φ : Z→ I of (2.1) with φ(κ−M) = ξ−M , . . . , φ(κ) = ξ0. In particular,
A contains stationary, periodic, homoclinic and heteroclinic solutions of (2.1).

(2) For bounded intervals I the delay difference equation (2.1) is trivially pullback dissipative
with absorbing set I .
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3. DISSIPATIVE DELAY DIFFERENCE EQUATIONS

For the specific scalar delay difference equation

(3.1) x(k + 1) = λx(k) + g(k, x(k −M), . . . , x(k − 1), x(k)),

we can deduce dissipativity criteria under the assumption λ ∈ (0, 1) and g : Z× IM+1 → I . They
are based on a simple lemma guaranteeing forward boundedness of solutions.

Lemma 3.1. For each κ ∈ Z the following holds:
(a) If there exists a K+ ≥ 0 such that g(k, x−M , . . . , x0) ≤ K+ for all k ∈ Z+

κ and
x−M , . . . , x0 ∈ I , then the general solution ϕ of (3.1) satisfies

ϕ(k;κ, ξ−M , . . . , ξ0) ≤ λk−κξ0 +
K+

1− λ
for all k ∈ Z+

κ , ξ−M , . . . , ξ0 ∈ I.

(b) If−I ⊆ I and there exists aK− ≥ 0 such that−K− ≤ g(k, x−M , . . . , x0) for all k ∈ Z+
κ

and x−M , . . . , x0 ∈ I , then the general solution ϕ of (3.1) satisfies

−λk−κξ0 −
K−

1− λ
≤ ϕ(k;κ, ξ−M , . . . , ξ0) for all k ∈ Z+

κ , ξ0, . . . , ξ−M ∈ I.

Proof. Let κ ∈ Z and abbreviate the tupel ξ = (ξ−M , . . . , ξ0) ∈ IM+1.
(a) Define ψ(k) := λκ−kϕ(k, κ, ξ). Then one has

ψ(j + 1)− ψ(j) = λκ−j−1 (ϕ(j + 1;κ, ξ)− λϕ(j;κ, ξ))
(3.1)= λκ−j−1g(j, ϕ(j;κ, ξ), . . . , ϕ(j −M ;κ, ξ)) ≤ K+λκ−j−1

for all j ∈ Z+
κ and summation yields

ψ(k)− ψ(κ) =
k−1∑
j=κ

(ψ(j + 1)− ψ(j)) ≤ K+

λ

k−κ−1∑
j=0

λ−j =
K+

λ− 1

(
1− λκ−k

)
for all k ∈ Z+

κ . The definition of ψ implies our claimed estimate.
(b) If ϕ(·;κ, ξ) is the general solution of (3.1), then −ϕ(·;κ,−ξ) is the general solution of the

transformed delay difference equation

x(k + 1) = λx(k)− g(k,−x(k),−x(k − 1), . . . ,−x(k −M)).

Utilizing this observation we obtain from (a) that−ϕ(k;κ,−ξ) ≤ −λk−κξ0 + K−

1−λ for all k ∈ Z+
κ

and this establishes the estimate in (b). �

Proposition 3.2 (pullback dissipativity). (a) If I ⊆ [0,∞) and if there exists a K+ ≥ 0 such
that 0 ≤ g(k, x−M , . . . , x0) ≤ K+ for all k ∈ Z and x−M , . . . , x0 ∈ I , then (3.1) is
pullback dissipative with an absorbing set A = [0, R+], where R+ > K+

1−λ .
(b) If −I ⊆ I and if there exist K± ≥ 0 such that −K− ≤ g(k, x−M , . . . , x0) ≤ K+ for

all k ∈ Z and x−M , . . . , x0 ∈ I , then (3.1) is pullback dissipative with an absorbing set
A = [R−, R+], where R+ > K+

1−λ and R− < −K−
1−λ .

Remark 3.3. (1) In both cases the delay difference equation (3.1) possesses a global pullback
attractor, provided g : Z× IM+1 → I is continuous (cf. Remark 2.2).

(2) A further dissipativity criterion for (3.1) can be obtained by an application of [CM04, Theo-
rem 5.2] to the associated delay endomorphism. In addition, this enables us to weaken the bound-
edness assumption on g.
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Proof. Let B ⊆ I be bounded, i.e., B ⊆ [b−, b+] with reals b− < 0 < b+, and choose the initial
state ξ = (ξ−M , . . . , ξ0) ∈ BM+1.

(a) The above Lemma 3.1(a) implies

0 ≤ ϕ(k; k − n, ξ) ≤ λnξ0 +
K+

1− λ
≤ λnb+ +

K+

1− λ

and due to λ ∈ (0, 1) there exists a N = N(B) ∈ Z+
0 such that λnb+ ∈

[
0, R+ − K+

1−λ

]
for

n ≥ N , thus ϕ(k; k − n,B) ⊆ [0, R+] for all k ∈ Z, n ≥ N .
(b) This can be shown analogously to (a) using Lemma 3.1(a) and (b). �

Now we present some dissipative delay difference equations. The Mackey-Glass equation mod-
els dynamics of haematopoiesis, i.e., white blood cell production in the human body (cf. [MG77]).

Example 3.4 (Mackey-Glass equation). Let I = [0,∞) and (βk)k∈Z be a bounded sequence in I .
The discrete nonautonomous Mackey-Glass equation is given by

x(k + 1) = λx(k) +
βk

1 + x(k −M)p
,

where g : Z × I → R, g(k, y) := βk
1+yp and the parameter p > 0. From Proposition 3.2(a) we

obtain that [0, R] is an absorbing set for R > 1
1−λ supk∈Z βk. A further delay difference equation

suggested by Mackey and Glass reads as

x(k + 1) = λx(k) +
βkx(k −M)

1 + x(k −M)p
,

where g : Z × I → R, g(k, y) := βky
1+yp and parameters p > 1. Since the function y 7→ y

1+yp has
the maximal value 1

p(p− 1)1−1/p for y = (p− 1)−1/p we derive from Proposition 3.2(a) that the
interval [0, R] is an absorbing set for R > 1

p(1−λ)(p− 1)1−1/p supk∈Z βk.

Another important model fitting into our approach is the discrete Wazewska-Czyzewska and La-
sota equation describing the erythropoietic (red blood-cell) system (cf. [LWC76]), i.e., the survival
of red blood-cells in an animal.

Example 3.5 (Wazewska-Lasota equation). Let I = [0,∞) and (βk)k∈Z, (γk)k∈Z be two se-
quences in I , where (βk)k∈Z is assumed to be bounded. We investigate the equation

x(k + 1) = λx(k) + βke
−γkx(k−M),

where g : Z × I → R, g(k, y) := βke
−γky. From Proposition 3.2(a) we deduce that [0, R] is an

absorbing set, if one has R > 1
1−λ supk∈Z βk.

Our final example will be a delay difference equation defined on the reals. It is a discrete model
for the behavior of a single, self-excitatory neuron with graded delayed response (cf. [Her94]).

Example 3.6. Let I = R and (βk)k∈Z, (γk)k∈Z be real sequences with bounded (βk)k∈Z. Consider
the discrete delay difference equation

x(k + 1) = λx(k) + βk tanh(γkx(k −M)),

where g : Z×R→ R, g(k, y) := βk tanh(γky). Using Proposition 3.2(b) we see that the compact
interval [−R,R] is an absorbing set, if R > 1

1−λ supk∈Z |βk|.

Remark 3.7. For the autonomous version of the delay difference equations introduced in Exam-
ple 3.4–3.6 one can use a criterion of [Iva94, Invariance property] to show that the respective
minimal absorbing intervals are invariant.
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4. ASYMPTOTIC EQUIVALENCE FOR DELAY DIFFERENCE EQUATIONS

In this section we consider delay difference equations

(4.1) x(k + 1) =
0∑

j=−M
`j(k)x(k + j) + g(k, x(k −M), . . . , x(k))

with `−M , . . . , `0 : Z → R and a function g : Z × RM+1 → R. The linear part (2.4) is said
to have an exponential dichotomy, if the associated companion matrix L (see (2.5)) satisfies the
conditions given in Definition B.1. In particular for an autonomous linear part (2.4), an exponential
dichotomy is determined by the roots of the characteristic polynomial

zM+1 −
0∑

j=−M
`jz

M+j = 0

(cf. Appendix B), which are the eigenvalues of the constant companion matrix L.
Now we are in a position to state our main result. Its assumptions guarantee the existence of an

exponentially attractive positively invariant submanifold of the state space for (4.1), which domi-
nates the dynamical behavior. At first glance Theorem 4.1 seems technical, but an interpretation
will be given below before we prove it.

Theorem 4.1 (asymptotic equivalence). Assume the following holds for (4.1):

(i) The linear delay difference equation (2.4) admits an exponential dichotomy with growth
rates 0 < Λ < λ ≤ 1, constants K± ≥ 1 and projectors P± with N± ≡ dim imP±(k).

(ii) One has supk∈Z |g(k, 0, . . . , 0)| <∞ and with functions l± : [0,∞)→ [0,∞) the follow-
ing local Lipschitz conditions hold for all k ∈ Z, r ≥ 0:

(4.2)
0

max
j=−M

|P±(k + 1)j,0| |g(k, x)− g(k, x̄)| ≤ l±(r) ‖x− x̄‖ for all x, x̄ ∈ Br.

(iii) The nonlinear delay equation (4.1) is pullback absorbing with absorbing set A ⊆ R.

Choose ρ > 0 so large that ĀM+1 ⊆ Bρ and suppose the following spectral gap condition:

K−l−(ρ)+K+l+(ρ) + max
{
K−l−(ρ),K+l+(ρ)

}
<
λ− Λ

4
,(4.3)

4K−l−(ρ) < λ.(4.4)

Then there exists a Lyapunov transformation T : Z → R(M+1)×(M+1), a nonempty open non-
autonomous set O ⊆ P− and a continuous function w : O → RM+1 with w(k, x) ∈ P+(k),
Lip2w < 1 such that the following holds:

(a) For every solution φ : Z+
κ−M → I of the delay difference equation (4.1) there exists a

constant C ≥ 0 and a further solution φ∗ : Z+
κ∗−M → I of (4.1) satisfying

(4.5) ‖φ(k)− φ∗(k)‖ ≤ Cγk−κ for all k ∈ Z+
κ∗ ,

where γ ∈ (Λ, 1), κ ≤ κ∗ and (φ∗(κ∗−M), . . . , φ∗(κ∗))T = η+w(κ, η) with η ∈ O(κ∗).
(b) The solution φ∗ allows the representationφ

∗(k −M)
...

φ∗(k))

 = T (k)−1ψ(k;κ∗, T (κ∗)η) + w(k, T (k)−1ψ(k;κ∗, T (κ∗)η))
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for all k ≥ κ∗, where ψ is the general solution of the reduced equation

(4.6)



y−M (k + 1)
...

y−N−(k + 1)
y1−N−(k + 1)

...
y0(k + 1)


= T (k + 1)L(k)



0
...
0

y1−N−(k)
...

y0(k)


+G(k, y1−N−(k), . . . , y0(k))

and using S(k) := T (k)−1 we have defined the nonlinearity

G(k, y1−N− , . . . , y0) := g


k, S(k)



0
...
0

y1−N−
...
y0


+ w


k, S(k)



0
...
0

y1−N−
...
y0









0
...
0

S−(k + 1)1−N−,0
...

S−(k + 1)0,0


.

In order to provide an interpretation of Theorem 4.1 we remark that the canonical state space
for the reduced equation (4.6) is RN− , since its solutions are uniquely determined by N− initial
values. The relation (4.5) guarantees that every solution φ of (4.1) is asymptotically equivalent
to another solution φ∗ of (4.1), which is uniquely driven by the first order difference equation
(4.6). Consequently, the long-term behavior of the delay difference equation (4.1) with state space
RM+1 is ultimately determined by the N−-dimensional problem (4.6).

Remark 4.2. While it is a problem of linear algebra to construct the Lyapunov transformation
T : Z → R(M+1)×(M+1) from the dichotomy data for L (see [Pöt98, p. 166, Lemma A.6.1]), it
is practically impossible to derive an explicit expression for the mapping w, which satisfies the
invariance equation (cf. (C.5)) for κ ∈ Z, η = (η−M , . . . , η0) ∈ P−(κ) given by

w

(
κ+ 1,η−M+1, . . . , η0,

0∑
j=−M

fj(κ)ηj + g(κ, η + w(κ, η))
)
i

= w(κ, η)i+1 for all −M ≤ i < 0,

w

(
κ+ 1,η−M+1, . . . , η0,

0∑
j=−M

fj(κ)ηj + g(κ, η + w(κ, η))
)

0

=
0∑

j=−M
`j(κ)w(κ, η)j + g(κ, η + w(κ, η))

0∑
j=−M

P+(κ+ 1)j,0.

Nonetheless, under differentiability assumptions on the nonlinearity g one can use this functional
equation to compute Taylor approximations to w. It is worth to point out that is a dynamical and
not an algebraic problem (see [PR05b, PR05b]). Such approximations seem of little use in the
present more global setting. Therefore, Theorem 4.1 is a primarily theoretical result.

Proof of Theorem 4.1. We successively establish both assertions.
(a) Our main technical tool in the proof will be Theorem C.1. Thereto, in this first step we are

going to show that the delay endomorphism associated with (4.1) satisfies its assumptions. We
consider the first order difference equation (C.1), where L(k) is the companion matrix of (2.4) and
nonlinearity F (k, x) := (0, . . . , 0, g(k, x−M , . . . , x0))T .
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• ad (H)1: This is just the present assumption (i). Note that we have λ ≤ 1.
• ad (H)2: Obviously, (C.2) is satisfied and, thanks to the particular algebraic structure of

the mapping F , the local Lipschitz estimate (C.3) reduces to (4.2).
• ad (H)3: From (iii) it is easy to see that the nonautonomous set Z × AM+1 is uniformly

pullback absorbing w.r.t. (C.1).

Consequently, Theorem C.1 guarantees the existence of an attractive nonautonomous setW ⊆ Z×
RM+1 being graph of a function w with properties stated in Theorem C.1(a). Let φ : Z+

κ−M → I

be a solution of (4.1) and φ̂ be the associated solution of (C.1) by virtue of the identities (2.3).
Referring to Theorem C.1(b) there exist κ∗ ∈ Z+

κ , η∗ ∈ P−(κ∗) such that (C.6) holds with
ξ∗ = η∗ + w(κ∗, η∗). Then the last component φ∗ := ϕ̂(·;κ∗, ξ∗)0 is a solution of (4.1) and the
asymptotic equivalence (4.5) holds true. Thus, we have shown assertion (a).

(b) Reflecting our above construction, the solution φ∗ allows the representation (cf. (2.3))

(φ∗(k −M), . . . , φ∗(k))T = ϕ̃(k;κ∗, η∗) + w(k, ϕ̃(k;κ∗, η∗)) for all k ≥ κ∗,

where ϕ̃ is the general solution of the reduced equation (C.7) in the pseudo-unstable bundle P−.
Referring to, for instance [Pöt98, p. 33, Satz 1.5.7], we know from the exponential dichotomy
assumption (i) that the companion matrix (2.5) is kinematically similar to a block-diagonal matrix.
In particular, there exists a bounded sequence T : Z→ R(M+1)×(M+1) of invertible matrices, such
that also the sequence of inverses T (·)−1 : Z→ R(M+1)×(M+1) is bounded, and one has

T (k)P−(k)T (k)−1 ≡
(

0N+

IN−

)
on Z.

Thus, the transformation y = T (k)x brings (C.7) into the form (4.6) and the general solution ψ of
this N−-dimensional equation satisfies ψ(k;κ∗, T (κ)η∗) = T (k)ϕ̃(k;κ∗, η∗) for all k ≥ κ∗. �

As further illustration of Theorem 4.1 we discuss a class of examples sufficiently large to in-
clude the Examples 3.4–3.6. On the other hand, it is simple enough to illuminate our lengthy, but
quantitative assumptions, in particular on the exponential dichotomy.

Example 4.3. Let λ ∈ (0, 1) and g0 : Z× R→ R be a function such that the following holds:

• g0 is bounded, i.e., |g0(k, x)| ≤ K for all k ∈ Z, x ∈ R,
• the partial derivative D2g0 exists and with some R > K

1−λ one has

l := sup
k∈Z

sup
|x|≤R

|D2g0(k, x)| <∞.

These assumptions and Proposition 3.2(b) guarantee that the single delay difference equation

(4.7) x(k + 1) = λx(k) + g0(k, x(k −M))

is pullback dissipative with absorbing set [−R,R]. The associated constant companion matrix1

L =


0 1

. . . . . .
1
λ

 ∈ R(M+1)×(M+1)

1Note that this particular splitting of (4.7) into linear part and nonlinearity is quite arbitrary and not required from
Theorem 4.1. Another choice would be writing (4.7) as x(k+ 1) = λ0x(k) + g(k, x(k−M), x(k)) with nonlinearity
g(k, x−M , x0) = (λ− λ0)x0 + g0(k, x−M ), where λ0 ∈ (0, 1). Then we obtain a different gap condition.
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has the spectrum σ(L) = {0, λ}, which implies that L possesses a (Λ, λ)-decomposition for any
real Λ ∈ (0, λ). Moreover, L admits an exponential dichotomy with growth rates Λ, λ, constants
K± = 2(1 + λ−M )Λ−M and constant projectors

P+ =


1 0 . . . −λ−M

1 0 . . . −λ−M+1

. . . . . .
...

1 −λ−1

0

 , P− =


0 0 . . . λ−M

0 0 . . . λ−M+1

. . . . . .
...

0 λ−1

1


with dim imP− = 1. Having this information available, it is not difficult to verify that our spectral
gap conditions (4.3) and (4.4) reduce to

48(1 + λ−M )(λΛ)−M l < λ− Λ, 8(1 + λ−M )(λΛ)−M l < λ,

respectively. Provided these conditions hold, Theorem 4.1 ensures that the dynamical behavior of
the delay difference equation (4.7) is asymptotically equivalent to a scalar first order difference
equation (note dim imP− = 1). However, this example clearly demonstrates that the assumptions
(4.3)–(4.4) are rather restrictive and indicates that large delays require very weak nonlinearities,
i.e., small local Lipschitz constants for g0.

5. STRONGLY STABLE MULTI-STEP METHODS

Our second application of Theorem C.1 comes from the numerical integration of ordinary dif-
ferential equations (see, for instance, [HNW93]). Thanks to a theoretically interesting result of
Kirchgraber (cf. [Kir86], see also [Sto93]) we know that strongly stable multi-step methods are
asymptotically equivalent to one-step methods, hence essentially one-step methods. Here we will
indicate how to generalize this to multi-step methods with varying step-sizes.

To keep our presentation accessible and simple we restrict to scalar, yet nonautonomous ordi-
nary differential equations

(5.1) ẋ = f(t, x),

equipped with an initial condition x(τ) = ξ with τ, ξ ∈ R. For further simplicity let us suppose
f : R× R→ R is continuous with

Lip2 f <∞, sup
t∈R
|f(t, 0)| <∞;

then the general solution χ(·; τ, ξ) : R→ R of (5.1) is well-defined (cf., e.g., [Har64]).
In order to discretize the problem (5.1) we prescribe a discrete set of time steps {tk}k∈Z satis-

fying t0 = τ , tk < tk+1 for all k ∈ Z and define the ratios ωk := tk+1−tk
tk−tk−1

. Note that for constant
step-sizes one has the identity ωk ≡ 1 on Z. Following [HNW93, p. 396, Section III.5], a linear
variable step-size multi-step method to solve (5.1) is a difference equation

x(k + 1) =−
0∑

j=−M
αM+j(ωk, . . . , ωk−M )x(k + j)

+ (tk+1 − tk)
0∑

j=−M
βM+j(ωk, . . . , ωk−M )f(tk+j , x(k + j)),(5.2)

which obviously fits in the framework of our delay difference equation (4.1) with

`j(k) = −αM+j(ωk, . . . , ωk−M ) for all −M ≤ j ≤ 0, k ∈ Z,
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g(k, x−M , . . . , x0) = (tk+1 − tk)
0∑

j=−M
βM+j(ωk, . . . , ωk−M )f(tk+j , xj).

Then the values ϕ(k; 0, ξ−M , ·, ξ−1, ξ) obtained from (5.2) approximate the solution χ(·; τ, ξ) of
the ordinary differential equation (5.1) at times t = tk.

For explicit examples of variable step-size multi-step methods we again refer to [HNW93,
p. 396, Section III.5] and remark that the following Hypothesis is typically satisfied.

Hypothesis 5.1. Suppose the multi-step method (5.2) satisfies:

(o) There exists a H > 0 and a neighborhood Ω ⊆ (0,∞) of 1 such that

0 < tk+1 − tk ≤ H, ωk ∈ Ω for all k ∈ Z,

(i) α0, . . . , αM : ΩM+1 → R are continuous and β0, . . . , βM : ΩM+1 → R are bounded,
(ii) the method (5.2) is of order p ≥ 0, i.e.,

1 +
0∑

j=−M
αM+j(ωk, . . . , ωk−M ) ≡ 0 on Z,

(iii) for ωk ≡ 1 the method (5.2) is strongly stable, i.e., all roots z−M , . . . , z0 ∈ C of

zM+1 +
0∑

j=−M
αM+j(1, . . . , 1)zM+j = 0

lie inside the open unit disc B1 ⊆ C except the simple root z0 = 1.

Remark 5.2. Let L0 ∈ R(M+1)×(M+1) be the companion matrix of the constant step-size formula
(where ωk ≡ 1). By Hypothesis 5.1(iii) we can transform L0 into block diagonal form

T−1L0T =
(
L̃0

1

)
, L̃0 =


z−M ε−M

. . . . . .
. . . ε−2

z−1

 ∈ RM×M

with an invertible matrix T ∈ R(M+1)×(M+1), where |εj | < 1− |zj | for all −M ≤ j < 0 and

(5.3)
∥∥L̃0

∥∥ < 1.

This is an easy consequence of the Jordan canonical form (yielding a transformation T0 and values
εj ∈ {0, 1}) and an appropriate multiplication of the columns of T0 (yielding that (5.3) holds).

The following perturbation result ensures that the linear part of (5.2) admits an exponential
dichotomy for weakly varying time steps.

Lemma 5.3. Assume Hypothesis 5.1 holds and choose Λ ∈
(∥∥L̃0

∥∥, 1). Then there exists a neigh-
borhood Ω0 ⊆ Ω of 1 such that ωk ∈ Ω0 for all k ∈ Z implies that (2.4) admits an exponential
dichotomy with growth rates Λ, 1, constants K± = ‖T‖

∥∥T−1
∥∥ and constant projectors

P+ = T

(
IM

0

)
T−1, P− = T

(
0M

1

)
T−1

with dim imP− = 1, where T ∈ R(M+1)×(M+1) is the transformation matrix from Remark 5.2.
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Proof. Note that the last column of T , the eigenvector of L0 corresponding to the eigenvalue 1,
is given by e0 = (1, . . . , 1)T . In addition, by Hypothesis 5.1(ii) this vector e0 ∈ RM+1 is also
an eigenvector of each companion matrix L(k), k ∈ Z. Therefore, T transforms every L(k) into
block diagonal form

T−1L(k)T =
(
L̃(k)

1

)
for all k ∈ Z,

where the matrix sequence L̃ : Z→ RM×M satisfies∥∥L̃(k)
∥∥ ≤ ∥∥L̃0

∥∥+
∥∥L̃(k)− L̃0

∥∥ ≤ ∥∥L̃0

∥∥+
∥∥T−1 [L(k)− L0]T

∥∥
≤
∥∥L̃0

∥∥+ ‖T‖
∥∥T−1

∥∥ 0∑
j=−M

|αj(ωk, . . . , ωk−M )− αj(1, . . . , 1)| for all k ∈ Z.

Thus, by continuity of the functions αj : ΩM+1 → R (cf. Hypothesis 5.1(i)) and (5.3) we know
that for each Λ ∈

(∥∥L̃0

∥∥, 1) there exists a neighborhood Ω0 ⊆ Ω of 1 such that
∥∥L̃(k)

∥∥ ≤ Λ,
provided ωk ∈ Ω0 holds for all k ∈ Z. Now it is straight forward to verify that the sequence L
satisfies the dichotomy estimates (B.1). �

For the initialization of a multi-step method (5.2), one needs a starting procedure S. This is a
mapping S : Z× R→ RM+1 providing starting values ξ−M , . . . , ξ0 ∈ R for (5.2) according to

S(κ, ξ) = (ξ−M , . . . , ξ0);

i.e., for each incomplete initial condition x(κ) = ξ for (5.2) the starting procedure S delivers a full
set of initial values ξ−M , . . . , ξ0. Typically the value of a starting procedure will be the iterates of
a one-step scheme to integrate (5.1).

Hypothesis 5.4. Suppose the starting procedure S : Z × R → RM+1 satisfies for all κ ∈ Z that
P−S(κ, ·) : R→ imP− is a homeomorphism.

Theorem 5.5. Assume that Hypotheses 5.1, 5.4 hold, choose Λ ∈
(∥∥L̃0

∥∥, 1) and that the discrete
time steps are small and weakly varying in the sense of

sup
(θ0,...,θM )∈ΩM+1

0

0∑
j=−M

|βj(θ0, . . . , θM )|Lip2 f H <
1− Λ

6K+K−
, ωk ∈ Ω0(5.4)

with constants K± ≥ 1 and the neighborhood Ω0 ⊆ Ω of 1 from Lemma 5.3. Then there exists a
continuous function w : Z× imP− → imP+ with Lip2w < 1 and graph

W :=
{

(κ, η + w(κ, η)) ∈ Z× RM+1 : η ∈ imP−
}
,

as well as a scalar nonautonomous difference equation

(5.5) x(k + 1) = G(k, x(k))

with continuous right hand side G : Z× R→ R such that the following holds for all κ ∈ Z:
(a) The multi-step method (5.2) (with starting procedure S) and the scalar difference equation

(5.5) are conjugated onW , i.e., their general solutions ϕ and ψ, respectively, satisfy

Sk ◦ ψ(k;κ, ·) =

ϕ(k −M ;κ, ·) ◦ Sκ
...

ϕ(k;κ, ·) ◦ Sκ

 for all k ∈ Z+
κ

with a homeomorphism Sk : R→W(k),
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(b) there is a γ ∈ (Λ, 1) such that for all ξ−M , . . . , ξ0 ∈ R there exist a constant C ≥ 0 and
an initial value η ∈ R with∥∥∥∥∥∥∥
ϕ(k −M ;κ, ξ−M , . . . , ξ0)

...
ϕ(k;κ, ξ−M , . . . , ξ0)

− Skψ(k;κ, η)

∥∥∥∥∥∥∥ ≤ Cγk−κ for all k ∈ Z+
κ .

Proof. In this proof we can use the global version of Theorem C.1 described in Remark C.2.
Thereto, let L be the companion matrix associated with the multi-step method (5.2), define the
mapping F : Z× RM+1 → RM+1 by

F (k, x) :=

0, . . . , 0, (tk+1 − tk)
0∑

j=−M
βM+j(ωk, . . . , ωk−M )f(tk+j , xj)

T

.

and ϕ̂ is the general solution of (C.1). The assumptions of Theorem C.1 (or Remark C.2) hold:
• ad (H)1: By Lemma 5.3 the companion matrix L admits an exponential dichotomy with

Λ, 1 and dim imP− = 1.
• ad (H)2: An easy estimate shows that (5.4) implies (C.2), while the other assumptions are

not necessary in the present global setting.
Thus, there exists a function w with graphW as claimed above. Let κ ∈ Z be given.

(a) With the starting procedure S from Hypothesis 5.4 we define the mapping Sκ : R→W(κ)
by Sκ(x) := P−S(κ, x) + w(κ, P−S(κ, x)). Thanks to Hypothesis 5.4 and Lip2w < 1 we know
that Sκ is a homeomorphism. Thus, let us define the right hand side G : Z × R → R of (5.5)
as G(κ, x) := S−1

κ+1(L(κ)Sκ(x) + F
(
κ, Sκ(x))

)
, which is obviously continuous. Mathematical

induction yields Sk ◦ ψ(k;κ, ·) = ϕ̂(k;κ, ·) ◦ Sκ for k ∈ Z+
κ and using (2.3) we get assertion (a).

(b) Let ξ−M , . . . , ξ0 ∈ R and set ξ = (ξ−M , . . . , ξ0). Referring to Theorem C.1(b) there exists
a unique initial value ξ∗ ∈ W(κ) such that

‖ϕ̂(k;κ, ξ)− ϕ̂(k;κ, ξ∗)‖ ≤ Cγk−κ for all k ∈ Z+
κ

(due to our global assumptions we have κ∗ = κ). Then (b) follows with η := S−1
κ (ξ∗). �

APPENDIX A. NONAUTONOMOUS DYNAMICS

Let D ⊆ RN be nonempty. We consider a first order nonautonomous difference equation

(A.1) x(k + 1) = f(k, x(k))

with right hand side f : Z × D → D. A sequence φ : Z+
κ → D, κ ∈ Z, satisfying the identity

φ(k+1) ≡ f(k, φ(k)) on Z+
κ is called solution of (A.1). We define the general solution ϕ(·;κ, ξ),

ξ ∈ D, of (A.1) as unique solution satisfying the initial condition x(κ) = ξ. We remark that in
general ϕ(k;κ, ·) does not exist for k < κ.

A set A ⊆ Z × D is called nonautonomous set with k-fiber A(k) := {x ∈ D : (k, x) ∈ A}
for k ∈ Z. Such a set A is said to be positively invariant w.r.t. (A.1), if f(k,A(k)) ⊆ A(k + 1)
holds, and it is called invariant, if one has equality f(k,A(k)) = A(k + 1) for κ ≤ k. Moreover,
we denote (A.1) as difference equation in A, if A is positively invariant.

APPENDIX B. DISCRETE DICHOTOMIES

We deal with matrix-valued sequences L : Z→ RN×N with evolution operator

Φ(k, κ) :=
{

IN for k = κ
L(k − 1) · · ·L(κ) for k > κ

;
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if the linear mapping L(k) : RN → RN , k ∈ Z, is invertible (possibly between appropriate
subspaces of RN ), then Φ(k, κ) := L(k)−1 · · ·L(κ− 1)−1 for k < κ.

Definition B.1 (exponential dichotomy). Let 0 < Λ < λ and K± ≥ 1 be given. Then a matrix se-
quence L : Z→ RN×N is said to possess an exponential dichotomy, if there exist complementary
projections P± : Z→ RN×N with P−(k + 1)L(k) = L(k)P−(k), the mappings

L(k)|imP−(k) : imP−(k)→ imP−(k + 1)

are invertible with associate evolution operator Φ̄(k, κ), and the dichotomy estimates hold:

‖Φ(k, l)P+(l)‖ ≤ K+Λk−l,
∥∥Φ̄(l, k)P−(k)

∥∥ ≤ K−λl−k for all l ≤ k.(B.1)

Of particular importance are the two nonautonomous sets

P− :=
{

(k, x) ∈ RN : x ∈ imP−(k)
}
, P+ :=

{
(k, x) ∈ RN : x ∈ imP+(k)

}
,

denoted as pseudo-unstable and pseudo-stable bundle, respectively.

In general it is difficult to determine wether a given matrix sequence admits an exponential
dichotomy. Nonetheless, for the special cases of constant and periodic matrices a dichotomy is
fully determined by spectral properties. Thereto, we need certain preliminaries from linear algebra
(cf. [HS74, pp. 109–133]).

For given 0 < Λ < λ we say a matrix T ∈ RN×N possesses a (Λ, λ)-decomposition, if
the disjoint sets σ+ := {ν ∈ σ(T ) : |ν| ≤ Λ}, σ− := {ν ∈ σ(T ) : λ ≤ |ν|} are nonempty with
σ(T ) = σ+ ∪ σ−, i.e., σ(T ) can be separated by an annulus with center 0 and radii Λ < λ. This
at hand, we introduce the direct sums

V ±T :=
⊕
ν∈σ±,
=ν=0

ker (T − νIN )N ⊕
⊕
ν∈σ±,
=ν>0

ker
(
T 2 − 2<νT + |ν|2 IN

)N

and integers n± := dimV ±T . Let
{
x±1 , . . . , x

±
n±

}
be a basis of V ±T . Using the invertible matrix

C := (x+
1 , . . . , x

+
n+
, x−1 , . . . , x

−
n−) ∈ RN×N we introduce the complementary projections

Q+
T := C

(
In+

0n−

)
C−1, Q−T := C

(
0n+

In−

)
C−1,

fulfilling kerQ±T = V ∓T and imQ±T = V ±T .
Constant matrix sequences: Suppose L(k) is independent of k ∈ Z, i.e., L(k) ≡ L. An

eigenvalue ν of L ∈ RN×N is said to be semisimple, if its algebraic and geometric multiplicities
coincide. If the matrix L possesses a (Λ, λ)-decomposition and eigenvalues of L with modulus
Λ and λ are semisimple, then L possesses an exponential dichotomy with growth rates Λ, λ and
constant invariant projectors P± = Q±A (cf. [PR05a, Proposition 2.1]).

Periodic matrix sequences: Suppose L(k) is ω-periodic, i.e., L(k) ≡ L(k + ω) on Z. Note
that the matrix Mω(k) := Φ(k + ω, k), k ∈ Z, has the same eigenvalues as the so-called mon-
odromy matrix Mω(0). They are the Floquet multipliers of L. If the monodromy matrix Mω(0)
possesses an (Λω, λω)-decomposition and the Floquet multipliers with modulus Λω and λω are
semisimple, then L possesses an exponential dichotomy with growth rates Λ, λ and ω-periodic
invariant projectors P±(k) := Q±Mω(k) for all k ∈ Z (cf. [PR05a, Proposition 2.2]).
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APPENDIX C. ATTRACTIVE FIBER BUNDLES

Now we turn to nonlinear first order difference equations

(C.1) x(k + 1) = L(k)x(k) + F (k, x(k)),

where L : Z→ RN×N and F : Z×RN → RN specifies the nonlinearity. For the general solution
of (C.1) we write ϕ̂. Then our invariant manifold theorem reads as follows:

Theorem C.1 (attractive fiber bundles). Assume the following holds for (C.1):
(H)1 The sequence L : Z → RN×N has an exponential dichotomy with projectors P±, growth

rates 0 < Λ < λ and constants K±.
(H)2 One has the growth condition

sup
k<κ
‖F (k, 0)‖λκ−k <∞ for all κ ∈ Z(C.2)

and there exist functions l± : [0,∞)→ [0,∞) such that for all r > 0, k ∈ Z we have

(C.3) ‖P±(k + 1) [F (k, x)− F (k, x̄)]‖ ≤ l±(r) ‖x− x̄‖ for all x, x̄ ∈ Br.

(H)3 The difference equation (C.1) possesses a uniformly pullback absorbing set A ⊆ Z×RN ,
i.e., A is bounded and for every nonempty bounded subset B ⊆ Z × RN there exists
N = N(B) ∈ Z+

0 such that

ϕ̂(k; k − n,B(k − n)) ⊆ A(k) for all k ∈ Z, n ≥ N.

Choose ρ > 0 so large that Ā ⊆ Z×Bρ and suppose the following spectral gap condition:

K−l−(ρ)+K+l+(ρ) + max
{
K−l−(ρ),K+l+(ρ)

}
< λ−Λ

4 ,

4K−l−(ρ) < λ.(C.4)

Then there exists a nonautonomous setW ⊆ Z×RN (denoted as attractive invariant fiber bundle),
which is positively invariant w.r.t. (C.1), and possesses the following properties:

(a) W is graph of a functionw : O → RN over a nonempty open nonautonomous setO ⊆ P−,
i.e., W = {(κ, η + w(κ, η)) : (κ, η) ∈ O}, the functions w(κ, ·) : O(κ) → P+(κ) are
well-defined and satisfy:
(a1) They are globally Lipschitzian with Lip2w < 1,
(a2) one has the functional equation (invariance equation)

(C.5) w(κ+ 1, η1) = L(κ)w(κ, η) + P+(κ+ 1)F (κ, η + w(κ, η)),

for all (κ, η) ∈ O such that η1 := L(κ)η + F (κ, η + w(κ, η)) ∈ O(κ+ 1),
(b) W is asymptotically complete, i.e., for every pair (κ, ξ) ∈ Z × RN there exists a point

(κ∗, ξ∗) ∈ W with κ ≤ κ∗ such that

(C.6) ‖ϕ̂(k;κ, ξ)− ϕ̂(k;κ∗, ξ∗)‖ ≤ Cγk−κ for all k ∈ Z+
κ∗ ,

and a γ ∈ (Λ, λ), where the real C ≥ 0 depends boundedly on κ, ξ.
(c) The nonautonomous difference equation

(C.7) x(k + 1) = L(k)x(k) + P−(k + 1)F
(
k, x(k) + w(k, x(k))

)
in the pseudo-unstable bundle P− is denoted as reduced equation of (C.1) and the general
solution ϕ̃ of (4.6) is related to ϕ̂ by

ϕ̂(k;κ, η + w(κ, η)) = ϕ̃(k;κ, η) + w(k, ϕ̃(k;κ, η)) for all η ∈ O(κ).
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Remark C.2. If the Lipschitz constants l± : [0,∞) → [0,∞) are bounded, it is possible to
disclaim assumptions (H)3, (C.4) and to deduce a stronger global version of Theorem C.1: Then
the function w is defined on P− and in Theorem C.1(b) the point (κ∗, ξ∗) ∈ W is uniquely
determined with κ∗ = κ (cf. [Pöt07a, Proposition 2.1 and Theorem 2.5]).

Proof. The above theorem is a special case of [Pöt07b, Theorem 4.1]. �
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